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RECONSTRUCTION OF THICKNESS VARIATION OF A DIELECTRIC
COATING THROUGH THE GENERALIZED IMPEDANCE BOUNDARY

CONDITIONS ∗

Birol Aslanyürek1 and Hülya Sahintürk1

Abstract. We deal with an inverse scattering problem whose aim is to determine the thickness vari-
ation of a dielectric thin coating located on a conducting structure of unknown shape. The inverse
scattering problem is solved through the application of the Generalized Impedance Boundary Condi-
tions (GIBCs) which contain the thickness, curvature as well as material properties of the coating and
they have been obtained in the previous work [B. Aslanyürek, H. Haddar and H. Şahintürk, Wave Mo-
tion 48 (2011) 681–700] up to the third order with respect to the thickness. After proving uniqueness
results for the inverse problem, the required total field as well as its higher order derivatives appearing
in the GIBCs are obtained by the analytical continuation of the measured data to the coating surface
through the single layer potential representation. The resulting system of non-linear differential equa-
tions for the unknown coating thickness is solved iteratively via the Newton−Raphson method after
expanding the thickness function in a series of exponentials. Through the simulations it has been shown
that the approach is effective under the validity conditions of the GIBCs.
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1. Introduction

Generalized Impedance Boundary Conditions (GIBCs) which are used to model imperfectly conducting ob-
stacles, scatterers with corrugated or rough surfaces, highly absorbing media, point defects or point conduc-
tors placed on a surface, dielectric resonators, conductive thin sheets, thin dielectric coatings, etc. simplify
the mathematical and numerical complexities in the solution of scattering problems in electromagnetic the-
ory and they have been widely studied in the open literature [1, 3, 7, 9–14, 18–22, 24–27, 29–34]. These stud-
ies mostly consist of deriving or dealing with GIBC expressions and using them in a direct scattering prob-
lem [9–12,14, 20–22,25–27,30–32]. One can find also some applications of them to the inverse scattering problems
for various geometries [3, 13, 19].
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Here we focus on the GIBCs defined on the surfaces of thin dielectric coatings in the concept of inverse
scattering problems. In [5], the uniqueness and stability of inverse scattering problems under some proposed
assumptions are investigated for the GIBCs defined on the surfaces of thin coatings, corrugated surfaces or
highly absorbing media. In a sequel study to [5], the identification of a GIBC as well as the shape reconstruction
for a obstacle is researched [4]. Also, a stable method is proposed to reconstruct the electromagnetic field in
layered media having sufficiently small, constant thickness from overdetermined data on the outer boundary
in [23].

The objective of this paper is to solve an inverse scattering problem whose aim is to determine the thickness
of a thin dielectric coating located on a perfect magnetic conductor (PMC) by utilizing the GIBCs derived
in [2]. In [2], several GIBCs expressions are derived for thin dielectric coatings with variable thickness, which
is located on a perfect electric or magnetic conducting surface, and they are numerically validated through
various numerical examples related to the direct scattering problem by using a finite element type method.
The expressions of the GIBCs are obtained up to the third order with respect to the coating width for both
Dirichlet and Neumann cases. Note that to use these GIBCs in the inverse scattering problems for the same
configuration requires a substantially different approach and handling new difficulties due to the nature of the
inverse scattering problems.

The GIBCs defined on a coating surface include geometrical and material properties of the coating as well
as the total field and its high order normal and tangential derivatives. Here we first calculate these field values
from measurements of the scattered field due to the coated object for one or several incident time harmonic
plane waves at a fixed frequency. The scattered field is represented by a single-layer potential (SLP) [8] on
a fictitious surface that is close to the surface of the coating and the density of the single-layer potential is
obtained by solving the resulting ill-posed integral equation of the first kind through the truncated singular
value decomposition (TSVD) regularization [8]. Then the required total fields and their derivatives are obtained
on the coating surface without tackling difficulty of singularity. By substituting the obtained fields into the
expressions of the GIBCs, the problem is reduced to the solutions of systems of differential equations for
orders 1, 2 and 3. Actually this is a 1D coefficient identification problem and there are divers studies in the
literature [16,17]. In this paper, in order to solve these problems, we seek the width of the coating as a series in
terms of exponential functions. Thus, the problem is transformed to the solution of a system of linear equations
for case of order 1 and a system of nonlinear equations for cases order 2 and 3. The nonlinear systems of
equations are solved numerically by means of a well-known Newton−Raphson Method. The method is tested by
considering several coating configurations and it has been shown that it yields quite satisfactory reconstructions
for the thicknesses in the order of λ/10, where λ is the wavelength of the incident wave.

It should be noted that although the method is developed for the coatings located on a perfect magnetic
conductor, it can be easily applied to the perfect electric case which is much more simpler. Besides, the method
is presented as the thickness reconstruction of the coating but it is also equivalent to shape reconstruction of a
perfect magnetic conductor located in a dielectric object.

The document is organized as follows. Section 2 is dedicated to introduce the original inverse scattering
problem for thickness reconstruction of a coating, and to give its equivalent model in terms of the GIBCs. After
proving uniqueness results for the inverse problem in Section 2.1, the equivalent problem is solved in two steps:
obtaining the total field and its partial derivatives on the surface of the coating via the SLP in Section 2.2 and
calculating the width of the coating from the GIBCs of orders 1, 2 and 3 in Section 2.3. Finally, the effectiveness
of the approach given here is illustrated through several numerical examples in Section 3. A time factor e−iωt

is assumed and omitted throughout the paper.

2. Formulation of the problem

Consider the inverse electromagnetic scattering problem illustrated in Figure 1. In this configuration a homo-
geneous, lossy, non-magnetic dielectric material coating Ω+ whose dielectric permittivity ε1 and conductivity
σ1 is located on a perfect magnetic conducting (PMC) cylinder with boundary Γ δ. The background medium
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Figure 1. Geometry of the inverse problem.

represented by Ω− is the free-space with dielectric permittivity ε0 and magnetic permeability μ0. The inverse
scattering problem for this configuration which will be dealt with here is to determine the thickness variation δ
of the coating by illuminating the coated cylinder by a number of electromagnetic waves and measuring the
scattered field on a circular region Γ s (see Fig. 1). The geometry of the outer boundary of the coating Γ , which
is assumed to be at least twice continuously differentiable, as well as coating material are assumed to be known.

Let us assume that the coated cylinder is located along to x3 axis and is illuminated by a TM polarized
time-harmonic plane wave whose electric field vector �Ei is always parallel to the x3 axis, namely;

�Ei = (0, 0, ui(x)) (2.1)

with
ui(x) = e−iκ0x·d (2.2)

where d = (cos θ, sinθ) is the propagation direction with incidence angle θ and κ0 is the wave number of free-
space. In this case, the total electric field �E is also in the form �E = (0, 0, uδ(x)) and the problem is reduced to
a scalar one in R2 for the field function uδ. The total field uδ satisfies the reduced wave equation

Δuδ + κ2uδ = 0 in Ω− ∪Ω+ (2.3)

with the Neumann boundary condition
∂uδ

∂nδ
= 0 on Γ δ (2.4)

where

κ2(x) =

{
κ2

0 = ω2ε0μ0, in Ω−,
κ2

1 = ω2ε1μ0 + iωσ1μ0, in Ω+,
(2.5)

is the square of piecewise constant wave number as well as �nδ is the unitary normal vector directed to the
interior of Ω+ on Γ δ.

Besides of Neumann boundary condition, the scattering problem has continuity conditions, namely, the total
field uδ and its normal derivative ∂uδ

∂n are continues on Γ , and Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
(x) − iκus(x)

)
= 0, r = |x| (2.6)
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where the scattered field, us, is defined as

us = uδ − ui in Ω−. (2.7)

The scattering problem whose formulation given above can be converted into the following form through the
GIBCs. Namely, we first introduce the Neumann impedance operator N δ which approximately satisfies

∂uδ

∂n
+N δuδ = 0 on Γ (2.8)

where n is directed to the interior of Ω+. An impedance operator suited to the problem given here are derived
in [2] up to the third order with respect to the coating width. These operators, including information related
to geometric and electromagnetic properties of the coating, are given as

N δ,1 = − ∂

∂s
δ
∂

∂s
− δκ2

1, (2.9)

N δ,2 = − ∂

∂s

(
δ − 1

2
δ2c

)
∂

∂s
−
(
δ +

1
2
δ2c

)
κ2

1, (2.10)

N δ,3 = − ∂

∂s

(
δ − 1

2
δ2c+

1
3
δ3c2 +

2
3
κ2

1δ
3 +

1
2
δ2δ′′

)
∂

∂s

−
(
δ +

1
2
δ2c+

1
3
κ2

1δ
3 +

1
2
δ2δ′′ + δ(δ′)2

)
κ2

1 −
1
3
∂2

∂s2
δ3(s)

∂2

∂s2
(2.11)

for orders 1, 2 and 3, respectively. Here the boundary Γ is parameterized in terms of the curvilinear abscissa s as
s �→ xΓ (s) = (x1(s), x2(s))t, s ∈ [0, L[, with |dxΓ (s)/ds| = 1, where L is the length of Γ . This parametrization
defines a counter-clockwise orientation. The curvature of the boundary Γ is defined as c(s) = �τ (s) · d�n(s)/ds
where �τ(s) = dxΓ (s)/ds is a unitary vector tangential to Γ at xΓ (s). The width of the coating, δ, is defined
clearly as

δ(s) = dist(xΓ (s), Γ δ) s ∈ [0, L[

and is assumed to be sufficiently regular and small, so that

s→ xδ
Γ (s) := xΓ (s) + δ(s)�n(s) (2.12)

defines a global and injective parametrization of Γ δ in terms of s ∈ [0, L[. In (2.11), δ′ and δ′′ represent
respectively the first and second derivative of δ with respect to s. Note that although the boundary Γ is
assumed to be at least twice continuously differentiable, the third order boundary condition contains higher
order derivatives. We will not make any assumption on this, yet we will do formal computations. We refer the
readers to [2] for more information related to the GIBCs handled here.

Thus, after introducing the GIBCs on the boundary Γ , the scattering problem given by (2.1)−(2.7) can now
be reformulated as follows: If the total field of the equivalent problem denoted by u, it satisfies the reduced
wave equation

Δu+ κ2u = 0 in Ω− (2.13)

with the GIBC
∂u

∂n
+N δu = 0 on Γ (2.14)

and the Sommerfeld Boundary Condition given in (2.6). In this case, the inverse scattering problem mentioned
above can be stated as solving the unknown thickness δ(s) from the boundary condition (2.14). Note that in
order to solve δ(s) from (2.14), it is required to know the total field u and its derivatives with respect to n
and s on Γ . On the other hand one has only the values of the total field on the measurement surface Γ s.
In the following, after the investigation of the uniqueness for the inverse problem formulated above, the next
subsections are dedicated to the calculation of u, ∂u

∂s , ∂u
∂n on Γ from the measured data on Γ s and the determining

of δ from the GIBCs expressions, respectively.
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Note that, the formal error that occurs due to difference between equivalent problems satisfies∥∥uδ − u
∥∥

Ω−
≤ a δm+1 (2.15)

where the constant a does not depend on δ and m is the order of the GIBCs [2, 9].

2.1. Uniqueness of the solution of the inverse problem

In this section it will be provided uniqueness results concerning the reconstruction of the thickness δ(s) from
the GIBCs for given values of the scattered field. The proofs will be given for the individual GIBCs which are
defined by means of the operators given in (2.9)−(2.11). For the first and second order GIBCs we refer the
readers to [4]. In that work, under Assumption 2.1 given below, a uniqueness proof has been presented for a
GIBC which can be written in the scalar form

∂u

∂n
− ∂

∂s
μ
∂

∂s
u− λu = 0 on Γ (2.16)

for the unit normal to Γ directed to the interior of Ω+. Here λ and μ are complex valued functions and satisfy
λ ∈ C0(Γ ) and μ ∈ C1(Γ ).

Assumption 2.1. The coefficients (λ, μ) ∈ (L∞(Γ ))2 are such that

Im(λ) ≥ 0, Im(μ) ≤ 0

and there exist d > 0 such that
Re(μ) ≥ d.

Let u be the field on boundary Γ and (λ1, μ1) and (λ2, μ2) be two solutions. The proof given in [4] consists
in proving that (λ1, μ1) = (λ2, μ2). By setting λ = λ1−λ2 and μ = μ1−μ2, from the boundary condition (2.16)
it follows that

∂

∂s
μ
∂

∂s
u+ λu = 0 on Γ. (2.17)

By using the inner product defined as〈
∂

∂s
μ
∂

∂s
u, υ

〉
H−1(Γ ),H1(Γ )

= −
∫

Γ

μ
∂u

∂s

∂υ

∂s
ds, ∀υ ∈ H1(Γ ), (2.18)

it can be shown that 〈
u,

∂

∂s
μ
∂

∂s
φ+ λφ

〉
H1(Γ ),H−1(Γ )

= 0 (2.19)

for some φ ∈ H1(Γ ). Then, by the help of Lemma 3.3 given in [4], one can write

∂

∂s
μ
∂

∂s
φ+ λφ = 0 on Γ, ∀φ ∈ H1(Γ ). (2.20)

Choosing φ = 1 in (2.20) leads to λ = 0. Then, using of energy methods for (2.20), one can also obtain μ = 0
and complete the proof as elaborated in [4].

Now we discuss uniqueness for the GIBC problem dealt in this paper by the help of above procedure.

For the first order GIBC. By choosing λ = δκ2
1 and μ = δ, which are satisfy Assumption 2.1, the GIBC for

the first order becomes identical to that given in (2.16), which has a unique solution.

For the second order GIBC. In a similar way, it can be easily shown that (2.14) with (2.10) and (2.16) are
identical for λ =

(
δ + 1

2δ
2c
)
κ2

1 and μ =
(
δ − 1

2δ
2c
)
. Reminding that δ > 1

2δ
2c due to the asymptotic approach
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used in [2], it is clearly seen that
(
δ + 1

2δ
2c
)
κ2

1 = 0 and
(
δ − 1

2δ
2c
)

= 0 which leads to δ = 0. This result
completes the proof by assuming that δ = δ1 − δ2 where δ1 and δ2 are two solutions of the inverse problem.

For the third order GIBC. Although the form of the third order GIBC is different than that of (2.16), we
can use the similar procedure to prove the uniqueness of the solution. Under the assumption that δ1 and δ2 are
two solutions of the inverse problem, for δ = δ1 − δ2, the third order GIBC can be written as

∂2

∂s2
ϕ
∂2

∂s2
u+

∂

∂s
μ
∂

∂s
u+ λu = 0 on Γ (2.21)

where
ϕ = 1

3δ
3,

μ = δ − 1
2δ

2c+ 1
3δ

3c2 + 2
3κ

2
1δ

3 + 1
2δ

2δ′′,

λ =
(
δ + 1

2δ
2c+ 1

3κ
2
1δ

3 + 1
2δ

2δ′′ + δ(δ′)2
)
κ2

1.

By following the derivation procedure of (2.20) from (2.17) above, one gets

∂2

∂s2
ϕ
∂2

∂s2
φ+

∂

∂s
μ
∂

∂s
φ+ λφ = 0 on Γ, ∀φ ∈ H1(Γ ). (2.22)

Then substitution of φ = 1, φ = s, φ = s2, φ = s3 and φ = s4 into (2.22) yields to get

λ = 0,

∂μ

∂s
= 0,

∂2ϕ

∂s2
+ μ = 0,

∂ϕ

∂s
= 0,

ϕ = 0,

respectively, which gives δ = 0.

2.2. Derivation of the total field and its derivatives on the impedance surface

In order to derive the total field and its derivatives with respect to the curvilinear abscissa s and the inner
unitary normal vector n on the coating surface Γ , we represent the scattered field us as a SLP

us(X) =
∫

Γ

G(X ;Y )Ψ(Y ) ds(Y ) X ∈ Γ s, Y ∈ Γ (2.23)

with unknown density function Ψ on Γ [8]. Here G is the Green’s function of free-space given by

G(X ;Y ) =
i

4
H

(1)
0 (k0|X − Y |) (2.24)

where H(1)
0 denotes the Hankel function of the first kind and order 0. For the given values of the scattered field

on Γ s, one needs to solve (2.23) for the unknown density Ψ and reuse it to calculate the scattered field on Γ .
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Figure 2. Defining density Ψ on ΓF instead of Γ .

As seen clearly, (2.23) has singularity at X = Y because of free-space Green’s function. One can tackle this
difficulty by using the Nyström method [8]. Here, we apply a more practical approach based on defining density
function on a fictitious surface ΓF selected a bit closer to the origin instead of Γ as shown Figure 2 (see [6]).
Thus, modifying the SLP given in (2.23), one can write it in symbolic form as

AΨ = us(X) X ∈ Γ s (2.25)

where the integral operator A is given by

AΨ =
∫

Γ F

G(X ;Y )Ψ(Y ) ds(Y ) X ∈ Γ s, Y ∈ ΓF . (2.26)

Equation (2.25) is ill-posed since the operator A has an analytic kernel. That’s why some kind of regulariza-
tion such as TSVD [8] has to be applied. Considering the compact linear operator A with singular system
(σn, ψn, vn),n ∈ N, the regularized solution is expressed by TSVD inversion formula

Ψ =
N∑

n=1

1
σn

〈us, vn〉ψn (2.27)

where 〈, 〉 denotes the inner product on L2 [8]. Here the truncation parameter N is assigned according to the
measurement noise.

Once the density function Ψ is obtained by (2.27), the total field

u(X) = ui(X) +
∫

Γ F

G(X ;Y )Ψ(Y ) ds(Y ) X ∈ Γ, Y ∈ ΓF , (2.28)

the derivative of the total field with respect to s

∂u(X)
∂s

=
∂ui(X)
∂s

+
∫

Γ F

∂G(X ;Y )
∂s

Ψ(Y ) ds(Y ) X ∈ Γ, Y ∈ ΓF , (2.29)

and the derivative of the total field with respect to n

∂u(X)
∂n

=
∂ui(X)
∂n

+
∫

Γ F

∂G(X ;Y )
∂n

Ψ(Y ) ds(Y ) X ∈ Γ, Y ∈ ΓF (2.30)

can be calculated.
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Note that here we only give the explicit expressions of the total field and its first order derivatives. On the
other hand, the Neumann operators given in (2.9), (2.10) and (2.11) include also the higher order derivatives
with respect to s. In the solution of the inverse scattering problem below, we will first rearrange the equations to
include only first order derivatives, thus, (2.28), (2.29) and (2.30) will be enough to get the required solutions.

2.3. Reconstruction of thickness variation

Let us first substitute the Neumann operators given in (2.9), (2.10) and (2.11) into the boundary condi-
tion (2.14), and multiply the both sides of the resulting equations by υm = e−i 2πs

|Γ | m and then integrate them
over Γ to obtain ∫

Γ

∂u

∂n
υm ds =

∫
Γ

(
∂

∂s
δ
∂

∂s
u+ δκ2

1u

)
υm ds, m = 0,±1, . . . ,±M, (2.31)∫

Γ

∂u

∂n
υm ds =

∫
Γ

(
∂

∂s
(δ − 1

2δ
2c)

∂

∂s
u+ (δ + 1

2δ
2c)κ2

1u

)
υm ds,

m = 0,±1, . . . ,±M, (2.32)∫
Γ

∂u

∂n
υm ds =

∫
Γ

(
∂

∂s
(δ − 1

2δ
2c+ 1

3δ
3c2 + 2

3κ
2
1δ

3 + 1
2δ

2 ∂
2δ

∂s2
)
∂

∂s
u

)
υm ds

+
∫

Γ

(δ + 1
2δ

2c+ 1
3κ

2
1δ

3 + 1
2δ

2 ∂
2δ

∂s2
+ δ(

∂δ

∂s
)2)κ2

1uυm ds

+
1
3

∫
Γ

(
∂2

∂s2
δ3
∂2

∂s2
u

)
υm ds, m = 0,±1, . . . ,±M (2.33)

for orders 1, 2 and 3, respectively. As clearly be seen from (2.31), (2.32) and (2.33) the resulting expressions
contain higher order derivatives of the total field with respect to s. In order to reduce the numerical difficulties
due to the calculation of these higher order derivatives of the total field in the solution of the inverse scattering
problem, it will be convenient to write them in terms of first order derivatives only. This can be achieved by
successive partial integrations of the terms containing higher order derivatives of u in (2.31), (2.32) and (2.33).
Then one has,

∫
Γ

∂u

∂n
υm ds =

∫
Γ

δ

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds, m = 0,±1, . . . ,±M, (2.34)∫

Γ

∂u

∂n
υm ds =

∫
Γ

δ

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds+

1
2

∫
Γ

δ2c

(
κ2

1uυm +
∂u

∂s

∂υm

∂s

)
ds,

m = 0,±1, . . . ,±M, (2.35)∫
Γ

∂u

∂n
υm ds =

∫
Γ

δ

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds+

1
2

∫
Γ

δ2c

(
κ2

1uυm +
∂u

∂s

∂υm

∂s

)
ds

+
1
3

∫
Γ

δ3
(
κ4

1uυm − c2
∂u

∂s

∂υm

∂s
− 2κ2

1

∂u

∂s

∂υm

∂s
− ∂u

∂s

∂3υm

∂s3

)
ds

−
∫

Γ

δ2
∂δ

∂s

∂u

∂s

∂2υm

∂s2
ds+

1
2

∫
Γ

δ2
∂2δ

∂s2

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds

+
∫

Γ

δ(
∂δ

∂s
)2κ2

1uυm ds, m = 0,±1, . . . ,±M (2.36)

for orders 1, 2 and 3, respectively. The inverse scattering problem is reformulated as the solution of (2.34), (2.35)
and (2.36), which are nothing but integro-differential equations for the unknown thickness function δ. In order
to solve δ from these systems of equations, we first represent the thickness function δ(s) as a series in terms of
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exponential functions as follows:

δ(s) =
K∑

k=−K

αkφk(s) (2.37)

where αk, k = 0,±1, . . . ,±K, are unknown coefficients to be determined while the functions φk’s, which are
L−periodic on [0, L[, are given as

φk(s) = ei 2πs
|Γ | k (2.38)

for k = 0,±1, . . . ,±K. Note that, with the representation in (2.37), any derivative of δ(s) with respect to s can
be expressed analytically. Then substitution of (2.37) into (2.34), (2.35) and (2.36) results in

∫
Γ

∂u

∂n
υm ds =

K∑
k=−K

αk

∫
Γ

φk

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds, m = 0,±1, . . . ,±M, (2.39)

∫
Γ

∂u

∂n
υm ds =

K∑
k=−K

αk

∫
Γ

φk

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds

+
1
2

∫
Γ

(
K∑

k=−K

αkφk

)2

c

(
κ2

1uυm +
∂u

∂s

∂υm

∂s

)
ds,

m = 0,±1, . . . ,±M, (2.40)∫
Γ

∂u

∂n
υm ds =

K∑
k=−K

αk

∫
Γ

φk

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds

+
1
2

∫
Γ

(
K∑

k=−K

αkφk

)2

c

(
κ2

1uυm +
∂u

∂s

∂υm

∂s

)
ds

+
1
3

∫
Γ

(
K∑

k=−K

αkφk

)3(
κ4

1uυm − c2
∂u

∂s

∂υm

∂s
− 2κ2

1

∂u

∂s

∂υm

∂s
− ∂u

∂s

∂3υm

∂s3

)
ds

−
∫

Γ

(
K∑

k=−K

αkφk

)2( K∑
k=−K

αk
∂φk

∂s

)
∂u

∂s

∂2υm

∂s2
ds

+
1
2

∫
Γ

(
K∑

k=−K

αkφk

)2( K∑
k=−K

αk
∂2φk

∂s2

)(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds

+
∫

Γ

(
K∑

k=−K

αkφk

)(
K∑

k=−K

αk
∂φk

∂s

)2

κ2
1uυm ds, m = 0,±1, . . . ,±M (2.41)

for orders 1, 2 and 3, respectively. For a single illumination, (2.39), (2.40) and (2.41) severally constitute a
system of algebraic equations with dimensions (2M + 1)× (2K + 1). Note that for the GIBC of order 1, (2.39)
is a linear algebraic system and can be solved easily through matrix inversion in the least square sense.

On the other hand, (2.40) and (2.41) are non-linear algebraic systems for the coefficients αk. Here we propose
a Newton−Raphson type iterative method for the solution of these equations.

Consider the continuously differentiable function F : C2K+1 → C2M+1 which represents one system of non-
linear equations in (2.40) or (2.41). Then, the iterative solution in Newton sense is given by,

JF (α(t))(α(t+1) − α(t)) = −F (α(t)) (2.42)
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with

α =

⎡
⎢⎢⎢⎢⎢⎣

α−K

...
0
...
αK

⎤
⎥⎥⎥⎥⎥⎦ . (2.43)

where t denotes the tth iteration. The Jacobian matrix in (2.42) is denoted by

JF =
∂(F (−M), . . . , F (m), . . . , F (M))

∂(α−K , . . . , αk, . . . , αK)
(2.44)

where

∂F (m)

∂αk
=
∫

Γ

φk

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds

+
∫

Γ

δφkc

(
κ2

1uυm +
∂u

∂s

∂υm

∂s

)
ds for order 2, (2.45)

∂F (m)

∂αk
=
∫

Γ

φk

(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds+

∫
Γ

δφkc

(
κ2

1uυm +
∂u

∂s

∂υm

∂s

)
ds

+
∫

Γ

δ2φk

(
κ4

1uυm − c2
∂u

∂s

∂υm

∂s
− 2κ2

1

∂u

∂s

∂υm

∂s
− ∂u

∂s

∂3υm

∂s3

)
ds

−
∫

Γ

(
2δ
∂δ

∂s
φk + δ2

∂φk

∂s

)
∂u

∂s

∂2υm

∂s2

+
1
2

∫
Γ

(
2δ
∂2δ

∂s2
φk + δ2

∂2φk

∂s2

)(
κ2

1uυm − ∂u

∂s

∂υm

∂s

)
ds

+
∫

Γ

(
φk

(
∂δ

∂s

)2

+ 2δ
∂δ

∂s

∂φk

∂s

)
κ2

1uυm ds for order 3. (2.46)

The first initial guess α(0) is critical for the Newton algorithm to converge. Fortunately, δ calculated from the
linear problem of the GIBC of order 1 is probably sufficient as a first initial guess for the non-linear ones.

The system of non-linear equations (2.42) can be solved through the inverse of the Jacobian matrix, if the
Jacobian matrix is square. If the system becomes overdetermined, one can solve this system by computing the
generalized least squares inverse [28] of the non-square Jacobian matrix or apply the least square method.

3. Numerical results

We now present some numerical results to demonstrate the effectiveness and applicability of the reconstruction
approach given in the previous section. In all examples, the coated object is assumed to be located in free space
and is illuminated by 6 plane waves with incident angles θ = jπ

3 (j = 0, 1, . . . , 5) unless otherwise stated. By
solving the direct scattering problem related to the original problem mentioned in Section 2 via the Finite
Element Method (FEM) [2], the scattered field data are synthetically generated on ΓS at 100 points. A 10%
random noise, namely nr|us|e2irπ with the noise level nr = 10% and a random number r between 0 and 1, is
added to each scattered field value us.

The first step of the approach requires to calculate the total field u and its derivatives ∂u
∂s and ∂u

∂n on the coating
surface Γ through the measured scattered data. To this aim, the SLP representation is used and the density
function Ψ is defined on ΓF whose parametric equation is given by XΓ F = 0.9XΓ for all simulations. In this
procedure a regularization is applied by representation Ψ in terms of the TSVD and the truncation parameter N
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Figure 3. Comparisons of the the amplitude and the complex phase of the scattering fields
and their normal and tangential derivatives on Γ obtained by FEM for the original model and
SLP for the equivalent model.

is determined by Morozov’s discrepancy principle [15]. Then, for orders 1, 2, 3, the calculated fields are used in
the systems of equations (2.39), (2.40) and (2.41). Here, both M and K, which are parameters related to number
of the multiplier function υm and number of series of the width δ given in (2.37), are selected as 8 in all cases.
All the integrals appearing in the abovementioned procedure are evaluated numerically by discretizing them
into 100 points via the trapezoidal rule. Besides, the Newton−Raphson method is interrupted at 300 iterations
except that the difference of error between two successive iterations reduces less than value 10−8.

In the first example, a circular dielectric coating with radius of 0.3 m is located on a PMC object whose
boundary is defined in (2.12) where

δ (t) = δ0 (1 − 0.4 sin (6t)) t ∈ [0, 2π) (3.1)

with δ0 = 0.1 m and is illuminated by 4 plane waves at 300 MHz with incidence angles θ = π
4 + jπ

2 (j = 0, 1, 2, 3).
The dielectric permittivity and conductivity of the coating are 3ε0 and 0.005 (S.m−1), respectively. It is assumed
that the scattered field us is measured on the circle ΓS having radius R = 0.5 m for each incident wave. During
the procedure of obtaining the density function Ψ on the circular fictitious surface ΓF with radius 0.27 m,
Morozov’s discrepancy principle determines the truncation parameter N as 9 for all the illuminations. The
amplitude and the phase of the scattered fields and their derivatives on Γ obtained through the FEM for the
original model and the SLP for the equivalent model are compared in Figure 3 for the incident wave with
angle θ = π

4 . As seen from the figure, the results are in a good agreement despite the data contain 10% noise.
Substituting the obtained total fields and their derivatives into the system of linear equations (2.39) for 4
illuminations, the width is calculated by means of the least square method and it gives an error of about 0.25



1022 B. ASLANYÜREK AND H. SAHİNTÜRK
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Figure 4. Reconstructions of the circular coating with radius 0.3 m and the imaginer part of
the generated width δ̃ for orders 1, 2 and 3.

where the error is defined as

Er :=

∫
Γ

∣∣∣δ − δ̃
∣∣∣ ds∫

Γ |δ| ds
· (3.2)

Here, δ̃ symbolizes the width numerically calculated from the equivalent model. The width δ̃ for orders 2 and 3
are calculated via the Newton−Raphson method by using δ̃ obtained for order 1 as first initial guess. The errors
for orders 2 and 3 are 0.31 and 0.08, respectively. We note that since the approximation for the GIBC of order 1
may occasionally generate better solution than the one for the GIBC of order 2 (see [2]), here the error of order 2
is higher. The coatings, which are reconstructed through the calculated widths, are illustrated in Figure 4.

In the second example we consider a kite-shaped PMC object with the parametrization

XΓ =
(

0.38 cos(t) + 0.16 cos(2t) − 0.07
0.38 sin(t)

)
, t ∈ [0, 2π), (3.3)

which is coated by a circular dielectric material with radius of 0.5 m. This coated object, whose dielectric
permittivity and conductivity are respectively 2ε0 and 0.001 (S.m−1), is illuminated at 150 MHz. The synthetic
data is generated on the circle ΓS having radius R = 0.8 m for each incident wave. The truncation parameter of
TSVD inversion formula defined on the fictitious surface ΓF is assigned as 6, 7, 7, 6, 7, 7 for each illumination.
Figure 5 illustrates results whose errors are respectively 0.36, 0.42 and 0.31 for orders 1, 2 and 3.

In the first two examples the curvature c was chosen as a constant. As a next example, an elliptical
cross-sectioned dielectric coating whose boundary is defined by

XΓ =
(

0.4 cos(t)
0.7 sin(t)

)
, t ∈ [0, 2π), (3.4)

and the width is given by

δ (t) = 0.05 (cos (2t) − sin (5t) + 2.2) , t ∈ [0, 2π), (3.5)
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Figure 5. Reconstructions of the coating located on the kite-shaped PMC object and the
imaginer part of the generated width δ̃ for orders 1, 2 and 3.

-0.4 -0.2 0 0.2 0.4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0
-0.05

0

0.05

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0
-0.05

0

0.05

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0
-0.05

0

0.05

Reconstructed PMC Reconstructed PMC Reconstructed PMC

Im

Im

Im

Im

Im

Im

Figure 6. Reconstructions of the elliptical cross-sectioned coating whose boundary given
in (3.4) and the imaginer part of the generated width δ̃ for orders 1, 2 and 3.

is taken into account. The coating is made of a material with dielectric permittivity 2.5ε0 and conductivity
0.005 (S.m−1). The plane waves illuminate this object at 200 MHz and the data are collected on the circle ΓS

with radius 1.0 m. The truncation parameter of the TSVD inversion formula is assigned as 9, 8, 8, 9, 11, 11
for each illumination. The exact thickness and the reconstructed one for each order are shown in Figure 6. As
it is clear from the figure, the width of the coating is well determined especially for order 3. The errors in the
reconstructed widths are respectively 0.37, 0.51 and 0.27.
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Figure 7. Reconstructions of the coating whose boundary given in (3.6) and width is given
in (3.1) where δ0 = 0.07 and the imaginer part of the generated width δ̃ for orders 1, 2 and 3.

In the next example, a more complicated coating, whose boundary is given by the parametric equation

XΓ =
(

(0.5 + 0.06 sin (5t) + 0.07 cos(4t) + 0.05 cos (5t)) cos(t)
(0.5 + 0.06 sin (5t) + 0.07 cos(4t) + 0.05 cos (5t)) sin(t)

)
, t ∈ [0, 2π), (3.6)

and width is given in (3.1) where δ0 = 0.07 m, is taken into consideration. The coating with dielectric permittivity
of 2ε0 and conductivity of 0.001 (S.m−1) is illuminated by 4 plane waves at 300 MHz with the incidence angles
θ = π

4 + jπ
2 (j = 0, 1, 2, 3) and the synthetic data on the circle ΓS with radius R = 0.7 m are calculated. The

truncation parameter of the TSVD inversion formula is assigned as 15, 13, 11, 13 for each illumination. As
seen in Figure 7, the results whose errors are respectively 0.28, 0.27 and 0.16 for orders 1, 2 and 3 are quite
satisfactory.

In order to test the validity of the approach presented here for the coating’s inner boundary having corner
singularities we consider two separate configurations given in Figures 8 and 9. In the first configuration a circular
dielectric coating with radius of 0.5 m is located on a drop-shaped PMC object with the parametrization

XΓ =
(

0.4 sin (t)
0.45 + 0.9 sin (t/2)

)
, t ∈ [0, 2π). (3.7)

This coated object, whose permittivity and conductivity are 2.5ε0 and 0.001 (S.m−1), is illuminated at 200 MHz.
The truncation parameters are determined as 7 for all the scattered fields which are generated on the circle
ΓS with radius 1.0 m. The reconstructed results are shown in Figure 8. The errors in the reconstructed widths
are respectively 0.16, 0.15 and 0.14. In the second configuration a circular dielectric material with permittivity
2.5ε0 and conductivity 0.01 (S.m−1) is coated over an equilateral hexagon PMC object whose vertices are 1 cm
away from the outer boundary. This coated object with radius 0.5 m is illuminated at 300 MHz and the data
are collected on the circle ΓS with radius 1.0 m. By choosing the truncation parameters as 11, 10, 11, 12, 13, 11,
which are determined by Morozov’s discrepancy principle, the presented approach is applied and the relative
errors are calculated as 0.25, 0.43 and 0.17 for orders 1, 2 and 3. Although the GIBCs contain higher order
derivatives of the width δ(s), the proposed approach yields good reconstructions (especially for order 3) for the
coatings having corner singularities as shown Figure 9.
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Figure 8. Reconstructions of the coating located on the drop-shaped PMC object and the
imaginer part of the generated width δ̃ for orders 1, 2 and 3.
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Figure 9. Reconstructions of the coating located on the equilateral hexagon PMC object and
the imaginer part of the generated width δ̃ for orders 1, 2 and 3.

4. Conclusion

We present an approach to determine the width of the dielectric coatings having sufficiently small, variable
and smooth thickness by using an equivalent model defined with help of the GIBCs that have been derived up
to the third order with respect to the coating width in [2]. In this model, the GIBCs, which contain the total
field and its high order normal and tangential derivatives, are defined on the outer boundary of the coating
located on a PMC. In order to obtain the thickness from the expressions of the GIBCs, we first calculate the
total field and its derivatives on the boundary of the coating by using a SLP approach. Then the problem is
reduced to the solutions of systems of differential equations for orders 1, 2 and 3. By expanding the solution to
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a series in terms of exponential functions, the width is obtained via a solution of a system of linear equations
for order 1 and systems of non-linear equations for orders 2 and 3. The non-linear systems are solved by the
Newton−Raphson method.

The GIBCs are operative for the coatings whose thickness is less than one-tenth of wavelength of the inci-
dent field and conductivity is relatively small compared to the reciprocal of its width (see [2]). The numerical
simulations show that the approach presented here is effective under these validity conditions of the GIBCs and
robust with respect to large percentage of noise. Besides, selecting an initial guess for the Newton−Raphson
method does not make difficulty due to fact that we can use the solution of the problem defined by the GIBC
of order 1.

It should be lastly noted that although we handle the problem for TE polarization corresponding to a
Neumann boundary condition, the approach can be applied in a similar way for TM corresponding to a Dirichlet
boundary condition.
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[9] M. Duruflé, H. Haddar and P. Joly, Higher Order Generalized Impedance Boundary Conditions in Electromagnetic Scattering
Problems. C.R. Phys. 7 (2006) 533−542.

[10] H. Haddar, P. Joly and H.M. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing
obstacles: the scalar case. Math. Models Methods Appl. Sci. 15 (2005) 1273−1300.

[11] H. Haddar, P. Joly and H.M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly
absorbing obstacles: the case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18 (2008) 1787−1827.

[12] H. Haddar and A. Lechleiter, Asymptotic models for scattering from unbounded media with high conductivity. Math. Mod.
Numer. Anal. 44 (2010) 1295−1317.

[13] L. He, S. Kindermann and M. Sini, Reconstruction of shapes and impedance functions using few far-field measurements. J.
Comput. Phys. 228 (2009) 717−730.

[14] J.L. Holloway, E.F. Kuester, Impedance-type boundary conditions for a periodic interface between a dielectric and a highly
conducting medium. IEEE Trans. Antennas Propag. 48 (2000) 1660–1672.

[15] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems 1st edn. Springer, New York (2004).

[16] I. Knowles, A variational algorithm for electrical impedance tomography. Inverse Probl. 14 (1998) 1513−1525.

[17] I. Knowles, Parameter identification for elliptic problems. J. Comput. Appl. Math. 131 (2001) 175–194.

[18] M.J. Kong and B. Beker, Computation of resonant frequencies of cylindrical ferrite resonators using GIBCs. IEEE Trans.
Microwave Theory Tech. 46 (1998) 1503–1507.

[19] J.J. Liu, G. Nakamura and M. Sini, Reconstruction of the shape and surface impedance from acoustic scattering data for an
arbitrary cylinder. SIAM J. Appl. Math. 67 (2007) 1124−1146.

[20] M. Ljalinov, Generalized impedance boundary conditions and model of a point conductor. Radio Sci. 30 (1995) 1777−1786.

[21] O. Marceaux and B. Stupfel, Higher order impedance boundary conditions for multilayer coated 3-D objects. IEEE Trans.
Antennas Propag. 46 (2000) 429−436.

[22] O. Ozdemir, I. Akduman, A. Yapar and L. Crocco, Higher order inhomogeneous impedance boundary conditions for perfectly
conducting objects. IEEE Trans. Geosci. Remote Sens. 45 (2007) 1291–1297.



RECONSTRUCTION OF THICKNESS VARIATION OF A DIELECTRIC COATING 1027

[23] O. Ozdemir, H. Haddar and A. Yaka, Reconstruction of the electromagnetic field in layered media using the concept of
approximate transmission conditions. IEEE Trans. Antennas Propag. 59 (2011) 2964−2972.

[24] H.Y. Pao, Z. Zhu and S.L. Dvarok, Exact, closed-form representation for the time-domain surface impedances of a homogeneous,
lossy half-space. IEEE Trans. Antennas Propag. 52 (2004) 2659−2665.

[25] J.R. Poirier, A. Bendali and P. Borderies, Impedance boundary conditions for the scattering of time-harmonic waves by rapidly
varying surfaces. IEEE Trans. Antennas Propag. 54 (2006) 995−1005.

[26] Z.G. Qian, W.C. Chew and R. Suaya, Generalized impedance boundary condition for conductor modeling in surface integral
equation. IEEE Trans. Microwave Theory Tech. 55 (2007) 2354−2364.

[27] Z.G. Qian, M.S. Tong and W.C. Chew, Conductive medium modeling with an augmented GIBC formulation. PIER 99 (2009)
261−272.

[28] C.R. Rao, Linear Statistical Inference and Its Applications 2nd edn. Wiley, New York (1973).

[29] R.G. Rojas, Generalized impedance boundary conditions for EM scattering problems. Electron Lett. 24 (1998) 1093−1094.

[30] R.G. Rojas, Z. Al-hekail, Generalized impedance/resistive boundary conditions for EM scattering problems. Radio Sci. 24
(1989) 1−12.

[31] K. Schmidt and S. Tordeux, High order transmission conditions for thin conductive sheets in magneto-quasistatics. Math.
Mod. Numer. Anal. 45 (2011) 1115−1140.

[32] T.B.A. Senior, J.L. Volakis and S.R. Legault, Higher order impedance and absorbing boundary conditions. IEEE Trans.
Antennas Propag. 45 (1997) 107−114.

[33] M. Yousefi, S.K. Chaudhuri and S. Safavi-Naeini, GIBC formulation for the resonant frequencies and field distribution of a
substrate-mounted dielectric resonator. IEEE Trans. Antennas Propag. 42 (1994) 38−46.

[34] S. Yuferev, L. Proekt and N. Ida, Surface impedance boundary conditions near corners and edges: Rigorous consideration.
IEEE Trans. Magn. 37 (2001) 3466−3468.


	Introduction
	Formulation of the problem
	Uniqueness of the solution of the inverse problem
	Derivation of the total field and its derivatives on the impedance surface
	Reconstruction of thickness variation

	Numerical results
	Conclusion
	References

