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ON A VARIANT OF RANDOM HOMOGENIZATION THEORY:
CONVERGENCE OF THE RESIDUAL PROCESS AND APPROXIMATION

OF THE HOMOGENIZED COEFFICIENTS
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Abstract. We consider the variant of stochastic homogenization theory introduced in [X. Blanc, C.
Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.; X. Blanc, C. Le Bris and P.-L.
Lions, J. Math. Pures Appl. 88 (2007) 34–63.]. The equation under consideration is a standard linear
elliptic equation in divergence form, where the highly oscillatory coefficient is the composition of a
periodic matrix with a stochastic diffeomorphism. The homogenized limit of this problem has been
identified in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.]. We
first establish, in the one-dimensional case, a convergence result (with an explicit rate) on the residual
process, defined as the difference between the solution to the highly oscillatory problem and the solution
to the homogenized problem. We next return to the multidimensional situation. As often in random
homogenization, the homogenized matrix is defined from a so-called corrector function, which is the
solution to a problem set on the entire space. We describe and prove the almost sure convergence of
an approximation strategy based on truncated versions of the corrector problem.
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1. Introduction

Homogenization theory for linear second-order elliptic equations with highly oscillatory coefficients is a well
developed topic. In the periodic case, the homogenized problem is known, and convergence rates of the oscillatory
solution (denoted uε) towards the homogenized solution u� have been obtained.

The situation is less clear in the random (say stationary ergodic) setting. The convergence of uε(·, ω) to some
deterministic u� is a classical result. However, rates of convergence are much more difficult to obtain. A central
difficulty in stochastic homogenization is that the corrector problem, which needs to be solved to next compute
the homogenized matrix, is set on the entire space (in contrast with the periodic case, where it is set on the
periodic cell). This induces many theoretical and practical difficulties.
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In what follows, we are interested in the problem

−div
[
A
(x
ε
, ω
)
∇uε(x, ω)

]
= f(x) in D, uε(·, ω) = 0 on ∂D, (1.1)

where the random matrix A satisfies standard coercivity and boundedness properties (and some structure
assumptions that we detail below), D is an open bounded set of Rd and f ∈ L2(D).

The analysis of the residual, which we define as the difference between the oscillatory solution uε and the
homogenized solution u�, was first taken up in [9], and next complemented in [3]. Both studies consider the

equation − d
dx

[
a
(x
ε
, ω
) duε

dx

]
= f(x) in the one-dimensional setting, where a (x, ω) is a random stationary

process. The behavior, when ε → 0, of the residual uε(x, ω) − u�(x) turns out to depend on the asymptotic
behavior of the correlation function η(x) := Cov(a(0, ·), a(x, ·)) of the conductivity coefficient. In [9], the case
of small correlation lengths is studied, which amounts to assuming that η(x) ∼x→∞ x−α with α > 1. The

correlation function is thus integrable. In that case, when ε→ 0, the random process
uε(x, ω) − u�(x)√

ε
converges

in distribution to a Gaussian random process. The case of long correlation lengths, namely when η(x) ∼x→∞ x−α

for some 0 < α < 1, is studied in [3], where it is shown that the random process
uε(x, ω) − u�(x)

εα/2
converges

in distribution to a Gaussian random process (defined using a fractional Brownian motion). This result shows
that the rate of convergence of uε to u� can be as slow as εα/2 for any α > 0, if no further assumptions on the
stationary process a are made.

Of course, in both works, the one-dimensional setting allows to get some analytical expression for the residual.
In turn, the analysis of the asymptotic behavior of the residual performed in [3, 9] relies on this analytical
expression. In higher dimensions, the case of the equation −Δuε + q

(x
ε
, ω
)
uε = f(x) has been studied in [2].

Our first aim here is to study a similar question for a variant of the classical stochastic homogenization theory.
We consider in the sequel the following problem, which has been introduced in [7] and further studied in [8]:

−div
[
Aper

(
φ−1

(x
ε
, ω
))

∇uε(x, ω)
]

= f(x) in D, uε(·, ω) = 0 on ∂D, (1.2)

where φ is almost surely a diffeomorphism from Rd to Rd with some stationary properties and Aper is a Zd-
periodic matrix, which satisfies the classical coercivity and boundedness properties (see precise assumptions in
Sect. 2.1 below). This model is appropriate to represent a periodic, ideal material, that is randomly deformed
(think of fibers in a composite material that are placed at a random position, rather than on a perfect, periodic
lattice). In [7], it is shown that the solution uε(·, ω) to the above problem converges as ε goes to 0 to u�, solution
to some homogenized problem (see Sect. 2 below). In the sequel, we aim at obtaining the rate of convergence
of uε to u�, in the one dimensional setting. We make below an assumption on the random diffeomorphism which
implies that our setting is close to the one studied in [9] (rather than that studied in [3]). Under this assumption,

we show that the random process
uε(x, ω) − u�(x)√

ε
converges in distribution to a Gaussian random process that

we completely characterize (see Sect. 3.1, Thm. 3.2).

We next turn to a question of a different nature. As pointed out above, the homogenized matrix A� associated
to (1.2) depends on the solution of the corrector problem (see (2.9) below), which is set on the entire space.
Computing an approximation of A� is thus, in practice, a challenging question. A standard strategy is to
consider the corrector problem on a bounded (large) domain QN , supplemented with (say periodic) boundary
conditions. An approximation of the exact corrector is thus computed, from which an approximate homogenized
matrix A�

N (ω) is inferred. As a by-product of working on a bounded domain, the approximate homogenized
matrix is random. In the classical random homogenization setting (that is (1.1) where A is a stationary matrix),
the convergence (and its rate) of A�

N (ω) to A� has been studied in [10], using some previous approximation
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results [20]. It is shown there that A�
N (ω) almost surely converges to A�, and that E

[
|A�

N −A�|2
]

converges to 0

as N−α, for some α > 0 which implicitly depends on the mixing properties of the random coefficient A of the
equation (1.1). It is expected that, depending on the properties of that random coefficient, α can be arbitrary
small.

In this work, we consider the above variant (1.2) of the classical random homogenization setting. We describe
a strategy (originally introduced in [12]) to approximate A� which is based, as in the classical setting, on solving
the corrector problems on bounded domains QN . We prove here the convergence of this approach (see Sect. 3.2,
Thm. 3.4).

Our article is articulated as follows. In Section 2, we present in details the variant of the classical random
homogenization introduced in [7, 8]. We next present in Section 3 our two main results, first on the residual
process in dimension one (see Sect. 3.1 and Thm. 3.2), second on a practical approximation of the homogenized
matrix in dimension d ≥ 2 (see Sect. 3.2 and Thm. 3.4). The subsequent two sections are devoted to the proof
of Theorem 3.2. The actual proof is performed in Section 4, and needs some technical results which are proved
in Section 5. Our final section, Section 6, collects the proof of Theorem 3.4.

2. A variant of the classical random homogenization

To begin with, we introduce the basic setting of stochastic homogenization we employ. We refer to [13] for a
general, numerically oriented presentation, and to [5, 11, 15] for classical textbooks. We also refer to [7, 8] for a
presentation of our particular setting (see also [1]). Throughout this article, (Ω,F ,P) is a probability space and

we denote by E(X) =
∫

Ω

X(ω)dP(ω) the expectation value of any random variable X ∈ L1(Ω, dP). For any fixed

d ∈ N� (the ambient physical dimension), we assume that the group (Zd,+) acts on Ω. We denote by (τk)k∈Zd

this action, and assume that it preserves the measure P, that is, for all k ∈ Zd and all B ∈ F , P(τkB) = P(B).
We assume that the action τ is ergodic, that is, if B ∈ F is such that τkB = B for any k ∈ Zd, then P(B) = 0
or 1. In addition, we define the following notion of (discrete) stationarity (see [7, 8]): any F ∈ L1

loc

(
Rd, L1(Ω)

)
is said to be stationary if

∀k ∈ Z
d, F (x+ k, ω) = F (x, τkω) almost everywhere and almost surely. (2.1)

In this setting, the ergodic theorem [16,18,19] can be stated as follows: Let F ∈ L∞ (
R

d, L1(Ω)
)

be a stationary
random variable in the above sense. For k = (k1, k2, . . . , kd) ∈ Zd, we set |k|∞ = sup

1≤i≤d
|ki|. Then

1
(2N + 1)d

∑
|k|∞≤N

F (x, τkω) −→
N→∞

E (F (x, ·)) in L∞(Rd), almost surely.

This implies (denoting by Q = (0, 1)d the unit cube in Rd) that

F
(x
ε
, ω
) ∗−⇀

ε→0
E

(∫
Q

F (x, ·)dx
)

in L∞(Rd), almost surely.

2.1. Mathematical setting and homogenization result

As pointed out in the introduction, we consider in this article the following problem, which has been introduced
in [7] and further studied in [8]:

−div
[
Aper

(
φ−1

(x
ε
, ω
))

∇uε(x, ω)
]

= f(x) in D, uε(·, ω) = 0 on ∂D, (2.2)
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where D is a bounded open set of Rd, f ∈ L2(D), φ is almost surely a diffeomorphism from Rd to Rd, and Aper is
a Zd-periodic matrix, that satisfies the classical coercivity and boundedness properties: there exists a+ ≥ a− > 0
such that

∀ξ ∈ R
d, a−|ξ|2 ≤ Aper(x)ξ · ξ almost everywhere on Rd, and a+ = ‖Aper‖L∞(Rd) <∞. (2.3)

In addition, we assume that the map φ(·, ω) satisfies

EssInf
ω∈Ω, x∈Rd

(det(∇φ(x, ω))) = ν > 0, (2.4)

EssSup
ω∈Ω, x∈Rd

|∇φ(x, ω)| = M < +∞, (2.5)

∇φ is stationary in the sense of (2.1). (2.6)

Assumptions (2.4) and (2.5) mean that φ is a well-behaved diffeomorphism, uniformly in ω. Note that Aper◦φ−1

is in general not stationary. The above setting is thus not a particular case of the classical stationary setting.
In [7], it is shown that, under the above conditions, uε(·, ω) converges to u� almost surely (strongly in L2(D)

and weakly in H1(D)) when ε goes to 0, where u� is the solution to the homogenized problem

−div [A�∇u�(x)] = f(x) in D, u� = 0 on ∂D. (2.7)

In (2.7), the homogenized matrix coefficient A� is equal to

∀1 ≤ i, j ≤ d, A�
ij = det

(
E

(∫
Q

∇φ(y, ·)dy
))−1

E

(∫
φ(Q,·)

eT
i Aper

(
φ−1 (y, ·)) (ej + ∇wej (y, ·)

)
dy

)
, (2.8)

where Q = (0, 1)d and where, for all p ∈ Rd, wp solves the following corrector problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div

[
Aper

(
φ−1(y, ω)

)
(p+ ∇wp(y, ω))

]
= 0 in R

d,

wp(y, ω) = w̃p(φ−1(y, ω), ω), ∇w̃p is stationary in the sense of (2.1),

E

(∫
φ(Q,·)

∇wp(y, ·)dy
)

= 0.
(2.9)

2.2. The one-dimensional case

Our first main result, presented in Section 3.1, is a convergence result in the one-dimensional case. In that set-
ting, it is possible to write some explicit formulas. Choosing D = (0, 1), the problems (2.2) and (2.7) respectively
read

− d
dx

[
aper

(
φ−1

(x
ε
, ω
)) duε

dx
(x, ω)

]
= f(x) in (0, 1), uε(0, ω) = 0, uε(1, ω) = 0, (2.10)

and

− d
dx

(
a� du�

dx
(x)

)
= f(x) in (0, 1), u�(0) = 0, u�(1) = 0. (2.11)

The corrector problem (2.9), which reads⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− d
dy

[
aper

(
φ−1(y, ω)

)(
1 +

dw
dy

(y, ω)
)]

= 0 in R,

w(y, ω) = w̃(φ−1(y, ω), ω),
dw̃
dy

is stationary in the sense of (2.1),

E

(∫
φ(Q,·)

dw
dy

(y, ·)dy
)

= 0,

(2.12)
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can be analytically solved. Its solution w satisfies

1 +
dw
dy

(y, ω) =
a�

aper(φ−1(y, ω))
, (2.13)

where the homogenized coefficient a� is given by

(a�)−1 =
1

E

(∫ 1

0
φ′(y, ·)dy

)E

(∫ 1

0

φ′(y, ·)
aper(y)

dy
)
. (2.14)

As pointed out in [7], we observe on (2.13) that, in the one-dimensional case, the gradient of the corrector has
the same structure as the highly oscillatory coefficient in (2.10): it is equal to a periodic function composed
with φ−1. This is not the case in dimensions d ≥ 2, as shown in [7].

3. Main results

In this article, we show the following two main results, Theorems 3.2 and 3.4.

3.1. Residual process in dimension one

Our first aim is to characterize how the residual process uε(x, ω) − u�(x) converges to zero, where uε

solves (2.10) and u� solves (2.11). To this aim, we make the following assumptions. Let us introduce the
1-periodic function

ψ(x) =
1

aper(x)
− 1
a�

(3.1)

and the random variables

Yk(ω) =
∫ k+1

k

ψ(t)φ′(t, ω)dt. (3.2)

As ψ is periodic and φ′ is stationary, the random variables Yk are identically distributed. Due to (2.14), we have

E(Y0) = E

(∫ 1

0

ψ(t)φ′(t, ·)dt
)

= 0.

We furthermore assume that the random variables Yk are independent, and hence that

the variables Yk are i.i.d. (3.3)

Likewise, we consider the random variables

Dk(ω) =
∫ k+1

k

φ′(t, ω)dt, (3.4)

which are identically distributed, and make the assumption that

the variables Dk are i.i.d. (3.5)

Remark 3.1. Suppose that the derivative of the random diffeomorphism φ reads

φ′(y, ω) = 1 +
∑
k∈Z

Xk(ω) Gper(y) 1[k,k+1)(y),

where Xk(ω) are independent and identically distributed random variables and Gper is a 1-periodic bounded
function, such that, for some 0 < m < 1,

|X0(ω)| ≤ m almost surely and ‖Gper‖L∞(R) ≤ m.

Then, the conditions (2.4), (2.5) and (2.6) are satisfied with ν = 1−m2 > 0 and M = 1+m2. By construction,
the assumptions (3.3) and (3.5) are also fullfilled.
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The first main result of this article is the following theorem, the proof of which is postponed until Section 4.2.

Theorem 3.2. Assume that aper and φ satisfy (2.3), (2.4), (2.5) and (2.6). Assume furthermore the indepen-
dence conditions (3.3) and (3.5). We consider uε solution to (2.10) and u� solution to (2.11). Then the residual
process converges in distribution to a Gaussian process,

uε(x, ω) − u�(x)√
ε

L−→
ε→0

G0(x, ω),

where

G0(x, ω) =

√
Var(Y0)√

E

(∫ 1

0 φ
′
) ∫ 1

0

K0(x, t) dWt, (3.6)

where Wt denotes the classical Brownian motion and K0(x, t) is given by

K0(x, t) =
(
1[0,x](t) − x

) (∫ 1

0

F (s)ds− F (t)
)

with F (t) =
∫ t

0

f(s) ds. (3.7)

Remark 3.3. It might be possible to weaken assumptions (3.3) and (3.5), and to only assume that the iden-
tically distributed variables Yk are such that

∑
k∈Z

|Cov(Y0, Yk)| < +∞, and likewise for Dk. We however do not

pursue in that direction.

3.2. Approximation of the homogenized matrix

In this section, we return to the multidimensional setting. To compute the homogenized matrix A� defined
by (2.8), we first need to solve the corrector problem (2.9), which is set on the entire space. In practice,
approximations are therefore in order.

In the sequel, we describe a strategy introduced in [12], and that mimicks the approach proposed in [10] to
approximate standard corrector problems in classical random homogenization. In this article, we analyze this
approach and prove its convergence (see Thm. 3.4 below). This is our second main result. We refer to Section 3.2
of [1] for some illustrative numerical tests.

Convention: Following Lemme 2.1 of [7], we adopt the convention that [∇φ]ij =
∂φi

∂xj
for any 1 ≤ i, j ≤ d.

Hence, for any scalar-valued function ψ, the gradient of ψ̃ = ψ ◦ φ is given by ∇ψ̃(z) = (∇φ(z))T∇ψ(φ(z)).
This convention implies that

[∇φ(φ−1)
] ∇(φ−1) = Id.

3.2.1. Presentation of the approximation

The weak formulation of the corrector problem (2.9) reads as follows (see [7]): for all ψ̃ stationary in the
sense of (2.1), we have

E

(∫
φ(Q,·)

(∇ψ(y, ω))TAper

(
φ−1(y, ω)

)
(p+ ∇wp(y, ω)) dy

)
= 0, (3.8)

where ψ = ψ̃ ◦ φ−1. The above expression can be rewritten, after a change of variables, as

E

[∫
Q

det(∇φ)
(
∇ψ̃

)T

(∇φ)−1Aper

(
p+ (∇φ)−T∇w̃p

)]
= 0,
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where (∇φ)−T is defined as
[
(∇φ)−1

]T . Since ψ̃, ∇φ, Aper and ∇w̃p are stationary in the sense of (2.1), the
ergodic theorem yields

lim
N→∞

1
|QN |

∫
QN

det(∇φ)
(
∇ψ̃

)T

(∇φ)−1Aper

(
p+ (∇φ)−T∇w̃p

)
= 0 a.s.

where QN = NQ. For a fixed N , we now define the approximate corrector w̃N
p as the QN -periodic function

satisfying:

for all ψ̃ QN -periodic,
∫

QN

det(∇φ)
(
∇ψ̃

)T

(∇φ)−1Aper

(
p+ (∇φ)−T∇w̃N

p

)
= 0. (3.9)

Note that w̃N
p is uniquely defined up to an additive constant.

In turn, recall that A� is defined by (2.8). After a change of variables, we infer from that equation that, for
any 1 ≤ i, j ≤ d, we have

A�
ij = det

(
E

(∫
Q

∇φ(y, ·)dy
))−1

E

(∫
Q

det(∇φ(y, ·)) eT
i Aper (y)

(
ej + (∇φ)−T∇w̃ej (y, ·)

)
dy
)
.

The ergodic theorem yields

A�
ij = lim

N→∞

{
det

(
1

|QN |
∫

QN

∇φ(·, ω)
)−1 1

|QN |
∫

QN

det(∇φ)eT
i Aper

(
ej + (∇φ)−T∇w̃ej

)}
a.s.

It is thus natural to approximate A� by the matrix A�
N (ω) defined by

A�
N (ω) = det

(
1

|QN |
∫

QN

∇φ(·, ω)
)−1

B�
N (ω), (3.10)

where the matrix B�
N(ω) is defined by, for any 1 ≤ i, j ≤ d,

[B�
N (ω)]ij =

1
|QN |

∫
QN

det(∇φ) eT
i Aper

(
ej + (∇φ)−T∇w̃N

ej

)
=

1
|QN |

∫
φ(QN ,ω)

eT
i Aper

(
φ−1(y, ω)

) (
ej + ∇wN

ej
(y, ω)

)
dy, (3.11)

where, for any p ∈ R
d, w̃N

p is defined by (3.9) and

wN
p (y, ω) = w̃N

p (φ−1(y, ω), ω).

Note that, as is standard in stochastic homogenization, the approximation A�
N (ω) is a random matrix, even

though the exact homogenized matrix A� is deterministic. This is a by-product of working on the truncated
domain QN rather than Rd.

3.2.2. Convergence of the approach

We prove in Section 6 below the following convergence result:

Theorem 3.4. Let φ be a diffeomorphism satisfying (2.4), (2.5) and (2.6), and Aper be a periodic matrix that
satisfies the ellipticity condition (2.3). Then the random matrix A�

N (ω) defined by (3.10) converges almost surely
to the deterministic homogenized matrix A� defined by (2.8) when N → ∞:

lim
N→∞

A�
N (ω) = A� almost surely.
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4. Asymptotic behavior of the residual

The aim of this Section and of the next one is to prove our first main result, Theorem 3.2 of Section 3.1.
Using the one dimensional setting, we first establish a “representation” formula for the residual (see Sect. 4.1,
Thm. 4.2). Using this formula, we are next in position to study the asymptotic behavior of the residual when
ε→ 0 (see Sect. 4.2). Section 5 collects the proofs of some technical results used in Sections 4.1 and 4.2.

4.1. Representation formulas

The following technical result will be useful in the sequel. Its proof is postponed until Section 5.1.

Lemma 4.1. Assume that aper and φ satisfy (2.3), (2.4), (2.5) and (2.6). Assume furthermore the independence
conditions (3.3) and (3.5). For any 0 ≤ α ≤ β ≤ 1, and any A ∈ L∞(α, β) with A′ ∈ L2(α, β), define the random
variable

Zε(α, β, ω) =
1√
ε

∫ β

α

A(t)ψ
(
φ−1

(
t

ε
, ω

))
dt, (4.1)

where the function ψ is defined by (3.1). For any p ∈ N�, there exists a deterministic constant Cp independent
of A, ε, α and β, such that

∀ε > 0, E
[
Zε(α, β, ·)2p

] ≤ Cp

[
(β − α)p + ε(p−1)/2

] [
‖A‖2p

L∞(α,β) + (β − α)p ‖A′‖2p
L2(α,β)

]
.

The above result heuristically implies that the quantity
∫ β

α

A(t)ψ
(
φ−1

(
t

ε
, ω

))
dt is of the order of

√
ε.

We will show below a convergence result for the random variables Zε(α, β, ω) (see Lem. 4.6 below). The
boundedness result stated in the above lemma is however sufficient for now. Using it, we indeed prove the
following theorem, which is a key ingredient to prove Theorem 3.2.

Theorem 4.2. Assume that aper and φ satisfy (2.3), (2.4), (2.5) and (2.6). Assume furthermore the inde-
pendence conditions (3.3) and (3.5). Let uε be the solution to (2.10) and u� be the solution to (2.11). Then

uε(x, ω) − u�(x) =
∫ 1

0

K0(x, t)ψ
(
φ−1

(
t

ε
, ω

))
dt+ rε(x, ω), (4.2)

where K0 is defined by (3.7), ψ is defined by (3.1), and there exists a deterministic constant C independent of
ε such that, for any ε > 0,

sup
x∈[0,1]

E |rε(x, ·)| ≤ Cε and E

[
‖rε‖2

L2(0,1)

]
≤ Cε2. (4.3)

In addition, for any p ∈ N�, there exists a deterministic constant Cp independent of ε such that

∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E

[
|rε(x, ·) − rε(y, ·)|2p

]
≤ Cpε

2p
√

(x− y)2p + εp−1/2 (4.4)

and
∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E

[
|rε(x, ·) − rε(y, ·)|2p

]
≤ Cpε

p (x− y)2p. (4.5)

In view of Lemma 4.1, the first term of the right-hand side of (4.2) is of the order of
√
ε. The term rε, which is

of the order of ε in view of (4.3), is hence a higher-order term. The bounds (4.4) and (4.5) will be useful below
to show that some random process is tight (see Sect. 4.2, Thm. 4.5).
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Using the same arguments, we show the following result:

Theorem 4.3. Assume that aper and φ satisfy (2.3), (2.4), (2.5) and (2.6). Assume furthermore the indepen-
dence conditions (3.3) and (3.5). Let uε be the solution to (2.10), u� be the solution to (2.11), and w be the
corrector, solution to (2.12) with w(0, ω) = 0 a.s. Then

d

dx

(
uε(x, ω) − u�(x) − εw

(x
ε
, ω
) du�

dx
(x)

)
= a−1

per

(
φ−1

(x
ε
, ω
))∫ 1

0

K1(t)ψ
(
φ−1

(
t

ε
, ω

))
dt

+ f(x)
∫ x

0

ψ

(
φ−1

(
t

ε
, ω

))
dt+ rε(x, ω), (4.6)

where ψ is defined by (3.1), K1 is given by

K1(t) = a�

(
F (t) −

∫ 1

0

F (s)ds
)

with F (t) =
∫ t

0

f(s) ds, (4.7)

and there exists a deterministic constant C independent of ε such that, for all ε > 0,

E

[
sup

x∈[0,1]

|rε(x, ·)|
]
≤ Cε and E

[
sup

x∈[0,1]

|rε(x, ·)|2
]
≤ Cε2. (4.8)

Again, in view of Lemma 4.1, the two first terms of the right-hand side of (4.6) are of the order of
√
ε. The

term rε, which is of the order of ε, is hence a higher-order term.

Remark 4.4. It is easy to deduce from (4.6), using Lemma 4.1 and (4.8), that there exists a deterministic
constant C independent of ε such that

E

[∥∥∥∥ ddx
(
uε(x, ω) − u�(x) − εw

(x
ε
, ω
) du�

dx
(x)

)∥∥∥∥2

L2(0,1)

]
≤ Cε. (4.9)

Likewise, we deduce from (4.2), using Lemma 4.1 and (4.3), that

E

[
‖uε(x, ω) − u�(x)‖2

L2(0,1)

]
≤ Cε. (4.10)

Using the expression (4.28) below, we infer from (4.9) and (4.10) that

E

[∥∥∥∥uε(x, ω) − u�(x) − εw
(x
ε
, ω
) du�

dx
(x)

∥∥∥∥2

H1(0,1)

]
≤ Cε. (4.11)

We recover (in the one-dimensional situation) a classical result of homogenization: the corrector w allows to
obtain a convergence result in the H1 strong norm. We refer to Theorem 3 of [17] for a corresponding result in
classical random homogenization (in the multidimensional setting).

The proof of Theorems 4.2 and 4.3 are direct consequences of Lemma 4.1 and of the analytical expression
of uε and u�.

Proof of Theorem 4.2. Introduce F (x) =
∫ x

0

f(t)dt. The solution to (2.10) reads

uε(x, ω) = cε(ω)
∫ x

0

1
aper

(
φ−1

(
t
ε , ω

))dt− ∫ x

0

F (t)
aper

(
φ−1

(
t
ε , ω

))dt, (4.12)
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where

cε(ω) =

∫ 1

0

F (t)
aper

(
φ−1

(
t
ε , ω

))dt∫ 1

0

1
aper

(
φ−1

(
t
ε , ω

))dt · (4.13)

Likewise, the solution u� of the homogenized problem (2.7) is

u�(x) = c�
x

a�
−
∫ x

0

F (t)
a�

dt, (4.14)

where a� is given by (2.14) and

c� =
∫ 1

0

F (t)dt. (4.15)

Step 1. Representation formula
We compute the residual process using (4.14) and (4.12):

uε(x, ω) − u�(x) = cε(ω)
∫ x

0

1
aper

(
φ−1

(
t
ε , ω

))dt− c�
x

a�
−
∫ x

0

F (t)ψ
(
φ−1

(
t

ε
, ω

))
dt

= cε(ω)
∫ x

0

ψ

(
φ−1

(
t

ε
, ω

))
dt+ (cε(ω) − c�)

x

a�
−
∫ x

0

F (t)ψ
(
φ−1

(
t

ε
, ω

))
dt

= (cε(ω) − c�)
∫ x

0

ψ

(
φ−1

(
t

ε
, ω

))
dt+ (cε(ω) − c�)

x

a�

+
∫ x

0

(c� − F (t))ψ
(
φ−1

(
t

ε
, ω

))
dt, (4.16)

where ψ is defined by (3.1). We also infer from (4.13) that

cε(ω) − c� =

(∫ 1

0

1
aper

(
φ−1

(
t
ε , ω

))dt)−1 ∫ 1

0

(F (t) − c�)
1

aper

(
φ−1

(
t
ε , ω

))dt
=

(∫ 1

0

1
aper

(
φ−1

(
t
ε , ω

))dt)−1 ∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ω

))
dt (4.17)

where we have used that, in view of (4.15), we have
∫ 1

0

(F (t) − c�)
1
a�

dt = 0. Observe now that

(∫ 1

0

1
aper

(
φ−1

(
t
ε , ω

))dt)−1

= a� − a�∫ 1

0

a−1
per

(
φ−1

(
t

ε
, ω

))
dt

∫ 1

0

ψ

(
φ−1

(
t

ε
, ω

))
dt.

We then deduce from (4.17) that

cε(ω) − c� = a�

∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ω

))
dt− ρε(ω), (4.18)

where

ρε(ω) =

⎡⎢⎢⎢⎣ a�∫ 1

0

a−1
per

(
φ−1

(
t

ε
, ω

))
dt

∫ 1

0

ψ

(
φ−1

(
t

ε
, ω

))
dt

⎤⎥⎥⎥⎦
∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ω

))
dt. (4.19)
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Collecting (4.16) and (4.18), we write

uε(x, ω) − u�(x) = (cε(ω) − c�)
∫ x

0

ψ

(
φ−1

(
t

ε
, ω

))
dt+

∫ x

0

(c� − F (t))ψ
(
φ−1

(
t

ε
, ω

))
dt

+ x

∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ω

))
dt− x

a�
ρε(ω)

= rε(x, ω) +
∫ x

0

(c� − F (t))ψ
(
φ−1

(
t

ε
, ω

))
dt+ x

∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ω

))
dt

= rε(x, ω) +
∫ 1

0

K0(x, t)ψ
(
φ−1

(
t

ε
, ω

))
dt

with
K0(x, t) =

(
1[0,x](t) − x

)
(c� − F (t))

and

rε(x, ω) = − x

a�
ρε(ω) + (cε(ω) − c�)

∫ x

0

ψ

(
φ−1

(
t

ε
, ω

))
dt. (4.20)

In view of (4.15), we recover the expression (3.7) of K0. We thus have written the residual in the form (4.2).

Step 2. Proof of the bound (4.3).
We first bound ρε(ω). We infer from (4.19) that

|ρε(ω)| ≤ a+a�

∣∣∣∣∫ 1

0

ψ

(
φ−1

(
t

ε
, ω

))
dt
∣∣∣∣ ∣∣∣∣∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ω

))
dt
∣∣∣∣ . (4.21)

Using the Cauchy–Schwartz inequality, we deduce that

E(|ρε|) ≤ εa+a�

√√√√E

(∣∣∣∣ 1√
ε

∫ 1

0

ψ

(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣2
) √√√√E

(∣∣∣∣ 1√
ε

∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣2
)
.

Using Lemma 4.1 with p = 1, α = 0, β = 1, A(t) = 1 and A(t) = F (t) − c�, we obtain that there exists a
constant C independent of ε such that

E(|ρε|) ≤ Cε. (4.22)

We also deduce from (4.21) that, for any p ∈ N�,

E

(
|ρε|2p

)
≤(a+a�)2pε2p

√√√√E

(∣∣∣∣ 1√
ε

∫ 1

0

ψ

(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣4p
) √√√√E

(∣∣∣∣ 1√
ε

∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣4p
)
.

Using again Lemma 4.1, we obtain that there exists a constant Cp independent of ε such that

E
(|ρε|2p

) ≤ Cpε
2p. (4.23)

Using the obtained bounds on ρε, we now estimate rε. We infer from (4.18), using (4.23) and Lemma 4.1, that,
for any p ∈ N�,

E

(
|cε − c�|2p

)
≤ (a�)2pεpCpE

(∣∣∣∣ 1√
ε

∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣2p
)

+ CpE

(
|ρε|2p

)
≤ (a�)2pCpε

p + Cpε
2p

≤ Cpε
p (4.24)
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for a constant Cp independent of ε. In view of (4.20), we thus obtain, using (4.22) and (4.24), that

E(|rε(x, ·)|) ≤ x

a�
E(|ρε|) + E

(∣∣∣∣(cε − c�)
∫ x

0

ψ

(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣)

≤ Cε+
√
ε

√
E

(
|(cε − c�)|2

)√√√√E

(∣∣∣∣ 1√
ε

∫ x

0

ψ

(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣2
)

≤ Cε

for a constant C independent from ε and x ∈ (0, 1). This concludes the proof of the first assertion in (4.3).
Similarly, we have

(rε(x, ω))2 ≤ 2
(a�)2

ρε(ω)2 + 2(cε(ω) − c�)2
∣∣∣∣∫ x

0

ψ

(
φ−1

(
t

ε
, ω

))
dt
∣∣∣∣2 ,

thus

E

[
‖rε‖2

L2(0,1)

]
≤ 2

(a�)2
E
[|ρε|2]+ 2

∫ 1

0

E

[
(cε − c�)2

∣∣∣∣∫ x

0

ψ

(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣2
]

dx

≤ Cε2 + 2
∫ 1

0

√√√√E [(cε − c�)4] E

[∣∣∣∣∫ x

0

ψ

(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣4
]
dx.

Using (4.24) and Lemma 4.1 with p = 2, we deduce that

E

[
‖rε‖2

L2(0,1)

]
≤ Cε2 + 2

∫ 1

0

√
Cε4dx ≤ Cε2

for a constant C independent from ε. This concludes the proof of the second assertion in (4.3).

Step 3. Proof of the bounds (4.4) and (4.5).
We first prove (4.4). In view of (4.20), we have

rε(x, ω) − rε(y, ω) =
y − x

a�
ρε(ω) + (cε(ω) − c�)

∫ x

y

ψ

(
φ−1

(
t

ε
, ω

))
dt,

thus

|rε(x, ω) − rε(y, ω)|2p ≤ Cp

(
y − x

a�

)2p

(ρε(ω))2p + Cp(cε(ω) − c�)2p

∣∣∣∣∫ x

y

ψ

(
φ−1

(
t

ε
, ω

))
dt
∣∣∣∣2p

, (4.25)

and

E

[
|rε(x, ·) − rε(y, ·)|2p

]
≤ Cp

(
y − x

a�

)2p

E
[
(ρε)2p

]
+ Cp

√
E[(cε − c�)4p]

√√√√E

[∣∣∣∣∫ x

y

ψ

(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣4p
]

≤ Cpε
2p(y − x)2p + Cp

√
ε2p

√
ε2p

(
(x− y)2p + ε(2p−1)/2

)
≤ Cpε

2p

[
(y − x)2p +

√
(x− y)2p + εp−1/2

]
.
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Since |y − x| ≤ 1, we have (y − x)2p ≤ |y − x|p ≤
√

(x− y)2p + εp−1/2, and thus

E

[
|rε(x, ·) − rε(y, ·)|2p

]
≤ Cpε

2p
√

(x − y)2p + εp−1/2.

This concludes the proof of (4.4). We now prove (4.5). We infer from (4.25) that

|rε(x, ω) − rε(y, ω)|2p ≤ Cp

(
y − x

a�

)2p

(ρε(ω))2p + Cp(cε(ω) − c�)2p (x− y)2p ‖ψ‖2p
L∞(R),

hence, using (4.23) and (4.24),

E

[
|rε(x, ·) − rε(y, ·)|2p

]
≤ Cp(x− y)2p

[
ε2p + εp

]
.

This concludes the proof of (4.5) and thus that of Theorem 4.2. �

Proof of Theorem 4.3. Recall that the solution to the corrector problem (2.12) satisfies (2.13). We thus have,
using (4.12) and (4.14),

d

dx

(
uε(x, ω) − u�(x) − εw

(x
ε
, ω
) du�

dx
(x)

)
=
duε

dx
(x, ω) − du�

dx
(x)

(
1 + w′

(x
ε
, ω
))

− ε
d2u�

dx2
(x)w

(x
ε
, ω
)

=
cε(ω) − c�

aper

(
φ−1

(
x
ε , ω

)) − ε
d2u�

dx2
(x)w

(x
ε
, ω
)
.

Using (4.18), we deduce that

d

dx

(
uε(x, ω) − u�(x) − εw

(x
ε
, ω
) du�

dx
(x)

)
=

a�

aper

(
φ−1

(
x
ε , ω

)) ∫ 1

0

(F (t) − c�)ψ
(
φ−1

(
t

ε
, ω

))
dt− ε

d2u�

dx2
(x)w

(x
ε
, ω
)
− ρε(ω)
aper

(
φ−1

(
x
ε , ω

))
= a−1

per

(
φ−1

(x
ε
, ω
))∫ 1

0

K1(t)ψ
(
φ−1

(
t

ε
, ω

))
dt+ ε

f(x)
a�

w
(x
ε
, ω
)

+ rε(x, ω), (4.26)

with K1 defined by (4.7) and

rε(x, ω) = − ρε(ω)
aper

(
φ−1

(
x
ε , ω

)) · (4.27)

Observe now that, in view of (2.13) and (3.1), we have

w(y, ω) = a�

∫ y

0

ψ
(
φ−1 (t, ω)

)
dt,

where we have chosen the integration constant in w such that w(0, ω) = 0 almost surely. Thus

w
(x
ε
, ω
)

= a�

∫ x/ε

0

ψ
(
φ−1 (t, ω)

)
dt =

a�

ε

∫ x

0

ψ

(
φ−1

(
t

ε
, ω

))
dt. (4.28)

Collecting this equation with (4.26) yields (4.6). The bound (4.8) follows from (4.27), (4.22) and (4.23). This
concludes the proof of Theorem 4.3. �
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4.2. Proof of Theorem 3.2

In this section, we prove that the random process
uε(x, ω) − u�(x)√

ε
converges in distribution to a Gaussian

random process that we characterize. Using (4.2), we see that

uε(x, ω) − u�(x)√
ε

= Gε(x, ω) +Rε(x, ω), (4.29)

where

Gε(x, ω) =
1√
ε

∫ 1

0

K0(x, t)ψ
(
φ−1

(
t

ε
, ω

))
dt, (4.30)

Rε(x, ω) =
1√
ε
rε(x, ω). (4.31)

In view of (4.3), we have
sup

x∈[0,1]

E |Rε(x, ·)| ≤ C
√
ε

for a constant C independent of ε. As a consequence,

∀x ∈ (0, 1), Rε(x, ·) converges to 0 in probability. (4.32)

We are thus left with studying the behaviour of Gε(x, ω) as ε→ 0.
To prove that the random process Gε(x, ω) converges in distribution, we will use the following result:

Theorem 4.5 ([6], p. 54). Suppose that (Gε)ε∈(0,1) and G0 are random processes with values in the space of
continuous functions C0(0, 1) with Gε(0, ω) = G0(0, ω) = 0 almost surely. Assume that

(i) for any k ∈ N� and any 0 ≤ x1 ≤ . . . ≤ xk ≤ 1, the random variable (Gε(x1, ω), . . . , Gε(xk, ω)) ∈ Rk

converges in distribution to the random variable (G0(x1, ω), . . . , G0(xk, ω)) as ε→ 0.
(ii) (Gε)ε∈(0,1) is a tight sequence of random processes in C0(0, 1). A sufficient condition for the tightness of

(Gε)ε∈(0,1) is the Kolmogorov criterion: there exist δ > 0, β > 0 and C > 0 such that

∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E
[|Gε(x, ·) −Gε(y, ·)|β

] ≤ C|x− y|1+δ. (4.33)

Then the process Gε converges in distribution to the process G0 as ε goes to 0.

For any x ∈ (0, 1), the random variable Gε(x, ω) is of the form of the random variable Zε(α, β, ω) defined
in (4.1), with α = 0, β = 1 and A(t) = K0(x, t). In Lemma 4.1, we have shown that the random variable
Zε(α, β, ω) is bounded in the L2p norm. We now show that this random variable converges in law to a Gaussian
random variable. This will be a key ingredient to prove the first condition of Theorem 4.5.

Lemma 4.6. Assume that aper and φ satisfy (2.3), (2.4), (2.5) and (2.6). Assume furthermore the independence
conditions (3.3) and (3.5). For any 0 ≤ α ≤ β ≤ 1, consider a function A, piecewise continuous over (α, β),
with a finite number of discontinuities located at points {tk}1≤k≤m, and such that A′ ∈ L1(tk, tk+1) for any
1 ≤ k ≤ m− 1. Consider the random variable

Zε(α, β, ω) =
1√
ε

∫ β

α

A(t)ψ
(
φ−1

(
t

ε
, ω

))
dt (4.34)
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where the function ψ is defined by (3.1). Then Zε(α, β, ω) converges in distribution to a Gaussian random vari-

able Z0(α, β, ω), of mean zero and variance σ(α, β) =
Var(Y0)

E(
∫ 1

0
φ′)

‖A‖2
L2(α,β), with Var(Y0) = E

[(∫ 1

0

ψφ′
)2
]
.

We write

Z0(α, β, ω) =

√
Var(Y0)√
E(
∫ 1

0
φ′)

∫ β

α

A(t)dWt, (4.35)

where Wt denote the classical Brownian motion.

The proof of Lemma 4.6 is postponed until Section 5.2.
To prove the second condition of Theorem 4.5, we will show that Gε(x, ω) satisfies (4.33). Observe that

Gε(x, ω) =
1√
ε

∫ x

0

A(t)ψ
(
φ−1

(
t

ε
, ω

))
dt− x√

ε

∫ 1

0

A(t)ψ
(
φ−1

(
t

ε
, ω

))
dt (4.36)

with A(t) =
∫ 1

0

F (s) ds − F (t), where F (t) =
∫ t

0

f(s) ds. To prove that Gε(x, ω) satisfies (4.33), we will use

the following result, the proof of which is postponed until Section 5.3.

Lemma 4.7. Assume that aper and φ satisfy (2.3), (2.4), (2.5) and (2.6). Assume furthermore the independence
conditions (3.3) and (3.5). Consider two functions A1 and A2 with Aj ∈ L∞(0, 1) and A′

j ∈ L2(0, 1), j = 1, 2.
For any x ∈ (0, 1), consider the random variable

Hε(x, ω) =
1√
ε

∫ x

0

A1(t)ψ
(
φ−1

(
t

ε
, ω

))
dt+

x√
ε

∫ 1

0

A2(t)ψ
(
φ−1

(
t

ε
, ω

))
dt (4.37)

where the function ψ is defined by (3.1).
For any p ∈ N�, there exists a deterministic constant Cp independent of ε, x and y such that

∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E

[
|Hε(x, ·) −Hε(y, ·)|2p

]
≤ Cp

(
|x− y|p + ε(p−1)/2

)
. (4.38)

In addition, there exists a deterministic constant C independent of ε, x and y such that, for any x and y with
|x− y| ≤ ε,

|Hε(x, ω) −Hε(y, ω)| ≤ C
√
|x− y| a.s. (4.39)

We are now in position to prove Theorem 3.2.

Proof of Theorem 3.2. We have seen (see (4.29)) that

uε(x, ω) − u�(x)√
ε

= Gε(x, ω) +Rε(x, ω), (4.40)

where Gε(x, ω) and Rε(x, ω) are defined by (4.30) and (4.31), respectively.
Let us study the process Gε(x, ω), which reads, we recall,

Gε(x, ω) =
1√
ε

∫ 1

0

K0(x, t)ψ
(
φ−1

(
t

ε
, ω

))
dt.

As K0(0, t) = 0 for any t, we have that Gε(0, ω) = 0 for any ε, almost surely. We first show that this process
satisfies the first condition of Theorem 4.5. For each set of points 0 ≤ x1 ≤ . . . ≤ xk ≤ 1 and each X =
(ξ1, . . . , ξk) ∈ Rk, we consider the random variable

zε(ω) =
k∑

j=1

ξjGε(xj , ω).
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Observing that

Gε(xj , ω) =
1√
ε

∫ 1

0

K0(xj , t)ψ
(
φ−1

(
t

ε
, ω

))
dt,

we can write zε as

zε(ω) =
1√
ε

∫ 1

0

AX (t)ψ
(
φ−1

(
t

ε
, ω

))
dt

where

AX (t) =
k∑

j=1

ξjK0(xj , t) =
(∫ 1

0

F (s)ds− F (t)
) k∑

j=1

ξj(1[0,xj](t) − xj),

with F (t) =
∫ t

0

f(s) ds. By assumption, f ∈ L2(0, 1), thus AX is piecewise continuous with a finite number of

discontinuities located at {xj}1≤j≤k. In addition, we see that, over each (xi, xi+1), 1 ≤ i ≤ k − 1,

A′
X (t) =

⎛⎝ k∑
j=1

ξjxj −
k∑

j>i

ξj

⎞⎠ f(t)

is in L2(xi, xi+1) ⊂ L1(xi, xi+1). Thus, using Lemma 4.6, we obtain that zε(ω) converges in law to

z0(ω) =
k∑

j=1

ξjG0(xj , ω)

where G0 is defined by (3.6). This implies that

lim
ε→0

E

⎡⎣exp

⎛⎝i k∑
j=1

ξjGε(xj , ·)
⎞⎠⎤⎦ = lim

ε→0
E(exp(izε)) = E(exp(iz0)) = E

⎡⎣exp

⎛⎝i k∑
j=1

ξjG0(xj , ·)
⎞⎠⎤⎦ .

Hence, for any k ∈ N� and any 0 ≤ x1 ≤ . . . ≤ xk ≤ 1,

(Gε(x1, ω), . . . , Gε(xk, ω)) converges in distribution to (G0(x1, ω), . . . , G0(xk, ω)) as ε→ 0. (4.41)

Collecting (4.40), (4.41) and (4.32), we obtain that

the residual process
uε(x, ω) − u�(x)√

ε
satisfies Condition (i) of Theorem 4.5

with the limit process G0(x, ω) defined by (3.6).
(4.42)

We now prove the Kolmogorov criterion, first on the random process Gε(x, ω), next on the process
uε − u�√

ε
·

This will show Condition (ii) of Theorem 4.5. Following (4.36), we write

Gε(x, ω) =
1√
ε

∫ x

0

A(t)ψ
(
φ−1

(
t

ε
, ω

))
dt− x√

ε

∫ 1

0

A(t)ψ
(
φ−1

(
t

ε
, ω

))
dt

with A(t) =
∫ 1

0

F (s) ds − F (t), where F (t) =
∫ t

0

f(s) ds. The assumptions of Lemma 4.7 are satisfied, thus,

for any p ∈ N�, there exists Cp such that

∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E

[
|Gε(x, ·) −Gε(y, ·)|2p

]
≤ Cp

(
|x− y|p + ε(p−1)/2

)
. (4.43)
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This directly implies that

when |x− y| ≥ ε, E

[
|Gε(x, ·) −Gε(y, ·)|2p

]
≤ Cp|x− y|(p−1)/2. (4.44)

When |x − y| ≤ ε, using (4.39), we see that there exists a deterministic constant C independent of ε, x and y
such that

E

[
|Gε(x, ·) −Gε(y, ·)|2p

]
≤ C|x− y|p ≤ C|x− y|(p−1)/2 when |x− y| ≤ ε. (4.45)

Collecting (4.44) and (4.45), we obtain that

∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E

[
|Gε(x, ·) −Gε(y, ·)|2p

]
≤ C|x − y|(p−1)/2. (4.46)

We now turn to the process Rε(x, ω). In view of (4.31) and (4.4), there exists Cp such that

∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E

[
|Rε(x, ·) −Rε(y, ·)|2p

]
≤ Cpε

p
√

(x− y)2p + εp−1/2. (4.47)

Hence, we deduce that

E

[
|Rε(x, ·) −Rε(y, ·)|2p

]
≤ Cpε

p|x− y|(2p−1)/4 when |x− y| ≥ ε. (4.48)

When |x− y| ≤ ε, using (4.5), we see that

E

[
|Rε(x, ·) −Rε(y, ·)|2p

]
≤ Cp(x− y)2p ≤ Cpε

p|x− y|p ≤ Cpε
p|x− y|(2p−1)/4 when |x− y| ≤ ε. (4.49)

Collecting (4.48) and (4.49), we obtain that

∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E

[
|Rε(x, ·) −Rε(y, ·)|2p

]
≤ Cεp|x− y|(2p−1)/4. (4.50)

We next write, using (4.40),∣∣∣∣uε(x, ω) − u�(x)√
ε

− uε(y, ω) − u�(y)√
ε

∣∣∣∣2p

≤ Cp |Gε(x, ω) −Gε(y, ω)|2p + Cp |Rε(x, ω) −Rε(y, ω)|2p
. (4.51)

Collecting (4.46) and (4.50), we obtain that

∀ε ∈ (0, 1), ∀(x, y) ∈ (0, 1)2, E

[∣∣∣∣uε(x, ·) − u�(x)√
ε

− uε(y, ·) − u�(y)√
ε

∣∣∣∣2p
]
≤ C|x − y|(p−1)/2(1 + εp). (4.52)

We thus obtain that

the residual process
uε(x, ω) − u�(x)√

ε
satisfies Condition (ii) of Theorem 4.5

with the exponents β = 2p and δ = p/2 − 3/2.
(4.53)

Choosing p such that β > 0 and δ > 0 (it suffices to choose p > 3), and collecting (4.42) and (4.53), we see that

the random process
uε(x, ω) − u�(x)√

ε
satisfies the assumptions of Theorem 4.5. It thus converges in law to the

Gaussian process G0(x, ω) defined by (3.6). This concludes the proof of Theorem 3.2. �
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5. Technical proofs

We collect here the proofs of Lemmas 4.1, 4.6 and 4.7.

5.1. Proof of Lemma 4.1

Lemma 4.1 is a consequence of the following result:

Lemma 5.1. Assume that aper and φ satisfy (2.3), (2.4), (2.5) and (2.6). Assume furthermore the independence
conditions (3.3) and (3.5). For any 0 ≤ α ≤ β ≤ 1, define the random variable

Zε(α, β, ω) =
1√
ε

∫ β

α

ψ

(
φ−1

(
t

ε
, ω

))
dt, (5.1)

where the function ψ is defined by (3.1). For any p ∈ N�, there exists a deterministic constant Cp independent
of ε, α and β such that

∀ε > 0, E
[
Zε(α, β, ·)2p

] ≤ Cp

[
(β − α)p + ε(p−1)/2

]
.

We first prove Lemma 5.1, and next Lemma 4.1.

Proof of Lemma 5.1. Using the variable s = φ−1

(
t

ε
, ω

)
, we write

Zε(α, β, ω) =
1√
ε

∫ β

α

ψ

(
φ−1

(
t

ε
, ω

))
dt =

√
ε

∫ φ−1(β/ε,ω)

φ−1(α/ε,ω)

ψ(s)φ′(s, ω)ds. (5.2)

For future use, we introduce, for any x ∈ (0, 1), the notation

Kx(ω) = �φ−1(x/ε, ω)�.
In view of (2.4) and (2.5), we have

M−1

∣∣∣∣β − α

ε

∣∣∣∣ ≤ ∣∣∣∣φ−1
(α
ε
, ω
)
− φ−1

(
β

ε
, ω

)∣∣∣∣ ≤ ν−1

∣∣∣∣β − α

ε

∣∣∣∣ ·
Hence, up to some boundary terms (due to the fact that φ−1(α/ε, ω) and φ−1(β/ε, ω) are not integer numbers),
Zε/

√
ε is a sum of the variables Yk defined by (3.2), with a number of terms of the order of ε−1. Note however

that this number of terms, equal to Kβ(ω) − Kα(ω), is random. To proceed, we write Zε as the sum of two
contributions: (i) a sum of the variables Yk with a deterministic number of terms, and (ii) a remainder, that
will be successively estimated.

Following (5.2), we have

Zε(α, β, ω) =
√
ε

⎛⎝∫ β

εE(
∫ 1
0 φ′)

α

εE(
∫ 1
0 φ′)

ψ(t)φ′(t, ω)dt+
∫ φ−1(β/ε,ω)

β

εE(
∫ 1
0 φ′)

ψ(t)φ′(t, ω)dt+
∫ α

εE(
∫ 1
0 φ′)

φ−1(α/ε,ω)

ψ(t)φ′(t, ω)dt

⎞⎠
= Bε(α, β, ω) +Aε(β, ω) −Aε(α, ω) (5.3)

with

Aε(x, ω) =
√
ε

∫ φ−1(x/ε,ω)

x

εE(
∫ 1
0 φ′)

ψ(t)φ′(t, ω)dt, (5.4)

Bε(α, β, ω) =
√
ε

∫ β

εE(
∫ 1
0 φ′)

α

εE(
∫ 1
0 φ′)

ψ(t)φ′(t, ω)dt. (5.5)
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Note that, up to boundary terms, Bε(α, β, ω)/
√
ε is a sum of the variables Yk, with a deterministic number of

terms. We infer from (5.3) that, for any p ∈ N�,

E
[
Zε(α, β, ·)2p

] ≤ CpE
[
Bε(α, β, ·)2p

]
+ CpE

[
Aε(α, ·)2p

]
+ CpE

[
Aε(β, ·)2p

]
(5.6)

where the constant Cp only depends on p. We now estimate Bε, and next Aε.

Step 1. Estimation of Bε.

Denoting by Kα =

⌊
α

εE(
∫ 1

0 φ
′)

⌋
and Kβ =

⌊
β

εE(
∫ 1

0 φ
′)

⌋
, we have

Bε(α, β, ω) =
√
ε

⎛⎝ Kβ−1∑
k=1+Kα

∫ k+1

k

ψ(t)φ′(t, ω)dt+
∫ β

εE(
∫ 1
0 φ′)

Kβ

ψ(t)φ′(t, ω)dt+
∫ 1+Kα

α

εE(
∫ 1
0 φ′)

ψ(t)φ′(t, ω)dt

⎞⎠
=

√
ε

Kβ−1∑
k=1+Kα

Yk(ω) +
√
ε

∫ β

εE(
∫ 1
0 φ′)

Kβ

ψ(t)φ′(t, ω)dt+
√
ε

∫ 1+Kα

α

εE(
∫ 1
0 φ′)

ψ(t)φ′(t, ω)dt, (5.7)

where we recall that Yk is defined by (3.2). We thus obtain, for a deterministic constant Cp that only depends
on p,

|Bε(α, β, ω)|2p ≤ Cpε
p

∣∣∣∣∣∣
Kβ−1∑

k=1+Kα

Yk(ω)

∣∣∣∣∣∣
2p

+ Cpε
p‖ψ‖2p

L∞(R)‖φ′‖2p
L∞(R×Ω). (5.8)

Recall that (Yk)k∈Z is a sequence of independent identically distributed variables, with E(Yk) = 0. We now use
the fact that any such variables satisfy the following bounds:

∀p ∈ N
�, ∃Cp > 0, ∀N ∈ N

�,

∣∣∣∣∣∣E
⎡⎣( 1

N

N∑
k=1

Yk

)2p
⎤⎦
∣∣∣∣∣∣ ≤ Cp

Np
(5.9)

for a constant Cp that depends on p and the moments of Yk, up to order 2p. This is proved by developing the
power 2p of the sum, and then using the fact that the variables are i.i.d and have mean value zero. In our case,
the variables Yk are bounded almost surely, and thus all their moments are finite. We thus deduce from (5.8)
and (5.9) that

E
[
Bε(α, β, ·)2p

] ≤ Cpε
p
E

⎡⎢⎣
∣∣∣∣∣∣

Kβ−1∑
k=1+Kα

Yk

∣∣∣∣∣∣
2p
⎤⎥⎦+ Cpε

p‖ψ‖2p
L∞(R)‖φ′‖2p

L∞(R×Ω)

≤ Cpε
p(Kβ −Kα − 1)p + Cpε

p‖ψ‖2p
L∞(R)‖φ′‖2p

L∞(R×Ω)

≤ Cp(β − α)p + Cpε
p‖ψ‖2p

L∞(R)‖φ′‖2p
L∞(R×Ω). (5.10)

Step 2. Estimation of Aε.

We now bound Aε(x, ω), for any x ∈ [0, 1]. Denoting Kx =

⌊
x

εE(
∫ 1

0
φ′)

⌋
and Kx(ω) = �φ−1(x/ε, ω)�, we

have

Aε(x, ω) =
√
ε

⎛⎝∫ Kx(ω)

Kx

ψ(t)φ′(t, ω)dt+
∫ Kx

x

εE(
∫ 1
0 φ′)

ψ(t)φ′(t, ω)dt+
∫ φ−1(x/ε,ω)

Kx(ω)

ψ(t)φ′(t, ω)dt

⎞⎠,
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hence

|Aε(x, ω)| ≤ √
ε

∣∣∣∣∣
∫ Kx(ω)

Kx

ψ(t)φ′(t, ω)dt

∣∣∣∣∣+ 2
√
ε‖ψ‖L∞(R)‖φ′‖L∞(R×Ω),

thus

E
[
Aε(x, ·)2p

] ≤ Cpε
p
E

⎡⎣∣∣∣∣∣
∫ Kx

Kx

ψ(t)φ′(t, ·)dt
∣∣∣∣∣
2p
⎤⎦+ Cpε

p‖ψ‖2p
L∞(R)‖φ′‖2p

L∞(R×Ω). (5.11)

Let us now bound the first term of the above right-hand side. The difficulty stems from the fact that the
random variable Kx(ω) is not independent from the random process φ′(t, ω). We write, using the bound (5.9)
and Young’s inequality with parameter

γ

j2p+2
> 0 (where γ > 0 is arbitrary), that

E

⎡⎣∣∣∣∣∣
∫ Kx

Kx

ψ(t)φ′(t, ·)dt
∣∣∣∣∣
2p
⎤⎦ =

∑
j∈Z�

E

⎡⎣∣∣∣∣∣
∫ Kx

Kx

ψ(t)φ′(t, ·)dt
∣∣∣∣∣
2p

1Kx(ω)=Kx+j

⎤⎦
≤
∑
j∈Z�

γ

2j2p+2
E

⎡⎣∣∣∣∣∣
∫ Kx+j

Kx

ψ(t)φ′(t, ·)dt
∣∣∣∣∣
4p
⎤⎦+

j2p+2

2γ
P
[
Kx(ω) = Kx + j

]

≤
∑
j∈Z�

γ

2j2p+2
E

⎡⎣∣∣∣∣∣
Kx+j−1∑

k=Kx

Yk

∣∣∣∣∣
4p
⎤⎦+

j2p+2

2γ
P
[
Kx(ω) = Kx + j

]
≤
∑
j∈Z�

C2p
γ

2j2
+
j2p+2

2γ
P
[
Kx(ω) = Kx + j

]
≤ C2p

γ

2
+

1
2γ

E

[∣∣Kx −Kx

∣∣2p+2
]
. (5.12)

We are now left with bounding from above E

(∣∣Kx −Kx

∣∣2p+2
)
. To this aim, we first bound from above∣∣Kx(ω) −Kx

∣∣2p+2
:∣∣Kx(ω) −Kx

∣∣2p+2 ≤ Cp

(∣∣Kx − φ−1(x/ε, ω)
∣∣2p+2

+
∣∣φ−1(x/ε, ω) −Kx(ω)

∣∣2p+2
)

≤ Cp

(∣∣Kx − φ−1(x/ε, ω)
∣∣2p+2

+ 1
)
.

Recall now that, in view of (2.4), we have |a− b| ≤ ν−1|φ(a, ω)−φ(b, ω)| for any a and b, almost surely. We get∣∣Kx(ω) −Kx

∣∣2p+2 ≤ Cp

ν2p+2

(∣∣∣φ(Kx, ω) − x

ε

∣∣∣2p+2

+ ν2p+2

)
. (5.13)

We now recall that the random variables Dk(ω) =
∫ k+1

k

φ′(t, ω)dt, introduced in (3.4), are assumed to be i.i.d.

random variables. Writing φ(x, ω) = φ(0, ω) +
∫ x

0

φ′(t, ω)dt, we obtain that

∣∣∣φ(Kx, ω) − x

ε

∣∣∣2p+2

≤ Cp

⎛⎝∣∣∣∣∣
∫ Kx

0

φ′(t, ω)dt−KxE(D0)

∣∣∣∣∣
2p+2

+ |φ(0, ω)|2p+2 +
∣∣∣KxE(D0) − x

ε

∣∣∣2p+2

⎞⎠
≤ Cp

⎛⎝∣∣∣∣∣
Kx−1∑
k=0

(Dk(ω) − E(D0))

∣∣∣∣∣
2p+2

+ |φ(0, ω)|2p+2 +
∣∣∣KxE(D0) − x

ε

∣∣∣2p+2

⎞⎠ ,
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where, we recall, Kx =

⌊
x

εE(
∫ 1

0 φ
′)

⌋
. Observing that E(D0) = E

(∫ 1

0

φ′
)

, we have
∣∣∣x
ε
−KxE(D0)

∣∣∣ ≤ E(D0),

thus

∣∣∣φ(Kx, ω) − x

ε

∣∣∣2p+2

≤ Cp

⎛⎝∣∣∣∣∣
Kx−1∑
k=0

(Dk(ω) − E(D0))

∣∣∣∣∣
2p+2

+ |φ(0, ω)|2p+2 + |E(D0)|2p+2

⎞⎠ . (5.14)

Collecting (5.13) and (5.14), we obtain

∣∣Kx(ω) −Kx

∣∣2p+2 ≤ Cp

ν2p+2

⎛⎝∣∣∣∣∣
Kx−1∑
k=0

(Dk(ω) − E(D0))

∣∣∣∣∣
2p+2

+ |φ(0, ω)|2p+2 + |E(D0)|2p+2 + ν2p+2

⎞⎠ .

Next, we take the expectation of the above inequality and use (5.9) to get

E

(∣∣Kx −Kx

∣∣2p+2
)
≤ Cp

ν2p+2

(
Kp+1

x + E

(
|φ(0, ·)|2p+2

)
+ |E(D0)|2p+2 + ν2p+2

)
.

Since Kx =

⌊
x

εE(
∫ 1

0
φ′)

⌋
, we know that Kx is of the order of 1/ε, and thus

∀x ∈ (0, 1), E

(∣∣Kx(ω) −Kx

∣∣2p+2
)
≤ Cp

1
εp+1

(5.15)

for a constant Cp independent of ε and x. We infer from (5.12) and (5.15) that

∀γ > 0, E

⎡⎣∣∣∣∣∣
∫ Kx

Kx

ψ(t)φ′(t, ·)dt
∣∣∣∣∣
2p
⎤⎦ ≤ Cp

(
γ

2
+

1
2γεp+1

)
·

Taking γ−1 = ε(p+1)/2 leads to

E

⎡⎣∣∣∣∣∣
∫ Kx(ω)

Kx

ψ(t)φ′(t, ω)dt

∣∣∣∣∣
2p
⎤⎦ ≤ Cp

1
ε(p+1)/2

· (5.16)

Collecting (5.11) and (5.16), we obtain

∀x ∈ (0, 1), E
[
Aε(x, ·)2p

] ≤ Cpε
(p−1)/2 (5.17)

for a constant Cp independent of ε and x.

Step 3. Conclusion
Collecting (5.6), (5.10) and (5.17) (which is legitimate since 0 ≤ α ≤ β ≤ 1), we obtain

E
[
Zε(α, β, ·)2p

] ≤ Cp

[
(β − α)p + εp + ε(p−1)/2

]
≤ Cp

[
(β − α)p + ε(p−1)/2

]
where Cp is a deterministic constant independent from α, β and ε. This concludes the proof of Lemma 5.1. �
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Proof of Lemma 4.1. The result directly follows from Lemma 5.1 and an integration by part argument. We
consider the random variable Zε(α, β, ω) defined by

Zε(α, β, ω) =
1√
ε

∫ β

α

ψ

(
φ−1

(
t

ε
, ω

))
dt.

Integrating by part, we see that

Zε(α, β, ω) = [A(t)Zε(α, t, ω)]βα −
∫ β

α

A′(t)Zε(α, t, ω) dt = A(β)Zε(α, β, ω) −
∫ β

α

A′(t)Zε(α, t, ω) dt.

Using the Cauchy–Schwartz inequality, we obtain

Zε(α, β, ω)2 ≤ 2A(β)2Zε(α, β, ω)2 + 2
∫ β

α

(A′(t))2 dt
∫ β

α

Zε(α, t, ω)2 dt.

We now take the power p of this estimate:

Zε(α, β, ω)2p ≤ Cp‖A‖2p
L∞(α,β)Zε(α, β, ω)2p + Cp‖A′‖2p

L2(α,β)

(∫ β

α

Zε(α, t, ω)2 dt

)p

≤ Cp‖A‖2p
L∞(α,β)Zε(α, β, ω)2p + Cp‖A′‖2p

L2(α,β)

∫ β

α

Zε(α, t, ω)2p dt

(∫ β

α

dt

)p/q

≤ Cp‖A‖2p
L∞(α,β)Zε(α, β, ω)2p + Cp(β − α)p−1 ‖A′‖2p

L2(α,β)

∫ β

α

Zε(α, t, ω)2p dt,

where we have used Hölder inequality with 1 = 1/p+ 1/q. Using Lemma 5.1, we thus obtain

E
[
Zε(α, β, ·)2p

]
≤ Cp‖A‖2p

L∞(α,β)E
[
Zε(α, β, ·)2p

]
+ Cp(β − α)p−1 ‖A′‖2p

L2(α,β)

∫ β

α

E
[
Zε(α, t, ·)2p

]
dt

≤ Cp‖A‖2p
L∞(α,β)

[
(β − α)p + ε(p−1)/2

]
+ Cp(β − α)p−1 ‖A′‖2p

L2(α,β)

∫ β

α

[
(t− α)p + ε(p−1)/2

]
dt

≤ Cp‖A‖2p
L∞(α,β)

[
(β − α)p + ε(p−1)/2

]
+ Cp(β − α)p−1 ‖A′‖2p

L2(α,β)

[
(β − α)p+1 + (β − α)ε(p−1)/2

]
≤ Cp

[
(β − α)p + ε(p−1)/2

] [
‖A‖2p

L∞(α,β) + (β − α)p ‖A′‖2p
L2(α,β)

]
.

This concludes the proof of Lemma 4.1. �

5.2. Proof of Lemma 4.6

By definition,

Zε(α, β, ω) =
1√
ε

∫ β

α

A(t)ψ
(
φ−1

(
t

ε
, ω

))
dt.

We start by replacing the function A by a piecewise constant function Ã, that we will choose later as an accurate
approximation of A, in a sense to be made precise. We thus introduce the function Ã defined by

Ã(t) =
N∑

p=1

Ap1(tp,tp+1)(t), (5.18)
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with α = t1 < t2 < . . . < tN+1 = β. Hence the sets (tp, tp+1) are disjoint one from another, and
∪1≤p≤N [tp, tp+1] = [α, β]. We associate to this function Ã the random variable

Z̃ε(α, β, ω) =
1√
ε

∫ β

α

Ã(t)ψ
(
φ−1

(
t

ε
, ω

))
dt =

1√
ε

N∑
p=1

Ap

∫ tp+1

tp

ψ

(
φ−1

(
t

ε
, ω

))
dt. (5.19)

Step 1. Z̃ε(α, β, ω) converges in law to a Gaussian random variable.
In view of (5.1) and (5.3), we have, for each p,

1√
ε

∫ tp+1

tp

ψ

(
φ−1

(
t

ε
, ω

))
dt = Zε(tp, tp+1, ω) = Bε(tp, tp+1, ω) +Aε(tp+1, ω) −Aε(tp, ω).

We can write Bε (see (5.7)) as

Bε(tp, tp+1, ω) = B̃ε(tp, tp+1, ω) + R̃ε,p(ω),

where

B̃ε(tp, tp+1, ω) =
√
ε

Kp+1−1∑
k=1+Kp

Yk(ω) (5.20)

with Kp =
⌊

tp

εE(
∫ 1
0 φ′)

⌋
, and

R̃ε,p(ω) =
√
ε

∫ tp+1
εE(

∫ 1
0 φ′)

Kp+1

ψ(t)φ′(t, ω)dt+
√
ε

∫ 1+Kp

tp

εE(
∫ 1
0 φ′)

ψ(t)φ′(t, ω)dt.

We hence write

Z̃ε(α, β, ω) =
N∑

p=1

Ap

(
B̃ε(tp, tp+1, ω) + R̃ε,p(ω) +Aε(tp+1, ω) −Aε(tp, ω)

)
. (5.21)

We successively study R̃ε,p, Aε and B̃ε.
Observe first that R̃ε,p satisfies

|R̃ε,p(ω)| ≤ 2
√
ε‖ψ‖L∞(R)‖φ′‖L∞(R×Ω),

and hence goes to 0 as ε→ 0 almost surely.
We now turn to Aε. For any x ∈ [0, 1] and any λ > 0, we have, using the Chebyshev inequality and (5.17),

that

P (|Aε(x, ·)| > λ) ≤
E

[
|Aε(x, ·)|4

]
λ4

≤ C2
ε1/2

λ4

where the constant C2 is independent of ε and x. We hence see that, for any λ > 0, we have

lim
ε→0

P (|Aε(x, ·)| > λ) = 0,

i.e. Aε(x, ω) converges in probability to 0 as ε→ 0, for any x.
We eventually turn to B̃ε. Recall that (Yk(ω))k∈Z is a sequence of i.i.d. variables of mean zero (see assump-

tion (3.3)). Using the Central Limit Theorem, we obtain that B̃ε(tp, tp+1, ω) defined by (5.20) converges in law
to a Gaussian variable,

B̃ε(tp, tp+1, ω) L−→
ε→0

N (0, σp),
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the variance of which is

σp =
tp+1 − tp

E(
∫ 1

0
φ′)

Var(Y0).

In addition, the random variables B̃ε(tp, tp+1, ω) are independent one from another.

We are now in position to prove the convergence of Z̃ε. Since R̃ε(ω) andAε(x, ω) converge to zero in probability
for any x, and the random variables B̃ε(tp, tp+1, ω) converge in law for any p and are independent one from
another, we deduce from (5.21) that Z̃ε(α, β, ω) converges in law to a Gaussian variable,

Z̃ε(α, β, ω) L−→
ε→0

Z̃0(α, β, ω) ∼ N (0, σ̃(α, β)),

the variance of which is

σ̃(α, β) =
N∑

p=1

A2
p σp =

N∑
p=1

A2
p

tp+1 − tp

E(
∫ 1

0 φ
′)

Var(Y0) =
Var(Y0)

E(
∫ 1

0 φ
′)

∥∥∥Ã∥∥∥2

L2(α,β)
.

Step 2. Convergence of the random variable Zε(α, β, ω).
Recall that A is piecewise continuous with a finite number of discontinuities located at {tk}1≤k≤m and that,

for each 1 ≤ k ≤ m− 1, A′ ∈ L1(tk, tk+1). Introduce the broken L1-norm of A′:

|A′|L1(α,β) := ‖A′‖L1(α,t1) +
m−1∑
k=1

‖A′‖L1(tk,tk+1) + ‖A′‖L1(tm,β).

Let us fix some η > 0, and let us complement the previous set of points (tp)1≤p≤N+1 such that

α = t1, tN+1 = β and 0 < tp+1 − tp ≤ η for any p. (5.22)

We set
Ap = A(t−p+1) (5.23)

and consider the function Ã and the random variable Z̃ε(α, β, ω) defined by (5.18) and (5.19).
We write, for any ξ ∈ R,

E

(
eiξZε(α,β,·)

)
− E

(
eiξZ0(α,β,·)

)
= E

(
eiξZε(α,β,·) − eiξZ̃ε(α,β,·)

)
+ E

(
eiξZ̃ε(α,β,·)

)
− E

(
eiξZ̃0(α,β,·)

)
+ E

(
eiξZ̃0(α,β,·) − eiξZ0(α,β,·)

)
, (5.24)

where Z0(α, β, ω) is a Gaussian random variable distributed according to N (0, σ(α, β)), with the variance

σ(α, β) =
Var(Y0)

E(
∫ 1

0
φ′)

‖A‖2
L2(α,β).

We successively estimate the three terms of the right-hand side of (5.24).
For the first term, we first see that∣∣∣E(eiξZε(α,β,·) − eiξZ̃ε(α,β,·)

)∣∣∣ ≤ E

∣∣∣eiξZε(α,β,·) − eiξZ̃ε(α,β,·)
∣∣∣ ≤ |ξ| E

∣∣∣Zε(α, β, ·) − Z̃ε(α, β, ·)
∣∣∣ . (5.25)
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We next compute

Zε(α, β, ω) − Z̃ε(α, β, ω) =
1√
ε

∫ β

α

(
A(t) − Ã(t)

)
ψ

(
φ−1

(
t

ε
, ω

))
dt

=
N∑

p=1

1√
ε

∫ tp+1

tp

(A(t) −Ap)ψ
(
φ−1

(
t

ε
, ω

))
dt.

Using the random variable

Zε(tp, x, ω) =
1√
ε

∫ x

tp

ψ

(
φ−1

(
t

ε
, ω

))
dt,

we write

Zε(α, β, ω) − Z̃ε(α, β, ω) =
N∑

p=1

∫ tp+1

tp

(A(t) −Ap)
dZε(tp, t, ω)

dt
dt

=
N∑

p=1

[(A(t) −Ap)Zε(tp, t, ω)]
t−p+1

t+p
−

N∑
p=1

∫ tp+1

tp

A′(t)Zε(tp, t, ω) dt

= −
N∑

p=1

∫ tp+1

tp

A′(t)Zε(tp, t, ω) dt

where we have used (5.23). We thus have, using Lemma 5.1, that

E

∣∣∣Zε(α, β, ·) − Z̃ε(α, β, ·)
∣∣∣ ≤ N∑

p=1

∫ tp+1

tp

|A′(t)| E |Zε(tp, t, ·)| dt

≤ C

N∑
p=1

∫ tp+1

tp

|A′(t)| ((t− tp)2 +
√
ε
)1/4

dt

≤ C

N∑
p=1

(
(tp+1 − tp)2 +

√
ε
)1/4

∫ tp+1

tp

|A′(t)| dt

where C is a constant independent of ε and (tp)1≤p≤N+1. In view of (5.22), we have

E

∣∣∣Zε(α, β, ·) − Z̃ε(α, β, ·)
∣∣∣ ≤ C

(
η2 +

√
ε
)1/4 |A′|L1(α,β). (5.26)

Inserting (5.26) in (5.25), we deduce that, for any ε and η,∣∣∣E(eiξZε(α,β,·) − eiξZ̃ε(α,β,·)
)∣∣∣ ≤ C|ξ| (η2 +

√
ε
)1/4 |A′|L1(α,β). (5.27)

We next turn to the second term of the right-hand side of (5.24). We recall that Z̃ε(α, β, ω) and σ̃(α, β)
depend on η, through the choice of the function Ã. For the parameter η that we have chosen, Z̃ε(α, β, ω)
converges in law to Z̃0(α, β, ω) when ε→ 0. Thus, there exists ε0(η), that depends on η and can be chosen such
that ε0(η) ≤ η4, such that, for all ε < ε0(η),∣∣∣E(eiξZ̃ε(α,β,·)

)
− E

(
eiξZ̃0(α,β,·)

)∣∣∣ ≤ η. (5.28)
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We finally turn to the third term of the right-hand side of (5.24). Since Z0(α, β, ω) and Z̃0(α, β, ω) are
Gaussian random variables, we see that

E

(
eiξZ̃0(α,β,·) − eiξZ0(α,β,·)

)
= exp(−ξ2σ̃(α, β)/2) − exp(−ξ2σ(α, β)/2).

Denoting by L the Lipschitz constant of the function σ �→ exp(−ξ2σ/2) on [0,∞), we thus have∣∣∣E(eiξZ̃0(α,β,·) − eiξZ0(α,β,·)
)∣∣∣ ≤ L |σ̃(α, β) − σ(α, β)| = L

Var(Y0)

E(
∫ 1

0 φ
′)

∣∣∣∣∥∥∥Ã∥∥∥2

L2(α,β)
− ‖A‖2

L2(α,β)

∣∣∣∣ . (5.29)

We next write∥∥∥Ã∥∥∥2

L2(α,β)
− ‖A‖2

L2(α,β) =
N∑

p=1

∫ tp+1

tp

(A2
p −A(t)2) dt =

N∑
p=1

∫ tp+1

tp

(Ap + A(t))(Ap −A(t)) dt. (5.30)

In view of (5.23), we have

∀t ∈ [tp, tp+1], A(t) = A(t−p+1) −
∫ tp+1

t

A′(s) ds = Ap −
∫ tp+1

t

A′(s) ds.

Inserting this relation in (5.30), we obtain∥∥∥Ã∥∥∥2

L2(α,β)
− ‖A‖2

L2(α,β) =
N∑

p=1

∫ tp+1

tp

(Ap + A(t))
∫ tp+1

t

A′(s) ds dt.

Thus, in view of the choice (5.22), we have∣∣∣∣∥∥∥Ã∥∥∥2

L2(α,β)
− ‖A‖2

L2(α,β)

∣∣∣∣ ≤ 2‖A‖L∞(α,β)

N∑
p=1

∫ tp+1

tp

∫ tp+1

t

|A′(s)| ds dt

≤ 2‖A‖L∞(α,β)

N∑
p=1

∫ tp+1

tp

|A′(s)| (s− tp) ds

≤ 2η‖A‖L∞(α,β)

N∑
p=1

∫ tp+1

tp

|A′(s)| ds

≤ 2η‖A‖L∞(α,β)|A′|L1(α,β). (5.31)

Inserting (5.31) in (5.29), we deduce that∣∣∣E(eiξZ̃0(α,β,·) − eiξZ0(α,β,·)
)∣∣∣ ≤ 2ηL

Var(Y0)

E(
∫ 1

0 φ
′)
‖A‖L∞(α,β)|A′|L1(α,β). (5.32)

Collecting (5.24), (5.27), (5.28) and (5.32), we have, for any η and any ε < ε0(η) ≤ η4, that∣∣∣E(eiξZε(α,β,·)
)
− E

(
eiξZ0(α,β,·)

)∣∣∣ ≤ C|ξ| (2η2
)1/4 |A′|L1(α,β) + η + 2ηL

Var(Y0)

E(
∫ 1

0 φ
′)
‖A‖L∞(α,β)|A′|L1(α,β).

The above bound holds for any ε < ε0(η), and η is arbitrary small. In addition, |A′|L1(α,β) is independent from
η, even though the set of points (tp)1≤p≤N+1 depends on η. This means that

lim
ε→0

∣∣∣E(eiξZε(α,β,ω)
)
− E

(
eiξZ0(α,β,ω)

)∣∣∣ = 0,

hence Zε(α, β, ω) converges in law to Z0(α, β, ω). This concludes the proof of Lemma 4.6.
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5.3. Proof of Lemma 4.7

According to the definition (4.37), we have:

|Hε(x, ω) −Hε(y, ω)| ≤
∣∣∣∣ 1√
ε

∫ x

y

A1(t)ψ
(
φ−1

(
t

ε
, ω

))
dt
∣∣∣∣+ |x− y|

∣∣∣∣ 1√
ε

∫ 1

0

A2(t)ψ
(
φ−1

(
t

ε
, ω

))
dt
∣∣∣∣ . (5.33)

Thus, for any p ∈ N�, using Lemma 4.1 and the fact that |y − x| ≤ 1, we have

E

[
|Hε(x, ·) −Hε(y, ·)|2p

]
≤ CpE

[∣∣∣∣ 1√
ε

∫ x

y

A1(t)ψ
(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣2p
]

+Cp|x− y|2p
E

[∣∣∣∣ 1√
ε

∫ 1

0

A2(t)ψ
(
φ−1

(
t

ε
, ·
))

dt
∣∣∣∣2p
]

≤ Cp

(
|x− y|p + ε(p−1)/2

)
+ Cp|x− y|2p

≤ Cp

(
|x− y|p + ε(p−1)/2

)
.

This concludes the proof of (4.38).
Assume now that |x− y| ≤ ε. We infer from (5.33) that

|Hε(x, ω) −Hε(y, ω)| ≤
∣∣∣∣x− y√

ε

∣∣∣∣ ‖ψ‖L∞(R)

(‖A1‖L∞(0,1) + ‖A2‖L∞(0,1)

) ≤ C
√

|x− y|,

where C is a deterministic constant independent of ε, x and y. This concludes the proof of (4.39), and hence
the proof of Lemma 4.7.

6. Approximation of the homogenized matrix

The aim of this section is to prove our second main result, Theorem 3.4 of Section 3.2. Since the approach
described in Section 3.2 mimicks the approach proposed in [10], our proof essentially follows the arguments used
in [10]. Because our proof is involved, we feel that it is useful to first recall the arguments of [10] in Section 6.1.
We then collect some technical results in Section 6.2, before turning to the actual proof of Theorem 3.4 in
Sections 6.3 and 6.4.

6.1. Convergence proof in the classical random homogenization setting

Consider the classical random homogenization problem

−div
[
A
(x
ε
, ω
)
∇uε(x, ω)

]
= f(x) in D, uε(·, ω) = 0 on ∂D,

where D is a bounded open set of Rd, f ∈ L2(D), and A is a stationary matrix in the sense of (2.1), satisfy-
ing classical coercivity and boundedness properties. The associated homogenized problem is (2.7), where the
homogenized matrix is given by

∀1 ≤ i, j ≤ d, A�
ij = E

[∫
Q

eT
i A (y, ·) (ej + ∇wej (y, ·)

)
dy
]
,

where Q = (0, 1)d and where, for all p ∈ Rd, wp solves the corrector problem⎧⎨⎩
−div [A(y, ω) (p+ ∇wp(y, ω))] = 0 in R

d,

∇wp is stationary in the sense of (2.1), E

(∫
Q

∇wp(y, ·)dy
)

= 0.
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In [10], the following approximation strategy is proposed: introduce the approximate corrector wN
p (·, ω) as the

QN -periodic function satisfying:

for all ψ QN -periodic,
∫

QN

(∇ψ)T A(·, ω)
(
p+ ∇wN

p (·, ω)
)

= 0 with
∫

QN

wN
p (·, ω) = 0 (6.1)

and the approximate homogenized matrix A�
N (ω) defined by, for any 1 ≤ i, j ≤ d,

[A�
N (ω)]ij =

1
|QN |

∫
QN

eT
i A(·, ω)

(
ej + ∇wN

ej
(·, ω)

)
. (6.2)

Then, see Theorem 1 of [10], we have that

lim
N→∞

A�
N (ω) = A� almost surely. (6.3)

A key ingredient for the proof of (6.3) is the following classical homogenization result, see Theorem 5.2 page 151
of [15]:

Theorem 6.1. Let Aε be a sequence of matrices that G-converges to A� in a domain V , and let V1 be an
arbitrary subdomain of V . Let p ∈ Rd, and assume that the functions wε

p ∈ H1(V1) satisfy the conditions

wε
p ⇀ w∞

p weakly in H1(V1), and − div
[
Aε(p+ ∇wε

p)
]

= 0 in D′(V1).

Then we have that
Aε(p+ ∇wε

p) ⇀ A�(p+ ∇w∞
p ) weakly in (L2(V1))d,

where w∞
p satisfies

−div
[
A�(p+ ∇w∞

p )
]

= 0 in D′(V1).

The proof of (6.3) goes as follows (see [10] for details). The rescaled corrector

wN
0,p(x, ω) :=

1
N
wN

p (Nx, ω)

is shown to satisfy the a priori bound ‖wN
0,p(·, ω)‖H1(Q) ≤ C, where C is a deterministic constant independent

from N . We thus deduce that, almost surely, there exists a Q-periodic function w∞
0,p(·, ω) ∈ H1(Q) such that

(up to the extraction of a subsequence)

wN
0,p(·, ω) ⇀ w∞

0,p(·, ω) weakly in H1(Q).

Consider a Q-periodic function ψ ∈ H1(Q). Choosing ψN (y) = ψ(y/N) as test function in (6.1), we obtain∫
Q

(∇ψ)T
A(N ·, ω)

(
p+ ∇wN

0,p(·, ω)
)

= 0. (6.4)

We are then in position to use Theorem 6.1 on the domain V1 = Q. We thus get that A(N ·, ω)(p + ∇wN
0,p)

weakly converges to A�(p+ ∇w∞
0,p) in (L2(Q))d. We then infer from (6.4) that, for any Q-periodic function ψ,

we have ∫
Q

(∇ψ)T
A�

(
p+ ∇w∞

0,p(·, ω)
)

= 0. (6.5)

This implies that ∇w∞
0,p(·, ω) = 0 a.s. The limit being unique, all the sequence ∇wN

0,p(·, ω) weakly converges to
∇w∞

0,p(·, ω). Using the same weak L2 convergence as above, we deduce from (6.2) that

[A�
N (ω)]ij =

∫
Q

eT
i A(N ·, ω)

(
ej + ∇wN

0,ej
(·, ω)

)
→
∫

Q

eT
i A

�
(
ej + ∇w∞

0,ej
(·, ω)

)
= [A�]ij .

This concludes the proof of (6.3).
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6.2. Some technical ingredients for our analysis

A key ingredient to prove Theorem 3.4 is to find an appropriate domain on which to apply Theorem 6.1. The
following lemmas are useful for that purpose.

We first recall, see Lemme 2.1 of [7], that
1
N
φ(N ·, ω) converges to E

(∫
Q

∇φ
)

· in L∞
loc(R

d) almost surely.

Likewise, in view of the proof of Lemme 2.2 of [7], we have that
1
N
φ−1(N ·, ω) converges to

[
E

(∫
Q

∇φ
)]−1

·
in L∞

loc(R
d) almost surely. The functions being smooth, we thus have that, for any compact K,

lim
N→∞

∥∥∥∥ 1
N
φ(N ·, ω) − E

(∫
Q

∇φ
)

·
∥∥∥∥

C0(K)

= lim
N→∞

∥∥∥∥∥ 1
N
φ−1(N ·, ω) −

[
E

(∫
Q

∇φ
)]−1

·
∥∥∥∥∥

C0(K)

= 0 a.s. (6.6)

As pointed out in the proof of Lemme 2.2 of [7], a consequence of the above fact is that

lim
N→∞

∥∥∥1 1
N φ(NQ,ω) − 1

E(
∫

Q
∇φ)Q

∥∥∥
L1(Rd)

= 0 a.s. (6.7)

This can be shown by first assuming that φ(0, ω) = 0, and using a regularization of the indicator functions. The
general case φ(0, ω) �= 0 next follows as an easy consequence.

The first ingredient we need to prove Theorem 3.4 is the following lemma, which is somewhat related with
the above results:

Lemma 6.2. Let φ be a diffeomorphism that satisfies (2.4), (2.5) and (2.6). For any compact set K that is a

proper subset of the open set E

(∫
Q

∇φ
)
Q, and for almost all ω, there exists N0(ω) ∈ N such that

∀N ≥ N0(ω),
◦
K ⊂ 1

N
φ(QN , ω),

where
◦
K denotes the interior of the set K and, we recall, QN = N Q.

The following easy result is useful to prove Lemma 6.2:

Lemma 6.3. Let φ be a diffeomorphism that satisfies (2.4) and (2.5). Then there exists a deterministic constant
LLip such that the diffeomorphism φ−1(·, ω) is Lipschitz with that constant.

Proof of Lemma 6.3. We infer from (2.5) that ∇φT∇φ, which is a symmetric matrix and therefore diagonaliz-
able, has a bounded spectrum. The assumption (2.4) then implies that the eigenvalues of ∇φT∇φ are bounded
away from 0. Hence, there exists a deterministic constant c > 0 such that for all ξ ∈ R

d we have

ξT (∇φ(x, ω))T∇φ(x, ω)ξ ≥ c|ξ|2 a.s., a.e. on R
d.

For any ξ ∈ Rd, we set ξ = (∇φ(x, ω))−1ξ and obtain that∣∣(∇φ(x, ω))−1ξ
∣∣ ≤ c−1/2

∣∣ξ∣∣ . (6.8)

The diffeomorphism φ−1(·, ω) is thus Lipshitz with the deterministic constant c−1/2. �

Proof of Lemma 6.2. Let K be a proper subset of the open set E

(∫
Q

∇φ
)
Q, and let us fix ω such that

1
N
φ−1(N ·, ω) converges to

[
E

(∫
Q

∇φ
)]−1

· in C0(K). (6.9)

In view of (6.6), we know that (6.9) holds for almost all ω.
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We prove Lemma 6.2 by contradiction. Suppose that, for all N0 ∈ N, there exists N(N0, ω) ≥ N0 such that
◦
K is not included in

1
N(N0, ω)

φ(QN(N0,ω), ω). Otherwise stated, there exist N(N0, ω) and z(N0, ω) such that

z(N0, ω) ∈
◦
K and z(N0, ω) /∈ 1

N(N0, ω)
φ(N(N0, ω)Q,ω).

Introduce y(N0, ω) =
1

N(N0, ω)
φ−1(N(N0, ω)z(N0, ω), ω). We thus have that

y(N0, ω) /∈ Q. (6.10)

We now pass to the limit N0 → ∞. Observing that z(N0, ω) belongs to the compact set K, we deduce that
{z(N0, ω)}N0∈N

is a bounded sequence and thus converges, up to the extraction of a subsequence, toward some
z(ω) ∈ K.

Let us now show that {y(N0, ω)}N0∈N
is also a bounded sequence. Using the fact that the diffeomorphism

φ−1(·, ω) is a Lipschitz mapping with a deterministic constant LLip (see Lem. 6.3), we write

|y(N0, ω)| =
1

N(N0, ω)

∣∣φ−1(N(N0, ω)z(N0, ω), ω)
∣∣ ≤ LLip|z(N0, ω)| + 1

N(N0, ω)
|φ−1(0, ω)|.

We deduce that, almost surely, {y(N0, ω)}N0∈N
is a bounded sequence and thus converges, up to the extraction

of a subsequence, toward some y(ω). In view of (6.10), and since Q is an open set, we have that y(ω) /∈ Q.
We now claim that

z(ω) = E

(∫
Q

∇φ
)
y(ω). (6.11)

Indeed, we write that∣∣∣∣∣y(N0, ω) −
[
E

(∫
Q

∇φ
)]−1

z(ω)

∣∣∣∣∣
≤
∣∣∣∣∣ 1
N(N0, ω)

φ−1(N(N0, ω)z(N0, ω), ω) −
[
E

(∫
Q

∇φ
)]−1

z(N0, ω)

∣∣∣∣∣
+

∣∣∣∣∣
[
E

(∫
Q

∇φ
)]−1

z(N0, ω) −
[
E

(∫
Q

∇φ
)]−1

z(ω)

∣∣∣∣∣
≤
∥∥∥∥∥ 1
N(N0, ω)

φ−1(N(N0, ω)·, ω) −
[
E

(∫
Q

∇φ
)]−1

·
∥∥∥∥∥

C0(K)

+ C |z(N0, ω) − z(ω)| .

Both terms converge to 0 when N0 → ∞, respectively in view of (6.9) and of the definition of z(ω). By definition
of y(ω), we deduce (6.11).

We now reach a contradiction since z(ω) ∈ K ⊂ E

(∫
Q

∇φ
)
Q whereas y(ω) /∈ Q. This concludes the proof

of Lemma 6.2. �
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The second ingredient we need to prove Theorem 3.4 is the following lemma:

Lemma 6.4. Let φ be a diffeomorphism that satisfies (2.4) and (2.5). There exists an open set Q̃(ω) and some
k(ω) ∈ N such that

∀N ∈ N
�,

1
N
φ(QN , ω) ⊂ Q̃(ω), (6.12)

E

(∫
Q

∇φ
)
Q ⊂ Q̃(ω), (6.13)

∀N ∈ N
�, Q̃(ω) ⊂ 1

N
φ(Qk(ω)N , ω). (6.14)

Proof. The first assertion relies on the fact that, in view of (2.5), we have

∀N ∈ N
�,

1
N

|φ(Nx, ω)| ≤M |x| + 1
N

|φ−1(0, ω)| ≤M + |φ−1(0, ω)| a.s., a.e. on Q.

It is thus sufficient to choose Q̃(ω) such that
[
−M − |φ−1(0, ω)|,M + |φ−1(0, ω)|

]d

⊂ Q̃(ω). Upon choosing a

larger Q̃(ω), the second assertion is also satisfied. Now that Q̃(ω) is chosen, we show that we can choose k(ω)
such that the third assertion is satisfied. Using Lemma 6.3, we see that, almost surely,

∀N ∈ N
�,

1
N

|φ−1(Nx, ω)| ≤ LLip|x| + 1
N

|φ(0, ω)| ≤ LLip|x| + |φ(0, ω)| a.e. on R
d.

There thus exists k(ω) such that, for any N ∈ N�, we have
1
N
φ−1

(
NQ̃(ω), ω

)
⊂ Qk(ω). This implies the third

assertion and concludes the proof. �

6.3. Proof of Theorem 3.4

To simplify the notation, we introduce the matrix

α := E

(∫
Q

∇φ
)

∈ R
d×d. (6.15)

As pointed out in Remark 1.9 of [8], we have that

detα = E

(∫
Q

det∇φ
)
. (6.16)

We hence deduce from (2.4) that
detα ≥ ν > 0.

We also introduce the matrix β ∈ Rd×d defined by

β = E

[∫
φ(Q,·)

(∇φ (φ−1(x, ·), ·))−1
dx

]
= E

[∫
Q

det(∇φ) (∇φ)−1

]
. (6.17)

The proof of the following lemma, useful for proving Theorem 3.4, is postponed until Section 6.4.

Lemma 6.5. The constant matrix βA�α−T is coercive.

The proof of Theorem 3.4 is composed of four steps. In Step 1, we introduce a rescaled corrector, denoted
wN

0,p(·, ω) (see (6.19) below), and show that it converges toward some function w∞
0,p(·, ω) weakly in H1. Then,

in Step 2, we prove that w∞
0,p(·, ω) is αQ-periodic. Next, in Step 3, we show that w∞

0,p(·, ω) solves the equation
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−div
[
B∇w∞

0,p

]
= 0 in Rd for a constant deterministic matrix B (see (6.34) below for a precise statement).

Combining these results and using Lemma 6.5, we conclude that ∇w∞
0,p ≡ 0. This is a key ingredient to prove, in

Step 4, that the random approximation A�
N (ω) indeed converges to the homogenized matrix A� almost surely.

Step 1. Introduction of a rescaled corrector wN
0,p, and convergence of wN

0,p to some w∞
0,p.

We first establish some a priori bounds. Taking ψ̃ = w̃N
p as test function in (3.9), and using (2.4) and (2.5),

we see that
‖(∇φ(·, ω))−T∇w̃N

p (·, ω)‖L2(QN ) ≤ C
√
|QN |,

where C is a deterministic constant independent from N . Using again (2.5), we deduce that

‖∇w̃N
p (·, ω)‖L2(QN ) ≤ C

√
|QN |.

Let k ∈ N. Since w̃N
p is QN -periodic, we infer from the above bound that

‖∇w̃N
p (·, ω)‖L2(QkN ) ≤ C

√
|QkN |, (6.18)

where C is a deterministic constant independent from N and k.
We now introduce the following rescaled corrector:

wN
0,p(x, ω) =

1
N
wN

p (Nx, ω), (6.19)

where, we recall wN
p (y, ω) = w̃N

p (φ−1(y, ω), ω). Using (2.5) and (6.8), we infer from (6.18) that

‖∇wN
0,p(·, ω)‖L2( 1

N φ(QkN ,ω)) ≤ Ckd/2

where C is a deterministic constant independent from N and k. We now choose k in the above bound equal to
the integer k(ω) defined in Lemma 6.4. We infer from the above bound and (6.14) that

∀N ∈ N
�, ‖∇wN

0,p(·, ω)‖L2(Q̃(ω)) ≤ C(ω). (6.20)

Recall that the solution w̃N
p to (3.9) is unique up to an additive constant. We now fix this constant by

choosing w̃N
p such that

∫
NQ̃(ω)

wN
p (·, ω) = 0, where the set Q̃(ω) is defined in Lemma 6.4. In view of (6.19),

this means that
∫

Q̃(ω)

wN
0,p(·, ω) = 0. Using (6.20) and the Poincaré–Wirtinger inequality, we deduce that there

exists C(ω) such that
∀N ∈ N

�, ‖wN
0,p(·, ω)‖H1(Q̃(ω)) ≤ C(ω).

This implies that, almost surely, there exists w∞
0,p(·, ω) ∈ H1

(
Q̃(ω)

)
such that (up to the extraction of a

subsequence)

wN
0,p(·, ω) ⇀ w∞

0,p(·, ω) weakly in H1
(
Q̃(ω)

)
, (6.21)

and, using the Rellich Theorem, that

wN
0,p(·, ω) → w∞

0,p(·, ω) strongly in L2
(
Q̃(ω)

)
. (6.22)
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Step 2. w∞
0,p is αQ-periodic.

We infer from (6.19) that

wN
0,p

(
φ(Ny, ω)

N
,ω

)
=

1
N
wN

p (φ(Ny, ω), ω) =
1
N
w̃N

p (Ny, ω).

Since the function w̃N
p is QN -periodic, we see that the function y �→ wN

0,p

(
φ(Ny, ω)

N
,ω

)
is Q-periodic. Hence,

for any k ∈ Zd, we have, almost surely,

∫
Q

[
w∞

0,p (αy, ω) − w∞
0,p (α(y + k), ω)

]2 dy ≤ 2
∫

Q

[
w∞

0,p (αy, ω) − wN
0,p

(
φ(Ny, ω)

N
,ω

)]2

dy

+ 2
∫

Q

[
wN

0,p

(
φ(N(y + k), ω)

N
,ω

)
− w∞

0,p (α(y + k), ω)
]2

dy. (6.23)

We now show that both terms in the above right-hand side converge to 0 when N → ∞. It is sufficient to
consider the first term. Let us fix η > 0.

We observe that the first term in the above right-hand side satisfies∫
Q

[
w∞

0,p (αy, ω) − wN
0,p

(
φ(Ny, ω)

N
,ω

)]2

dy ≤ 2
[
CN

0 (ω) + CN
1 (ω)

]
, (6.24)

where

CN
0 (ω) =

∫
Q

[
w∞

0,p (αy, ω) − w∞
0,p

(
φ(Ny, ω)

N
,ω

)]2

dy,

CN
1 (ω) =

∫
Q

[
w∞

0,p

(
φ(Ny, ω)

N
,ω

)
− wN

0,p

(
φ(Ny, ω)

N
,ω

)]2

dy.

To show that CN
0 (ω) converges to 0, we use the fact that the function

φ(Ny, ω)
N

converges to the function αy

in L∞
loc(R

d) almost surely, see Lemme 2.1 of [7], and a regularization argument. Since w∞
0,p(·, ω) ∈ H1

(
Q̃(ω)

)
,

there exists w∞
η (·, ω) ∈ C∞

(
Q̃(ω)

)
such that

‖w∞
η (·, ω) − w∞

0,p(·, ω)‖L2(Q̃(ω)) ≤ η. (6.25)

We then write that
CN

0 (ω) ≤ CN
00(ω) + CN

01(ω) + CN
02(ω), (6.26)

where

CN
00(ω) =

∫
Q

[
w∞

0,p (αy, ω) − w∞
η (αy, ω)

]2 dy,

CN
01(ω) =

∫
Q

[
w∞

η (αy, ω) − w∞
η

(
φ(Ny, ω)

N
,ω

)]2

dy,

CN
02(ω) =

∫
Q

[
w∞

η

(
φ(Ny, ω)

N
,ω

)
− w∞

0,p

(
φ(Ny, ω)

N
,ω

)]2

dy.
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We infer from (6.25) and (6.13) that

∀N ∈ N
�, CN

00(ω) =
1√

detα
‖w∞

0,p(·, ω) − w∞
η (·, ω)‖L2(αQ) ≤ 1√

detα
η. (6.27)

Likewise, we infer from (6.25), (6.12) and (2.4) that

∀N ∈ N
�, CN

02(ω) ≤ 1√
ν
‖w∞

η (·, ω) − w∞
0,p(·, ω)‖L2( 1

N φ(QN ,ω)) ≤ 1√
ν
η. (6.28)

We now turn to CN
01(ω). Using the fact that w∞

η (·, ω) ∈ C∞
(
Q̃(ω)

)
and that the function

φ(Ny, ω)
N

converges

to the function αy in L∞
loc(R

d) almost surely, we obtain that CN
01(ω) converges to zero as N goes to infinity,

almost surely. We thus can choose N(η, ω) ∈ N such that

∀N ≥ N(η, ω), CN
01(ω) ≤ η. (6.29)

Collecting (6.26), (6.27), (6.29) and (6.28), we conclude that

CN
0 (ω) → 0 as N goes to infinity, almost surely. (6.30)

We next turn to CN
1 (ω), which is non-negative by definition, and satisfies, using (6.12) and (6.22),

CN
1 (ω) =

∫
Q̃(ω)

1φ(QN ,ω)
N

1
det (∇φ)

[
w∞

0,p (y, ω) − wN
0,p (y, ω)

]2
dy ≤ 1

ν
‖w∞

0,p(·, ω)−wN
0,p(·, ω)‖2

L2(Q̃(ω)) → 0 (6.31)

as N → ∞. Collecting (6.23), (6.24), (6.30) and (6.31), we deduce that, almost surely,

∀k ∈ Z
d,

∫
Q

[
w∞

0,p (αy, ω) − w∞
0,p (α(y + k), ω)

]2
dy = 0.

The function w∞
0,p(·, ω) is thus αQ-periodic (almost surely).

Step 3. w∞
0,p solves −div

[
B∇w∞

0,p

]
= 0 in D′(Rd) where B is a constant deterministic matrix.

In the two above steps, we closely followed the proof strategy of [10] recalled in Section 6.1. This Step 3 follows
a slightly different pattern, and is more involved than the corresponding argument in [10], which consists in
showing the weak formulation (6.5). As pointed out above, the difficulty comes from identifying an appropriate
domain, independent of N , on which to apply Theorem 6.1. To circumvent this difficulty, we work on the entire
space Rd, with test functions of compact support.

Introduce a test function ψ ∈ D(Rd), and define the QN -periodic function

ψN (y) :=
∑
k∈Zd

ψ

(
1
N
y − k

)
.

We note that, for any y ∈ QN , only a finite number of terms in the above sum do not vanish, and that this
number of terms only depends on the support of ψ and is thus independent of N .

Choosing ψN as test function in (3.9), we write

∫
QN

det(∇φ(y, ω))

⎛⎝∑
k∈Zd

∇ψ
(

1
N
y − k

)⎞⎠T

(∇φ(y, ω))−1
Aper(y)

(
p+ (∇φ)−T (y, ω)∇w̃N

p (y, ω)
)

dy = 0.
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After the change of variable z = φ(y, ω), we obtain

∑
k∈Zd

∫
φ(QN ,ω)

(
∇ψ

(
1
N
φ−1(z, ω) − k

))T (∇φ(φ−1(z, ω), ω)
)−1

Aper(φ−1(z, ω))
(
p+ ∇wN

p (z, ω)
)

dz = 0,

that we recast, using the definition (6.19) of wN
0,p, as

∀N ∈ N
�,

∑
k∈Zd

IN
k (ω) = 0 a.s., (6.32)

where

IN
k (ω)=

∫
1
N φ(QN ,ω)

(
∇ψ

(
1
N
φ−1(Nz, ω)− k

))T(∇φ(φ−1(Nz, ω), ω)
)−1

Aper(φ−1(Nz, ω))
(
p+ ∇wN

0,p(z, ω)
)
dz.

We claim that
∀k ∈ Z

d, lim
N→∞

IN
k (ω) = I∞k (ω) a.s., (6.33)

where
I∞k (ω) :=

∫
αQ

(∇ψ (α−1z − k
))T

β A�
(
p+ ∇w∞

0,p(z, ω)
)

(detα)−1 dz,

where the constant matrices α and β are defined by (6.15) and (6.17).
Assume momentarily that (6.33) indeed holds. Then, as the sum in (6.32) has a finite number of terms,

independently of N , we can pass to the limit N → ∞ and obtain that∑
k∈Zd

I∞k (ω) = 0 a.s.,

which also reads ∑
k∈Zd

∫
αQ

(∇ψ (α−1z − k
))T

β A�
(
p+ ∇w∞

0,p(z, ω)
)
(detα)−1dz = 0.

Using the αQ-periodicity of the function w∞
0,p (shown in the above Step 2), we deduce that∫

Rd

(∇ψ(z))T
β A�

(
p+ ∇w∞

0,p(αz, ω)
)
dz = 0

for all test functions ψ ∈ D(Rd). We indeed have shown that

−div
[
β A�∇w∞

0,p(α·, ω)
]

= 0 in D′(Rd). (6.34)

To conclude this Step, we are hence left with showing (6.33). Formally, this comes from the strong L1(Rd)
convergence of the indicator function 1 1

N φ(QN ,ω) towards 1αQ and from the div-curl lemma. We indeed ob-

serve that the integrand in IN
k (ω) is the product of

(∇φ(φ−1(Nz, ω), ω)
)−T ∇ψ

(
1
N
φ−1(Nz, ω)− k

)
with

Aper(φ−1(Nz, ω))
(
p+ ∇wN

0,p(z, ω)
)
. We will show in the sequel that the first factor is curl-free, whereas the

second factor is divergence free. Using the div-curl lemma, this product converges (at least in the sense of
distributions) towards the product of the weak limits of the two factors, which can be identified. One difficulty
to make this argument rigorous is to find a fixed domain (independent of N) on which to apply the div-curl
lemma. For that purpose, Lemma 6.2 is useful.



382 F. LEGOLL AND F. THOMINES

We now proceed in details. Let η > 0, and let Oη ⊂ Õη be two deterministic open sets such that Õη is proper
subset of αQ, Oη is a proper subset of Õη, and∣∣∣αQ \ Õη

∣∣∣ ≤ η,
∣∣∣Õη \ Oη

∣∣∣ ≤ η. (6.35)

We then decompose IN
k (ω) and I∞k (ω) as follows: using (6.12) and (6.13), we write

IN
k (ω) = IN

k,η(ω) + RN
k,η(ω), I∞k (ω) = I∞k,η(ω) + R∞

k,η(ω), (6.36)

with

IN
k,η(ω) =

∫
Oη

(
∇ψ

(
1
N
φ−1(Nz, ω)− k

))T (∇φ(φ−1(Nz, ω), ω)
)−1

Aper

(
φ−1(Nz, ω)

) (
p+ ∇wN

0,p(z, ω)
)

dz,

I∞k,η(ω) =
∫
Oη

(∇ψ (α−1z − k
))T

β A�
(
p+ ∇w∞

0,p(z, ω)
)

(detα)−1 dz,

RN
k,η(ω) =

∫
Q̃(ω)

(
1 1

N φ(QN ,ω)(z) − 1Oη(z)
)(

∇ψ
(

1
N
φ−1(Nz, ω)− k

))T

× (∇φ(φ−1(Nz, ω), ω)
)−1

Aper

(
φ−1(Nz, ω)

) (
p+ ∇wN

0,p(z, ω)
)

dz,

R∞
k,η(ω) =

∫
αQ\Oη

(∇ψ(α−1z − k)
)T
β A�(p+ ∇w∞

0,p(z, ω)) (detα)−1 dz.

To use the div-curl lemma, we need to further decompose IN
k,η(ω) and I∞k,η(ω). Introducing a smooth truncation

function ξ ∈ D
(
Õη

)
such that 0 ≤ ξ(x) ≤ 1 a.e. and ξ ≡ 1 on Oη, we write that

IN
k,η(ω) = ĨN

k,η(ω) − CN
η (ω), I∞k,η(ω) = Ĩ∞k,η(ω) − C∞

η (ω), (6.37)

where

C∞
η (ω) =

∫
Õη\Oη

ξ(z)
(∇ψ (α−1z − k

))T
β A�

(
p+ ∇w∞

0,p(z, ω)
)

(detα)−1 dz,

Ĩ∞k,η(ω) =
∫
Õη

ξ(z)
(∇ψ (α−1z − k

))T
β A�

(
p+ ∇w∞

0,p(z, ω)
)

(detα)−1 dz,

ĨN
k,η(ω) =

∫
Õη

ξ(z)
(
∇ψ

(
1
N
φ−1(Nz, ω) − k

))T

× (∇φ(φ−1(Nz, ω), ω)
)−1

Aper

(
φ−1(Nz, ω)

) (
p+ ∇wN

0,p(z, ω)
)
dz

and

CN
η (ω) =

∫
Õη\Oη

ξ(z)
(
∇ψ

(
1
N
φ−1(Nz, ω) − k

))T (∇φ(φ−1(Nz, ω), ω)
)−1

×Aper

(
φ−1(Nz, ω)

) (
p+ ∇wN

0,p(z, ω)
)
dz.

We first bound from above CN
η (ω), C∞

η (ω), RN
k,η(ω) and R∞

k,η(ω). As |ξ| ≤ 1, we see that

∣∣CN
η (ω)

∣∣ ≤ ‖∇ψ‖L∞ ‖(∇φ)−1(·, ω)‖L∞ ‖Aper‖L∞

∣∣∣Õη \ Oη

∣∣∣1/2

‖p+ ∇wN
0,p(·, ω)‖L2(Õη\Oη)

≤ C
√
η ‖p+ ∇wN

0,p(·, ω)‖L2(Q̃(ω))
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where, in the second line, we have used (6.8), (6.35) and the fact that Õη \Oη ⊂ Õη ⊂ αQ ⊂ Q̃(ω) (see (6.13)).
Now using (6.20), we deduce that there exists C(ω), independent of η and N , such that

∀N ∈ N
�,

∣∣CN
η (ω)

∣∣ ≤ C(ω)
√
η. (6.38)

We likewise obtain that ∣∣C∞
η (ω)

∣∣ ≤ C(ω)
√
η and

∣∣R∞
k,η(ω)

∣∣ ≤ C(ω)
√
η. (6.39)

Now turning to RN
k,η(ω), we obtain, using similar arguments, that

∣∣RN
k,η(ω)

∣∣ ≤ C
∥∥∥1 1

N φ(QN ,ω) − 1Oη

∥∥∥
L2(Q̃(ω))

∥∥p+ ∇wN
0,p(·, ω)

∥∥
L2(Q̃(ω)) .

Using (6.20), a triangle inequality and (6.35), we deduce that

∣∣RN
k,η(ω)

∣∣ ≤ C(ω)
(∥∥∥1 1

N φ(QN ,ω) − 1αQ

∥∥∥
L2(Q̃(ω))

+
√
η

)
. (6.40)

Recall now that, in view of (6.7), we have

lim
N→∞

∥∥∥1 1
N φ(QN ,ω) − 1αQ

∥∥∥
L2(Q̃(ω))

= 0 a.s. (6.41)

We eventually estimate ĨN
k,η(ω) − Ĩ∞k,η(ω) using the div-curl lemma. The compact Õη being a proper subset of

αQ, we infer from Lemma 6.2 that there exists N0(ω) such that for all N ≥ N0(ω), Õη ⊂ 1
N
φ(QN , ω). We then

deduce from (3.9) that, for any N ≥ N0(ω),

−div
[
Aper

(
φ−1(Nz, ω)

) (
p+ ∇wN

0,p(z, ω)
)]

= 0 in D′
(
Õη

)
. (6.42)

Using (6.21), we can thus apply Theorem 6.1 on the domain Õη, and obtain that

Aper

(
φ−1(Nz, ω)

) (
p+ ∇wN

0,p(z, ω)
)
⇀ A�

(
p+ ∇w∞

0,p(z, ω)
)

weakly in L2
(
Õη

)
. (6.43)

From the proof of Lemme 2.2 of [7] we know that
1
N
φ−1(Nz, ω) strongly converges in L∞

loc(R
d) toward α−1z.

As, by definition, ∇ψ ∈ C∞(Rd), we obtain that

∇ψ
(

1
N
φ−1(Nz, ω) − k

)
→ ∇ψ (α−1z − k

)
strongly in L∞

loc(R
d). (6.44)

Since (∇φ)−1 is stationary, we infer from Lemme 2.2 of [7] that(∇φ(φ−1(Nz, ω), ω)
)−1

⇀ (detα)−1 β weakly-� in L∞(Rd), (6.45)

where the matrix β is defined by (6.17). As Õη is a bounded open set of Rd, we deduce from (6.44) and (6.45)
that(
∇ψ

(
1
N
φ−1(Nz, ω)− k

))T (∇φ (φ−1(Nz, ω), ω
))−1

⇀ (detα)−1
(∇ψ (α−1z − k

))T
β weakly in L2

(
Õη

)
.

(6.46)
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We eventually note that(∇φ(φ−1(Nz, ω), ω)
)−T ∇ψ

(
1
N
φ−1(Nz, ω) − k

)
is curl-free, (6.47)

as this vector is the gradient of ψ
(

1
N
φ−1(Nz, ω) − k

)
. Collecting (6.42), (6.43), (6.46) and (6.47), we are in

position to apply the div-curl lemma, see for instance Lemme 1.1 page 4 of [15]. We thus obtain that

∀η, lim
N→∞

ĨN
k,η(ω) = Ĩ∞k,η(ω) a.s. (6.48)

Collecting (6.36), (6.37), (6.38), (6.39), (6.40), (6.41) and (6.48), we deduce the claim (6.33). This concludes
this Step.

Step 4. Conclusion
Collecting the conclusion of Step 2 and (6.34), we have shown that the function w∞

0,p(·, ω) solves the problem

−div
[
β A�∇w∞

0,p(α·, ω)
]

= 0 in D′(Rd), w∞
0,p (α·, ω) is Q-periodic.

The function g(x, ω) = w∞
0,p (αx, ω) is thus Q-periodic and satisfies

−div
[
β A�α−T∇g(·, ω)

]
= 0 in D′(Rd).

We know from Lemma 6.5 that the matrix β A�α−T is coercive. The above equation has thus a unique solution
(up to the addition of a random constant), hence ∇g ≡ 0, which implies that ∇w∞

0,p ≡ 0. We thus deduce
from (6.43) that

Aper

(
φ−1(N ·, ω)

) (
p+ ∇wN

0,p(·, ω)
)
⇀ A�p as N → ∞, weakly in L2 (Oη). (6.49)

We are now in position to prove the convergence of the approximation described in Section 3.2. We infer
from (3.11) that

[B�
N (ω)]ij = RN

1,η(ω) +RN
2,η(ω), (6.50)

with

RN
1,η(ω) =

∫
Q̃(ω)

(
1 1

N φ(QN ,ω)(x) − 1Oη(x)
)
eT

i Aper

(
φ−1(Nx, ω)

) (
ej + ∇wN

0,ej
(x, ω)

)
dx,

RN
2,η(ω) =

∫
Oη

eT
i Aper

(
φ−1(Nx, ω)

) (
ej + ∇wN

0,ej
(x, ω)

)
dx,

where we have used that Oη ⊂ αQ, (6.12) and (6.13). We deduce from (6.49) that

∀η, lim
N→∞

RN
2,η(ω) = |Oη| [A�]ij a.s.,

hence, in view of (6.35),
lim
η→0

lim
N→∞

RN
2,η(ω) = |αQ| [A�]ij a.s. (6.51)

Turning to RN
1,η(ω), we deduce from (6.20) and (6.35) that∣∣RN

1,η(ω)
∣∣ ≤ C(ω)

∥∥∥1 1
N φ(QN ,ω) − 1Oη

∥∥∥
L2(Q̃(ω))

≤ C(ω)
(∥∥∥1 1

N φ(QN ,ω) − 1αQ

∥∥∥
L2(Q̃(ω))

+
√
η

)
,

hence, in view of (6.41),
lim
η→0

lim
N→∞

RN
1,η(ω) = 0 a.s. (6.52)

Collecting (6.50), (6.51) and (6.52), we obtain

lim
N→∞

[B�
N (ω)]ij = |αQ| A�

ij a.s.

We then deduce from (3.10) the claimed convergence. This concludes the proof of Theorem 3.4.
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6.4. Proof of Lemma 6.5

We first show that
the homogenized matrix A� defined by (2.8) is coercive. (6.53)

For any p ∈ Rd, we indeed have

pTA�p = (detα)−1
E

(∫
φ(Q,·)

pTAper

(
φ−1 (y, ·)) (p+ ∇wp(y, ·)) dy

)

= (detα)−1
E

(∫
φ(Q,·)

(p+ ∇wp(y, ·))T
Aper

(
φ−1 (y, ·)) (p+ ∇wp(y, ·)) dy

)

where the last line is obtained using (3.8) and the arguments presented in the existence, proof of Théorème 1.2
of [7]. The matrix Aper being coercive (see (2.3)), we deduce that there exists C > 0 such that, for any p ∈ R

d,

pTA�p ≥ a−(detα)−1
E

(∫
φ(Q,·)

(p+ ∇wp(y, ·))T (p+ ∇wp(y, ·)) dy

)

≥ C

[
E

(∫
φ(Q,·)

p+ ∇wp(y, ·)
)]2

(Cauchy–Schwarz inequality)

≥ C pT p (using third line of (2.9)).

This proves (6.53).
We now claim that the matrix β defined by (6.17) satisfies

β = detα α−1. (6.54)

This is obvious in dimension d = 1, and also in dimension d = 2, using the explicit formula of the inverse of

a 2 × 2 matrix. In dimension d ≥ 3, we observe that β = E

[∫
Q

adj∇φ
]
, where adj∇φ is the adjugate matrix

(i.e. the transpose of the matrix of cofactors) of ∇φ. Introduce θε(x, ω) = εφ
(x
ε
, ω
)
− εφ (0, ω). We see from

Lemme 2.1 of [7] that the function θε(x, ω) weakly converges to E

[∫
Q

∇φ
]
x in L∞

loc(R
d) a.s. We then deduce

from Corollary 1 of [14] and (6.16) (see also Corollary 6.2.2 of [4] for the specific case d = 3) that adj∇θε weakly

converges to adj E

[∫
Q

∇φ
]
, that is

adj∇φ
(x
ε
, ω
)

weakly converges to adj E

[∫
Q

∇φ
]
. (6.55)

In addition, the matrix ∇φ being stationary, the ergodic theorem implies that

adj∇φ
(x
ε
, ω
)

weakly converges to E

[∫
Q

adj∇φ
]
. (6.56)

Collecting (6.55) and (6.56), we deduce that E

[∫
Q

adj∇φ
]

= adj E

[∫
Q

∇φ
]
, from which we readily infer (6.54).

We are now in position to prove Lemma 6.5. Using (6.54) and (6.53), we indeed see that there exists C > 0
such that, for any p ∈ Rd, we have

pTβA�α−T p = detα pTα−1A�α−T p ≥ CpTα−1α−T p.
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Since detα > 0, we see that the matrix α−1α−T is symmetrix positive definite, which concludes the proof of
Lemma 6.5.

Acknowledgements. We thank Claude Le Bris and Xavier Blanc for stimulating discussions and useful comments on
a preliminary version of this article. We are thankful to Xavier Blanc for pointing out the reference [14], and to the
anonymous referee for his/her comments. This work is partially supported by ONR under Grant N00014-12-1-0383 and
by EOARD under Grant FA8655-13-1-3061.

References

[1] A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization
and the related computational challenges: some recent developments. In vol. 22 of Lect. Not. Ser., edited by W. Bao and Q.
Du. Institute for Mathematical Sciences, National University of Singapore, (2011) 197–272.

[2] G. Bal, J. Garnier, Y. Gu and W. Jing, Corrector theory for elliptic equations with long-range correlated random potential.
Asymptot. Anal. 77 (2012) 123–145.

[3] G. Bal, J. Garnier, S. Motsch and V. Perrier, Random integrals and correctors in homogenization. Asymptot. Anal. 59 (2008)
1–26.

[4] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337–403.

[5] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, vol. 5 of Studi. Math. Appl.
North-Holland Publishing Co., Amsterdam-New York (1978).

[6] P. Billingsley, Convergence of Probability Measures. John Wiley & Sons Inc (1968).

[7] X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques
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