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SPARSE POLYNOMIAL APPROXIMATION OF PARAMETRIC ELLIPTIC PDES.
PART I: AFFINE COEFFICIENTS∗
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Abstract. We consider the linear elliptic equation −div(a∇u) = f on some bounded domain D, where
a has the affine form a = a(y) = ā+

∑
j≥1 yjψj for some parameter vector y = (yj)j≥1 ∈ U = [−1, 1]N.

We study the summability properties of polynomial expansions of the solution map y �→ u(y) ∈ V :=
H1

0 (D). We consider both Taylor series and Legendre series. Previous results [A. Cohen, R. DeVore
and C. Schwab, Anal. Appl. 9 (2011) 11–47] show that, under a uniform ellipticity assuption, for any
0 < p < 1, the �p summability of the (‖ψj‖L∞)j≥1 implies the �p summability of the V -norms of the
Taylor or Legendre coefficients. Such results ensure convergence rates n−s of polynomial approximations
obtained by best n-term truncation of such series, with s = 1

p
−1 in L∞(U, V ) or s = 1

p
− 1

2
in L2(U, V ).

In this paper we considerably improve these results by providing sufficient conditions of �p summability
of the coefficient V -norm sequences expressed in terms of the pointwise summability properties of the
(|ψj |)j≥1. The approach in the present paper strongly differs from that of [A. Cohen, R. DeVore and
C. Schwab, Anal. Appl. 9 (2011) 11–47], which is based on individual estimates of the coefficient norms
obtained by the Cauchy formula applied to a holomorphic extension of the solution map. Here, we use
weighted summability estimates, obtained by real-variable arguments. While the obtained results imply
those of [7] as a particular case, they lead to a refined analysis which takes into account the amount
of overlap between the supports of the ψj . For instance, in the case of disjoint supports, these results
imply that for all 0 < p < 2, the �p summability of the coefficient V -norm sequences follows from the
weaker assumption that (‖ψj‖L∞)j≥1 is �q summable for q = q(p) := 2p

2−p
> p. We provide a simple

analytic example showing that this result is in general optimal and illustrate our findings by numerical
experiments. The analysis in the present paper applies to other types of linear PDEs with similar affine
parametrization of the coefficients, and to more general Jacobi polynomial expansions.
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1. Introduction

1.1. Elliptic PDEs with affine parameter dependence

The numerical treatment of parametric and stochastic partial differential equations was initiated in the 1990s,
see [10, 11, 13, 16] for general references. It has recently drawn much attention in the case where the number of
involved parameters is very large [2, 3], or countably infinite [5, 7, 8].

In this paper, we are interested in the approximation of the elliptic parametric PDE of the form

−div(a∇u) = f, (1.1)

set on a bounded Lipschitz domain D ⊂ R
d (where in typical applications, d = 1, 2, 3), with homogeneous

Dirichlet boundary conditions. We consider coefficients having the affine form

a = a(y) = ā+
∑
j≥1

yjψj , (1.2)

where
y ∈ U = [−1, 1]N. (1.3)

The functions ā and ψj are assumed to be in L∞(D).
Well-posedness of this problem in V = H1

0 (D) is ensured for all y ∈ U by the so-called Uniform Ellipticity
Assumption, further referred to as (UEA), ∑

j≥1

|ψj | ≤ ā− r. (UEA)

for some r > 0, which is equivalent to r ≤ a(y) ≤ R for all y ∈ U for some 0 < r ≤ R < ∞. This assumption
ensures the uniform boundedness of the solution map y �→ u(y) from U to V .

We are interested in polynomial approximations of the solution map. Such approximations have the form

uΛ(y) :=
∑
ν∈Λ

vνy
ν , (1.4)

where Λ ⊂ F is a finite set of (multi-)indices ν = (νj)j≥1 ∈ F and yν =
∏
j≥1 y

νj

j . In the infinite-dimensional
setting, the index set F denotes the (countable) set of all sequences of nonnegative integers which are finitely
supported (i.e. those sequences for which only finitely many terms are nonzero). Note that the polynomial
coefficients vν are functions in V . Such approximations can be obtained by truncation of infinite polynomial
expansions.

Two relevant such expansions are:

1. The Taylor series

u =
∑
ν∈F

tνy
ν , tν :=

1
ν!
∂νu(0), (1.5)

where we use the customary multi-index notations

yν =
∏
j≥1

y
νj

j and ν! =
∏
j≥1

νj !, (1.6)

with the convention that 0! = 1.
2. The Legendre series

u =
∑
ν∈F

uνLν , uν = 〈u, Lν〉, Lν(y) =
∏
j≥1

Lνj (yj), (1.7)

where the univariate Legendre polynomials Lk are normalized in L2([−1, 1], dt
2 ), and 〈·, ·〉 denotes the inner

product in L2(U, V, μ), where μ =
⊗

j≥1
dyj

2 is the uniform probability measure.
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Given such expansions, one natural way of constructing a polynomial approximation is by best n-term
truncation, that is, setting

uTn (y) :=
∑
ν∈ΛT

n

tνy
ν , (1.8)

or
uLn(y) :=

∑
ν∈ΛL

n

uνLν(y), (1.9)

where ΛTn and ΛLn are the index sets corresponding to the n largest ‖tν‖V or ‖uν‖V , respectively. The convergence
rates of such approximations are governed by the �p summability properties of the sequences (‖tν‖V )ν∈F for p < 1
and (‖uν‖V )ν∈F for p < 2. Indeed, by standard application of classical estimates on nonlinear approximation
in sequence spaces, initially due to Stechkin [9], such summability properties imply error estimates of the form

‖u− uTn‖L∞(U,V ) ≤ C(n+ 1)−s, s :=
1
p
− 1, C := ‖(‖tν‖V )ν∈F‖�p , (1.10)

and
‖u− uLn‖L2(U,V,μ) ≤ C(n+ 1)−r, r :=

1
p
− 1

2
, C := ‖(‖uν‖V )ν∈F‖�p , (1.11)

see [7]. Let us mention that the case of finitely many variables, that is, when ψj = 0 for j > d, typically leads to
exponential convergence rates of the form exp(−cn1/d). Such rates have been obtained in [2, 3] by application
of the above Stechkin estimates for all 0 < p < 1 and tuning the value of p with that of n. They can also
be directly obtained through the available upper bounds on the coefficients ‖tν‖V or ‖uν‖V , as shown in [15],
which brings certain improvements over the previous approach. In the present paper we focus our attention on
the infinite-dimensional case.

The above approximation estimates have general implications on the potential performance of other model
reduction techniques. Indeed we observe that uTn (y) and uLn(y) belong to fixed n-dimensional subspaces of V ,
spanned by the (tν)ν∈ΛT

n
or (uν)ν∈ΛL

n
. It thus follows from (1.10) that the best n-dimensional model reduction

error in the uniform sense, given by the Kolmogorov n-width

dn(M) := inf
dim(Vn)=n

sup
v∈M

min
w∈Vn

‖v − w‖V , M := u(U) = {u(y) : y ∈ U}, (1.12)

decays at least as fast as n−s. Likewise, it follows from (1.11) that if y is uniformly distributed in U , the best
n-dimensional model reduction error in the mean-square sense

inf
dim(Vn)=n

E( min
w∈Vn

‖u(y)− w‖2
V ), (1.13)

attained when Vn is the span of the n first V -principal components, decays at least as fast as n−2r. The above
estimates govern the convergence rate of reduced basis (RB) methods and proper orthogonal decomposition
(POD) methods, respectively, see [8].

1.2. Existing results

Summability results for the sequences (‖tν‖V )ν∈F and (‖uν‖V )ν∈F have been established in [7] under the
so-called uniform ellipticity assumption ∑

j≥1

|ψj | ≤ ā− r (UEA)

for some r > 0, which is equivalent to r ≤ a(y) ≤ R for all y ∈ U for some 0 < r ≤ R < ∞. This assumption
ensures the uniform boundedness of the solution map y �→ u(y) from U to V . These results can be summarized
as follows.
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Theorem 1.1. Assume that (UEA) holds. For any 0 < p < 1, if (‖ψj‖L∞)j≥1 ∈ �p(N) then (‖tν‖V )ν∈F ∈
�p(F) and (‖uν‖V )ν∈F ∈ �p(F).

These results have been extended to a large range of linear or nonlinear parametric PDEs [5, 8] where y is
again ranging in the infinite dimensional box U . They strongly rely on the holomorphy of the solution map
y �→ u(y) in each variable yj. While they yield provable algebraic approximation rates for parametric PDEs in
the infinite-dimensional framework, these results are not fully satisfactory for several reasons.

First, they are confined to the case 0 < p < 1. Therefore, no summability property of the Taylor or Leg-
endre coefficients can be deduced from these results in cases where (‖ψj‖L∞)j≥1 does not have this type of �p

summability. Note also that, in the case of Legendre series, convergence rates of best n-term approximation can
be derived as soon as (‖uν‖V )ν∈F ∈ �p(F) for some p < 2, in view of (1.11). A legitimate objective is therefore
to identify conditions on (ψj)j≥1 that govern the �p summability of (‖uν‖V )ν∈F in the regime 1 ≤ p ≤ 2.

Second and more important, the summability conditions imposed on the ‖ψj‖L∞ in this result becomes quite
strong and artificial in the case where the supports of these functions do not overlap too much. As a relevant
example, consider the case where the (ψj)j≥1 are a wavelet basis on the domain D. In this case it is more
natural to denote the elements of such bases by ψλ, where λ concatenates the space and scale indices, following
the usual terminology such as in [6], and using the the notation l = |λ| for the scale level. At a given scale level
l ≥ 0, there are O(2dl) wavelets and their supports have finite overlap in the sense that, for all x ∈ D,

#{λ : |λ| = l and ψλ(x) = 0} ≤M, (1.14)

for some fixed M independent of l, where #S denotes the cardinality of the set S. It is well known that the
geometric rate of decay of the wavelet contributions as the scale level grows reflects the amount of smoothness
in the expansion. It is thus natural to study the situation where

‖ψλ‖L∞ = cl := C2−αl, |λ| = l, (1.15)

for some given α > 0. In the affine case, assuming that ā and the ψλ are sufficiently smooth, this means that
the diffusion coefficient a is uniformly bounded in the Hölder space Cα(D) independently of y. In this case, the
uniform ellipticity assumption is ensured provided that

M
∑
l≥0

cl ≤ āmin − r, where āmin := ess infD ā > 0, (1.16)

which holds if C ≤M−1(āmin − r)(1 − 2−α) for the above constant C. Note that we can take α > 0 arbitrarily
small, up to taking C small enough. The uniform ellipticity assumption ensures that the solution map belongs
to L∞(U, V ) and therefore to L2(U, V, μ), and thus that the Legendre coefficient sequence (‖uν‖V )ν∈F belongs
to �2(F). However, if we want to use the above mentioned results to prove �p summability of this sequence for
smaller values of p, we are forced to assume that the ‖ψλ‖L∞ are summable over all indices, which equivalently
means that ∑

l≥0

2dl2−αl <∞, (1.17)

and therefore that α > d. This is highly unsatisfactory since it excludes diffusion coefficients with low order of
smoothness, especially when the spatial dimension d is large.

1.3. Main results and outline

The above example reveals a gap in the currently available analysis: �2 summability of (‖vν‖V )ν∈F can be
obtained under mild assumptions, while proving �p summability for p < 2 by the existing results immediately
imposes much stronger assumptions (in the sense of the required decay of ‖ψj‖L∞ as j → ∞). In this paper,
we propose a new analysis which allows us to remove this gap.

The main results of the present paper can be summarized as follows.
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Theorem 1.2. Assume that (UEA) holds and that for 0 < p < 2 and q = q(p) := 2p
2−p , there exists a sequence

ρ = (ρj)j≥1 with ρj > 1, such that ∑
j≥1

ρj |ψj | ≤ ā− s, (1.18)

for some s > 0, and such that
(
ρ−1
j

)
j≥1

belongs to �q(N). Then the sequences (‖tν‖V )ν∈F and (‖uν‖V )ν∈F
belong to �p(F).

This theorem constitutes a particularly strong improvement over Theorem 1.1 when the supports of the
functions (ψj)j≥1 do not overlap much. For example, in the case where these supports are disjoint we can
take weights such that ρ−1

j ∼ ‖ψj‖L∞ as ‖ψj‖L∞ tends to 0. Therefore, in this case, for all 0 < p < 2 the �p

summability of (‖tν‖V )ν∈F and (‖uν‖V )ν∈F follows from the assumption that (‖ψj‖L∞)j≥1 is �q summable for
q = q(p) := 2p

2−p . Note that q(p) > p and that

lim
p→2

q(p) = +∞, (1.19)

which shows that almost no decay of (‖ψj‖L∞)j≥1 is required as p gets closer to 2. Similar improvements can
be obtained for other types of families (ψj)j≥1, such as wavelets.

Let us also mention that, while we focus on the diffusion equation, inspection of proofs reveals that the main
results can be extended to other types of linear elliptic or parabolic PDEs with similar affine dependence of the
coefficients. Specific examples are given at the end of Section 2.

The remainder of this paper is organized as follows. In Section 2, we establish Theorem 1.2 in the case of
Taylor coefficients. The approach strongly differs from that used in [7] for proving Theorem 1.1 which is based
on establishing individual estimates of the ‖tν‖V by Cauchy’s formula applied to to a holomorphic extension of
the solution map. Instead, we use weighted summability estimates, obtained by real-variable arguments. It is
worth mentioning that these estimates also imply the individual estimates from [7].

In Section 3, we establish Theorem 1.2 in the case of Legendre coefficients. The approach is again based on
weighted summability estimates, obtained by combining the ideas developed for the Taylor coefficients with
Rodrigues’ formula. Furthermore, we give an extension of our results to Jacobi polynomial expansions by an
analogous argument.

We give in Section 4 several examples of applications, corresponding to different types of support properties
for the (ψj)j≥1 and we discuss in each case the improvements over Theorem 1.1. In particular, we show that
our results are sharp in the case of disjoint or finitely overlapping supports, in the sense that �q summability
of (‖ψj‖L∞)j≥1 with q := q(p) is generally necessary to achieve �p summability of (‖tν‖V )ν∈F . While we
focus on the infinite-dimensional framework, the obtained results can also be used in the case of finitely many
variables. In particular, one may use them to obtain improved exponential convergence rates, by following either
a Stechkin-based approach as in [2, 3] or a more direct approach as in [15].

Finally, we give in Section 5 the results of several numerical tests evaluating the sharpness of the obtained
results for the various types of (ψj)j≥1 considered in Section 4.

2. Summability of Taylor coefficients

We start from an analysis of Taylor coefficients, where we use the following alternative expression of the
uniform ellipticity assumption, further referred to as (UEA*),∥∥∥∥

∑
j≥1 |ψj |
ā

∥∥∥∥
L∞

< 1. (UEA*)

Indeed, if (UEA) holds with some r > 0, then we also have∥∥∥∥
∑
j≥1 |ψj |
ā

∥∥∥∥
L∞

≤
∥∥∥∥ ā− r

ā

∥∥∥∥
L∞

≤ 1 − r

‖ā‖L∞
< 1, (2.1)

and it is also easily checked that (UEA*) implies (UEA) for a certain r.
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Similar arguments as in [7] show that under such an assumption, the partial derivatives ∂νu(y) are well
defined for each ν ∈ F as elements of V for each y ∈ U . They can be computed by applying the operator ∂ν in
the y variable to the variational formulation∫

D

a(y)∇u(y) · ∇v dx = 〈f, v〉V ′,V , v ∈ V, (2.2)

which gives, for all ν = 0,∫
D

a(y)∇∂νu(y) · ∇v dx = −
∑

j∈supp ν

νj

∫
D

ψj∇∂ν−eju(y) · ∇v dx, v ∈ V, (2.3)

where
ej = (0, . . . , 0, 1, 0, . . . ) = (δi,j)i≥1 (2.4)

is the Kronecker δ sequence with 1 at position j. For the Taylor coefficients, this yields∫
D

ā∇tν · ∇v dx = −
∑

j∈supp ν

∫
D

ψj∇tν−ej · ∇v dx, v ∈ V, (2.5)

when ν = 0 and ∫
D

ā∇t0 · ∇v dx = 〈f, v〉V ′,V , v ∈ V. (2.6)

We shall make use of the norm defined by

‖v‖2
ā :=

∫
D

ā|∇v|2 dx. (2.7)

This norm is obviously equivalent to the V -norm with

āmin‖v‖2
V ≤ ‖v‖2

ā ≤ ‖ā‖L∞‖v‖2
V . (2.8)

The following results shows that under (UEA*), the energy of Taylor coefficients decays geometrically with the
total order of differentiation. Its proofs uses a technique introduced in [4]. Here we use the standard notation

|ν| :=
∑
j≥1

νj , (2.9)

to denote the total order.

Lemma 2.1. If (UEA*) holds, then for σ := θ
2−θ < 1 with

θ =
∥∥∥∥
∑

j≥1 |ψj |
ā

∥∥∥∥
L∞

< 1, (2.10)

we have for all k ≥ 1, ∑
|ν|=k

‖tν‖2
ā ≤ σ

∑
|ν|=k−1

‖tν‖2
ā. (2.11)

Proof. For ν ∈ F , we define

dν :=
∫
D

ā|∇tν |2 dx, dν,j :=
∫
D

|ψj ||∇tν |2 dx. (2.12)

Then by (UEA*), ∑
j≥1

dν,j ≤ θdν . (2.13)
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Furthermore, since for ν = 0 the Taylor coefficients satisfy∫
D

ā∇tν · ∇v dx = −
∑

j∈supp ν

∫
D

ψj∇tν−ej · ∇v dx, v ∈ V, (2.14)

we also have
dν ≤

∑
j∈supp ν

∫
D

|ψj ||∇tν−ej ||∇tν | dx ≤ 1
2

∑
j∈supp ν

(
dν−ej ,j + dν,j

)
, (2.15)

where we have used Young’s inequality. Thus, by (2.13),(
1 − θ

2

)
dν ≤ 1

2

∑
j∈supp ν

dν−ej ,j . (2.16)

Summing over |ν| = k, we obtain(
1 − θ

2

) ∑
|ν|=k

dν ≤ 1
2

∑
|ν|=k

∑
j∈supp ν

dν−ej ,j =
1
2

∑
|ν|=k−1

∑
j≥1

dν,j , (2.17)

and using again (2.13), we arrive at (2.11). �

Note that as an immediate consequence of (2.11),∑
ν∈F

‖tν‖2
ā ≤

‖t0‖2
ā

1 − σ
=

2 − θ

2 − 2θ
‖t0‖2

ā <∞, (2.18)

and therefore by (2.8) and the Lax–Milgram stability estimate for t0 = u(0),∑
ν∈F

‖tν‖2
V ≤ (2 − θ)‖ā‖L∞

(2 − 2θ)āmin
‖t0‖2

V ≤ (2 − θ)‖ā‖L∞

(2 − 2θ)ā3
min

‖f‖2
V ′ <∞. (2.19)

We are now ready to state the main result of this section which is a direct consequence of the above observations.

Theorem 2.2. Assume that for some sequence ρ = (ρj)j≥1 of positive weights, we have the weighted uniform
ellipticity assumption

δ :=
∥∥∥∥
∑

j≥1 ρj|ψj |
ā

∥∥∥∥
L∞

< 1. (2.20)

Then the sequence (ρν‖tν‖V )ν∈F is �2 summable, with∑
ν∈F

(ρν‖tν‖V )2 ≤ C <∞, (2.21)

where

C = C(ā, f, δ) =
(2 − δ)‖ā‖L∞

(2 − 2δ)ā3
min

‖f‖2
V ′ . (2.22)

Proof. We observe that the weighted UEA is equivalent to (UEA*) for the rescaled coefficient aρ(y) := a(Dρy),
where Dρy := (ρjyj)j≥1. So we obtain with Lemma 2.1 and (2.19) that∑

ν∈F
‖tρ,ν‖2 <∞, (2.23)

where
tρ,ν =

1
ν!
∂νuρ(0) = ρνtν , uρ(y) = u(Dρy). (2.24)

The result follows. �
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As a consequence we obtain the following summability result.

Corollary 2.3. If for some sequence ρ = (ρj)j≥1 with ρj > 1, j ∈ N, we have the weighted uniform ellipticity
assumption (2.20) and if the sequence

(
ρ−1
j

)
j≥1

belongs to �q(N) with q = q(p) := 2p
2−p for some p < 2, then the

sequence (‖tν‖V )ν∈F is �p summable.

Proof. By Hölder’s inequality,

∑
ν∈F

‖tν‖pV ≤
(∑
ν∈F

ρ2ν‖tν‖2
V

)p/2(∑
ν∈F

ρ−
2p

2−pν

)(2−p)/2
. (2.25)

Moreover, ∑
ν∈F

ρ−
2p

2−pν =
∏
j≥1

( ∞∑
k=0

ρ−qkj

)
=
∏
j≥1

(1 − ρ−qj )−1, (2.26)

where the latter product converges precisely when (ρ−1
j )j≥1 ∈ �q. The statement thus follows from

Theorem 2.2. �

Remark 2.4. As a trivial consequence of Theorem 2.2, using the fact that the �2 norm dominates the �∞ norm,
we also retrieve the estimate

‖tν‖V ≤ Cρ−ν , (2.27)

for any sequence ρ such that (2.20) holds, where C is the square root of the constant in (2.22). This estimate was
established in [7], with a different constant, by a complex variable argument, namely invoking the holomorphy
of y �→ u(y) on polydiscs of the form ⊗j≥1{|zj| ≤ ρj}. One advantage of this individual estimate is that one
may choose to optimize over all possible sequences ρ, which yields

‖tν‖V ≤ C inf ρ−ν , (2.28)

where the infimum is taken over all sequences ρ = (ρj)j≥1 of numbers larger than 1 such that (2.20) holds. The
proof of Theorem 1.1 in [7] for the Taylor coefficients is based on using the above estimate, which amounts to
selecting a different sequence ρ = ρ(ν) for each ν ∈ F . However, we show in Section 4 that in several relevant
cases better results can be obtained by using Corollary 2.3.

The above analysis exploits the particular structure of the linear diffusion equation and affine dependence
of a in the variables yj , in particular when deriving the recursion equation (2.5) which subsequently leads to
the �2 estimate of Lemma 2.1. It can be extended in a natural manner to other types of equations with similar
properties. Here are three simple examples:

1. The fourth order equation Δ(aΔu) = f set on a bounded Lipschitz domain D with homogeneous boundary
condition u = ∂u

∂n = 0 on ∂D and a having the affine form (1.2). In this case the relevant space is V := H2
0 (D),

the closure of D(D) in H2(D), and the recursion is∫
D

āΔtνΔv dx = −
∑

j∈supp ν

∫
D

ψjΔtν−ejΔv dx, v ∈ V. (2.29)

By taking v = tν we obtain Lemma 2.1 for the norm ‖v‖ā :=
(∫
D ā|Δv|2

)1/2, which is equivalent to
‖v‖V = ‖Δv‖L2.

2. The parabolic equation ∂tu − div(a∇u) = f set on ]0, T [×D with homogeneous boundary condition u = 0
on ]0, T [×∂D and initial condition u|t=0 = u0 ∈ L2(D). In this case, the relevant solution space is
V = L2(]0, T [;H1

0 (D)) ∩ H1(]0, T [;H−1(D)). We refer to [14] for the corresponding space-time variational
formulation and the analysis of its well-posedness. For ν = 0 we find that tν satisfies a parabolic PDE
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with initial value tν|t=0 = 0 and recursive variational form given by∫ T

0

∫
D

(∂ttν v + ā∇tν · ∇v) dxdt = −
∑

j∈supp ν

∫ T

0

∫
D

ψj∇tν−ej · ∇v dx, v ∈ V. (2.30)

By taking v = tν we obtain Lemma 2.1 for the norm ‖v‖ā :=
(∫ T

0

∫
D ā|∇v|2

)1/2

. Note that this norm is not

equivalent to the full norm of V but only to that of V = L2(]0, T [;H1
0(D)).

3. Similar results hold when a is of symmetric tensor type, with ā non-degenerate uniformly over D. We obtain
Lemma 2.1 for the norm ‖v‖ā :=

(∫
D
ā|∇v|2)1/2, under a uniform ellipticity assumption taking the following

form,

θ :=
∥∥∥∥
∑

j≥1 ‖ψj‖2

λmin(ā)

∥∥∥∥
L∞

< 1, (2.31)

analogous to (2.10), with ‖ψj‖2 and λmin(ā) denoting the functions x �→ ‖ψj(x)‖2 (with ‖ · ‖2 the spectral
norm) and x �→ λmin(ā). Note that this assumption is equivalent to (2.10), that is, to (UEA*) or (UEA) in
the scalar case. Likewise we obtain the subsequent results under the assumption that the sequence (ρj)j≥1

satisfies
∥∥∥∑ j≥1 ρj‖ψj‖2

λmin(ā)

∥∥∥
L∞

< 1.

3. Summability of Legendre coefficients

In this section, we show that the summability properties of Corollary 2.3 hold also for the Legendre coefficients
of u.

Theorem 3.1. If for some sequence ρ = (ρj)j≥1 with ρj ≥ 1, j ∈ N, we have the weighted uniform ellipticity
assumption

δ :=
∥∥∥∥
∑

j≥1 ρj|ψj |
ā

∥∥∥∥
L∞

< 1, (3.1)

then with aν :=
∏
j≥1

√
2νj + 1, the sequence (a−1

ν ρν‖uν‖V )ν∈F is �2 summable, that is,∑
ν∈F

(a−1
ν ρν‖uν‖V )2 ≤ C <∞, (3.2)

where

C = C(ā, f, δ) :=
(2 − δ)(1 + δ)‖ā‖2

L∞‖f‖2
V ′

2(1 − δ)4ā4
min

· (3.3)

Proof. For y, z ∈ U , we set Tyz := (yj + (1 − |yj |)ρjzj)j≥1. Then for wy(z) := u(Tyz), we have

∂νwy(0) =

⎛
⎝∏
j≥1

(1 − |yj |)νj

⎞
⎠ ρν∂νu(y). (3.4)

Let us fix y ∈ U and set āy := a(y) = ā+
∑
j≥1 yjψj and ψy,j := (1 − |yj|)ρjψj . Then wy is the solution of

− div

⎡
⎣
⎛
⎝āy +

∑
j≥1

zjψy,j

⎞
⎠∇wy(z)

⎤
⎦ = f. (3.5)

Applying Lemma 2.1 with the modified y-dependent coefficients in (3.5), for the Taylor coefficients ty,ν :=
(ν!)−1∂νwy(0) of wy we obtain∑

|ν|=k
‖ty,ν‖2

āy
≤ σy

∑
|ν|=k−1

‖ty,ν‖2
āy
, σy =

θy
2 − θy

, θy =
∥∥∥∥
∑
j≥1 |ψy,j |
āy

∥∥∥∥
L∞

. (3.6)
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Since ρj ≥ 1,

θy ≤
∥∥∥∥∥
∑

j≥1 ρj |ψj | −
∑

j≥1 ρj |yj ||ψj |
ā−∑j≥1 |yj ||ψj |

∥∥∥∥∥
L∞

≤
∥∥∥∥
∑

j≥1 ρj |ψj |
ā

∥∥∥∥
L∞

= δ < 1, (3.7)

and thus σy ≤ δ/(2 − δ) < 1. Consequently, as in (2.19),∑
ν∈F

‖ty,ν‖2
ā ≤ ‖ā−1

y ā‖L∞
∑
ν∈F

‖ty,ν‖2
āy

≤ ‖ā−1
y ā‖L∞

2 − δ

2 − 2δ
‖ty,0‖2

āy
, (3.8)

where
‖ty,0‖2

āy
≤ ‖āy‖L∞‖ā−2

y ‖L∞‖f‖2
V ′ . (3.9)

We also have

‖ā−1
y ā‖L∞‖āy‖L∞‖ā−2

y ‖L∞ ≤ ‖ā‖L∞

∥∥∥∥∥∥ā+
∑
j≥1

|ψj |
∥∥∥∥∥∥
L∞

∥∥∥∥∥∥∥
⎛
⎝ā−∑

j≥1

|ψj |
⎞
⎠

−3
∥∥∥∥∥∥∥
L∞

≤ (1 + δ)‖ā‖2
L∞

(1 − δ)3ā3
min

(3.10)

by (3.1). Altogether, we obtain

∑
ν∈F

‖ty,ν‖2
V ≤ ā−1

min

∑
ν∈F

‖ty,ν‖2
ā ≤

(2 − δ)(1 + δ)‖ā‖2
L∞‖f‖2

V ′

(2 − 2δ)(1 − δ)3ā4
min

= C <∞. (3.11)

With the present normalization as in (1.7), the Legendre polynomials satisfy the Rodrigues’ formula

Lν(y) =
∏
j≥1

∂νj
yj

(√
2νj + 1
νj ! 2νj

(y2
j − 1)νj

)
. (3.12)

As a consequence, for the Legendre coefficients of u we obtain

uν =
∫
U

u(y)Lν(y) dμ(y) =
∫
U

u(y)
∏
j≥1

∂νj
yj

(√
2νj + 1
νj ! 2νj

(y2
j − 1)νj

)
dμ(y)

=

⎛
⎝∏
j≥1

√
2νj + 1

⎞
⎠∫

U

1
ν!
∂νu(y)

∏
j≥1

(1 − y2
j )
νj

2νj
dμ(y).

(3.13)

Hence, by (3.4) and (3.8),

∑
ν∈F

⎛
⎝∏
j≥1

(2νj + 1)

⎞
⎠

−1

ρ2ν‖uν‖2
V ≤

∑
ν∈F

ρ2ν

∫
U

∥∥∥∥ 1
ν!
∂νu(y)

∥∥∥∥
2

V

∏
j≥1

(1 − y2
j )

2νj

22νj
dμ(y)

=
∫
U

∑
ν∈F

ρ2ν

∥∥∥∥ 1
ν!
∂νu(y)

∥∥∥∥
2

V

∏
j≥1

(1 − |yj|)2νj
(1 + |yj |)2νj

22νj
dμ(y)

≤
∫
U

∑
ν∈F

∥∥∥∥ 1
ν!
∂νwy(0)

∥∥∥∥
2

V

dμ(y) =
∫
U

∑
ν∈F

‖ty,ν‖2
V dμ(y) ≤ C,

(3.14)

which completes the proof. �
Corollary 3.2. If for some sequence ρ = (ρj)j≥1 with ρj > 1, j ∈ N, we have the weighted uniform ellipticity
assumption (3.1), and if the sequence

(
ρ−1
j

)
j≥1

belongs to �q with q = 2p
2−p for a p < 2, then the sequence

(‖uν‖V )ν∈F is �p summable.
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Proof. We obtain the statement from Theorem 3.1 by proceeding exactly as in the proof of Corollary 2.3. In
this case we need ⎛

⎝∏
j≥1

√
2νj + 1 ρ−νj

j

⎞
⎠
ν∈F

∈ �q, (3.15)

which, since ρj > 1, holds precisely when (ρ−1
j )j≥1 ∈ �q, since

∑
ν∈F

ρ−qν
∏
j≥1

(2νj + 1)q/2 =
∏
j≥1

( ∞∑
k=0

ρ−qkj (1 + 2k)q/2
)
, (3.16)

and since, by using the fact that ‖(ρ−1
j )j≥1‖�∞ < 1, we find that the sum in each factor of the above product

converges and is bounded by 1 + Cρ−qj for some fixed C. �
Remark 3.3. Similar to the case of Taylor coefficients, we can also derive from Theorem 3.1 the individual
estimate

‖uν‖V ≤ Caνρ
−ν , (3.17)

which is very similar to, yet slightly better than, the one established in [7] by complex variable arguments.

Remark 3.4. As a consequence of Stechkin’s lemma, under the assumptions of Corollary 3.2, we find that the
best n-term approximation polynomials

uLn :=
∑
ν∈ΛL

n

uνLν , (3.18)

obtained by retaining the indices of the n largest ‖uν‖V , satisfy the estimate

‖u− uLn‖L2(U,V,μ)<∼n−r, (3.19)

where r := 1
p − 1

2 = 1
q . There is, however, a more direct and constructive way of retrieving this convergence

rate, namely taking instead ΛLn to be the set of indices corresponding to the n smallest values of the weights
wν := a−1

ν ρν which appear in (3.2). We then directly obtain that

‖u− uLn‖L2(U,V,μ) ≤ sup
ν /∈Λn

w−1
ν

(∑
ν∈F

w2
ν‖uν‖2

V

)1/2

<∼d∗n+1, (3.20)

where (d∗n)n≥1 is the decreasing rearrangement of the sequence (w−1
ν )ν∈F . As seen in the proof of Corollary 3.2,

this sequence belongs to �q(F), which implies that d∗n<∼n−r with r := 1
q .

Remark 3.5. The results of this section can be generalized to other families of orthogonal polynomials satisfy-
ing a suitable Rodrigues’ formula. For instance, when the uniform measure on U is replaced by a tensor product
beta measure

dμ̃(y) =
⊗
j≥1

Γ (αj + βj + 2)
2αj+βj+1Γ (αj + 1)Γ (βj + 1)

(1 − yj)αj (1 + yj)βjdyj , (3.21)

where αj , βj > −1 with the uniform measure as the special case αj = βj = 0, the corresponding orthonormal
polynomials are the Jacobi polynomials given by the Rodrigues’ formula

Pν(y) =
∏
j≥1

c
αj ,βj
νj

νj ! 2νj
(1 − yj)−αj (1 + yj)−βj ∂νj

yj

(
(y2
j − 1)νj (1 − yj)αj (1 + yj)βj

)
, (3.22)

where

cαj ,βj
νj

:=

√
(2νj + αj + βj + 1) νj!Γ (νj + αj + βj + 1)Γ (αj + 1)Γ (βj + 1)

Γ (νj + αj + 1)Γ (νj + βj + 1)Γ (αj + βj + 2)
, (3.23)
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with the convention that cαj ,βj

0 = 1 for any αj , βj > −1. Using integration by parts analogously to (3.13), for
the Jacobi coefficients ũν we then obtain

ũν =
∫
U

u(y)Pν(y) dμ̃(y) = ãν

∫
U

1
ν!
∂νu(y)

∏
j≥1

(1 − y2
j )
νj

2νj
dμ̃(y), ãν :=

∏
j≥1

cαj ,βj
νj

. (3.24)

For ρ = (ρj)j≥1 satisfying the assumptions of Theorem 3.1, proceeding exactly as in (3.14) we arrive at∑
ν∈F

(
ã−1
ν ρν‖ũν‖V

)2
<∞. (3.25)

Provided that the sequences (αj)j≥1, (βj)j≥1 are such that cαj ,βj
νj ≤ Q(νj) for some polynomial Q independent

of j (which holds, for instance, when both sequences are constant), the statement of Corollary 3.2 thus holds
also for (‖ũν‖V )ν∈F .

Remark 3.6. The same remarks as given at the end of Section 2 apply to the generalization of Theorem 3.1,
Corollary 3.2, and Remark 3.5 to other types of linear PDEs with affine dependence in the coefficients.

4. Examples

In this section, we compare the summability properties obtained with the approach in the present paper
to those obtained with the analysis in [7] for various types of (ψj)j≥1. We show that this approach gives an
improvement on Theorem 1.1, depending on the particular structure of the supports of the ψj .

4.1. Finitely overlapping supports

We first consider families (ψj)j≥1 of functions with finitely overlapping supports, that is, such that for any
x ∈ D,

#{j : ψj(x) = 0} ≤M, (4.1)

for some fixed M > 0, where #S denotes the cardinality of the set S. The case M = 1 corresponds to
disjoint supports, such as the family of characteristic functions ψj = bjχDj

with some normalizing factor bj,
when (Dj)j≥1 is a partition of D. Another example with M ≥ 1 is the set of Lagrange finite element basis
functions of a given order k ≥ 1, associated to a conforming simplicial partition of D.

Assuming (UEA*), we then define a weight sequence (ρj)j≥1 by

ρj := 1 +
āmin(1 − θ)
2M‖ψj‖L∞

· (4.2)

With such a choice, we find that (2.20) holds since, for all x ∈ D,∑
j≥1

ρj |ψj(x)| ≤
∑
j≥1

|ψj(x)| + āmin(1 − θ)
2M

∑
j≥1

|ψj(x)|
‖ψj‖L∞

≤ θā(x) +
1 − θ

2
āmin ≤ δā(x), (4.3)

with δ := 1+θ
2 < 1. As a consequence of Corollaries 2.3 and 3.2 we obtain the following result.

Corollary 4.1. Assume that (ψj)j≥1 is a family of functions with finitely overlapping supports, and
that (UEA*) holds. If (‖ψj‖L∞)j≥1 ∈ �q(N) for some 0 < q <∞ and if 0 < p < 2 is such that q = q(p) := 2p

2−p ,
then (‖tν‖V )ν∈F and (‖uν‖V )ν∈F belong to �p(F). In particular, best n-term Legendre approximations converge
in L2(U, V, μ) with rate n−s where s = 1

p − 1
2 = 1

q .

As already observed we always have q(p) > p which shows that there is in this case a significant improvement
between the summability properties of (‖ψj‖L∞)j≥1 and those of (‖tν‖V )ν∈F and (‖uν‖V )ν∈F , in contrast to
Theorem 1.1. Note in particular that the latter would lead to the weaker conclusion that best n-term Legendre
approximations converge in L2(U, V, μ) with rate n−s where s = 1

q − 1
2 instead of 1

q .
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We next give a specific example which shows that, for the Taylor coefficients, this new result is in fact
sharp. In this example, we let D :=]0, 1[ and ā = 1, and we consider a sequence (Dj)j≥1 of disjoint intervals
Dj =]lj, rj [⊂ D. Let mj := 1

2 (lj + rj) be the midpoint of Dj and ψj := bjχ[lj,mj ] with (bj)j≥1 ∈ �q(N), where
q = q(p) := 2p

2−p for some 0 < p < 2. We denote by

hj(x) := max {0, 1 − 2|x−mj |/|Dj|} , (4.4)

the hat function on Dj centered at mj with hj(mj) = 1. We fix a sequence (cj)j≥1 such that
∑
j≥1 c

2
j/|Dj| <∞

and choose the right hand side f = −(
∑

j≥1 cjhj)
′′ ∈ V ′ so that

t0 =
∑
j≥1

cjhj. (4.5)

The condition on the cj ensures that t0 ∈ V . For the particular ν = ej, the Taylor coefficients satisfy∫
D

t′ej
v′ dx = −

∫
D

ψjt
′
0v

′ dx, v ∈ V. (4.6)

Testing this with v = hj , by the Cauchy–Schwarz inequality we obtain(∫
D

|t′ej
|2 dx

) 1
2
(
|Dj| 4

|Dj |2
) 1

2

≥ |Dj|bjcj 2
|Dj |2 , (4.7)

and hence
‖tej‖V ≥ bjcj√|Dj |

. (4.8)

In view of the requirements (bj)j≥1 ∈ �q(N) and
(
cj/
√|Dj|

)
j≥1

∈ �2(N), these sequences can be chosen to

ensure (‖tej‖V )j≥1 /∈ �p̃(N) for any p̃ < p.

4.2. Arbitrary supports

In the general case where the supports of the ψj are arbitrary, in particular for globally supported functions,
the approach based on Theorem 2.2 does not bring any specific improvement over Theorem 1.1 (which can be
derived from it, as observed in Rem. 2.4). One way to see this is to observe that in certain situations, the latter
can already be sharp.

Consider for example the case of constant ψj ≡ bj with (bj)j≥1 ∈ �p(N) and (bj)j≥1 /∈ �p̃(N) for any p̃ < p,
and ā = 1. For such ψj , one has

u(y) =
1

1 +
∑
j≥1 yjbj

u(0), (4.9)

so that the Taylor coefficients are explicitly given by

tν = (−1)|ν|
|ν|!
ν!
bνt0. (4.10)

In particular, one has ‖tej‖V = bj‖t0‖V , which shows that (‖tν‖V )ν∈F /∈ �p̃(F) for any p̃ < p. A similar,
yet more technical, computation shows that the same holds for the Legendre coefficients. Therefore, in this
case of completely overlapping supports of the ψj , the proposed new bounds cannot give an improvement over
Theorem 1.1.

4.3. Wavelets

Let us now turn to the case of diffusion coefficients parametrized by a wavelet basis, that is,

a(y) = ā+
∑
λ

yλψλ, (4.11)

where
‖ψλ‖L∞ = cl := C2−αl, |λ| = l, (4.12)
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for some α > 0, as discussed in the introduction. Note that, when ordering the wavelet basis from coarse to fine
scales, the resulting system (ψj)j≥1 has then the algebraic behaviour

‖ψj‖L∞ ∼ j−α/d. (4.13)

Assuming (UEA*), and for an arbitrary 0 < β < α we define a weight sequence (ρλ) by

ρλ := 1 +
āmin(1 − θ)

2CM(1 − 2β−α)
2β|λ|, (4.14)

where M and C are the constants in (1.14) and (4.12). With such a choice, we find that (2.20) holds since, for
all x ∈ D,

∑
λ

ρλ|ψλ(x)| ≤ θā(x) +
∑
λ

āmin(1 − θ)
2CM(1 − 2β−α)

2β|λ||ψj(x)| ≤ θā(x) +
āmin(1 − θ)

2
≤ δā(x), (4.15)

where δ := 1+θ
2 < 1. After the same reordering as for the wavelet basis, we find that

ρj ∼ jβ/d. (4.16)

Therefore, as a consequence of Corollaries 2.3 and 3.2 we obtain the following result.

Corollary 4.2. Assume that (ψj)j≥1 is a wavelet basis with normalization (4.12) and that (UEA*) holds.
If (‖ψj‖L∞)j≥1 ∈ �q(N) for some q < q(p) := 2p

2−p , then (‖tν‖V )ν∈F and (‖uν‖V )ν∈F belong to �p(F). In
particular, best n-term Legendre approximations converge in L2(U, V, μ) with rate n−s for all s < 1

q .

As already mentioned, if we use sufficiently smooth wavelets, the decay property (4.12) is equivalent to the
property that a(y) is in the Besov space Bα∞(L∞(D)), which for non-integer α coincides with the Hölder space
Cα(D), for all y ∈ U . Thus, we also infer from Corollary 3.2 that if this holds for some α > 0, best n-term
Legendre approximations converge in L2(U, V, μ) with rate n−s for all s < α/d.

5. Numerical illustrations

In the following numerical tests, we consider three different cases of parametrized diffusion problems on
D =]0, 1[. In each of these cases, the parameter dependence is expressed in terms of a different representative
type of function system (ψj)j≥1 that corresponds to one of the three types of examples considered in Section 4.

We give results both for Taylor and for Legendre coefficients. The Taylor coefficients are computed using
the alternating greedy Taylor algorithm described in ([8], Sect. 7.2). For the Legendre coefficients we use an
adaptive stochastic Galerkin method using the approach described in [12], where multi-index sets are refined
based on approximate evaluation of the residual of the continuous problem. Both methods are guaranteed to
converge, but in the Taylor case one needs to resort to a heuristic stopping criterion. For each of the tests, a
suitably adjusted single fixed finite element discretization using P2 elements is used for the spatial dependence.

In all of the following examples, we take ā := 1. We also fix θ ∈]0, 1[ and choose the functions ψj in the
examples such that this θ satisfies (2.10).

In the following discussion of the methodology for evaluating the results, we always refer only to the Taylor
coefficients (tν)ν∈F , with the understanding that the same considerations apply to the Legendre coefficients
(uν)ν∈F . In each of the tests, the aim is to numerically estimate the limiting summability exponent

p̄ := inf { p > 0 : (‖tν‖V )ν∈F ∈ �p(F)} . (5.1)

To this end, we introduce the decreasing rearrangement (t∗n)n≥1 of (‖tν‖V )ν∈F . Then (‖tν‖V )ν∈F ∈ �p(F)
implies that for some C > 0, one has t∗n ≤ Cn−1/p, and conversely, if t∗n ≤ Cn−1/q for some C, q > 0,
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then (‖tν‖V )ν∈F ∈ �p(F) for any p > q. As a consequence,

p̄ = inf
{
p > 0 : sup

n∈N

n
1
p t∗n <∞

}
, (5.2)

or in other words, p̄ can be determined from the asymptotic decay rate of the values t∗n. As estimates for the
largest s > 0 such that supn nst∗n is finite, we consider the values

si := log2(t
∗
2i−1 ) − log2(t

∗
2i), (5.3)

for i = 1, 2, . . . In view of (5.2), if the sequence (t∗n)n≥1 decays asymptotically at an algebraic rate, for sufficiently
large i we can thus expect si to approximate p̄−1.

5.1. Parametrization by disjoint inclusions

In the first test, we choose a family {Dj}j≥1 of disjoint open intervals in D and a β > 0, and define

ψj := θj−βχDj
. (5.4)

Note that although this does not enter into any of the decay estimates available at this point, the concrete
example in Section 4.1 suggests that the decay of the inclusion sizes |Dj | has an impact on the summability
of (‖tν‖V )ν∈F and (‖uν‖V )ν∈F . Indeed, it can also observed numerically that faster decay of |Dj| leads to
improved summability. To remove this effect in the tests, we therefore choose Dj such that the decay of |Dj | is
as slow as possible while still allowing Dj to partition D. To this end, we define

x0 := 0, xj := c

j∑
k=1

k−1 ln−2(1 + k), j ≥ 1, (5.5)

with c such that limj→∞ xj = 1, and set Dj =]xj−1, xj [. Since (‖ψj‖L∞)j≥1 ∈ �q(N) for all q > 1
β , by Corol-

lary 4.1 we expect that (‖tν‖V )ν∈F and (‖uν‖V )ν∈F belong to �p(F) for any p > (β + 1
2 )−1.
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Figure 1. Disjoint inclusions: ordered norms of Taylor coefficients tν and Legendre coefficients
uν , for θ = 1

2 and β = 1
2 , 1, 2.

The values of the decreasing rearrangements of these sequences for β = 1
2 , 1, 2, where in each case θ = 1

2 ,
are compared in Figure 1. In Table 1, the empirically determined decay rates are compared to the theoretical
prediction for p̄−1. We observe almost the same decay behavior for Taylor and Legendre coefficients, and in
each case the empirical rates indeed approach p̄−1.
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Table 1. Disjoint inclusions: decay rates of coefficient norms, with si as in (5.3), compared to
limiting value p̄−1 = β + 1

2 expected by Corollary 4.1.

Taylor Legendre

β = 2 β = 1 β = 1
2

β = 2 β = 1 β = 1
2

s6 2.563 1.730 1.225 2.476 1.789 1.302
s7 2.708 1.731 1.274 2.578 1.786 1.235
s8 2.481 1.726 1.211 2.601 1.701 1.212
s9 2.574 1.706 1.235 2.514 1.661 1.200
s10 2.439 1.650 1.196 2.543 1.660 1.169
s11 2.477 1.643 1.175 2.507 1.642 1.160

p̄−1 2.500 1.500 1.000 2.500 1.500 1.000

100 101 102 103

10-4

10-3

10-2

10-1

100

β = 1.25
β = 1.5
β = 2

100 101 102 103

10-4

10-3

10-2

10-1

100

β = 1.25
β = 1.5
β = 2

Taylor Legendre

Figure 2. Fourier expansion: ordered norms of Taylor coefficients tν and Legendre coefficients
uν , for θ = 1

2 and β = 1.25, 1.5, 2.

Table 2. Fourier expansion: decay rates of coefficient norms, with si as in (5.3), compared to
limiting value p̄−1 = β expected by Theorem 1.1.

Taylor Legendre
β = 2 β = 1.5 β = 1.25 β = 2 β = 1.5 β = 1.25

s6 1.452 1.165 1.250 1.593 1.294 1.250
s7 1.619 1.320 1.092 1.682 1.353 1.154
s8 1.495 1.278 1.147 1.597 1.337 1.192
s9 1.515 1.257 1.141 1.632 1.338 1.187
s10 1.533 1.270 1.143 1.637 1.341 1.173
s11 1.515 1.258 1.143 1.639 1.327 1.191

p̄−1 2.000 1.500 1.250 2.000 1.500 1.250

5.2. Parametrization by a Fourier expansion

We next consider a parametrization by the globally supported Fourier basis

ψj(x) := θcj−β sin(jπx), (5.6)

for some β > 1, with the normalization constant c :=
(∑

j≥1 j
−β
)−1

. We thus have (‖ψj‖L∞)j≥1 ∈ �p(N) for all

p > 1
β . In view of the discussion in Section 4.2, due to Theorem 1.1 we expect that (‖tν‖V )ν∈F and (‖uν‖V )ν∈F

belong to �p(F) for such p.
The results for θ = 1

2 and β = 1.25, 1.5, 2 are shown in Figure 2 and Table 2. Here we observe that especially
for larger values of β, the empirically observed rates si do not come very close to the theoretically guaranteed
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100 101 102 103 104
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

θ = 2−1

θ = 2−3

θ = 2−5 θ = 2−1 θ = 2−3 θ = 2−5

s6 1.593 1.876 2.000
s7 1.682 1.767 1.872
s8 1.597 1.822 1.908
s9 1.632 1.813 1.905
s10 1.637 1.813 1.898
s11 1.639 1.814 1.921

p̄−1 2.000 2.000 2.000

Figure 3. Fourier expansion: ordered norms of Legendre coefficients uν , for β = 2 and θ =
1
2 ,

1
23 ,

1
25 , and corresponding decay rates.
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α = 1
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α = 1
2

α = 1
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Taylor Legendre

Figure 4. Haar expansion: ordered norms of Taylor coefficients tν and Legendre coefficients
uν , for θ = 1

2 and α = 1
2 , 1, 2.

limiting value p̄−1 within the considered range of coefficients. This indicates that the asymptotic behavior
emerges only very late in the expansions.

Note that this observation is consistent with the results obtained in [12], where the above example (5.6) with
β = 2 and θ = 1

2 is considered as a numerical test. There, a decay rate close to 1 is observed for the L2 error
of a Legendre expansion (with fixed spatial grid), corresponding to a decay rate of the coefficient norms close
to 1.5 as obtained here.

It turns out that the observed decay rates are in fact also influenced by the value of θ: as shown in Figure 3,
for smaller values of θ, the si are closer to the limiting value already within the considered range.

5.3. Parametrization by a Haar wavelet expansion

As a final example, we return to the wavelet parametrization of a with a levelwise decay (4.12). Here we use
the Haar wavelet, generated from h := χ

[0, 12 [ − χ
[ 12 ,1[

, such that

ψλ(x) = clh(2lx− k), λ = (l, k), l ≥ 0, k = 0, . . . , 2l − 1, (5.7)

and we set
cl := θ (1 − 2−α) 2−αl (5.8)

for a fixed α > 0. Since, after reordering, we have ‖ψj‖L∞ ∼ j−α and therefore (‖ψj‖L∞)j≥1 ∈ �q(N) for all
q > 1

α , by Corollary 4.2 we expect that (‖tν‖V )ν∈F and (‖uν‖V )ν∈F belong to �p(F) for any p > (α+ 1
2 )−1.

The results for θ = 1
2 and α = 1

2 , 1, 2 are given in Figure 4 and Table 3. We again observe very similar decay
for Taylor and Legendre expansions. Similarly to the observations made in Section 5.2, for larger α, the empirical
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Table 3. Haar expansion: decay rates of coefficient norms, with si as in (5.3), compared to
limiting value p̄−1 = α+ 1

2 expected by Corollary 4.2.

Taylor Legendre

α = 2 α = 1 α = 1
2

α = 2 α = 1 α = 1
2

s6 1.450 1.301 0.927 1.853 1.165 0.947
s7 1.569 0.993 0.878 1.779 1.339 0.939
s8 1.794 1.122 0.803 1.874 1.275 0.953
s9 1.633 1.186 0.866 1.913 1.330 0.949
s10 1.799 1.225 0.872 1.909 1.247 0.961
s11 1.866 1.266 0.903 2.037 1.268 0.958

p̄−1 2.500 1.500 1.000 2.500 1.500 1.000

100 101 102 103
10-6

10-5

10-4

10-3

10-2

10-1

100

θ = 2−1

θ = 2−3

θ = 2−5 θ = 2−1 θ = 2−3 θ = 2−5

s6 1.853 2.388 2.123
s7 1.779 2.082 2.175
s8 1.874 2.226 2.347
s9 1.913 2.056 2.410
s10 1.909 2.238 2.321
s11 2.037 2.196 2.396

p̄−1 2.500 2.500 2.500

Figure 5. Haar expansion: ordered norms of Legendre coefficients uν , for α = 2 and θ =
1
2 ,

1
23 ,

1
25 , and corresponding decay rates.

rates si do not come very close to the expected asymptotic limit p̄−1 within the considered range of coefficients.
As shown in Figure 5, the decay rates again approach p̄−1 more quickly for smaller values of θ.

In summary, these numerical results support the conjecture that the summability estimate in Corollary 4.2
for wavelet expansions is in fact sharp, similarly to Corollary 4.1 for disjoint inclusions, whose sharpness we
have established by an analytical example.
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