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OPTIMIZED WAVEFORM RELAXATION METHODS FOR RC CIRCUITS:
DISCRETE CASE

Shu-Lin Wu1 and Mohammad D. Al-Khaleel2,3

Abstract. The optimized waveform relaxation (OWR) methods, benefiting from intelligent informa-
tion exchange between subsystems – the so-called transmission conditions (TCs), are recognized as
efficient solvers for large scale circuits and get a lot of attention in recent years. The TCs contain a free
parameter, namely α, which has a significant influence on the convergence rates. So far, the analysis of
finding the best parameter is merely performed at the continuous level and such an analysis does not
take into account the influence of temporal discretizations. In this paper, we show that the temporal
discretizations do have an important effect on the OWR methods. Precisely, for the Backward–Euler
method, compared to the parameter αc

opt from the continuous analysis, we show that the convergence
rates can be further improved by using the one αd

opt analyzed at the discrete level, while for the
Trapezoidal rule, it is better to use αc

opt. This conclusion is confirmed by numerical results.
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1. Introduction

In 2004, Gander and Ruehli proposed a new class of waveform relaxation (WR) methods [5], which are found
very efficient for large scale circuit simulations. Instead of directly partitioning the coefficient matrix of the circuit
equations – the basic feature of the classical WR methods [14, 15, 17], the new WR methods consist of direct
circuit partitions and therefore the partitioning procedure is much simpler. The new methods are called optimized
WR methods, where the optimization concerns are what we call the transmission conditions (TCs). The function
of the TCs is to transmit information from each subcircuit to its connected neighbor subcircuits. Nowadays,
it is well-understood that there is a close relevance between the OWR technique and the so-called Schwarz
waveform relaxation methods for time-dependent PDEs, where the TCs in the OWR framework correspond to
the coupling between subdomains in physical space. The classical WR methods correspond to the coupling of
Dirichlet type between subdomains [6, 13] and therefore these methods often converge very slowly, because the
TCs of Dirichlet type are inefficient. More efficient coupling can be obtained if more appropriate information,
adapted to the physics of the underlying PDE problem, is exchanged [7,8,10]. Among these studies, the coupling
of Robin type attracts a lot of attention in recent years, because the convergence rates of the resulting WR
methods are much more satisfactory, compared to the classical WR methods.
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Figure 1. The infinite-size RC circuits.

The Robin TCs contain a free parameter, namely α, which has a significant effect on the convergence rate.
The optimization procedure is investigated numerically in [2, 5, 9, 11], and theoretically in [1, 3, 4, 12]. All of
these previous studies are performed at the continuous level and therefore the effect of temporal discretizations
on the convergence behavior is not taken into account. Note that, in a real computation, we need to apply
some time-integrator to the continuous OWR methods and the solutions are obtained through discrete OWR
iterations. Hence, it is important to understand the influence of temporal discretizations on the convergence rate.
Actually, as we will see in this paper, the temporal discretizations do have a remarkable influence. Precisely, for
the Backward–Euler method, we find that the performance of the OWR methods can be further improved by
using the parameter αd

opt analyzed at the discrete level, compared to the one αc
opt from the continuous analysis,

while for the Trapezoidal rule it is better to use αc
opt, instead of αd

opt.
The layout of this paper is organized as follows: in Section 2, we introduce the model circuits and the OWR

methods studied in this paper. In Section 3, we present the analysis of finding the best parameter αd
opt at the

discrete level. Section 4 presents the asymptotic dependence of the discrete OWR methods on Δt (the step size)
and T (the length of time interval). Section 5 provides numerical results to validate the theoretical analysis and
we finish this paper in Section 6 with conclusions.

2. Model circuits and discrete OWR

To make our narrative clear and concise, similar to ([4,5] and [1], Chap. 3), we continue to use the RC circuits
in infinite-size as our model:

The state equation of this model circuit is

x′(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

d a d

d a d

. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠x(t) + f(t), (2.1a)

where f(t) = (. . . , f−1(t), f0(t), f1(t), . . . )
�, and x(t) = (. . . ,x−1(t),x0(t),x1(t), . . . )

� denotes a set of nodal
voltage values. The quantities a and d are determined by the circuit parameters, as,

d =
1

RC
, a = −

(
2d +

1
RC

)
· (2.1b)

One can see that d > 0, a < 0 and −a ≥ 2d, which makes our analysis in the following applicable to general
RC circuits. Since the circuit is infinitely large, to have a well posed problem, we assume that all voltage values
stay bounded as we move toward the infinite ends of the circuit.

To introduce the OWR methods, we divide the vector x(t) into two overlapping subvectors: x̃1(t) =
(. . . ,x−1(t),x0(t),x1(t))

� and x̃2(t) = (x0(t),x1(t),x2(t), . . .)
�. Then, similar to [4, 5, 12] and ([1], Chap. 3),
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we consider the following OWR method:(
x̃k

1,m

)′
(t) − dΔmx̃k

1,m(t) = fm(t) for m < 1,(
x̃k

2,m

)′
(t) − dΔmx̃k

2,m(t) = fm(t) for m > 0, (2.2a)

together with transmission conditions (TCs)

αx̃k
1,1(t) − x̃k

1,0(t) = αx̃k−1
2,1 (t) − x̃k−1

2,0 (t), αx̃k
2,0(t) − x̃k

2,1(t) = αx̃k−1
1,0 (t) − x̃k−1

1,1 (t), (2.2b)

where k ≥ 1 is the iteration index, α ∈ R is a free parameter and Δmx̃j,m = x̃j,m−1 − 2ζx̃j,m + x̃j,m+1 with
ζ = −a/(2d) ≥ 1 and j = 1, 2. Applying the linear θ-method to (2.2) gives

x̃k
1,m(n) − x̃k

1,m(n − 1)
Δt

− dΔm

[
θx̃k

1,m(n) + (1 − θ)x̃k
1,m(n − 1)

]
= f̄m(n), m < 1,

x̃k
2,m(n) − x̃k

2,m(n − 1)
Δt

− dΔm

[
θx̃k

2,m(n) + (1 − θ)x̃k
2,m(n − 1)

]
= f̄m(n), m > 0, (2.3a)

together with the following discrete TCs at t = tn:

αx̃k
1,1(n) − x̃k

1,0(n) = αx̃k−1
2,1 (n) − x̃k−1

2,0 (n), αx̃k
2,0(n) − x̃k

2,1(n) = αx̃k−1
1,0 (n) − x̃k−1

1,1 (n), (2.3b)

where n ≥ 1 and f̄m(n) = θfm(n) + (1 − θ)fm(n − 1). In (2.3a) and (2.3b), x̃k
j,m(n) denotes the numerical

approximation of x̃k
j,m(t) at t = tn. To analyze the discrete WR iteration (2.3), we use the discrete Laplace

transform [18]. For any grid function v = {vn}n≥0 on a regular grid with time step Δt, the discrete Laplace
transform is defined by:

L(v) = v̂(s) =
Δt√
2π

∑
n≥0

e−snΔtvn with s = σ + iω and π/T ≤ |ω| ≤ π/Δt, (2.4)

where σ > 0. The following lemma is useful for finding the best choice of the parameter α.

Lemma 2.1 (Minimizing-procedure). Let J ≥ 2 be an integer and gj(x) be a continuous function, monotonically
decreasing for x ∈ [a, x∗

j ] and increasing for x ∈ [x∗
j , b], j = 1, 2, . . . , J . Let G1(x) = g1(x) and X∗

1 = x∗
1. Define

Gj(x) = max{Gj−1(x), gj(x)}, X∗
j =

⎧⎪⎨⎪⎩
X∗

j−1, if Gj−1(X∗
j−1) ≥ gj(X∗

j−1),
x∗

j , if gj(x∗
j ) ≥ Gj−1(x∗

j ),

x̃∗
j , otherwise,

where j = 2, 3, . . . , J and x̃∗
j is the unique root of Gj−1(x) = gj(x) lying between X∗

j−1 and x∗
j . Then, the

quantity X∗ := X∗
J is the unique local minimizer of G(x) := max1≤j≤J{gj(x)}, i.e., G(x) is monotonically

decreasing for x ∈ [a, X∗] and increasing for x ∈ [X∗, b].

Proof. For j = 2, by assumption, we have G2(x) ≥ max{g1(x∗
1), g2(x∗

2)}. If g1(x∗
1) ≥ g2(x∗

1), we have
G2(x) ≥ g1(x∗

1) since g2(x∗
1) ≥ g2(x∗

2). On the other hand, the low bound g1(x∗
1) is reachable: G2(x∗

1) =
max{g1(x∗

1), g2(x∗
1)} = g1(x∗

1). Hence, X∗
2 = x∗

1. Similarly, for the case g2(x∗
2) ≥ g1(x∗

2), we shall have X∗
2 = x∗

2.
It remains to consider the third case, i.e., the previous two cases do not hold. Without lose of generality, we
assume x∗

1 < x∗
2. Then, it is easy to understand that G2(x) is decreasing for x ∈ [a, x∗

1] and increasing for
x ∈ [x∗

2, b]. In the middle interval x ∈ [x∗
1, x

∗
2], we know that g1(x) is increasing and g2(x) is decreasing. This,

together with g1(x∗
1) < g2(x∗

1) and g2(x∗
2) < g1(x∗

2), implies that g1(x) = g2(x) has a unique root in the interval
[x∗

1, x
∗
2] and that G2(x) = g2(x) for x ∈ [x∗

1, X
∗] and G2(x) = g1(x) for x ∈ [X∗, x∗

2].
In summary, G2(x) has a unique local minimizer X∗

2 and G2(x) is decreasing for x ∈ [a, X∗
2 ] and increasing

for x ∈ [X∗
2 , b]. Now, the function G2(x) has the similar property of g2(x) and therefore for j = 3 the quantity

X∗
3 is the unique local minimizer of G3(x) and G3(x) is decreasing for x ∈ [a, X∗

3 ] and increasing for x ∈ [X∗
3 , b].

Repeating this process, we will arrive at X∗
J , the unique local minimizer of G(x). �
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3. Parameter optimizations

Denote by x̃j,m(n) (with j = 1, 2) the converged solution of the OWR method. Then, the error sequences
ek

j,m(n) := x̃k
j,m(n) − x̃j,m(n) also satisfy (2.3a) and (2.3b), but with f̄m(n) = 0 and ek

j,m(0) = 0. Applying the
discrete Laplace transform to the error equations, after some simple algebra, yields:

�êk
j,m − γΔmêk

j,m = 0, j = 1, 2, (3.1a)

αêk
1,1 − êk

1,0 = αêk−1
2,1 − êk−1

2,0 , αêk
2,0 − êk

2,1 = αêk−1
1,0 − êk−1

1,1 , (3.1b)

where
γ = dΔt, z = esΔt, � =

z − 1
θz + (1 − θ)

· (3.1c)

It is well-known that the general form of the solution êk
j,m can be expressed as

êk
j,m(s) = Ak

j λm
+ + Bk

j λm
− , j = 1, 2, (3.2a)

where λ± is defined by:

λ± =
� + 2ζγ ±

√
(� + 2ζγ)2 − 4γ2

2γ
· (3.2b)

Lemma 3.1. Let θ ∈
[

1
2 , 1

]
and c ≥ 1. Then, λ± are analytic for s = σ + iω with σ > 0 and |ω| ∈

[
π
T , π

Δt

]
.

Proof. The proof consists of two steps: � is analytic in the right half complex plane and �(�) ≥ 0. The second
point ensures that the argument under the square root avoids the negative real axis.

Step 1: � is analytic in the right half complex plane. Since z = esΔt = eσΔt (cos(ωΔt) + i sin(ωΔt)) and
|ω| ≤ π

Δt , we have �(s) ∈ [−eσΔt, eσΔt]. The argument � is a rational polynomial of z; hence, it suffices to prove
that θz + (1 − θ) does not have zeros for �(s) ∈ [−eσΔt, eσΔt]. This is true, because θz + (1 − θ) = 0 ⇔ z =
− 1−θ

θ ∈ [−1, 0] for θ ∈
[
1
2 , 1

]
, whereas eσΔt > 1 for σ > 0.

Step 2: �(�) ≥ 0. Let h0 = θeσΔt cos(ωΔt) + 1 − θ and h1 = θeσΔt sin(ωΔt). Then, we have

� =
1
θ

[
1 − h0 − ih1

h2
0 + h2

1

]
, (3.3)

and this implies �(�) ≥ 0. �

Let s = r̃eiθ̃ with θ̃ ∈ (−π
2 , π

2 ). Then, from (3.3) we have lim
r̃→+∞

�(θ, z) = 1
θ . Hence, for all θ̃ ∈

(
−π

2 , π
2

)
it

holds that limr̃→∞ λ± = λ∗
±, where

λ∗
± :=

1
θ + 2γζ ±

√(
1
θ + 2γζ

)2 − 4γ2

2γ
· (3.4)

This, together with the maximum principle for complex analytic functions, gives

max
	(s)≥0

|λ±| = max
{

max
	(s)=0

|λ±|, λ∗
±

}
. (3.5)

Let c = cos(ωΔt). Then, for s = iω it holds that

� = �R(c) + i�I(c), λ+ = ΛR(c) + iΛI(c), (3.6)
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where �R,I and ΛR,I are defined by:

�R(c) =
1
θ

[
1 − θc + 1 − θ

θ2 + (1 − θ)2 + 2θ(1 − θ)c

]
, �I(c) =

√
1 − c2

θ2 + (1 − θ)2 + 2θ(1 − θ)c
,

HR(c) = [�R(c) + 2γζ]2 − �
2
I(c) − 4γ2, HI(c) = 2�I(c) [�R(c) + 2γζ] ,

SR(c) =

√
H2

R(c) + H2
I (c) + HR(c)
2

, SI(c) =

√
H2

R(c) + H2
I (c) − HR(c)
2

,

ΛR(c) =
�R(c) + 2γζ +

√
SR(c)

2γ
, ΛI(c) =

�I(c) +
√

SI(c)
2γ

· (3.7)

From (3.6), we have

min
	(s)≥0

|λ+| =
1

max
	(s)≥0

|λ−|
= min

{√
Λ2

R(c) + Λ2
I(c), λ

∗
+

}
, (3.8)

where we have used λ−λ+ ≡ 1. For θ ∈ [12 , 1], it is easy to verify �R(c) ≥ 0 for c ∈ [−1, 1]. Hence, ΛR(c) ≥ 1 for
c ∈ [−1, 1] and this implies |λ+| ≥ 1 and |λ−| = |1/λ+| ≤ 1.

Now, by using the boundedness of the error functions ek
j at infinity, the constants Ak

j and Bk
j in (2.2a) can

be determined as Bk
1 = 0 for the first subsystem and Ak

2 = 0 for the second one. Hence,

êk
1,m(s) = Ak

1λm
+ , êk

2,m(s) = Bk
2λm

− . (3.9)

This, together with the boundary conditions (3.1b), gives the following recurrence relations:

Ak
1 (αλ+ − 1) = Bk−1

2 (αλ− − 1) , Bk
2 (α − λ−) = Ak−1

1 (α − λ+) . (3.10)

Define

ρ̂d
opt =

(α − λ+)2

(αλ+ − 1)2
, ρd

opt(θ, α) = max
	(s)≥0,|
(s)|∈[π/T,π/Δt]

∣∣ρ̂d
opt

∣∣ (3.11)

(the subscript ‘d’ denotes ‘discrete’). We call ρ̂d
opt and ρd

opt the convergence factors of the OWR methods in the
frequency and time domain, respectively. Then, we have Ak

1 = ρ̂d
optA

k−2
1 and Bk

2 = ρ̂d
optB

k−2
2 . Mathematically,

we want ρd
opt(θ, α) 	 1, which leads to the following min-max problem

min
α∈R

max
	(s)≥0, π

T ≤|
(s)|≤ π
Δt

∣∣∣∣ α − λ+

αλ+ − 1

∣∣∣∣2 · (3.12)

We have proved |λ+| ≥ 1 for all θ ∈ [12 , 1]. Then, if |α| ≤ 1, we have |α−λ+|2−|αλ+−1|2 =
(
|λ+|2 − 1

)
(1−α2) ≥

0, which implies ρd
opt(θ, α) > 1. Hence, we only need to consider |α| > 1 in (3.12). Moreover, if α < −1,∣∣∣∣ −α − λ+

−αλ+ − 1

∣∣∣∣2 − ∣∣∣∣ α − λ+

αλ+ − 1

∣∣∣∣2 =
4α�(λ+)(1 − α2)(1 − |λ+|2)

|α2λ2
+ − 1|2 ≤ 0,

which implies ρd
opt(θ,−α) > ρd

opt(θ, α) for α > 1. In summary, we can assume α > 1 in (3.12).

Lemma 3.2. Assume α > 1 and θ ∈
[

1
2 , 1

]
. Then,

ρd
opt(θ, α) = max

{
max

	(s)=0

∣∣ρ̂d
opt

∣∣ ,( α − λ∗
+

αλ∗
+ − 1

)2
}

,

where λ∗
+ is given by (3.4).
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Proof. We have already proved that the argument λ+ is analytic and satisfies |λ+| ≥ 1 in the right half complex
plane. Then, we know that α−λ+

αλ+−1 is also analytic in the right half complex plane, since α > 1 and |λ+| ≥ 1
guarantees that the denominator αλ+−1 will never be zero. Hence, the claim follows by applying the maximum
principle for complex analytic functions. �

To analyze the min-max problem (3.12), we define the following notations:

N(α, c) = (α − ΛR(c))2 + Λ2
I(c), D(α, c) = [αΛR(c) − 1]2 + α2Λ2

I(c), (3.13)

where c = cos(ωΔt) and ΛR,I(c) are defined by (3.7). For �(s) = 0, by using Lemma 3.2 we have∣∣ρ̂d
opt

∣∣ = Tθ(α, c) :=
N(α, c)
D(α, c)

· (3.14)

The aforementioned analysis implies that the min-max problem (3.12) is equivalent to

min
α>1

max

{
max

c∈[−1,c∗]
Tθ(α, c),

(
α − λ∗

+

αλ∗
+ − 1

)2
}

, (3.15)

where c∗ = cos
(

Δt
T π

)
. In what follows, we focus on the analysis of finding the solution of (3.15).

3.1. The Trapezoidal rule: θ = 1
2

For θ = 1
2 , it holds that �R ≡ 0 and �I(c) = 2

√
1−c
1+c . Define y =

√
1−c
1+c and R(y) = γ2(ζ2 − 1) − y2. Then,

we have ΛR = 2γζ+
√

R+(y)

2γ , ΛI = 2y+
√

R−(y)

2γ and

SR = R+(y) := 2
(√

R2(y) + 4γ2ζ2y2 + R(y)
)

, SI = R−(y) := 2
(√

R2(y) + 4γ2ζ2y2 − R(y)
)

.

Define

P (y) =
2γζ +

√
R+(y)

2γ
, Q(y) =

2y +
√

R−(y)
2γ

,

P(α, y) = (α − P )2 + Q2, Q(α, y) = (αP − 1)2 + α2Q2, Tθ= 1
2
(α, y) =

P(α, y)
Q(α, y)

· (3.16)

Then, the min-max problem (3.15) is equivalent to

min
α>1

max

{
max

y≥ymin
Tθ= 1

2
(α, y),

(
α − λ∗

+

αλ∗
+ − 1

)2
}

, (3.17)

where ymin =
√

1−c∗
1+c∗ and c∗ = cos

(
Δt
T π

)
.

Lemma 3.3. Assume α > 1. Then we have

max
y≥ymin

Tθ= 1
2

= max
{
Tθ= 1

2
(α, ymin), α−2

}
.

Proof. To prove this claim, we need the following calculations:

Py :=
∂P
∂y

= 2[P − α]P ′ + 2QQ′, QPy = 2
[
(αP − 1)2 + α2Q2

]
[(P − α)P ′ + QQ′] ,

Qy :=
∂Q
∂y

= 2α(αP − 1)P ′ + 2α2QQ′, PQy = 2α
[
(P − α)2 + Q2

]
[(αP − 1)P ′ + αQQ′] ,
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where P ′ = P ′(y) and Q′ = Q′(y) are given by:

P ′ =
y

γ
√

R+(y)

(
(ζ2 + 1)γ2 + y2√
R2(y) + 4γ2ζ2y2

− 1

)
, Q′ =

1
γ

+
y

γ
√

R−(y)

(
(ζ2 + 1)γ2 + y2√
R2(y) + 4γ2ζ2y2

+ 1

)
.

Clearly, Q′ > 0 for y > 0. Moreover, [(ζ2 + 1)γ2 + y2]2 − R2(y) − 4γ2ζ2y2 = 4γ4ζ2 > 0 and this gives P ′ > 0
for y > 0. Since α > 1 and P ′ > 0, we have the following deduction:

−α2 < −1 ⇔ α(P − α) < αP − 1 ⇔ (P − α)P ′ + QQ′

(αP − 1)P ′ + αQQ′ <
1
α

⇔ (P − α)P ′ + QQ′

α(αP − 1)P ′ + α2QQ′ <
1
α2

· (3.18)

We now suppose that Tθ= 1
2
(α, y) has a local extremum located at y = y∗ > 0. Then,

∂Tθ= 1
2
(α, y)

∂y

∣∣∣
y=y∗

=
QPy(α, y∗) − PQy(α, y∗)

Q2(α, y∗)
= 0.

Since α > 1, y∗ > 0 and P (y) ≥ 1, it holds that Q(α, y∗),Qy(α, y∗) 
= 0. Therefore, we have

Tθ= 1
2
(α, y∗) =

P(α, y∗)
Q(α, y∗)

=
Py(α, y∗)
Qy(α, y∗)

,

i.e., at y = y∗ we have Tθ= 1
2
(α, y∗) = [P (y∗)−α]P ′(y∗)+Q(y∗)Q′(y∗)

α[αP (y∗)−1]P ′(y∗)+α2Q(y∗)Q′(y∗) . Using (3.18), we have Tθ= 1
2
(α, y∗) < 1

α2 .

On the other hand, for any α > 1 it holds that lim
y→+∞

P (y)
y = 0 and lim

y→+∞
Q(y)

y = 2
γ · Therefore,

lim
y→+∞Tθ= 1

2
(α, y) = lim

y→+∞
[α − P (y)]2 + Q2(y)

[αP (y) − 1]2 + α2Q2(y)
= lim

y→+∞

(
α−P (y)

y

)2

+
(

Q(y)
y

)2

(
αP (y)−1

y

)2

+ α2
(

Q(y)
y

)2 =
1
α2

·

In summary: (1) any local maximum of Tθ= 1
2

can not exceed 1
α2 ; (2) 1

α2 can be reached at y = +∞. �

Define

T̃θ= 1
2
(α) = max

{
Tθ= 1

2
(α, ymin),

(
α − λ∗

+

αλ∗
+ − 1

)2
}

. (3.19a)

Then, using Lemma 3.3 we know that the min-max problem (3.17) is equivalent to

min
α>1

max
{
T̃θ= 1

2
(α), α−2

}
. (3.19b)

Theorem 3.4 (θ = 1
2 ). Let ymin =

√
1−cos(Δtπ/T )
1+cos(Δtπ/T ) . Then, the best performance of the discrete OWR

method (2.3) with θ = 1
2 (i.e., the Trapezoidal rule) is obtained for α = αd

opt, where αd
opt, the solution of (3.19b),

is given by:

αd
opt =

{
α∗, if T̃θ= 1

2
(α∗) ≥ 1

α2∗
,

α∗
0, otherwise,

(3.20)

where α∗
0 is the unique root of T̃θ= 1

2
(α) = 1

α2 and is given by

α∗ =

⎧⎨⎩α1, if Tθ= 1
2
(α1, ymin) ≥

(
α1−λ∗

+
α1λ∗

+−1

)2

,

α0, otherwise.
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Figure 2. The profile of Tθ as a function of α and c.

The arguments α0 and α1 are defined by

Tθ= 1
2
(α, ymin) =

(
α − λ∗

+

αλ∗
+ − 1

)2

(⇒ root is α0), α1 =
λ2

min + 1
2Pmin

+

√(
λ2

min + 1
2Pmin

)2

− 1, (3.21)

where λmin =
√

P 2(ymin) + Q2(ymin) and Pmin = P (ymin). With the optimized parameter αd
opt, the convergence

factor of the discrete OWR method (2.3), ρd
opt (θ, α) defined by (3.11), satisfies

ρd
opt = T̃θ= 1

2

(
αd

opt

)
. (3.22)

Proof. Routine calculation yields

sign
(
∂αTθ= 1

2
(α, ymin)

)
= sign

(
α2 − α(λ2

min + 1)/Pmin + 1
)
. (3.23)

Then, for α ∈ [1,∞), we know that α1 is the unique local minimizer of Tθ= 1
2
(α, ymin). It is clear that λ∗

+ is

the unique local minimizer of
(

α−λ∗
+

αλ∗
+−1

)2

and that the minimum is zero. Hence, by using Lemma 2.1, we know

that α∗ is the unique local minimizer of the function T̃θ= 1
2
(α). Since α−2 is decreasing for α ∈ [1,∞), a simple

logical deduction shows that the quantity αd
opt defined by (3.20) is the solution of (3.19b). �

3.2. The case θ ∈ (
1
2
, 1

]
We now analyze the min-max problem (3.15) for θ > 1

2 . In Figure 2, we plotted the profile of the function Tθ

for θ = 1, Δt = 0.01, T = 20, d = 104 and ζ = 1+ 1
d , where we see that for given α > 1 the maximal value of Tθ

is obtained at either c = −1 or c = c∗
(
= cos

(
Δtπ
T

))
, i.e., maxc∈[−1,c∗] Tθ(α, c) = max {Tθ(α,−1), Tθ(α, c∗)}. It

is difficult to rigorously prove this result owing to the high complicity of Tθ(α, c) for θ 
= 1
2 , but our numerical

results for many other values of Δt, T , d and θ indicate that this result always holds. We use this numerical
result as a hypothesis and all our analyses in the following for θ ∈ (1

2 , 1] are based on this hypothesis.

Hypothesis 3.5. For θ ∈ (1
2 , 1], d > 0 and ζ = −a/(2d) ≥ 1, we assume that the function Tθ(α, c) defined

by (3.14) with N(α, c) and D(α, c) defined by (3.13) satisfies

max
c∈[−1,c∗]

Tθ(α, c) = max {Tθ(α,−1), Tθ(α, c∗)} ,

where c∗ = cos
(

Δtπ
T

)
.
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Under this hypothesis the min-max problem (3.15) can be rewritten as:

min
α>1

max

{
Tθ(α,−1), Tθ(α, c∗),

(
α − λ∗

+

αλ∗
+ − 1

)2
}

. (3.24)

Similar to the proof of Theorem 3.4, it can be shown that for α ∈ [1, +∞) the function Tθ(α,−1) (resp. Tθ(α, c∗))
has a unique local minimizer α̃−1 (resp. α̃1), where α̃−1 and α̃1 are defined by:

α̃−1 =
Λ2

R(−1) + 1
2ΛR(−1)

+

√(
Λ2

R(−1) + 1
2ΛR(−1)

)2

− 1, α̃1 =
λ2

c∗ + 1
2ΛR(c∗)

+

√(
λ2

c∗ + 1
2ΛR(c∗)

)2

− 1, (3.25)

where λc∗ := |λ+|c=c∗ =
√

Λ2
R(c∗) + Λ2

I(c∗). Then, applying Lemma 2.1, we get the following result.

Proposition 3.6. Let g1(α) = Tθ(α,−1), g2(α) = Tθ(α, c∗) and g3(α) =
(

α−λ∗
+

αλ∗
+−1

)2

. Let x∗
1 = α̃−1, x∗

2 = α̃−1

and x∗
3 = λ∗

+, and X∗
3 be the quantity determined by the minimizing-procedure given in Lemma 2.1. Then, a

reliable parameter α used in the discrete OWR method (2.3) can be chosen as αd
opt = X∗

3 . With the choice
α = αd

opt, the convergence factor of the discrete OWR satisfies

ρd
opt = max

j=1,2,3
gj(αd

opt). (3.26)

4. Asymptotic analysis

In this section, we analyze the asymptotic dependence of the convergence factor ρd
opt on T (the length of time

interval) and Δt (the mesh size). For θ ∈ (1
2 , 1], we assume that the function Tθ(α, c) defined by (3.14) satisfies

Hypothesis 3.5.

4.1. Asymptotic results with respect to Δt

For Δt small, we have c∗ = cos
(

Δtπ
T

)
= 1 − π2

2T 2 Δt2 + O
(
Δt4

)
. To analyze the asymptotic dependence of

ρd
opt on Δt, we make an ansatz αd

opt = 1 + CΔt−β with β > 0. Then, for all θ ∈
[

1
2 , 1

]
a tedious but routine

calculation yields the following results(
αd

opt − λ∗
+

αd
optλ

∗
+ − 1

)2

=

(
1
dθ − CΔt1−β + O (Δt)

C
dθ + Δtβ

dθ + O (Δt)

)2

Δt2β ,

Tθ

(
αd

opt,−1
)

=
(

2 − dC(2θ − 1)Δt1−β + O (Δt)
2C + 2Δtβ + O (Δt)

)2

Δt2β ,

Tθ

(
αd

opt, c
∗) =

C2 + 2C(1 − m0)Δtβ +
[
(m0 − 1)2 + n2

0

]
Δt2β + O

(
Δt1+β

)
C2(m2

0 + n2
0) + 2C[m0(m0 − 1) + n2

0]Δtβ + [(m0 − 1)2 + n2
0]Δt2β + O (Δt)

,

ΛR(c∗) = m0 + O (Δt) , ΛI(c∗) = n0 + O (Δt) , (4.1a)

where m0 and n0 are given by:

m0 = ζ +

√√√√√ 1
8d2

⎡⎣√(
4d2(ζ2 − 1) − π2

T 2

)2

+ 16d2ζ2
π2

T 2
+ 4d2(ζ2 − 1) − π2

T 2

⎤⎦,

n0 =
π

2dT
+

√√√√√ 1
8d2

⎡⎣√(
4d2(ζ2 − 1) − π2

T 2

)2

+ 16d2ζ2
π2

T 2
− 4d2(ζ2 − 1) +

π2

T 2

⎤⎦. (4.1b)
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From the analysis in Section 3, we have

ρd
opt(θ, α) = max

{
Tθ(α,−1), Tθ(α, c∗),

(
α − λ∗

+

αλ∗
+ − 1

)2
}
· (4.2)

Hence, if β > 0 from (4.1a) we have ρd
opt

(
θ, αd

opt

)
= Tθ(αd

opt, c
∗) for Δt small. Since the function Tθ(α, c∗) attains

its global minimum at α = Λ2
R(c∗)+Λ2

I(c∗)+1
2ΛR(c∗) +

√(
Λ2

R(c∗)+Λ2
I(c∗)+1

2ΛR(c∗)

)2

− 1, using (4.1a) again we have for Δt small

that αd
opt = m2

0+n2
0+1

2m0
+

√(
m2

0+n2
0+1

2m0

)2

− 1. Clearly, this contradicts with the assumption αd
opt = 1 + CΔt−β

with β > 0. By a similar analysis, we can also exclude the case αd
opt = 1 + CΔtβ with β > 0. Therefore, there

is only one possibility left, αd
opt = 1 + C with C > 0. In this case, using (4.1a) again, for Δt small we have(

αd
opt − λ∗

+

αd
optλ

∗
+ − 1

)2

≈ 1
(1 + C)2

, Tθ

(
αd

opt,−1
)
≈ 1

(1 + C)2
, Tθ

(
αd

opt, c
∗) ≈ (C + 1 − m0)2 + n2

0

[(C + 1)m0 − 1]2 + (C + 1)2n2
0

·

Let c̃ = C + 1. Then, for Δt small, it holds that ρd
opt(θ, α

d
opt) = max

{
1
c̃2 ,

(c̃−m0)
2+n2

0
[c̃m0−1]2+c̃2n2

0

}
and that the best

choice of c̃ is c̃ = m0 +
√

m2
0 − 1, which gives αd

opt = 1 + C = m0 +
√

m2
0 − 1.

Proposition 4.1. Let T > 0, ζ ≥ 1, θ ∈ [12 , 1] and m0 be the quantity defined by (4.1b). Then, for Δt small,
we have the following asymptotic results

αd
opt ≈ m0 +

√
m2

0 − 1, ρd
opt ≈

(
m0 +

√
m2

0 − 1
)−2

. (4.3)

4.2. Asymptotic results with respect to T

For fixed Δt and T large, we have c∗ = cos
(

πΔt
T

)
= 1 − (πΔt)2

2 T−2 + O
(
T−4

)
. Let

λ∗
−1 =

2
2θ−1 + 2γζ +

√(
2

2θ−1 + 2γζ
)2

− 4γ2

2γ
· (4.4)

Then, it holds that

Tθ(α,−1) =
(

α − λ∗
−1

αλ∗−1 − 1

)2

· (4.5)

Note that, for θ = 1
2 we have λ∗

−1 = +∞, which gives Tθ(α,−1) = 1
α2 and therefore the min-max problem (4.2)

is reduced to (3.19b). Our analysis in what follows is divided into two cases, ζ = 1 and ζ > 1.
For ζ = 1, by assuming

αd
opt = 1 + C†T−β with β ∈

(
0,

1
2

)
, (4.6)

we have

Tθ

(
αd

opt,−1
)
≈ 1 − 2C†

(
λ∗
−1 + 1

λ∗
−1 − 1

)
T−β,

(
αd

opt − λ∗
+

αd
optλ

∗
+ − 1

)2

≈ 1 − 2C†

(
λ∗

+ + 1
λ∗

+ − 1

)
T−β,

Tθ

(
αd

opt, c
∗) ≈ 1 −

4
√

πΔt
2d

C†
T−( 1

2−β). (4.7)
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Define

λ∗
min = min

{
λ∗
−1 + 1

λ∗
−1 − 1

,
λ∗

+ + 1
λ∗

+ − 1

}
· (4.8)

Then, it holds that

max

⎧⎨⎩Tθ

(
αd

opt,−1
)
,

(
αd

opt − λ∗
+

αd
optλ

∗
+ − 1

)2
⎫⎬⎭ ≈ 1 − 2C†λ∗

minT−β. (4.9)

Balancing (4.9) and the third term in (4.7) gives

β =
1
2
− β ⇒ β =

1
4
, 2C†λ∗

min =
4
√

πΔt
2d

C†
⇒ C† =

(
2πΔt

dλ2
min

) 1
4

· (4.10)

Proposition 4.2. Let ζ := −a
2d = 1, Δt be a fixed number and θ ∈ [12 , 1]. Then, for T large we have

αd
opt ≈ 1 +

(
2πΔt

dλ2
min

) 1
4

T− 1
4 , ρd

opt ≈ 1 −
(

32λ2
minπΔt

d

) 1
4

T− 1
4 , (4.11)

where λ∗
min is defined by (4.8).

For ζ > 1, we can expect constant convergence factor when T is large. In this case, by noticing c∗ =
limT→+∞ cos

(
πΔt
T

)
= 1, from equation (3.7) we have �R(1) = �I(1) = 0, which implies ΛR(1) = λ̃∗ :=

ζ +
√

ζ2 − 1 and ΛI(1) = 0. Hence, Tθ(α, c∗) →
(

α−λ̃∗

αλ̃∗−1

)2

as T → +∞. Let g1(α) := Tθ(α,−1) =
(

α−λ∗
−1

αλ∗
−1−1

)2

,

g2(α) := Tθ(α, 1) =
(

α−λ̃∗

αλ̃∗−1

)2

and g3(α) :=
(

α−λ∗
+

αλ∗
+−1

)2

, where λ∗
+ and λ∗

−1 are defined by (3.4) and (4.4).

Let x∗
1 = λ∗

−1, x∗
2 = λ̃∗, x∗

3 = λ∗
+ and X∗

3 be the quantity determined by the minimizing-procedure given in
Lemma 2.1. Then, for T → +∞ from (4.2) and (4.5) we know that Proposition 3.6 also holds and ρd

opt =
maxj=1,2,3 gj

(
αd

opt

)
< 1.

Remark 4.3 (Results from continuous analysis). For the continuous OWR method (2.3), the best parameter
αc

opt (the superscript ‘c’ denote ‘continuous’), is determined by (see [1], Chap. 3 for details):

R(τmin, α) = R(τmax, α), (4.12a)

where R(τ, α) = 2α2ζ−α2τ−4ατζ+2ατ2+τ
−4ατζ+2ατ2+2ζ−τ+α2τ , τmin,max = ζ +

√
2

4

√√
ξmin,max − ω̃2

min,max + 4(ζ2 − 1) and

ξmin,max = ω̃4
min,max + 8ζ2ω̃2

min,max + 8ω̃2
min,max + 16(ζ2 − 1)2 with ω̃min =

π

dT
and ω̃max =

π

dΔt
· (4.12b)

For a given temporal discretization, we will compare in the next section the convergence rates of the OWR
methods using the two choices of the parameter α, i.e., α = αc

opt and α = αd
opt.

5. Numerical results

In this section, we compare the performance of the OWR method using the parameters from the continuous
and discrete analyses. We consider a model RC circuit with 100 nodes with parameters R = 1

3 Ohm and
C = 3

200 pF. The resistor value is chosen to be R = 40
3 Ohm. This setting gives state equation (2.1a) with

d = 200 and a = −(2d + 5). The source term f(t) is determined as this: we use Is(t) = 1 + N for t ∈ [N, N + 1]
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Figure 3. Comparisons of the convergence rates of the OWR methods for two time-integrators:
θ = 1

2 (left) and θ = 1 (right). The discretization/problem parameters are Δt = 0.02, T = 50,
a = −(2d+5) and d = 200. In each subfigure, the horizontal line indicates the truncation error
of the time-integrator, which shows how many iterations one should really use in practice.
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Figure 4. Measured error of the OWR method after 5 iterations for various values of the
parameter α. The parameters α = αc

opt from the continuous analysis and α = αd
opt from the

discrete analysis are denoted by ‘◦’ and ‘∗’. Left: θ = 1
2 ; Right: θ = 1.

as the input function with N ≥ 0 being an integer, and then f(t) = (Is(t)/C, 0, . . . , 0)� ∈ R
200. The initial

iterate for the OWR method is chosen randomly and the iteration stops when the global error satisfies

max
n

∥∥x̃k(n) − x̃(n)
∥∥
∞ ≤ 10−12, (5.1)

where {x̃(n)} is the reference solution obtained by using the same time-integrator as that for {x̃k(n)}.
In Figure 3, we compare the convergence rates of the OWR methods using different parameters α. The left

and right subfigures correspond to θ = 1
2 (i.e., the Trapezoidal rule) and θ = 1 (i.e., the Backward–Euler

method), respectively. We see clearly that, for θ = 1
2 it is better to use α = αc

opt instead of α = αd
opt, while in

the case of θ = 1, α = αd
opt is a better choice than α = αc

opt.
With the same discretization/problem parameters, this conclusion is further confirmed by the results shown

in Figure 4, where we show the measured error of the OWR method after 5 iterations using various values for the
parameter α; the choice α = αc

opt is denoted by a circle and α = αd
opt is denoted by a star. Besides the message
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Figure 6. For T = 4, a = −(2d + 5) and d = 200, dependence of the convergence factor ρ
(left) and the measured iteration number (right) of the OWR method on Δt.

similar to that implied by Figure 3, another message from Figure 4 is that for θ = 1 the parameter α = αd
opt

from the discrete analysis is very close to the best choice that we can get through numerical implementation,
while for θ = 1

2 both α = αd
opt and α = αc

opt are far away from the best one. This implies that further work is
needed to let the OWR method using the Trapezoidal rule as the temporal discretization converge rapidly.

We next verify the asymptotic dependence of the convergence rates of the OWR method on T , the length of
time interval, and the mesh size Δt. To this end, in Figure 5 we show the measured iteration number needed to
satisfy the stopping criterion (5.1) for several values of T . As we have analyzed in Section 4.2, the convergence
factor of the OWR method presents different asymptotic behavior with respect to T , depending on ζ := −a

2d > 1
or ζ = 1, and therefore we consider two cases in Figure 5: in the left subfigure we consider the case ζ > 1
and in the right subfigure we consider ζ = 1. For the first case, we see that the OWR method under different
time-integrators and different choices of α behaves robustly as T increases, while for the case ζ = 1 the iteration
number increases with a rate of order O

(
T

1
4

)
, just as Proposition 4.2 predicts.

Then, in Figure 6 we show the asymptotic dependence of the OWR method on Δt. For problem parameters
T = 4, a = −(2d + 5) and d = 200, we first show the convergence factor as a function of Δt on the left
subfigure. We see that both ρc and ρd approach to 0.3 as Δt goes to 0 and that ρd

θ=1 < ρc < ρd
θ= 1

2
. The first

conclusion confirms Proposition 4.1 very well, because from (4.1b) we see that the argument m0 is independent
of θ and therefore for all θ ∈ [12 , 1] the convergence factor ρd approaches to the same quantity. These theoretical
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predictions are further confirmed by the results shown in the right subfigure, where for different Δt we show
the measured number of iterations required to satisfy the stopping criterion (5.1).

6. Conclusions

The efficiency of the classical WR methods for circuit simulations depends very much on finding a good
partitioning: the engineer needs to find subcircuits such that the coupling between them is weak; then with
the corresponding partitioning the method should converge rapidly. However, finding such a partitioning is
not always easy: “In practice one is interested in knowing what subdivisions yield fast convergence for the
iterations. . . The splitting into subsystems is assumed to be given. How to split in such a way that the coupling
remain “weak” is an important question” [16]. The optimized WR approach is a mathematical technique to reach
the two goals concurrently, i.e., maintaining the partitioning procedure as simple as possible and maintaining
the convergence as fast as possible. The second goal is realized by optimizing the parameter, namely α, involved
in the transmission conditions, which exchange a combination of voltages and currents rather than just voltages
or just currents from one subcircuit to its neighboring subcircuits.

In the last decade, optimizing the parameter α is studied by many authors for several different circuits. The
optimization is done at the continuous level and the obtained parameter, namely αc

opt, is used for practical
circuit simulations. Then, it is natural to ask: can the convergence rate of the OWR method be further improved
by directly optimizing α at the discrete level? By using the diffusive circuit as the model, this paper provides a
positive answer for this question, if we use the Backward–Euler method as the numerical method, which, as we
found in the literature, is the most frequently used time-integrator in this field. However, this conclusion is not
applicable to the Trapezoidal rule, the simplest 2nd-order, A-stable and one-step numerical method. For this
method, it is better to use αc

opt from the continuous analysis instead of αd
opt from the discrete analysis.

Our ongoing study is devoted to optimizing the transmission condition parameter α for finite-size RC circuits.
For the Trapezoidal rule, from Figure 4 on the left we see that the parameter αd

opt is far from optimal in practical
computation and one possible reason is that this parameter is analyzed for circuits of infinite-size, while the
numerical experiments are carried out for finite-size circuits. From the most recent work by Al-Khaleel et al. [3,4],
where the authors analyzed the optimized WR method for finite-size RC circuits at the continuous level, we
believe that the discrete analysis for finite-size RC circuits shall result in better parameter, since, obviously, in
practice the size of a circuit is always finite in a concrete circuit simulation.
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