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THE SPLITTING IN POTENTIAL CRANK–NICOLSON SCHEME
WITH DISCRETE TRANSPARENT BOUNDARY CONDITIONS

FOR THE SCHRÖDINGER EQUATION ON A SEMI-INFINITE STRIP
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Abstract. We consider an initial-boundary value problem for a generalized 2D time-dependent
Schrödinger equation (with variable coefficients) on a semi-infinite strip. For the Crank–Nicolson-type
finite-difference scheme with approximate or discrete transparent boundary conditions (TBCs), the
Strang-type splitting with respect to the potential is applied. For the resulting method, the uncondi-
tional uniform in time L2-stability is proved. Due to the splitting, an effective direct algorithm using
FFT is developed now to implement the method with the discrete TBC for general potential. Numerical
results on the tunnel effect for rectangular barriers are included together with the detailed practical
error analysis confirming nice properties of the method.
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1. Introduction

The multidimensional time-dependent Schrödinger equation describes most of microscopic phenomena in
non-relativistic quantum mechanics, atomic and nuclear physics and it also appears more generally in wave
physics and nanotechnologies. Due to the physical framework (quantum mechanics) the corresponding initial
value problem must be solved in unbounded space domains however, due to computational constraints, it is
necessary to restrict the analysis to a bounded region which implies to solve the delicate problem of prescribing
suitable boundary conditions.

In this work an additional complication is that we consider a generalized 2D time-dependent Schrödinger
equation (GSE) with variable coefficients (when the Laplace operator is replaced by an operator of “Laplace–
Beltrami” type [17, 21, 23]) on a semi-infinite strip. This model appears in nuclear physics in the so-called
Generator Coordinate Method (GCM) [22] when one wants to describe microscopically large collective motions
of nuclei and specifically low-energy nuclear fission dynamics [4, 5, 7, 16].
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Several approaches have been developed in order to solve numerically such problems (see in particular, in the
constant coefficients case [1–3,8–10,24,25,27]). One of them exploits the so-called discrete transparent boundary
conditions (TBCs) on artificial boundaries [3, 13, 25]. Its advantages are the complete absence of spurious
reflections, reliable computational stability, clear mathematical background and rigorous stability theory.

Concerning the discretization of the GSE, the Crank–Nicolson finite-difference scheme and more general
schemes with the discrete TBCs in the case of a strip or semi-infinite strip was studied in detail in [9,10,34,36].
However the scheme is implicit and solving a specific complex system of linear algebraic equations is required at
each time level. In fact efficient methods to solve such systems are well developed by now in the real situation
but not in the complex one. Only the particular case of all the coefficients (including the potential) independent
of the coordinate y perpendicular to the strip can be effectively implemented [34, 36]. On the other hand,
the splitting technique has been widely used to simplify the resolution of the time-dependent Schrödinger and
related equations (see in particular [6, 14, 15, 18–20]).

Our goal in this work is to apply the Strang-type splitting with respect to the potential to the Crank–Nicolson
scheme with a sufficiently general approximate TBC in the form of the Dirichlet-to-Neumann map. The resulting
method is more easy to implement but more difficult to study.

Developing the technique from [9], we prove its unconditional uniform in time L2-stability and conservative-
ness under a condition on an operator S in the approximate TBC. To construct the discrete TBC, we are obliged
to consider the splitting scheme on an infinite mesh in the semi-infinite strip. Its uniform in time L2-stability
together with the mass conservation law are proved. We find that an operator Sref in the discrete TBC is the
same as for the original Crank–Nicolson scheme in [9], and it satisfies the above mentioned condition so that
the uniform in time L2-stability of the resulting method is guaranteed. The non-local operator Sref is written
in terms of the discrete convolution in time and the discrete Fourier expansion in direction y perpendicular to
the strip.

Due to the splitting, an effective direct algorithm using FFT in y is developed to implement the method
with the discrete TBC for general potential (while other coefficients are y-independent). The corresponding
numerical results on the tunnel effect for rectangular barriers are presented together with the detailed practical
error analysis in the uniform in time as well as C and L2 in space norms confirming the good error properties
of the splitting scheme. This conclusion is very important since other splittings are able to deteriorate the error
behavior essentially, in particular, see [29, 30, 32].

Finally we just mention that the previous results can be rather easily generalized to the case of a multidi-
mensional parallelepiped infinite or semi-infinite in one of the space directions. Also the case of higher order in
space splitting schemes with the discrete TBCs for the classical Schrödinger equation has been quite recently
covered by another technique in [11, 33].

2. The Schrödinger equation on a semi-infinite strip and the splitting

in potential Crank–Nicolson scheme with an approximate TBC

Let us consider the generalized 2D time-dependent Schrödinger equation

i�ρDtψ = (H0 + V )ψ for (x, y) ∈ Ω, t > 0, (2.1)

where Ω := (0,∞) × (0, Y ) is a semi-infinite strip, involving the 2D Hamiltonian operator

H0ψ := −� 2

2
[Dx(B11Dxψ) +Dx(B12Dyψ) +Dy(B21Dxψ) +Dy(B22Dyψ)] .

The real coefficients ρ(x, y), B = {Bpq(x, y)}2
p,q=1 and V (x, y) (the potential) are such that ρ(x, y) � ρ > 0

in Ω and the matrix B is symmetric and positive definite uniformly in Ω. Also i is the imaginary unit, � > 0
is a physical constant, Dt, Dx and Dy are partial derivatives, and the unknown wave function ψ = ψ(x, t) is
complex-valued.
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We impose the following boundary condition, the condition at infinity and the initial condition

ψ(·, t)|∂Ω = 0, ‖ψ(x, ·, t)‖L2(0,Y ) → 0 as x→ +∞, for any t > 0, (2.2)

ψ|t=0 = ψ0(x, y) in Ω. (2.3)

We also assume that

B11(x, y) = B1∞ > 0, B12(x, y) = B21(x, y) = 0, B22(x, y) = B2∞ > 0,

ρ(x, y) = ρ∞ > 0, V (x, y) = V∞, ψ0(x, y) = 0 on Ω\ΩX0 , (2.4)

for some X0 > 0, where ΩX := (0, X) × (0, Y ). It is well-known that solution to problem (2.1)–(2.4) satisfies a
non-local integro-differential TBC for any x = X � X0 (for example see [9]) which we do not reproduce here.

Introduce a non-uniform mesh ω τ in t on [0,∞) with nodes 0 = t0 < . . . < tm < . . ., tm → ∞ as m → ∞,
and steps τm := tm − tm−1. Let tm−1/2 = tm−1+tm

2 and ωτ := ω τ\ {0}. In the differential case, the splitting in
potential method can be represented as follows: three problems are solved sequentially step by step in time

i�ρDtψ̆ = (ΔV )ψ̆ on Ω × (tm−1, tm−1/2], ψ̆|t=tm−1 = ψ|t=tm−1 , (2.5)

i�ρDtψ̃ = (H0 + Ṽ )ψ̃ on Ω × (tm−1, tm], ψ̃|t=tm−1 = ψ̆|t=tm−1/2 , (2.6)

ψ̃|∂Ω = 0,
∥∥∥ψ̃(x, ·, t)

∥∥∥
L2(0,Y )

→ 0 as x→ ∞, for t ∈ (tm−1, tm], (2.7)

i�ρDtψ = (ΔV )ψ on Ω × (tm−1/2, tm], ψ|t=tm−1/2 = ψ̃|t=tm , (2.8)

ψ|t=0 = ψ0 in Ω, (2.9)

for any m � 1, where ΔV := V − Ṽ and Ṽ (x) is an auxiliary potential satisfying

Ṽ (x) = V∞ on [X0,∞). (2.10)

In the simplest case, Ṽ (x) = V∞. But, in particular, to generalize results to the case of a strip and different
constant values V±∞ of V (x, y) at x→ ±∞, it is necessary to take non-constant Ṽ ; see also Section 4 below.

The Cauchy problems (2.5) and (2.8) can be easily solved explicitly, in particular,

ψ̆|t=tm−1/2 = exp
{
−i

τm
2�ρ

ΔV
}
ψ|t=tm−1 , ψ|t=tm = exp

{
−i

τm
2�ρ

ΔV
}
ψ̃|t=tm . (2.11)

Equation in (2.6) is the original equation (2.1) simplified by substituting Ṽ for V . Also ψ̆ and ψ̃ are auxiliary
functions and ψ is the main unknown one. This is a version of the Strang-type splitting [19] (though the original
Strang splitting [26] was suggested with respect to space derivatives for the 2D transport equation; note that
sharp error bounds for the Strang splitting for the 2D heat equation can be found in [32]). The symmetrized
three-step form of this splitting ensures its second order of approximation for ψ|t=tm with respect to τm.

We turn to the fully discrete case. Fix some X > X0 and introduce a non-uniform mesh ωh,∞ in x on [0,∞)
with nodes 0 = x0 < . . . < xJ = X < . . . and steps hj := xj − xj−1 such that xJ−2 � X0 and hj = h ≡ hJ for
j � J . Let ωh,∞ := ωh,∞\ {0}, ωh := {xj}J

j=0, ωh := ωh\ {0, X} and hj+1/2 := hj+hj+1
2 ·

We define the backward, modified forward and central difference quotients as well as two mesh averaging
operators in x

∂xWj :=
Wj −Wj−1

hj
, ∂̂xWj :=

Wj+1 −Wj

hj+1/2
,

◦
∂xWj :=

Wj+1 −Wj−1

2hj+1/2
,

sxWj =
Wj−1 +Wj

2
, ŝxWj :=

hjWj + hj+1Wj+1

2hj+1/2
.
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We define two mesh counterparts of the inner product in the complex space L2(0, X):

(U,W )ωh
:=

J−1∑
j=1

UjW
∗
j hj+1/2, (U,W )ωh

:= (U,W )ωh
+ UJW

∗
J

h

2

and the associated mesh norms ‖ · ‖ωh
and ‖ · ‖ωh

(of course, for mesh functions respectively defined on ωh or
defined on ωh and equal zero at x0 = 0). Hereafter z∗, Re z and Im z denote the complex conjugate, the real
and imaginary parts of z ∈ C. The above averaging operators are related by an identity

(ŝxW,U)ωh
=

J∑
j=1

Wj

(
sxU

∗
j

)
hj − 1

2
(W1U

∗
0h1 +WJU

∗
JhJ) . (2.12)

We also introduce a non-uniform mesh ωδ in y on [0, Y ] with nodes 0 = y0 < . . . < yK = Y and steps
δk := yk − yk−1. Let ωδ := ωδ\{0, Y }. We define the backward and modified forward difference quotients
together with two mesh averaging operators in y

∂yUk :=
Uk − Uk−1

δk
, ∂̂yUk :=

Uk+1 − Uk

δk+1/2
, syUk =

Uk−1 + Uk

2
, ŝyUk :=

δkUk + δk+1Uk+1

2δk+1/2
,

where δk+1/2 := δk+δk+1
2 . Let

◦
H(ωδ) be the space of functions U : ωδ → C such that U |k=0,K = 0, equipped with

the inner product

(U,W )ωδ
:=

K−1∑
k=1

UkW
∗
k δk+1/2

and the associated norm ‖ · ‖ωδ
.

We define the product 2D meshes ωh,∞ := ωh,∞×ωδ on Ω and ωh := ωh×ωδ on Ω̄X as well as their interiors
ωh,∞ := ωh,∞ × ωδ and ωh := ωh × ωδ. Let Γh = {(0, yk), 1 � k � K − 1} ∪ {(xj , 0), (xj , Y ), 0 � j � J} be a
part of the boundary of ωh.

Let A−, jk := A(xj−1/2, yk−1/2), for all the coefficients A = ρ,Bpq, V , with xj−1/2 := xj−1+xj

2 and yk−1/2 :=
yk−1+yk

2 . We exploit the 2D mesh Hamiltonian operator

H0hW := −�
2

2

[
∂̂x(B11h∂xW ) + ∂̂xŝy(B12hsx∂yW ) + ŝx∂̂y(B21h∂xsyW ) + ∂̂y(B22h∂yW )

]
,

where the coefficients are given by formulas B11h = ŝyB11,−, B22h = ŝxB22,−, B12h = B21h = B12,−. We also
set ρh = ŝxŝyρ−, Vh = ŝxŝyV− and Ṽh = ŝxṼ−. Actually this finite-difference discretization is a simplification of
the bilinear finite element method for the rectangular mesh ωh (conserving, in particular, its L2(Ω) and H1(Ω)
optimal error bounds), see [31]. Some other operators H0h could be also exploited.

We define also the backward difference quotient and averaging in time

∂tΦ
m :=

Φm − Φm−1

τm
, stΦ

m :=
Φm−1 + Φm

2
.

The following Crank–Nicolson-type scheme was studied in [9]

i�ρh∂tΨ
m = (H0h + Vh)stΨ

m on ωh, (2.13)

Ψm|Γh
= 0, (2.14){

� 2

2
B1∞∂xstΨ − h

2

[
i�ρ∞∂tΨ +

(
� 2

2
B2∞∂̂y∂y − V∞

)
stΨ

]}m∣∣∣∣
j=J

=
� 2

2
B1∞SmΨm

J , (2.15)

Ψ0 = Ψ0
h on ωh, (2.16)
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for any m � 1. Here the boundary condition (2.15) is the general approximate TBC posed on ωδ, with a
linear operator Sm acting in the space of functions defined on ωδ × {tl}m

l=1, and Ψm
J = {Ψ1

J·, . . . , Ψ
m
J·}. Also

Ψ0
hjk = ψ0(xj , yk) (for definiteness) and thus Ψ0

h

∣∣
j=J

= 0; we assume also that Ψ0
h

∣∣
j=J−1

= 0 and the conjunction
condition Ψ0

h|Γh
= 0 is valid.

Recall that the left-hand side in the approximate TBC (2.15) has the form of the well-known 2D second
order approximation to �

2

2 B1∞Dx in the Neumann boundary condition (exploiting an 8-point stencil in all the
directions x, y and t).

We write down the following Strang-type splitting in potential for the Crank–Nicolson scheme (2.13)–(2.16)

i�ρh
Ψ̆m − Ψm−1

τm/2
= ΔVh

Ψ̆m + Ψm−1

2
on (ωh ∪ xJ) × ωδ, (2.17)

i�ρh
Ψ̃m − Ψ̆m

τm
=
(
H0h + Ṽh

) Ψ̃m + Ψ̆m

2
+ Fm on ωh, (2.18)

i�ρh
Ψm − Ψ̃m

τm/2
= ΔVh

Ψm + Ψ̃m

2
on (ωh ∪ xJ) × ωδ, (2.19)

Ψ̆m|Γh
= 0, Ψ̃m|Γh

= 0, Ψm|Γh
= 0, (2.20){

� 2

2
B1∞∂x

Ψ̃m + Ψ̆m

2
− h

2

[
i�ρ∞

Ψ̃m − Ψ̆m

τm
+
(

� 2

2
B2∞∂̂y∂y − V∞

)
Ψ̃m + Ψ̆m

2

]}∣∣∣∣∣
j=J

+
h

2
Fm|j=J =

� 2

2
B1∞SmΨ̃

m

J on ωδ, (2.21)

Ψ0 = Ψ0
h on ωh, (2.22)

for any m � 1, where ΔVh := Vh − Ṽh. We have added the perturbation Fm into (2.18) and (2.21) in order to
study stability of the scheme below in more detail (we suppose that Fm is given on ωh and Fm|Γh

= 0).
Obviously equations (2.17) and (2.19) are reduced to the explicit expressions

Ψ̆m = EmΨm−1, Ψm = EmΨ̃m, with Em :=
1 − i

τm
4�ρh

ΔVh

1 + i
τm

4�ρh
ΔVh

, on (ωh ∪ xJ) × ωδ. (2.23)

The main finite-difference equation (2.18) is similar to the original one (2.13) simplified by substituting Ṽh for
Vh. Here Ψ̆ and Ψ̃ are auxiliary unknown functions and Ψ is the main unknown one. We have got the approximate
TBC (2.21) by substituting respectively

Ψ̃m + Ψ̆m

2
,
Ψ̃m − Ψ̆m

τm
, Ψ̃

m

J

for stΨ , ∂tΨ and Ψm
J in the approximate TBC (2.15); but notice that since ΔVh|j=J = 0, actually

Ψ̆m
J· = Ψm−1

J· , Ψm
J· = Ψ̃m

J· on ωδ for m � 1. (2.24)

Clearly the constructed splitting in potential scheme can be also considered as the Crank–Nicolson-type
discretization in time and the same approximation in space for the above splitting in potential differential
problem (2.5)–(2.11).
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Also note that inserting formulas (2.23) into equation (2.18) (for F = 0) and excluding the auxiliary functions
leads to the following equation for Ψ

i�ρh
(Em)−1 Ψm − EmΨm−1

τm
=
(
H0h + Ṽh

) EmΨm−1 + (Em)−1 Ψm

2
(2.25)

or, in another form,[
i�ρh − τm

2

(
H0h + Ṽh

)]
(Em)−1

Ψm =
[
i�ρh +

τm
2

(
H0h + Ṽh

)]
EmΨm−1. (2.26)

Equation (2.25) can be considered as a non-standard discretization for the Schrödinger equation (2.1) whereas
equation (2.26) can be viewed as a specific symmetric approximate factorization [28] with respect to the potential
of the Crank–Nicolson equation (2.13).

We note that E−1 = E∗ and write down E = ER − 2τ iÊI with real ER and ÊI . Then

E∗Ψ − EΨ̌
τ

= ER∂̄tΨ + 4iÊIstΨ,
E∗Ψ + EΨ̌

2
= ERstΨ + iτ2ÊI ∂̄tΨ.

Consequently we can rewrite equation (2.25) as follows

i�ρhER∂̄tΨ = H0h

(
ERstΨ + iτ2ÊI ∂̄tΨ

)
+
(
ERṼh + 4�ρhÊI

)
stΨ + iτ2ÊI Ṽh∂̄tΨ.

After some calculations, this formulation implies that the approximation error of the discrete equation (2.25)
differs from the original one (2.13) by a term of the order O

(
τ2
max

)
(in particular, note that ER = 1 +O(τ2

max)
and 4�ρhÊI = ΔVh +O(τ2

max)) as τmax → 0, where τmax := supm�1 τm.
Since the Cauchy problems (2.5) and (2.8) do not need necessarily a discretization in time, to cover both

formulas (2.11) and (2.23), below we also admit an expression

Em = exp
{
−i

τm
2�ρh

ΔVh

}
(2.27)

in (2.23). Obviously in both cases E−1 = E∗ and |E| = 1.
We introduce two mesh counterparts of the inner product in the complex space L2(ΩX):

(U,W )ωh
:=

J−1∑
j=1

K−1∑
k=1

UjkW
∗
jkhj+1/2δk+1/2, (U,W )ωh

:= (U,W )ωh
+

K−1∑
k=1

UJkW
∗
Jk

h

2
δk+1/2

and the associated mesh norms ‖ · ‖ωh
and ‖ · ‖ωh

.

Proposition 2.1. Let the operator S satisfy an inequality [9]

Im
M∑

m=1

(SmΦm, stΦ
m)ωδ

τm � 0 for any M � 1, (2.28)

for any function Φ: ωδ × ω τ → C such that Φ0 = 0 and Φ|k=0,K = 0, where Φm = {Φ1, . . . , Φm}. Then, for a
solution of the splitting in potential scheme (2.17)–(2.22), the following stability bound holds

max
0�m�M

‖√ρhΨm‖ωh
�
∥∥√ρhΨ0

h

∥∥
ωh

+
2
�

M∑
m=1

∥∥∥∥ Fm

√
ρh

∥∥∥∥
ωh

τm for any M � 1. (2.29)
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Proof. We take the (·, ·)ωh
-inner-product of equation (2.18) with a function W : ωh → C such that W |Γh

= 0.
Then we sum the result by parts in x and y (using assumptions (2.4) and (2.10)), apply identity (2.12) and a
similar identity with respect to y, exploit the approximate TBC (2.21) and obtain an identity

i�

(
ρh
Ψ̃m − Ψ̆m

τm
,W

)
ωh

=
�

2

2

J∑
j=1

K∑
k=1

{
B11,−sy

[(
∂x
Ψ̃m + Ψ̆m

2

)
∂xW

∗
]

+B12,−

(
sx∂y

Ψ̃m + Ψ̆m

2

)
∂xsyW

∗

+B21,−

(
∂xsy

Ψ̃m + Ψ̆m

2

)
sx∂yW

∗ +B22,−sx

[(
∂y
Ψ̃m + Ψ̆m

2

)
∂yW

∗
]}

jk

hjδk

+

(
Ṽh
Ψ̃m + Ψ̆m

2
,W

)
ωh

+ (Fm,W )ωh
− � 2

2
B1∞

(
SmΨ̃

m

J ,WJ·
)

ωδ

(2.30)

for any m � 1, see [9] for more details.
The sesquilinear form on the right-hand side containing the five terms with coefficients B̃pq and Ṽh is

Hermitian-symmetric. Thus choosing W = Ψ̃m+Ψ̆m

2 and separating the imaginary part of the result, we get

�

2τm

[(
ρhΨ̃

m, Ψ̃m
)

ωh

−
(
ρhΨ̆

m, Ψ̆m
)

ωh

]
= Im

(
Fm,

Ψ̃m + Ψ̆m

2

)
ωh

− � 2

2
B1∞ Im

(
SmΨ̃

m

J ,
Ψ̃m

J· + Ψ̆m
J·

2

)
ωδ

.

Owing to (2.20), (2.23) and (2.27) we have the pointwise equalities∣∣∣Ψ̆m
∣∣∣ = ∣∣Ψm−1

∣∣ , |Ψm| =
∣∣∣Ψ̃m
∣∣∣ on ωh. (2.31)

Also taking into account equalities (2.24), we further derive

�

2τm

(
‖√ρhΨm‖2

ωh
− ∥∥√ρhΨm−1

∥∥2
ωh

)
= Im

(
Fm,

Ψ̃m + Ψ̆m

2

)
ωh

− � 2

2
B1∞ Im (SmΨm

J , stΨ
m
J· )ωδ

.

Multiplying both sides by 2τm

�
and summing up the result over m = 1, . . . ,M , we obtain

∥∥√ρhΨM
∥∥2

ωh
+ �B1∞

M∑
m=1

Im (SmΨm
J , stΨ

m
J· )ωδ

τm =
∥∥√ρhΨ0

∥∥2
ωh

+
2
�

M∑
m=1

Im

(
Fm,

Ψ̃m + Ψ̆m

2

)
ωh

τm. (2.32)

Applying inequality (2.28) and then equalities (2.31), we get

∥∥√ρhΨM
∥∥2

ωh
�
∥∥√ρhΨ0

∥∥2
ωh

+
1
�

M∑
m=1

∥∥∥∥ Fm

√
ρh

∥∥∥∥
ωh

τm

(
max

1�m�M

∥∥∥√ρhΨ̃m
∥∥∥

ωh

+ max
1�m�M

∥∥∥√ρhΨ̆m
∥∥∥

ωh

)

�
∥∥√ρhΨ0

∥∥2
ωh

+
2
�

M∑
m=1

∥∥∥∥ Fm

√
ρh

∥∥∥∥
ωh

τm max
0�m�M

‖√ρhΨm‖ωh
.

This directly implies bound (2.29). �

Corollary 2.2. Let condition (2.28) be valid. Then the splitting in potential scheme (2.17)–(2.22) is uniquely
solvable.

In particular, for F = 0 its solution satisfies an equality

max
m�0

‖√ρhΨm‖ωh
=
∥∥√ρhΨ0

h

∥∥
ωh
. (2.33)
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Proof. The unique solvability follows from a priori bound (2.29), and equality (2.33) also is clear from (2.29)
for F = 0. �

Remark 2.3. We emphasize that actually both the Crank–Nicolson scheme and the splitting in potential
scheme can be similarly considered and studied not only for the strip geometry but for much more general
unbounded domains Ω composed of rectangles with sides parallel to coordinate axes and having one or more
separated semi-infinite strip outlets at infinity.

3. The splitting in potential Crank–Nicolson scheme on the infinite space

mesh and the discrete TBC

To construct the discrete TBC, it is required to consider the splitting in potential Crank–Nicolson scheme
on the infinite space mesh for the original problem (2.1)–(2.4) on the semi-infinite strip

i�ρh
Ψ̆m − Ψm−1

τm/2
= ΔVh

Ψ̆m + Ψm−1

2
on ωh,∞, (3.1)

i�ρh
Ψ̃m − Ψ̆m

τm
=
(
H0h + Ṽh

) Ψ̃m + Ψ̆m

2
+ Fm on ωh,∞, (3.2)

i�ρh
Ψm − Ψ̃m

τm/2
= ΔVh

Ψm + Ψ̃m

2
on ωh,∞, (3.3)

Ψ̆m|Γh,∞ = 0, Ψ̃m|Γh,∞ = 0, Ψm|Γh,∞ = 0, (3.4)

Ψ0 = Ψ0
h on ωh,∞, (3.5)

for any m � 1, where Γh,∞ := ωh,∞\ωh,∞. The perturbation Fm is given on ωh,∞ after setting Fm|Γh,∞ = 0;
it is added to the right-hand side of the main equation (3.2) once again to study stability in more detail.

Obviously once again equations (3.1) and (3.3) are reduced to explicit expressions (2.23) which are valid now
on ωh,∞. We continue to admit expression (2.27) in (2.23).

Let Hh be a Hilbert space of mesh functions W : ωh,∞ → C such that W |Γh,∞ = 0 and
∑∞

j=1 ‖Wjk‖2
ωδ
<∞,

equipped with the inner product

(U,W )Hh
:=

∞∑
j=1

K−1∑
k=1

UjkW
∗
jkhj+1/2δk+1/2.

Proposition 3.1. Let Fm, Ψ0
h ∈ Hh for any m � 1. Then there exists a unique solution to the splitting in

potential scheme (3.1)–(3.5) such that Ψm ∈ Hh for any m � 0, and the following stability bound holds

max
0�m�M

‖√ρhΨm‖Hh
�
∥∥√ρhΨ0

h

∥∥
Hh

+
2
�

M∑
m=1

∥∥∥∥ Fm

√
ρh

∥∥∥∥
Hh

τm for any M � 1. (3.6)

Moreover, in the particular case F = 0, the mass conservation law holds

‖√ρhΨm‖2
Hh

=
∥∥√ρhΨ0

h

∥∥2
Hh

for any m � 1. (3.7)

Proof. Given Ψ̆m, Fm ∈ Hh, there exists a unique solution Ψ̃m ∈ Hh to equation (3.2). The much more general
result was established in the proof of the corresponding Proposition 3 in [36]. Since expressions (2.23) are valid
now on ωh,∞, this implies existence of a unique solution to the splitting scheme (3.1)–(3.5) such that Ψm ∈ Hh

for any m � 0.
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We set
◦
H0hW := H0hW on ωh,∞ and

◦
H0hW := 0 on Γh,∞. The operator

◦
H0h is bounded and self-adjoint in

H0h since ( ◦
H0hU,W

)
Hh

=
� 2

2

∞∑
j=1

K∑
k=1

{
B11,−sy

[
(∂xU) ∂xW

∗]+B12,−(sx∂yU) ∂xsyW
∗

+B21,−(∂xsyU) sx∂yW
∗ + B22,−sx

[
(∂yU) ∂yW

∗]}
jk
hjδk

for any U,W ∈ Hh, see [9] for details.
From equation (3.2) an identity

i�

(
ρh
Ψ̃m − Ψ̆m

τm
,W

)
Hh

=

(
◦
Hh

Ψ̃m + Ψ̆m

2
,W

)
Hh

+

(
Ṽh
Ψ̃m + Ψ̆m

2
,W

)
Hh

+ (Fm,W )Hh

follows, for any m � 1 and W ∈ Hh. Acting in the spirit of the proof of Proposition 2.1, i.e. choosing W =
Ψ̃m+Ψ̆m

2 , separating the imaginary part of the result and applying the pointwise equalities (2.31) that are valid
now on ωh,∞, we get

�

2τm

(
‖√ρhΨm‖2

Hh
− ∥∥√ρhΨm−1

∥∥2
Hh

)
= Im

(
Fm,

Ψ̃m + Ψ̆m

2

)
Hh

.

Multiplying both sides by 2τm

�
and summing up the result over m = 1, . . . ,M , we obtain

∥∥√ρhΨM
∥∥2

Hh
=
∥∥√ρhΨ0

∥∥2
Hh

+
2
�

M∑
m=1

Im

(
Fm,

Ψ̃m + Ψ̆m

2

)
Hh

. (3.8)

The rest of the proof in fact repeats one for Proposition 2.1. �

Corollary 3.2. Let Fm = 0 and Ψ0
h = 0 on ωh,∞\ωh, for any m � 1. If the solution to the splitting in potential

scheme (3.1)–(3.5) is such that Ψm ∈ Hh, for any m � 0, and satisfies an equation(
◦
∂x
Ψ̃m + Ψ̆m

2

)∣∣∣∣∣
j=J

= SmΨ̃
m

J on ωδ, for any m � 1, (3.9)

with some operator Sm = Sm
ref , then the following equality holds, for any M � 1

�B1∞ Im
M∑

m=1

(Sm
refΨ

m
J , stΨ

m
J· )ωδ

τm =
∥∥ΨM

∥∥2
ωh,∞\ωh

:=
h

2

∥∥ΨM
J·
∥∥2

ωδ
+

∞∑
j=J+1

∥∥ΨM
j·
∥∥2

ωδ
h � 0.

Proof. Similarly to [9], equation (3.9) is equivalent to the approximate TBC (2.22) provided that equation (3.2)
is valid for j = J with F |j=J = 0. Thus the solution to the splitting scheme (3.1)–(3.5) on the infinite mesh
ωh,∞ is the solution to the splitting scheme (2.17)–(2.22) on the finite mesh ωh, too. Then equality (3.2) is
obtained by subtracting (2.32) from (3.8). �

Equality (3.2) clarifies the energy sense of inequality (2.28) for Sm = Sm
ref since

‖W‖2
Hh

= ‖W‖2
ωh

+ ‖W‖2
ωh,∞\ωh

for any W ∈ Hh.

By definition, the operator Sref that has just appeared implicitly corresponds to the discrete TBC. Let us
describe it explicitly.
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Let ωh,j0,∞ := {xj}∞j=j0 . Then ΔVh = 0 on ωh,J−1,∞ × ωδ and clearly

Ψ̆m = Ψm−1, Ψm = Ψ̃m on ωh,J−1,∞ × ωδ, for any m � 1.

Therefore, if Ψ0
h = 0 on ωh,J−1,∞ × ωδ and Fm = 0 on ωh,J,∞ × ωδ for any m � 1, the splitting in potential

scheme (3.1)–(3.5) is reduced on ωh,J−1,∞ × ωδ to the following auxiliary problem

i�ρ∞∂tΨ
m = (H0h,∞ + V∞)stΨ

m on ωh,J,∞ × ωδ, (3.10)

Ψm|k=0,K a = 0 on ωh,J−1,∞, (3.11)

Ψ0a = 0 on ωh,J−1,∞ × ωδ, (3.12)

for any m � 1. Here H0h,∞ is the limiting 2D mesh Hamiltonian operator

H0h,∞W := −� 2

2

(
B1∞∂̂x∂xW +B2∞∂̂y∂yW

)
on ωh,∞\ωh

with constant coefficients. Moreover, equation (3.9) takes the simplified form(◦
∂xstΨ

m

)∣∣∣∣
j=J

= SmΨm
J on ωδ, for any m � 1. (3.13)

Problem (3.10)–(3.12) and equation (3.13) are the same that correspond to the original Crank–Nicolson
scheme (2.13)–(2.16) and (after dividing (3.10) by ρ∞) were studied in detail in [9] in order to construct
explicitly the discrete TBC. We recall briefly the answer from [9]. To this end, introduce the auxiliary mesh
eigenvalue problem in y

−∂̂y∂yE = λE on ωδ, E|k=0,K = 0, E 	≡ 0.

We denote by {El, λlδ}K−1
l=1 its eigenpairs such that the functions {El}K−1

l=1 are real-valued and form an orthonor-

mal basis in
◦
H(ωδ); here λlδ > 0 for all l. Clearly, for any U ∈

◦
H(ωδ), the following expansion holds

U = F−1U (·) :=
K−1∑
l=1

U (l)El, where U (l) = (FU)(l) := (U,El)ωδ
for 1 � l � K − 1.

These formulas define the direct F and inverse F−1 transforms from the collection of values {Uk}K−1
k=1 to the

collection of its Fourier coefficients {U (l)}K−1
l=1 and back.

In the case of the uniform mesh ωδ, i.e. δk = δ for any 1 � k � K, the eigenpairs are represented explicitly
by the well-known formulas

(El)k :=

√
2
Y

sin
πlyk

Y
, 0 � k � K, λlδ :=

(
2
δ

sin
πδl

2Y

)2

, for 1 � l � K − 1,

and the transforms F and F−1 can be effectively implemented by applying the discrete fast Fourier transform
(FFT) with respect to sines.

Let the mesh in time ω τ be uniform. Recall the discrete convolution

(R ∗Q)m :=
m∑

q=0

RqQm−q for any m � 0

of the sequences R,Q: ω τ → C. The operator Sref is given by a discrete convolution in t

Sm
refΦ

m =
1
2h

F−1
(
Rl ∗ (FΦ)(l)

)m

for any m � 1 (3.14)
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also involving the above transforms F and F−1 in y. Expressions for the kernel sequences Rl, 1 � l � K−1, can
be found in [9], and we do not reproduce them here (see also [12,13] for practically more convenient recurrence
relations).

Proposition 3.3. The operator Sref satisfies inequality (2.28), see [9].
Thus for the solution of the splitting in potential scheme (2.17)–(2.22) with the discrete TBC (i.e. with

S = Sref), the stability bound (2.29) holds.

If the matrix B is diagonal and y-independent together with ρ as well as the mesh ωδ is uniform, the splitting
in potential scheme (2.17)–(2.22) with the discrete TBC can be effectively implemented. Indeed, then (omitting
F for simplicity) we can apply F to the main equation (2.18) and the discrete TBC (2.21) with S = Sref , take
into account the boundary condition Ψ̃m|Γh

= 0 (2.21) and formula (3.14) and obtain a collection of 1D disjoint
problems (with tridiagonal matrices):

i�ρh
Ψ̃m(l) − Ψ̆m(l)

τ
= −�2

2
∂̂x

(
B11h∂x

Ψ̃m(l) + Ψ̆m(l)

2

)
+ Ṽl

Ψ̃m(l) + Ψ̆m(l)

2
on ωh, (3.15)

Ψ̃m(l)
∣∣∣
j=0

= 0, (3.16)

{
� 2

2
B1∞∂x

Ψ̃m(l) + Ψ̆m(l)

2
− h

2

[
i�ρ∞

Ψ̃m(l) − Ψ̆m(l)

τ
− Ṽl

Ψ̃m(l) + Ψ̆m(l)

2

]}∣∣∣∣∣
j=J

=
� 2

2
B1∞

1
2h

(
Rl ∗ Ψ̃

(l)

J

)m

, (3.17)

with 1 � l � K − 1, for any m � 1, where

Ṽl :=
� 2

2
B2∞λlδ + Ṽ , Ψ̃

m(l)

J =
{
Ψ̃

1(l)
J , . . . , Ψ̃

m(l)
J

}
.

Given Ψm−1, the direct algorithm for computing Ψm comprises five steps.
1. Ψ̆m is computed on (ωh ∪ xJ) × ωδ according to (2.23).

2.
{
(Ψ̆m

j· )(l)
}K−1

l=1
is computed by applying F for any 1 � j � J .

3.
{
Ψ̃

m(l)
j

}J

j=1
is computed by solving problem (3.15)–(3.17) for any 1 � l � K − 1.

4.
{
Ψ̃m

jk

}K−1

k=1
is computed by applying F−1 for any 1 � j � J .

5. Ψm is computed on (ωh ∪ xJ) × ωδ according to (2.23).
Steps 1 and 5 require O(JK) arithmetic operations, steps 2 and 4 require O(JK log2K) operations using

FFT provided that K = 2p with the integer p, and step 3 requires O((J +m)K) operations. The total amount
of operations is O((J log2K+m)K) for computing the solution on the time level m and O((J log2K+M)KM)
for computing the solution on M time levels m = 1, . . . ,M .

Notice that the algorithm essentially enlarges possibilities of the corresponding one in [34, 36] and also is
highly parallelizable.

4. Numerical experiments

We have implemented the above algorithm. For numerical experiments, similarly to [35], we take ρ(x, y) ≡ 1,
H0 = −Δ (the minus 2D Laplace operator), � = 1 and a simple rectangular potential-barrier

V (x, y) =

{
Q for (x, y) ∈ (a, b) × (c, d)

0 otherwise
, Q > 0.
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Figure 1. The modulus (left) and the real part (right) of the initial function ψG together with
the normalized barrier from Example B.

On the other hand, from the numerical point of view, this barrier is not so simple since it is discontinuous and
thus the corresponding exact solution is not smooth. Below we take the fixed (a, b) = (1.6, 1.7) and (c, d) of
three different lengths in Examples A, B and C.

Let the initial function be the Gaussian wave packet

ψ0(x, y) = ψG(x, y) ≡ exp
{

i
√

2k(x− x(0)) − (x− x(0))2 + (y − y(0))2

4α

}
on R

2.

We choose the parameters k = 30 and α = 1
120 .

We solve the initial boundary value problem in the infinite strip R× (0, Y ), choose the computational domain
Ω̄X × [0, T ] such that (a, b) × (c, d) ⊂ ΩX and ψG is small enough outside Ω̄X . Namely, below X = 3 and
Y = 2.8 together with (x(0), y(0)) = (1, Y

2 ) as well as T = tM = 0.027. We use the uniform meshes in x, y and t
with steps respectively h = X

J , δ = Y
K and τ = T

M .
We accordingly modify the splitting in potential scheme (2.17)–(2.22) replacing ωh ∪ xJ by ωh in (2.17)

and (2.19), the boundary conditions (2.20) by

Ψ̆m|k=0,K = 0, Ψ̃m|k=0,K = 0, Ψm|k=0,K = 0 on ωh

together with the left discrete TBC at j = 0 similar to the right one (2.21) for S = Sref . On Figure 1 the
modulus and the real part of ψG are shown on the computational domain. The normalized barrier (with Q = 1)
is situated there as well, for (c, d) = (0.7, 2.1) (see Example B below).

Example A. We first take (c, d) = (0, Y ) and Q = 1500 (previously the same example was in fact treated in [35]
by a method from [34, 36]). In this case, the wave packet is divided into two similar reflected and transmitted
parts moving in opposite directions with respect to the barrier. A little bit surprisingly, the solution is almost
the same as in the case (c, d) = (Y

4 ,
3Y
4 ) in Example B (that is why the corresponding graphs of the solution are

given below). Namely, for the fine mesh with (J,K,M) = (9600, 512, 4800), norms of differences between the
pseudo-exact solution for (c, d) = (0, Y ) computed by the Crank–Nicolson scheme and one for (c, d) = (Y

4 ,
3Y
4 )

computed by the splitting in potential scheme are

EC ≈ 1.81 × 10−3, EL2 ≈ 5.02 × 10−4,
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Figure 2. Example B (Q = 1500). The absolute and relative errors in C and L2 norms in
dependence with time for the numerical solution for (J,K,M) = (1200, 64, 600).

i.e., they are actually small. In this section, we exploit the splitting method with the simplest choice Ṽ = 0
unless the contrary is explicitly stated. Hereafter EC and EL2 denote differences/errors in the mesh norms that
are uniform in time as well as C (i.e. uniform) and L2 in space.

Notice also that the norms of differences between the pseudo-exact solutions on the fine mesh and on the
mesh with (J,K,M) = (1200, 64, 600) are

EC ≈ 2.70 × 10−2, EL2 ≈ 1.65 × 10−2,

for the Crank–Nicolson scheme, and

EC ≈ 2.54 × 10−2, EL2 ≈ 1.60 × 10−2,

for the splitting scheme (see also Fig. 2 below for more detail), i.e., they are small enough and close to each
other.

Example B. Next we consider the barrier with (c, d) = (Y
4 ,

3Y
4 ) = (0.7, 2.1) (that is one-half in length of the

first one), for three values of the barrier height Q, in order to get qualitatively varying behavior of solutions
(compare with [35]).

First, once again we take the barrier height Q = 1500. We exploit the mesh with (J,K,M) = (1200, 64, 600)
so that h = 2.5×10−3, δ = 4.375×10−2 and τ = 4.5×10−5. Though J

K ≈ 19 is large, we qualify that such choice
is reasonable. In particular, for comparison we exploit the above mentioned pseudo-exact solution on the fine
mesh with (J,K,M) = (9600, 512, 4800) that all three are 8 times larger and imply the steps h = 3.125× 10−4,
δ ≈ 5.469× 10−3 and τ = 5.625× 10−6. Figure 2 demonstrates the behavior of the absolute and relative errors
in C and L2 space mesh norms in dependence with time.

The modulus and the real part of the numerical solution Ψm are given on Figure 3, for the time moments
tm = mτ , m = 180, 300, 420 and 600. In this case, the wave packet is divided into two rather similar reflected
and transmitted parts moving in opposite directions with respect to the barrier.

We continue to study the error behavior in more detail in Table 1. It contains errors of the solutions to the
splitting method for increasing J , K and M respectively (for sufficiently large values of two other numbers). The
associated ratios RC and RL2 of the sequential errors are also put there. They are rather close to 4 excluding
the last rows that means almost the second order of convergence with respect to each of J , K and M , both in C
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m = 180 m = 300

m = 420 m = 600

Figure 3. Example B (Q = 1500). The modulus and the real part of the numerical solution
Ψm for (J,K,M) = (1200, 64, 600).

Table 1. Example B (Q = 1500). Errors, ratios of errors and ratios of runtimes in dependence
with J (for K = 256 and M = 2400), K (for J = 4800 and M = 2400) or M (for J = 4800
and K = 256).

J EC RC EL2 RL2 Rtime

300 0.22 – 0.12 – –

600 5.62 × 10−2 3.99 3.10 × 10−2 3.94 1.33

1 200 1.42 × 10−2 3.95 7.91 × 10−3 3.92 1.47

2 400 3.77 × 10−3 3.77 2.16 × 10−3 3.66 1.63

4 800 1.20 × 10−3 3.15 7.65 × 10−4 2.83 1.81

K EC RC EL2 RL2 Rtime

16 0.15 – 6.62 × 10−2 – –

32 3.43 × 10−2 4.36 2.34 × 10−2 2.84 2.13

64 8.65 × 10−3 3.96 6.58 × 10−3 3.55 1.91

128 2.29 × 10−3 3.79 1.81 × 10−3 3.63 1.86

256 1.20 × 10−3 1.91 7.65 × 10−4 2.37 1.87

M EC RC EL2 RL2 Rtime

150 0.17 – 9.10 × 10−2 – –

300 4.39 × 10−2 3.91 2.37 × 10−2 3.84 2.1

600 1.12 × 10−2 3.9 6.20 × 10−3 3.83 2.02

1 200 3.16 × 10−3 3.56 1.83 × 10−3 3.39 2.01

2 400 1.20 × 10−3 2.64 7.65 × 10−4 2.39 2.09
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Table 2. Example B (Q = 1500). Errors of the numerical solutions for Ṽ = 0 and percentages
of their changes when taking Ṽ = Qχ.

J K M EC EL2 PC PL2

1 200 64 600 2.54 × 10−2 1.60 × 10−2 −5.65 −3.08
1 200 128 600 2.42 × 10−2 1.37 × 10−2 −6.6 −3.78
1 200 64 1 200 1.83 × 10−2 1.21 × 10−2 0.36 −0.91
1 200 128 1 200 1.63 × 10−2 9.40 × 10−3 −2.49 −1.33
2 400 64 600 1.64 × 10−2 1.09 × 10−2 −5.48 −3.99
2 400 128 600 1.38 × 10−2 8.05 × 10−3 −11.39 −6.27
2 400 64 1 200 1.03 × 10−2 7.73 × 10−3 1.01 −0.96
2 400 128 1 200 6.00 × 10−3 3.82 × 10−3 −6.3 −3.02

and L2 mesh norms. The deterioration of RC and RL2 in the last rows is explained by more essential influence
of the errors due to the chosen discretization in other directions.

The last columns in the tables contain also the respective ratios of runtimes. One can see that they all are
close to 2 when any of J , K or M increases twice.

In Table 2 we put C and L2 errors for some selected values of J , K and M . They all decrease monotonically
as J , K or M increase. We also compare there the numerical solutions of the splitting method with Ṽ = 0 and
Ṽ (x) = Qχ(x), where χ(x) is the characteristic function of the interval (a, b); two last columns of the table
contain percentages

PC :=

(
EC |Ṽ =0

EC |Ṽ =Qχ

− 1

)
× 100%, PL2 :=

(
EL2 |Ṽ =0

EL2 |Ṽ =Qχ

− 1

)
× 100%.

One can see that the second choice Ṽ = Qχ also works but the first one Ṽ = 0 mostly leads to better results.
In addition, for the fine mesh with (J,K,M) = (9600, 512, 4800) the norms of differences between the solutions

for these two different Ṽ are
EC ≈ 3.32 × 10−5, EL2 ≈ 1.04 × 10−5,

i.e., they are very small.
Second, we take a less barrier height Q = 1000. This situation is simpler from the numerical point of view.

The numerical results are demonstrated on Figure 4 for the same time moments and the mesh. Now the wave
packet goes through the barrier with an essentially less reflection.

Third, let Q = 4000 be rather large. On Figure 5 the numerical solution is represented for the same time
moments and the mesh. Here the main part of the wave is reflected from the barrier and then moves in the
opposite direction along the x axis.

To check the approximate solution in this case, we compute how the numerical solution changes when any
of J , K or M increases twice, see Table 3, where the corresponding absolute and relative errors in C and L2

norms are given. The relative errors EC, rel and EL2, rel are defined as the maximal in time relative C and L2

mesh errors in space (in joint nodes). One can see that all the errors are small enough.
We emphasize that on all Figures 3–5, the last two graphs exhibit complete absence of the spurious reflections

from the artificial left and right boundaries due to exploiting of the discrete TBCs there.

Example C. We also treat the case of a very short barrier with (c, d) = (Y
2 − Y

25 ,
Y
2 + Y

25 ) = (1.3125, 1.4875)
and once again having the height Q = 1500; this barrier looks like a column. The numerical solution Ψm

is represented on Figure 6, for the time moments tm = mτ , m = 180, 240, 300 and 360, together with the
normalized barrier. We use the mesh with (J,K,M) = (1200, 512, 600), i.e. for the same J and M as on the
above figures but for notably larger K. Now in contrast to the previous examples, the transmitted part of the
wave packet is separated into two pieces.
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m = 180 m = 300

m = 420 m = 600

Figure 4. Example B (Q = 1000). The modulus and the real part of the numerical solution
Ψm for (J,K,M) = (1200, 64, 600).

m = 180 m = 300

m = 420 m = 600

Figure 5. Example B (Q = 4000). The modulus and the real part of the numerical solution
Ψm for (J,K,M) = (1200, 64, 600).
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Table 3. Example B (Q = 4000). The change in numerical solution when J , K or M increases
twice.

J K M EC EL2 EC, rel EL2, rel

2 400 64 600 8.61 × 10−3 5.29 × 10−3 2.48 × 10−2 2.90 × 10−2

1 200 128 600 1.38 × 10−2 6.37 × 10−3 3.56 × 10−2 2.82 × 10−2

1 200 64 1 200 1.22 × 10−2 5.30 × 10−3 2.82 × 10−2 2.33 × 10−2

m = 180 m = 240

m = 300 m = 360

Figure 6. Example C. The modulus and the real part of the numerical solution Ψm for
(J,K,M) = (1200, 512, 600).

Table 4. Example C. The change in numerical solution when J , K or M increases twice.

J K M EC EL2 EC, rel EL2, rel

2 400 512 600 1.06 × 10−2 5.26 × 10−3 3.16 × 10−2 2.32 × 10−2

1 200 1 024 600 9.64 × 10−3 6.70 × 10−3 3.92 × 10−2 4.38 × 10−2

1 200 512 1 200 8.22 × 10−3 4.67 × 10−3 2.66 × 10−2 2.06 × 10−2

To check the approximate solution in this case, we compute how the numerical solution changes when J , K
or M increases twice, see Table 4, where the corresponding absolute and relative errors are given. One can see
that all of them are small enough once again.

We call attention to the essentially more complicated behavior of the real part of the solution compared to
its modulus in all Examples A–C. Comparing C and L2 errors, one can see that though C errors are mainly
larger, their behavior is rather similar that is not so obvious a priori taking into account the oscillatory type of
the solutions in space and time.

In general, the above practical error analysis indicates the good error properties of the splitting in potential
scheme.
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Finally, note that clearly both the rectangular form of the barrier and the specific choice of the initial function
are inessential to apply efficiently the splitting method.
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