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NON LINEAR SCHEMES FOR THE HEAT EQUATION IN 1D ∗

Bruno Després

Abstract. Inspired by the growing use of non linear discretization techniques for the linear diffusion
equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes
for the heat equation in dimension one. These schemes are inspired by the Le Potier’s trick [C. R. Acad.
Sci. Paris, Ser. I 348 (2010) 691–695]. They preserve the maximum principle and admit a finite volume
formulation. We provide a original functional setting for the analysis of convergence of such methods.
In particular we show that the fourth discrete derivative is bounded in quadratic norm. Finally we
construct, analyze and test a new explicit non linear maximum preserving scheme with third order
convergence: it is optimal on numerical tests.
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1. Introduction

Finite volume schemes are very convenient for complex applications [1, 2, 4, 11, 16, 26]. A very active field
of research is nowadays the development of linear and non linear finite volume methods for the heat equa-
tion [2, 5, 12, 22, 26]. This topic has growing industrial importance in modern numerical techniques for complex
applications. The fundamental problem of the non positivity of numerical discretization of the heat equation
on distorted meshes can be traced back to Kershaw [18] for viscous lagrangian fluid dynamics. See [23] for a
modern reference in the same direction. Monotonicity and control of the oscillations is also stringent for the
computation of a physically sound numerical solution of linear or non linear diffusion equation of radionucleides
in porous media [14]. An important reference is [16] for a benchmark comparison of the monotonicity properties
of many numerical techniques for solving the diffusion equation in any dimension. See also [24]. Anisotropic
diffusion yield the same kind of difficulty [3, 17]. These difficulties inspired Le Potier [9, 19] who designed inge-
nious non linear correction terms to guarantee the maximum principle in any dimension. But to our knowledge
only partial convergence results are available in the literature [5]. For example a compactness technique is used

Keywords and phrases. Finite volume schemes, heat equation, non linear correction.

∗ The author acknowledges the support of ANR under contract ANR-12-BS01-0006-01. Moreover this work was carried out
within the framework of the European Fusion Development Agreement and the French Research Federation for Fusion Studies.
It is supported by the European Communities under the contract of Association between Euratom and CEA. The views and
opinions expressed herein do not necessarily reflect those of the European Commission.
1 LJLL, UPMC, Paris, France.
2 Laboratoire Jacques-Louis Lions University Pierre et Marie Curie Bôıte courrier 187 75252 Paris Cedex 05 France.
despres@ann.jussieu.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2013

http://dx.doi.org/10.1051/m2an/2013096
http://www.esaim-m2an.org
http://www.edpsciences.org


108 B. DESPRÉS

in [9] to prove convergence, but of course without any order of convergence since it is a compactness technique.
Last but not least the control of the maximum principle is fundamental in the analysis of elliptic linear and non
linear partial differential equations [10, 13]. It is therefore highly desirable to extend this principle to discrete
methods for the computation of a numerical solution to these equations.

Motivated by these applications and these new non linear numerical schemes for diffusion and heat equations,
we investigate in this work a framework which provides quantitative orders of convergence for such non linear
methods. At this stage it is worthwhile to make a comparison with the theory of non linear schemes for the
advection equation [15, 21, 25, 28], for a which a beautiful and comprehensive theory based on TVD or TVB
schemes is available in 1D for the advection equation. Such TVD schemes are based on a control of the discrete
L1 norm of the first derivative for TVD and TVB schemes [8, 15, 21]. It provides order of convergence in some
cases [8]. We retain the idea that a control of discrete derivatives has been the key in the past to obtain a
mathematical setting adapted to the analysis of non linear schemes for the advection equation.

Therefore a natural question is to control the norm of some discrete derivatives of non linear schemes for
linear heat equation, more generally to establish a systematic method to obtain bounds on some discrete
derivatives, and at the end to prove convergence. Quoting Droniou–Lepotier [9], this theoretical study is not just
a mathematical amusement since it leads us to an understanding of how to choose the parameters of the method
in order to obtain good approximations of the solution. Even if the ultimate goal is the analysis of 2D schemes
which are used in practical applications, this is for the moment too complicated. This is why we concentrate in
this work on the 1D non stationary situation3.

Our model problem is the non stationary heat equation in dimension one{
∂tu − ∂xxu = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.
(1.1)

We will show how to obtain control of discrete derivatives of non linear schemes using an approach proposed
in [8] which is fundamentally Fourier based. In other words we show how to control some non linear terms
with Fourier linear techniques: this apparent paradox is the cornerstone of this work. The structure of the main
stability estimate is the following: if a certain function of the CFL number ν = Δt

Δx2 which is the product of
three terms is less than one, that is if

Q × α × E(ν) ≤ 1 − ε (1.2)

where Q > 0 is a natural measure of the size of the non linear correction, α ≥ 1 is a constant characteristic of
the Le Potier method (at the end of the analysis one always takes α = 1) and E(ν) is a complicated function of
the CFL number, then one obtains a simple control of the discrete derivatives of order k on which the non linear
correction is based. The function E(ν) is a series and depends on the type of linear scheme that one considers:
typically

E(ν) = ν
∑
l≤L

(1 − 4ν)l2k +
∑

L+1≤l

(
2l

2l + k

)l(
k

ν(2l + k)

) k
2

(1.3)

where L =
[

k
2

(
1
4ν − 1

)]
is a threshold value justified in the core of the paper. This idea comes from [7, 8]. An

important part of the paper will be devoted to obtain sharp estimates for E(ν) and related functions and to
show that the product (1.2) is indeed smaller than 1.

The net result is this work is the design of a new scheme for the heat equation. This finite scheme scheme (3.20)
is based on the Le Potier’s trick and has enhanced approximation properties. It is explicit, non linear, preserves
total mass, is maximum preserving under standard CFL condition: we are able to prove it converges at order 3
towards smooth solutions; the only restriction of our convergence theory is the CFL number which is for the
moment slightly more restrictive than the usual one. Numerical results show this order of convergence is optimal.
A second scheme with similar properties is designed in the appendix.

3With this respect the situation is similar to what is known for advection equation for which the 1D theory is much more
developed than the multiD theory.
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The organization is as follows. We first present the family of high order 1D schemes that we desire to analyze:
we call theses schemes Le Potier or modified (Le Potier’s) schemes. We explain how to use the Le Potier’s trick
to modify the schemes and to insure the maximum principle. After we will derive the fundamental and new
a priori estimates (1.2)–(1.3) on which the convergence results of the final section are based. Numerical results
are used to confirm the theoretical analysis. Some open problems are reviewed at the end.

2. Basic linear schemes

Let Δx > 0 is the mesh size of our finite difference or finite volume discretization method. We will consider
square integrable numerical profiles v = (vj)j∈Z

such that

‖v‖ =

⎛⎝Δx
∑
j∈Z

v2
j

⎞⎠
1
2

. (2.1)

It is convenient to define the space of square integrable numerical profiles

l2 =
{
v ∈ R

Z; ‖v‖ < ∞} (2.2)

equipped with the natural scalar product

(u, v) = Δx
∑
j∈Z

ujvj . (2.3)

We start from the finite volume form of a linear explicit discrete scheme

Δx
uj − uj

Δt
−
(
fj+ 1

2
− fj− 1

2

)
= 0, ∀j ∈ Z, (2.4)

where uj is the current discrete solution in cell j and fj+ 1
2

is the explicit numerical flux evaluated between cells
j and j + 1. Taking

fj+ 1
2

=
uj+1 − uj

Δx
,

one gets the classical three points linear scheme

uj − uj

Δt
− uj+1 − 2uj + uj−1

Δx2
= 0, j ∈ Z.

This scheme is of order 1 in time and 2 in space. The Courant number is ν = Δt
Δx2 · The three points scheme is

stable in l2 (actually it is stable in all discrete Lebesgue spaces) under CFL condition

2ν ≤ 1. (2.5)

This monotone scheme is the fundamental brick for the heat equation with the lowest order of approximation
in dimension one. The following examples display enhanced approximation properties for the heat equation. If
one desires to establish a parallel with linear schemes for the advection equation, the fundamental brick is the
upwind scheme while the Lax–Wendroff scheme which is second order with enhanced approximation properties.

2.1. Example 1

The second scheme that we consider is of order 1 in time and 4 in space. It is based on the observation that

u(xj+1) − 2u(xj) + u(xj−1)
Δx2

= ∂xxu(xj) +
Δx2

12
∂xxxxu(xj) + O

(
Δx4

)
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for smooth functions. Therefore

u(xj+2) − 2u(xj) + u(xj−2)
4Δx2

= ∂xxu(xj) +
Δx2

3
∂xxxxu(xj) + O

(
Δx4

)
.

A linear combination yields

4
3

u(xj+1) − 2u(xj) + u(xj−1)
Δx2

− 1
3

u(xj+2) − 2u(xj) + u(xj−2)
4Δx2

= ∂xxu(xj) + O
(
Δx4

)
.

A similar trick is used in [6]. That’s why we will consider the scheme

uj − uj

Δt
− 4

3
uj+1 − 2uj + uj−1

Δx2
+

1
3

uj+2 − 2uj + uj−2

4Δx2
= 0 (2.6)

which is first order in time and fourth order in space. The corresponding flux is

fj+ 1
2

=
4
3

uj+1 − uj

Δx
− uj+2 + uj+1 − uj − uj−1

12Δx
·

It is convenient for further developments to use a more compact variational formulation. We define the bilinear
form

a(u, v) =
4
3
Δx
∑

j

(uj+1 − uj) (vj+1 − vj)
Δx2

− 1
3
Δx
∑

j

(uj+2 − uj) (vj+2 − vj)
4Δx2

· (2.7)

With these notations the scheme (2.6) restricted to profiles in u, u ∈ l2 can be rewritten under the variational
form (

u − u

Δt
, v

)
+ a(u, v) = 0, ∀v ∈ l2. (2.8)

A classical result is the following.

Proposition 2.1. The symmetric bilinear form (2.7) is non negative.

Proof. One has Δx
∑

j (uj+2 − uj)
2 ≤ 4Δx

∑
j (uj+1 − uj)

2 from which deduce that

a(u, u) ≥ 4Δx

3

∑
j

(uj+1 − uj)
2

Δx2
− Δx

3

∑
j

(uj+1 − uj)
2

Δx2
= Δx

∑
j

(uj+1 − uj)
2

Δx2
≥ 0. (2.9)

An elementary upper bound is

a(u, u) ≤ 16
3Δx2

‖u‖2. (2.10)

�

Lemma 2.2. This scheme is stable in l2 under the CFL condition

16
3

ν ≤ 1. (2.11)

Proof. Take the test function v = u in (2.8). One gets

1
2
‖u‖2 − 1

2
‖u‖2 +

1
2
‖u − u‖2 = −Δta(u, u) = −1

2
Δt a(u, u) − 1

2
Δt a(u, u) +

1
2
Δt a(u − u, u − u).

Since the bilinear form a is non negative one has that

‖u‖2 − ‖u‖2 ≤ Δt a(u − u, u − u) − ‖u − u‖2 ≤
(

16ν

3
− 1
)
‖u − u‖2. (2.12)

The CFL condition guarantees the non positivity of the right hand side. It ends the proof. �
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2.2. Example 2

It is of course tempting to use the modified equation to design a scheme with enhanced consistency in time.
Consider a smooth solution of the heat equation. One has

u(tn+1) − u(tn)
Δt

= ∂tu(tn) +
Δt

2
∂ttu(tn) + O(Δt2) = ∂tu(tn) +

Δt

2
∂(4)

x u(tn) + O(Δt2)

from which we deduce that the scheme

uj − uj

Δt
− 4

3
uj+1 − 2uj + uj−1

Δx2
+

uj+2 − 2uj + uj−2

12Δx2
− Δt

2
uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

Δx4
= 0

is of order 2 in time and 4 in space. We refer to [27] page 43 where the same scheme is introduced mainly for
theoretical purposes. The scheme can also be rewritten under the form

uj − uj

Δt
− uj+1 − 2uj + uj−1

Δx2
+ (1 − 6ν)

uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

12Δx2
= 0.

It admits a variational reformulation: compute u ∈ l2 such that(
u − u

Δt
, v

)
+ b(u, v) = 0, ∀v ∈ l2 (2.13)

where the bilinear form b is a correction of a (defined in (2.7))

b(u, v) = a(u, v) − ν

2
ã(u, v)

with

ã(u, v) = Δx
∑

j

(uj+2 − 2uj+1 + uj) (vj+2 − 2vj+1 + vj)
Δx2

·

We notice that

0 ≤ ã(u, u) ≤ 4Δx
∑

j

(uj+1 − uj)
2

Δx2
·

Therefore one gets using (2.9)

b(u, u) ≥ (1 − 2ν)Δx
∑

j

(uj+1 − uj)
2

Δx2
≥ 0.

Lemma 2.3. The scheme (2.13) is stable in l2 under the CFL condition (2.11).

Proof. Since b(u, u) ≤ a(u, u), the same proof as the one of lemma 2.2 holds. The final stability condition is the
more restrictive one between (2.5) and (2.11). The proof is ended. �

3. Maximum principle and Le Potier’s trick

The schemes (2.6)-(2.8) and (2.13) are high order. Unfortunately they do not preserve the maximum principle
for all ν. For example the explicit formulation of (2.6) is

uj =
(

1 − 5ν

2

)
uj +

4ν

3
(uj+1 + uj−1) − ν

12
(uj+2 + uj−2) . (3.1)
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Since the coefficients of the extreme parts are negative, the scheme cannot be maximum preserving: this is
independent of the CFL condition.

C. Le Potier has proposed in [9,19] a way to introduce a non linear modification so as to recover the maximum
principle in any dimension. It starts from the scheme rewritten under the form

uj − uj = νDivj , Divj = Δx
(
fj+ 1

2
− fj− 1

2

)
.

The neighbors of a cell correspond by definition to non zero coefficient in the explicit stencil: for our example
(3.1) it corresponds to

V(j) = {j − 2, j − 1, j + 1, j + 2} (3.2)

Let us define
Σj =

∑
l∈V(j)

|ul − uj| . (3.3)

We note that Σj ≥ 0 by definition. With this notation, the application of the Le Potier’s trick to the discrete
heat equation is to consider the non linear scheme

uj = uj + νDivj + αν
∑

l∈V(j)

ajl(ul − uj) (3.4)

where α ≥ 0 is a coefficient to be prescribed and the non linear part of the scheme is given by

ajl = alj =
|Divj |

Σj
+

|Divl|
Σl

which is a non linear coefficient.

Remark 3.1. Since the stencil V(j) is large enough, there exists a local constant C > 0 such that |Divj | ≤ CΣj .
So it is always possible to remove the apparent singularity in the previous definition by taking for example

ajl = alj = lim
ε→0+

( |Divj |
Σj + ε

+
|Divl|
Σl + ε

)
·

Anyway what really matters is the continuity of the product ajl(ul−uj) which is straightforward. Such continuity
will be essential in (3.22). In summary we will systematically consider in the rest of this work that ajl is a bounded
quantity even if Σj = 0.

If one compares with TVD schemes for the advection equation, this term is very close to some extended
slope indicator [8, 15, 21, 25, 28]. For example the minmod limiter writes ϕj+ 1

2
= minmod

(
1,

uj−uj−1
uj+1−uj

)
with

corresponding limited Lax–Wendroff flux fj+ 1
2

= 1
2 (1 − ν)(uj+1 − uj)ϕj+ 1

2
. Under this form it is clear that ajl

acts as a limitation on the numerical value of the diffusion flux like ϕj+ 1
2

does on the advection flux.
By convention ajl can be extended by zero

ajl = 0 for l �∈ V(j) ⇐⇒ j �∈ V(l),

so that the non linear scheme (3.4) can be rewritten under the more compact form

uj = uj + νDivj + αν
∑
l∈Z

ajl(ul − uj). (3.5)
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3.1. Stability

The non linear scheme (3.4) inherits the properties of the stationary Le Potier’s schemes [9, 19].

Proposition 3.2. The scheme (3.4) admits the finite volume formulation

Δx
uj − uj

Δt
−
(
f tot

j+ 1
2
− f tot

j− 1
2

)
= 0, ∀j ∈ Z,

where the total flux is the sum of the linear flux plus a non linear correction, that is f tot
j+ 1

2
= fj+ 1

2
+ f cor

j+ 1
2

with

f cor
j+ 1

2
=

α

Δx

∑
l≤j+ 1

2≤m

aml(um − ul), j ∈ Z. (3.6)

Remark 3.3. If l and m are two indices sufficiently far one to the other, then aml = 0. So only a finite number
of terms enter in (3.6).

Proof. The linear part of the flux fj+ 1
2

does not yield any difficulty. Concerning the non linear part one has by
construction

f cor
j+ 1

2
=

α

Δx

∑
j+1≤m

amj(um − uj) +
α

Δx

∑
l≤j−1 and j+1≤m

aml(um − ul).

The first sum is for l = j, the second sum is all other terms. One also has

f cor
j− 1

2
=

α

Δx

∑
l≤j− 1

2≤m

aml(um − ul) =
α

Δx

∑
l≤j−1

ajl(uj − ul) +
α

Δx

∑
l≤j−1 and j+1≤m

aml(um − ul)

where the first sum if for m = j and the second sum is the rest. The difference is therefore

f cor
j+ 1

2
− f cor

j− 1
2

=
α

Δx

∑
j+1≤m

amj(um − uj) − α

Δx

∑
l≤j−1

ajl(uj − ul) =
α

Δx

∑
l∈Z

ajl(ul − uj).

It ends the proof. �

Lemma 3.4. The scheme (3.4) is stable in l2 under CFL condition(
16
3

+ 4α max
j

∑
l

ajl

)
ν ≤ 1.

Proof. We define the bilinear form

atot(u, v) = a(u, v) +
α

Δx
acor(u, v) (3.7)

which is the sum of the classical bilinear form a(u, v) that corresponds to the linear part of the scheme and
which is non negative, and of the additional bilinear form

acor(u, v) = − α

Δx

∑
j

(∑
l

ajl(ul − uj)

)
vj = αΔx

∑
l

∑
j

ajl
ul − uj

Δx

vl − vj

Δx

which corresponds to the non linear coefficients ajl. The equivalent of the stability inequality (2.12) is

‖u‖2 − ‖u‖2 ≤ Δt
(
a +

α

Δx
acor
)

(u − u, u − u) − ‖u − u‖2 ≤
(

16ν

3
+ 4αν max

j

∑
l

ajl − 1

)
‖u − u‖2

which proves the claim. �
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Lemma 3.5. Assume α ≥ 1. Assume the CFL condition⎛⎝ ∑
l∈V(j)

(
(α + εjl)

|Divj |
Σj

+ α
|Divl|

Σl

)⎞⎠ ν ≤ 1 (3.8)

where εjl = ±1 is defined below. Then the scheme (3.4) satisfies the maximum principle.

Remark 3.6. This result provides therefore a setting to obtain, at the discrete level, the maximal principle
which is known to be fundamental at the continuous level for partial differential equations [10, 13].

Proof. Using the evident identity

Divj =
∑

l∈V(j)

Divj |ul − uj|
Σj

one rewrites the explicit scheme (3.5) under the form

uj = uj + ν
∑

l∈V(j)

Divj |ul − uj | + α |Divj | (ul − uj)
Σj

+ αν
∑

l∈V(j)

|Divl|
Σl

(ul − uj).

The key observation is the following

• If Divj(ul − uj) ≥ 0 then we set εjl = 1 so that

Divj |ul − uj| + α |Divj | (ul − uj) = (α + εjl) |Divj | (ul − uj).

• On the other hand if Divj(ul − uj) < 0 then we set εjl = −1 so that

Divj |ul − uj| + α |Divj | (ul − uj) = (α + εjl) |Divj | (ul − uj).

In both cases α + εjl ≥ 0 since α ≥ 1 by hypothesis. Therefore

uj = uj + ν
∑

l∈V(j)

(
(α + εjl)

|Divj |
Σj

+ α
|Divl|

Σl

)
(ul − uj)

=

⎛⎝1 − ν
∑

l∈V(j)

(
(α + εjl)

|Divj |
Σj

+ α
|Divl|

Σl

)⎞⎠uj + ν
∑

l∈V(j)

(
(α + εjl)

|Divj |
Σj

+ α
|Divl|

Σl

)
ul.

It is a convex combination under CFL. It ends the proof. �

Let us consider a simple example in order to figure out the practical impact of (3.8) on the stability criterion.
The worst guess reduces to

Card V(j) × sup
j

|Divj |
Σj

× sup
jl

(|α + εjl| + α) ≤ 1.

We consider the example described in (2.6) which corresponds to

Divj = − 1
12

(uj+2+uj−2)+
4
3
(uj+1+uj−1)− 5

2
uj = − 1

12
(uj+2−uj)+

4
3
(uj+1−uj)+

4
3
(uj−1−uj)− 1

12
(uj−2−uj).

One has the bound |Divj |
Σj

≤ 1
12

+
4
3

+
4
3

+
1
12

=
34
12

·
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So we obtain (
4 × 34

12
× (2α + 1)

)
ν ≤ 1.

It is natural to choose the smallest value of α, that is α = 1. One obtains the (sufficient) CFL condition

34ν ≤ 1.

It is quite a stringent condition in terms of time constraint.

Remark 3.7. In order to optimize the time step restriction, that is to be able to take Δt as large as possible,
we will systematically use α = 1 either in the theory or in the numerics. However we keep it in most of the
analysis to be closer to Le Potier’s notations.

A first natural question is to try to diminish the numerical value of the constant in this CFL condition: it will
be done with the help of modified schemes developed hereafter.

3.2. Modified schemes

In many cases the initial linear scheme can be decomposed in two parts. A first linear part for which the
maximum principle holds and a second linear part which does not naturally respect the maximum principle.
We propose to call “modified schemes” such schemes where only the second part is modified by the seminal Le
Potier’s trick. This procedure which is very natural and has been developed also in [20] is a way to obtain a less
severe CFL constraint, still guaranteeing the maximum principle.

3.3. A first modified scheme

For example the second example (2.6) can be rewritten as

uj = uj + νDiv0
j + νDiv1

j (3.9)

where the first part is defined by

Div0
j =

4
3

(uj+1 − 2uj + uj−1)

and the second part is defined by

Div1
j = −1

3
(uj+2 − 2uj + uj−2) .

The stencil associated to the second part is

V1(j) = {j − 2, j + 2} .

Since the first part Div0
j naturally corresponds to a scheme which satisfies the maximum principle, we need to

modified only the second part. We obtain the scheme

uj = uj + νDiv0
j + νDiv1

j + αν
∑

l∈V1(j)

a1
jl(ul − uj) (3.10)

where α ≥ 0 is a coefficient to be prescribed and a1
jl = a1

lj =

∣∣∣Div1
j

∣∣∣
Σ1

j
+

∣∣∣Div1
l

∣∣∣
Σ1

l
. The quantity Σ1

j is defined in
accordance by

Σ1
j =

∑
l∈V1(j)

|ul − uj | . (3.11)
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3.4. A second modified scheme

However the decomposition (3.9) is not the only one. One can consider

uj = uj + νDiv2
j + νDiv3

j (3.12)

where the first part is now
Div2

j = uj+1 − 2uj + uj−1

and the second part is

Div3
j = − 1

12
(uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2) . (3.13)

The stencil associated to this new second part is the total one

V3(j) = V(j) = {j − 2, j − 1, j + 1, j + 2} .

Since the first part Div2
j satisfies the maximum principle, we need to modified only the second part. We obtain

the scheme
uj = uj + νDiv2

j + νDiv3
j + αν

∑
l∈V3(j)

a3
jl(ul − uj) (3.14)

where α ≥ 0 is a coefficient to be prescribed and

a3
jl = a3

lj =

∣∣Div3
j

∣∣
Σ3

j

+

∣∣Div3
l

∣∣
Σ3

l

·

The quantity Σ3
j is defined by

Σ3
j =

∑
l∈V3(j)

|ul − uj | . (3.15)

3.5. A third modified scheme

Here we perform a more important modification. We start from the decomposition

uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2 = (uj+2 − 3uj+1 + 3uj − uj−1) − (uj+1 − 3uj + 3uj−1 − uj−2).

We define
Σ4

j = |uj+2 − 3uj+1 + 3uj − uj−1| + |uj+1 − 3uj + 3uj−1 − uj−2|

and a4
jl = a4

lj =

∣∣∣Div3
j

∣∣∣
Σ4

j
+

∣∣∣Div3
l

∣∣∣
Σ4

l
for l ∈ {j + 1, j − 1} = V4(j) (otherwise ajl = 0). Let us consider the scheme

uj = uj + νDiv2
j + νDiv3

j +ανa4
j,j+1(uj+2 − 3uj+1 +3uj −uj−1)−ανa4

j,j−1(uj+1 − 3uj +3uj−1 −uj−2). (3.16)

Proposition 3.8. Set α = 1. The scheme (3.16) is of Finite Volume type and satisfies the maximum principle
under the standard CFL condition (2.5).

Proof. We focus the second statement of the claim since the first statement is evident from (3.16). Performing
the same kind of algebra as before we rewrite the second part of the linear flux as follows

Div3
j =

Div3
j |uj+2 − 3uj+1 + 3uj − uj−1|

Σ4
j

+
Div3

j |uj+1 − 3uj + 3uj−1 − uj−2|
Σ4

j

·

Plugging in (3.16) one obtains

uj = uj + νDiv2
j + νw(uj+2 − 3uj+1 + 3uj − uj−1) − νz(uj+1 − 3uj + 3uj−1 − uj−2) (3.17)
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where

w =

(
(α + εj,j+1)

∣∣Div3
j

∣∣
Σ4

j

+ α

∣∣Div3
j+1

∣∣
Σ4

j+1

)
and

z =

(
(α − εj,j−1)

∣∣Div3
j

∣∣
Σ4

j

+ α

∣∣Div3
j−1

∣∣
Σ4

j−1

)
·

Here

εj,j+1 =

{
+1 if Div3

j (uj+2 − 3uj+1 + 3uj − uj−1) > 0,

−1 if Div3
j (uj+2 − 3uj+1 + 3uj − uj−1) ≤ 0,

and

εj,j−1 =

{
+1 if Div3

j (uj+1 − 3uj + 3uj−1 − uj−2) > 0,

−1 if Div3
j (uj+1 − 3uj + 3uj−1 − uj−2) ≤ 0.

By construction
∣∣Div3

j

∣∣ ≤ 1
12Σ4

j for all j, so w, z ≤ 1
4 . The expansion of formula (3.17) is

uj = (1 − 2ν + 3νw + 3νz)uj + ν (1 − 3w − z)uj+1 + ν (1 − w − 3z)uj−1 + νwuj+2 + νzuj−2 (3.18)

from which the result is deduced since all weights are non negative under CFL 2ν ≤ 1: that is 1−2ν+3νw+3νz ≥
0, 1 − 3w − z ≥ 0, 1 − w − 3z, νw ≥ 0 and νz ≥ 0. �

3.6. Second order in time

The second order in time scheme (2.13) admits the explicit form

uj = uj + νDiv2
j + (1 − 6ν)νDiv3

j (3.19)

which is very close to (3.12). So it is easy to modify (3.16) which becomes

uj = uj + νDiv2
j + (1 − 6ν)νDiv3

j (3.20)

+α|1 − 6ν|νa4
j,j+1(uj+2 − 3uj+2 + 3uj − uj−1) − α|1 − 6ν|νa4

j,j−1(uj+1 − 3uj + 3uj−1 − uj−2).

Proposition 3.9. Assume 6ν ≤ 1. The scheme (3.20) satisfies the maximum principle under the standard CFL
condition (2.5).

Proof. Change w (resp. z) in |1 − 6ν|w (resp. |1 − 6ν|z) in (3.18). �

3.7. General formulation

Motivated by the previous examples, we will study the following family of modified schemes

uj = uj + νDivj + ανgj (3.21)

where Divj is a given linear stencil and
gj =

∑
l

ajl(ul − uj)

is the non linear correction such that ajl vanishes for |j − l| large enough. We introduce natural notations.

• T is the translation operator, that is
(Tu)j = uj+1, u ∈ l2.
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• D is the difference operator, that is
D = T − I.

• We note for convenience the operator A ∈ L(l2) such that

(Au)j = −Divj , ∀u ∈ l2.

It has already been stressed in Remark 3.1 that the non linear correction is defined in a continuous manner.
The continuity constant defined below plays an important role in the analysis developed in this work.

Definition 3.10. Let k ∈ N
� be an integer naturally defined by the scheme. Throughout this paper, the

continuity constant of g with respect to Dku will be denoted by Q > 0, that is

‖g‖ ≤ Q‖Dku‖. (3.22)

For example let us consider the scheme (3.16) for which the source g = (gj) ∈ l2 is defined by

gj = a4
j,j+1(uj+2 − 3uj+1 + 3uj − uj−1) − a4

j,j−1(uj+1 − 3uj + 3uj−1 − uj−2) (3.23)

Proposition 3.11. The source of the scheme (3.16) is such that ‖g‖ ≤ 1+
√

2
12 ‖D4u‖, that is Q = 1+

√
2

12 and
k = 4.

Proof. We first notice that ‖A3u‖ ≤ 1
12‖D4u‖ where we have used natural notations compatible with (3.16). It

remains to compute the continuity constant of g with respect to A3u. One has the decomposition gj = hj +kj +lj
with

hj =
(uj+2 − 3uj+1 + 3uj − uj−1) − (uj+1 − 3uj + 3uj−1 − uj−2)

Σ4
j

∣∣Div3
j

∣∣ ,
kj =

uj+2 − 3uj+1 + 3uj − uj−1

Σ4
j+1

∣∣Div3
j+1

∣∣
and

lj =
uj+1 − 3uj + 3uj−1 − uj−2

Σ4
j−1

∣∣Div3
j−1

∣∣ .
Since |hj | ≤ |Div3

j |, then ‖h‖ ≤ ‖A3u‖. One the other hand one has that |kj | ≤ αj+1|Div3
j+1| and |lj | ≤

βj−1|Div3
j−1| where the coefficients

αj+1 =
|uj+2 − 3uj+1 + 3uj − uj−1|

Σ4
j+1

and βj−1 =
|uj+1 − 3uj + 3uj−1 − uj−2|

Σ4
j−1

are the ones of a convex combination in the sense

0 ≤ αj , βj and αj + βj = 1 ∀j.

So
‖k + l‖2 ≤ Δx

∑
j

(
αj+1|Div3

j+1| + βj−1|Div3
j−1|
)2

≤ Δx
∑

j

2α2
j+1|Div3

j+1|2 + Δx
∑

j

2β2
j−1|Div3

j−1|2

≤ 2Δx
∑

j

(
α2

j + β2
j

) |Div3
j |2 ≤ 2Δx

∑
j

|Div3
j |2.

Therefore ‖k + l‖ ≤ √
2‖A3u‖ from which the result is deduced. �
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Proposition 3.12. The source of the scheme (3.20) is such that

‖g‖ ≤ 1 +
√

2
12

|1 − 6ν|‖D4u‖,

that is Q = 1+
√

2
12 |1 − 6ν| and k = 4.

Proof. Evident from previous proposition and definition (3.20). The |1− 6ν| is because we use the second order
in time scheme. �

Due to the fact that non linear corrections may be rewritten under a finite volume form as stated in Propo-
sition 3.2, there exists s such that

g = Ds. (3.24)

For all schemes finite volume considered in this work, the continuity estimate (3.22) is also true for s. There
exists Q̃ > 0 such that

‖s‖ ≤ Q̃‖Dku‖. (3.25)

The continuity s with respect to Dku will also be of interest for the final convergence result. Nevertheless
an important difference between (3.22) and and (3.25) is that the exact value of Q̃ has no influence on the
following convergence theory. This is why the verification of (3.25) can be a little simplified with respect to the
one of (3.22).

Let us first detail the principle which is behind (3.25) and is merely a corollary of formula (3.6). By comparison
of (3.21) and (3.22) one has that

ανgj =
Δt

Δx

(
f cor

j+ 1
2
− f cor

j− 1
2

)
which means using (3.6) that g = Ds with sj =

∑
l≤j− 1

2≤m aml(um − ul) where the sum is over a finite number
of terms. One gets

|sj | ≤
∑

l≤j− 1
2≤m

aml|um − ul|.

Since the continuity of g with respect to Dku is necessarily obtained through bounds for these terms aml|um−ul|,
the inequality (3.22) can be adapted to obtain (3.25). This general principle can be extended to the fourth order
schemes (3.16) and (3.20).

Proposition 3.13. The schemes (3.16) and (3.20) are such that g = Ds with

‖s‖ ≤ Q̃‖D4u‖ (3.26)

for some continuity constant Q̃ ∈ R
∗.

Proof. Concerning the first scheme, the formula (3.16) which is difference between two terms evidently implies

sj = a4
j,j−1(uj+1 − 3uj + 3uj−1 − uj−2)

=
uj+1 − 3uj + 3uj−1 − uj−2

Σ4
j

∣∣Div3
j

∣∣+ uj+1 − 3uj + 3uj−1 − uj−2

Σ4
j−1

∣∣Div3
j−1

∣∣ .
Therefore |sj| ≤

∣∣Div3
j

∣∣ + ∣∣Div3
j−1

∣∣ which yields ‖s‖ ≤ 2‖Div3
j‖ ≤ 1

6‖D4u‖ where we have used (3.13): that is
Q̃ = 1

6 .
The scheme (3.20) is obtained from (3.16) after multiplication of the correction terms by the factor 1 − 6ν.

In this case the inequality becomes ‖s‖ ≤ |1−6ν|
6 ‖D4u‖. The proof is ended. �
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Remark 3.14. Before going further it is fundamental to make a remark about the integer k. All non linear
corrections considered in this work are also continuously controlled by Dk0u with k0 = 1. See for example (3.14)
where the non linear term is a3

jl(ul −uj). Since
∣∣∣a3

jl

∣∣∣ is bounded by construction, the non linear term is bounded
by the norm of the first discrete derivative: that is ‖g‖ ≤ C‖Du‖ for some C > 0. However this case is useless
in the context of this work because we will use contractivity arguments which are true only for k > 2, see
Proposition 4.3 and Remark 4.4. In some sense it rules out the possibility to treat such non linear schemes in
the TVD context, as pursued in [5].

4. Estimates

With the above notations and definition, any of the previous schemes can be rewritten as

u = (I − νA)u + ανg.

The Duhamel’s formula can be used to express the solution at time step n in function of the initial solution and
the correction

un = (I − νA)n
u0 + αν

n−1∑
p=0

(I − νA)n−1−p
gp. (4.1)

It shows that the solution at time step nΔt is the sum of the standard discrete solution plus a contribution
due the corrections. Our goal is to show that the global correction is small in some norm. Before we need some
a priori estimates on the gps. These estimates will be obtained using a control of the non linear part of the
Duhamel’s formula by the linear part.

By application of the operator Dk to the Duhamel formula (4.1) and use of the commutativity DA = AD,
one gets the identity

Dkun = (I − νA)n
Dku0 + αν

n−1∑
p=0

(I − νA)n−1−p
Dkgp. (4.2)

Using the continuity of gp with respect to Dkup, it yields the estimate

∥∥Dkun
∥∥ ≤ ∥∥(I − νA)n

Dku0
∥∥+ Qαν

n−1∑
p=0

∥∥∥(I − νA)n−1−p
Dk
∥∥∥∥∥Dkup

∥∥ .

A fundamental property is the following.

Proposition 4.1. Assume l2 contractivity of the linear part of the scheme. Assume there exists ε > 0 such that

Qαν

∞∑
l=0

∥∥∥(I − νA)l
Dk
∥∥∥ ≤ 1 − ε. (4.3)

Then one has the stability estimate

sup
n∈N

∥∥Dkun
∥∥ ≤ 1

ε

∥∥Dku0
∥∥ ∀u0 ∈ l2.

Remark 4.2. The dissipativity of the scheme insures that liml→∞ ‖ (I − νA)l
Dk‖ = 0 this property has been

used in [7,8] to study non linear schemes for the transport equation. In this study, the dissipativity of the semi-
group (I − νA)l is much stronger since it is a fundamental property of the heat equation. This dissipativity is
essential to obtain a control of the non linear part of the Duhamel’s formula.
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Proof. The l2 contractivity is in our case equivalent to the stability in l2 with a stability constant equal to 1,
that is ‖(I − νA)l‖ ≤ 1 for all l ∈ N. Let us define ZN = supn≤N ‖Dkun‖ which satisfies the estimate

ZN ≤ ‖Dku0‖ +

(
Qαν

N−1∑
p=0

‖ (I − ΔtA)n−1−p
Dk‖

)
ZN−1.

It turns into ZN ≤ ‖Dku0‖ + (1 − ε)ZN which shows that ZN ≤ 1
ε‖Dku0‖. Since it is true for all N , it shows

the claim. �

For convenience we define the generic function

F (ν) = Qν

∞∑
l=0

‖ (I − νA)l
Dk‖. (4.4)

Since α = 1 is used to guarantee the maximum property of the schemes, the criterion that we study is ultimately

F (ν) < 1.

We will now study the function F for the different operators A and different ks. The estimates developed
below are used to prove this estimate. The interested reader can jump first to Figure 4 where some numerical
evaluations of these functions are displayed and then go back to the theory of the next section. The main
message of Figure 4 is that the condition F (ν) < 1 is naturally satisfied.

4.1. Basic operator

Some of the justifications of the bounds used hereafter for general operators A are greatly simplified if one
can first prove (4.3) with

A1 = −T + 2I − T−1. (4.5)

For a given k, the Fourier symbol of (I − νA1)
l
Dk is

λl(θ) =
(
1 + ν(eiθ − 2 + e−iθ)

)l (
eiθ − 1

)k
, θ ∈ R.

One has that

|λl(θ)| =
∣∣∣∣1 − 4ν sin2 θ

2

∣∣∣∣l ∣∣∣∣2 sin
θ

2

∣∣∣∣k ·
We assume

4ν ≤ 1 (4.6)

which is twice more restrictive than (2.5). It will simplify a lot the analysis and is not a real restriction. We
perform the change of variable y =

∣∣2 sin θ
2

∣∣. Let us define the function

fν
l (y) = (1 − νy2)lyk

so that
‖(I − νA1)lDk‖ = max

0≤y≤2
fν

l (y). (4.7)

Let us set
μl(ν) = max

0≤y≤2
fν

l (y) l ∈ N.

We finally define

E1(ν) = ν

∞∑
l=0

μl(ν).
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Proposition 4.3. Assume k < 2. Then E1(ν) = +∞.

Proof. Note that μl, E1, . . . can be studied for real positive k as well, not only integer values. By definition
μl(ν) ≥ fν

l (z) for any z ∈ [0, 2]. So

E1(ν) ≥ ν

∞∑
l=0

(1 − νz2)lzk = zk−2 ∀z ∈ [0, 2].

If k < 2 the right hand side is singular for z = 0. It ends the proof. �

Remark 4.4. It will be showed hereafter that k = 2 is also singular. So it must be understood that k > 2 in
the rest of the paper.

Elementary properties of fν
l and μl(ν) are the following: one has

fν
l+1(y) ≤ fν

l (y), 0 ≤ y ≤ 2

and
d
dν

fν
l (y) ≤ 0, 0 ≤ y ≤ 2.

Therefore
μl+1(ν) ≤ μl(ν) ∀l ∈ N.

Next we study the function fν
l . One has

d
dy

fν
l (y) = −2lνy(1− νy2)l−1yk + k(1 − νy2)lyk−1 = (1 − νy2)l−1yk−1

(−2lνy2 + k − kνy2
)
.

We define
y2

l =
k

ν(2l + k)

so that fν
l increases from y = 0 to yl, then decreases from yl to

(
1
ν

) 1
2 . We note that

0 ≤ · · · ≤ y2
l+1 ≤ y2

l ≤ · · · ≤ y2
0 =

1
ν

and that 4 ≤ 1
ν due to the CFL condition (4.6). So

• Either yl < 2 and

μl(ν) = fν
l (yl) =

(
2l

2l + k

)l(
k

ν(2l + k)

) k
2

·

• Or yl ≥ 2 and
μl(ν) = fν

l (2) = (1 − 4ν)l2k.

The transition is for L(ν) such that

k

ν(2(L(ν) + 1) + k)
< 4 ≤ k

ν(2L(ν) + k)

that is
k

2

(
1
4ν

− 1
)
− 1 < L(ν) ≤ k

2

(
1
4ν

− 1
)

(4.8)

which means that

L(ν) =
[
k

2

(
1
4ν

− 1
)]

·
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Proposition 4.5. Assuming k > 2, one has the bound E1(ν) ≤ h(ν) with

h(ν) = 2k−2
(
1 − (1 − 4ν)

k
8ν

)
+ λk(ν)

(
2k−2k

k − 2
+ ν2k

)
. (4.9)

where

λk(ν) =

(
2
[

k
2

(
1
4ν − 1

)]
+ 2

2
[

k
2

(
1
4ν − 1

)]
+ 2 + k

)[ k
2 ( 1

4ν −1)]+1

.

The proof which is only technical is postponed in the appendix.

Remark 4.6. It can be checked this estimate is sharp for small ν. In particular one has that the limit value in
0+ is given by E1(ν) = h(0) and

h(0) =
2k

4
+ e−

k
2

2k−1

k − 2
· (4.10)

Indeed the first term admits the limit value (1 − 4ν)
k
8ν tends to e−

k
2 when ν vanishes. Concerning the second

term one noticed that λk(ν) =
(

2(L+1)
2(L+1)+k

)L+1

with L → ∞ in the regime ν → 0+. Therefore λk(0+) = e−
k
2 by

continuity: it yields (4.10). This numerical value can be checked in the numerical Figure 3.

Remark 4.7. The same proof shows that E1(ν) = +∞ for k = 2, because Z2 (see below) diverges.

4.2. Fourth order operator

Next we consider the operator

A2 = −T + 2I − T−1 +
1
12
(
T 2 − 4T + 6I − 4T−1 + T−2

)
(4.11)

which corresponds to the scheme (2.8) or (3.1). For a given k, the Fourier symbol of (I − νA2)
l
Dk is

λl(θ) =
(

1 + ν(eiθ − 2 + e−iθ) − 1
12

ν
(
e2iθ − 4eiθ + 6 − 4e−iθ + e−2iθ

))l

× (eiθ − 1
)k

.

One has that

|λl(θ)| =
∣∣∣∣1 − 4ν sin2 θ

2
− 4

3
ν sin4 θ

2

∣∣∣∣l ∣∣∣∣2 sin
θ

2

∣∣∣∣k ·
The method of analysis is very similar to the previous one. We assume for simplicity of the analysis that

16
3

ν ≤ 1. (4.12)

Let us define the function
gν

l (y) = (1 − νy2 − 1
12

νy4)lyk, y = 2| sin θ

2
|,

so that
‖(I − νA2)lDk‖ = max

0≤y≤2
gν

l (y). (4.13)

Let us set
σl(ν) = max

0≤y≤2
gν

l (y)

together with

E2(ν) = ν

∞∑
l=0

σl(ν).
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Proposition 4.8. Assume the CFL condition (4.12). Then

• σl(ν) ≤ μl(ν) for all l: it yields E2 ≤ E1 and

E2 ∈ L∞
[
0,

3
16

]
·

• σl+1(ν) ≤ σl(ν) for all l.

Proof. Evident since gν
l (y) ≤ fν

l (y) for 16
3 ν ≤ 1. �

The extremal point of gl is zl such that g′l(zl) = 0. That is

(2l + k)z2
l +
(

k

12
+

l

3

)
z4

l =
k

ν
·

One sees of course that zl ≤ yl. The solution is

z2
l =

−(2l + k) +
√

(2l + k)2 + 4
(

k
12 + l

3

)
k
ν

2
(

k
12 + l

3

) ,

or also in the conjugate form

z2
l =

2k
ν

(2l + k)z +
√

(2l + k)2 + 4
(

k
12 + l

3

)
k
ν

·

The value of σl(ν) is as follows

• Either zl < 2 so

σl(ν) =
(

1 − νz2
l − 4

3
νz4

l

)l

zk
l .

• Or nl ≥ 2 and

σl(ν) = gν
l (2) =

(
1 − 16

3
ν

)l

2k·

The transition is the largest M such that

(2l + k)z2
M +

(
k

12
+

l

3

)
z4

M <
k

ν
·

Therefore

E2(ν) =
∑
l≤M

(
1 − 16

3
ν

)l

2k +
∑

M+1≤l

(
1 − νz2

l − 4
3
νz4

l

)l

zk
l . (4.14)

4.3. Full fourth order operator

Finally we consider the Fourier symbol of (I − νA3)
l
Dk of the operator

A3 = −T + 2I − T−1 +
1 − 6ν

12
(
T 2 − 4T + 6I − 4T−1 + T−2

)
(4.15)

which corresponds to the second order in time and fourth order in space linear scheme. The scheme is full fourth
order in the sense that second order in time corresponds to fourth order in space under CFL condition 6ν ≤ 1.
We define the function

E3(ν) = ν|1 − 6ν|
∞∑

l=0

‖(I − νA3)lDk‖.
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Figure 1. Numerical illustration of the bounds h ≤ p ≤ q on the interval ν ∈ [0 : 1
6 ].

Using the same method as before, it can be checked that

E3(ν) = ν|1 − 6ν|
∑
l≤N

(
1 −
(

4 +
4
3
(1 − 6ν)

)
ν

)l

2k + ν|1 − 6ν|
∑

N+1≤l

(
1 − νw2

l − 4
3
ν(1 − 6ν)w4

l

)l

wk
l

where the extremal point of the function y → hν
l (y) =

(
1 − νy2 − (1−6ν)

12 νy4
)l

yk is

w2
l =

2k
ν

(2l + k) +
√

(2l + k)2 + 4
(

k
12 + l

3

)
k
ν (1 − 6ν)

·

The transition is the largest N such that

(2l + k)w2
N +

(
k

12
+

l

3

)
(1 − 6ν)w4

N <
k

ν
·

Since hν
l (y) ≤ fν

l (y) one has that
E3(ν) ≤ |1 − 6ν|E1(ν). (4.16)

4.4. Application to the scheme (3.16)

In the following we apply the various inequalities to the case k = 4 and Q = 1+
√

2
12 |1 − 6ν| which allowed a

complete analysis of the scheme (3.20) (see also proposition 3.12). Our first task is to show that F3(ν) = QE3(ν)
is such that F3 < 1 so that the stability bound ‖D4up‖ ≤ C‖D4u0‖ ∀p holds from proposition (4.1). This will
be performed with a series of elementary bounds for three functions h, p and q. These bounds h ≤ p ≤ q are
illustrated on Figure 1, on which one sees that the three functions have the same continuous limit 4 + 4e−2 at
ν = 0.

Proposition 4.9. Assume k = 4 and ν ≤ 1
6 . Then the function h defined in (4.9) is such that h ≤ p where

p(ν) = 4
(
1 − (1 − 4ν)

1
2ν

)
+ (1 − 4ν)

1
2ν −2(8 + 16ν).

Proof. The function h is the sum of two terms. Concerning the first term we notice that our hypotheses imply
that k

8ν = 1
2ν . So

2k−2
(
1 − (1 − 4ν)

k
8ν

)
= 4
(
1 − (1 − 4ν)

1
2ν

)
·
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Figure 2. Plot of 1+
√

2
12 (1 − 6ν)q(ν) in the range ν ∈ [0, 1

6 ]. The function is monotone decreasing.

Concerning the second contribution, we notice that the value of the function λk(ν) can be expressed as λk(ν) =(
x

x+u

)x

≡ v(x) with x =
[

k
2

(
1
4ν − 1

)]
+ 1 and u = k

2 . It is immediate to check that v is a decreasing function

for positive x. Since x ≥ y ≡ k
2

(
1
4ν − 1

)
, it yields

λk(ν) = v(x) ≤ v(y) =

(
k
(

1
4ν − 1

)
k
(

1
4ν − 1

)
+ k

) k
2 ( 1

4ν −1)
.

With k = 4 it turns into λ4(ν) ≤ (1 − 4ν)
1
2ν −2 from the result is deduced after summation of the two

contributions. �

Proposition 4.10. One has p ≤ q with

q(ν) = 4 + 4e−2(1 + 24ν)(1 + 12ν), ν ≤ 1
6
·

Proof. One first has that
(1 − 4ν)

1
2ν −2 = e

2
y (1−y) ln(1−y), y = 4ν.

Since y = 4ν ≤ 1 one has immediately (1 − y) ln(1 − y) ≤ (1 − y)(−y) = −y + y2: so

(1 − 4ν)
1
2ν −2 ≤ e−2+2y = e−2+8ν .

Therefore
p(ν) = 4 + (1 − 4ν)

1
2ν −2

(
8 + 16ν − 4(1 − 4ν)2

)
= 4 + (1 − 4ν)

1
2ν −2

(
4 + 48ν − 64ν2

) ≤ 4 + (1 − 4ν)
1
2ν −2 (4 + 48ν) ≤ 4 + 4e−2e8ν(1 + 12ν).

On the interval [0, 1
6 ], one has that e8ν ≤ 1 + 24ν which is easy to show by convexity. �

Proposition 4.11. On the interval [0, 1
6 ], the function (1 − 6ν)q(ν) decays from 4 + 4e−2 until 0.

Proof. For such a simple function, we consider that a plot (with gnuplot) is enough. We refer to Figure 2.
�
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Lemma 4.12. Assume 6ν ≤ 1. The function F3 associated to the scheme (3.16) is such that

F3(ν) ≤ 1 +
√

2
12

(
4 + 4e−2

) ≈ 0.91 . . .

As a consequence the fourth order discrete derivative of the numerical solution is bounded uniformly with respect
to the iteration number n and to the CFL number ν: there exists C > 0 such that

‖D4un‖ ≤ C‖D4u0‖ n ∈ N.

Remark 4.13. The constant is C ≈ 1
1−0.91... ≤ 1

0.08 = 12.5. See the fundamental proposition 4.1.

Proof. By construction

F3(ν) = QE3(ν) ≤ Q(1 − 6ν)E1(ν) ≤ Q(1 − 6ν)q(ν) ≤ Qq(0) =
1 +

√
2

12
(
4 + 4e−2

)
.

Numerical application show that

1 +
√

2
12

(
4 + 4e−2

) ≈ 0.913647 · · · < 1.

Therefore F3 < 1 over the range ν ∈ [0, 1
6

]
. See also the plot in Figure 4. �

5. Convergence

First we consider any scheme (4.1) such that an estimate on the norm of gp can be obtained. And after we
particularize the estimates for the scheme (3.20) and obtain the main convergence result of this work.

Let us go back to the Duhamel formula (4.1) and consider the reminder

R = ν

n−1∑
p=0

(I − νA)n−1−p
gp, A = A1, A2 or A3.

As explained previously in proposition 3.13, the non linear corrections can be rewritten under the finite volume
form gp = Dsp with the continuity estimate ‖sp‖ ≤ Q̃‖Dku‖. So one can write

R = ν
n−1∑
p=0

(
(I − νA)n−1−p D

)
sp.

Using moreover that gν
l ≤ fν

l (resp. hν
l ≤ fν

l ) for all k, one can upper bound using A1 whatever A and gets

‖R‖ ≤ Q̃

(
ν

n−1∑
p=0

‖(I − νA)n−1−pD‖
)
‖Dku0‖ ≤ Q̃

⎛⎜⎜⎜⎜⎜⎝ν
n−1∑
p=0

‖(I − νA1)n−1−pD‖︸ ︷︷ ︸
=Qn

⎞⎟⎟⎟⎟⎟⎠ ‖Dku0‖.

Proposition 5.1. Let T > 0. Using the previous assumptions, there exists C3 > 0 such that

‖Qn‖ ≤ C3

Δx
, nΔt ≤ T.
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Proof. The term between parenthesis is very similar to the series analyzed previously, but here k = 1 so that
the infinite series cannot converge, see proposition 4.3. In order to bound this term we consider the truncated
series

Qn ≤ ν

T
Δt∑
l=0

μl(ν).

Using (A.1) one gets

Qn ≤ ν
∑
l≤L

(1 − 4ν)l2

︸ ︷︷ ︸
=Z1

+ν

T
Δt∑

L+1≤n

(
2l

2l + 1

)l( 1
ν(2l + 1)

) 1
2

︸ ︷︷ ︸
=Z2

, L =
[
1
2

(
1
4ν

− 1
)]

·

As before the first term is bounded since an elementary summation yields νZ1 ≤ ν 2
4ν = 1

2 . The second term is
bounded by exactly the same method as in the proof of (4.9). The only but essential difference is the sum H
which becomes now

H ′ = ν
∑

ν(L+2)≤xl≤ν T
Δt

(
1

2xl + ν

) 1
2

·

We obtain H ′ ≤ ∫ ν T
Δt

1
8− ν

2

dx

(2x+ν)
1
2

(= I). For small Δt the integral diverges like

I ≈ C

√
ν

T

Δt
≤ C′(T )

Δx
(5.1)

thanks to the CFL condition. It ends the proof. �
Remark 5.2. Inequality (5.1) can be obtained directly from the fundamental inequality derived in [7, 8].

Let ΠΔx be the point-wise projector of a smooth function onto the mesh grid. Take the initial data as u0 =
ΠΔxu(0).

Theorem 5.3. Consider the scheme (3.20). Assume u0 ∈ H4(R). Assume the CFL condition 6ν ≤ 1. Let
T > 0. Then there exists a constant C > 0 such that

‖un − ΠΔxu(nΔt)‖ ≤ CΔx3|u0|H4(R), ∀n, nΔt ≤ T. (5.2)

Proof. In this case k = 4. It is an easy matter to show that the regularity assumption implies

‖D4u0‖ ≤ c′′|u0|H4(R)Δx4.

Therefore ‖R‖ ≤ K|u0|H4(R)Δx4−1 = K|u0|H4(R)Δx3. On the other hand the linear part of the scheme is fourth
order in space and second order in time. Therefore

‖(I − νA)nu0 − ΠΔxu(nΔt)‖ ≤ CΔx4|u0|H4(R).

Since un = (I − νA)nu0 + R, the triangular inequality shows the result. �

This theorem can be adapted to take into account the others Le Potier or modified schemes considered in
this work. In particular the curve F2 in Figure 4 is under threshold 1. So the schemes (3.16) also converges at
order 3.

Remark 5.4. A case of interest is the scheme (3.14) for which one can prove that Q = 1
4 and q = 4. A proof is

given in the appendix. Considering the curves F2 and F3 of Figure 4 that are normalized for Q = 1+
√

2
12 , one can

apply a correction factor λ = 4
1+

√
2
≈ 1.24 . . . One gets that F̃3 = λF3 < 1 for all ν, and that F̃2 = λF2 < 1 for

ν < .15 approximatively. On this range it yields a control of the fourth order discrete derivative, and therefore
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Figure 3. The constant E1,2,3 for three different set of parameters.

a proof of convergence at order three if one considers the use of the non linear correction (3.14) with the 1− 6ν
term.

Remark 5.5. The curve F3 is smaller than the limit value in a range [0, C[ where the constant C > 1
6 can be

identified with numerical experiments. We infer that the scheme converges at order 3 in this larger range also.

Remark 5.6. The main open problem is the adaptation of such theorem of convergence in dimension two and
greater. This is fully open problem.

6. Numerical tests

We perform simple numerical tests to assess the properties of the numerical schemes developed in this work.

6.1. Functions E and F

In Figure 3 we plot the numerical value of E1(ν) = ν
∑106

l=0 μl(ν), E2(ν) = ν
∑106

l=0 νl(ν) and E3(ν) =

ν|1−6ν|∑106

l=0 σl(ν). We observe that these quantities are pretty constant, less than 6 for ν ≤ 1
4 . The computed

value E1(0) is very close to the exact value ≈ 4 + 4e−2 ≈ 4.5413 . . . Next in Figure 4 we plot

Fi =
1 +

√
2

12
Ei, i = 1, 2, 3.

We observe that F2 < 1 and F3 < 1 for ν ≤ 1
4 . On the other hand F1 < 1 is true only for approximatively

ν ≤ .18. By inspection of the graphics, it is clear that the function F3 is decreasing and bounded as stated in
lemma 4.12.

6.2. Stability test

We consider the numerical solution of the heat equation on a 10 cells mesh. The initial data is a discrete Dirac
mass. Such initial profiles are very convenient to illustrate the maximum principle. We observe in Figure 5 that
the two fourth order in space linear schemes do not preserve the maximum principle. The three points scheme
and the new third order non linear scheme preserve it.

6.3. Accuracy test

We solve the heat equation on the interval [0, 1] with periodic boundary conditions. The initial data is
u0(x) = cos(2πx) so that the exact solution is u(t) = e−4π2tu0. We measure in Table 1 and Figure 6 the relative
error in l2 norm at time t = 0.1 in function of the number of cells. As predicted by the theory, the modified
scheme based on a the second order in time and fourth order in space scheme converges at order 3.
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Figure 4. The functions F1,2,3 for three different set of parameters. F1(ν) = 1+
√

2
12 E1(ν) is

for theoretical understanding. F2(ν) = 1+
√

2
12 E2(ν) corresponds to the scheme (3.16). F3(ν) =

1+
√

2
12 E3(ν) corresponds to the scheme (3.20). What is important is to be under the threshold 1

(in bold).
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Discrete solution at first iteration Zoom

Figure 5. Numerical solution calculated by the four different schemes defined in Table 1: one
iteration. One sees that the three points schemes and the modified scheme satisfy the maximum
principle. The two fourth order in space schemes do not.

Table 1. Error in function of the mesh size for the four different schemes: S1= second order
in space and first order in time; S2= fourth order in space and first order in time; S3= fourth
order in space and second order in time; S4= S3+non linear correction.

cells S1 S2 S3 S4

10 0.051417 0.075126 0.0027395 0.02549113

20 0.012956 0.019319 0.0001710 0.00286890

40 0.003247 0.004863 0.00001068 0.00034257

80 0.000811 0.001217 0.0000006676 0.00004171

160 0.000202 0.000304 0.00000004172 0.00000515
Order ≈ 2 ≈2 ≈4 ≈3
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Figure 6. Error of the different schemes with respect to the number of cells (10, 20, 40, 80,
160). Log-scaled. Same as Table 1.

7. Open problems

We conclude with a short review of open problems, for which a positive answer would have great interest for
practical computations.

Firstly it is natural to try to extend this work to stationary diffusion, at least because most non stationary
diffusion problems are solved by a series of stationary implicit problems. What can be expected is to transform
the condition (4.3) under the form of a contraction estimate for a non linear system of algebraic equations.
Once such contraction argument is obtained, a fixed point argument proves the well posedness of the non linear
stationary equation. It could be an improvement over more involved Brouwer type theorems.

The design of limited schemes at higher order, for example the initial linear schema at order 6 and the limited
non linear scheme at order 5, is fully open.

Multidimensional estimates of convergence are of course much more involved since Fourier type techniques
cannot work on general unstructured meshes. In the same vein, it will be necessary to develop new ideas or
techniques to be able to get quantitative estimates of convergence for linear anisotropic diffusion problems
discretized by means of non linear schemes. Nevertheless it can be postulated that the mechanism identified
in this work, that is the non linear term may be control by the contractivity properties of the linear operator,
could be an help in that direction.

Another set of interesting problems lies in the numerical analysis of non linear schemes for advection diffusion
equations ∂tu + a∂xu = ν∂xxu. For the moment TVD theory adapted to the transport part of the equation is
not compatible with the kind of arguments developed in this work for the diffusive part of the equation.

Appendix A. Proof of Proposition 4.5

We detail the formula (4.7) for the sum of norms

∞∑
l=0

μl(ν) =
∑
l≤L

(1 − 4ν)l2k

︸ ︷︷ ︸
=Z1

+
∑

L+1≤l

(
2l

2l + k

)l(
k

ν(2l + k)

) k
2

︸ ︷︷ ︸
=Z2

· (A.1)

One has the identity νZ1 = 2k−2
(
1 − (1 − 4ν)L+1

)
. Since

L + 1 =
[
k

2

(
1
4ν

− 1
)]

+ 1 ≤ k

2

(
1
4ν

− 1
)

+ 1 ≤ k

8ν
− k − 2

2
≤ k

8ν
,
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one has that νZ1 ≤ 2k−2
(
1 − (1 − 4ν)

k
8ν

)
. The second term can be analyzed as a staircase Riemann approxi-

mation of a convergent integral. Indeed let us define xl = ν l
k , so that νZ2 can be rewritten as

νZ2 = k

⎛⎜⎝ν

k

∑
xl≤ ν

k (L+1)

(
1

1 + ν
2xl

) kxl
ν ( 1

2xl + ν

) k
2

⎞⎟⎠· (A.2)

Let γ = k
2 > 0: the function z →

(
1

1+z

) γ
z

is increasing. Since ν
2xl

≤ ν

2( ν
k (L+1)) , one obtains that

(
1

1 + ν
2xl

) kxl
ν

≤
(

1
1 + ν

2 ν
k (L+1)

) k ν
k

(L+1)
ν

= λk(ν)

for all xl. So all these terms can be upper estimated by λk(ν) and are now outside of the remaining sum

G = ν
k

∑
xl≤ ν

k (L+1)

(
1

2xl+ν

) k
2
. So the equality (A.2) becomes an inequality νZ2 ≤ kλk(ν)G. The term G is a

staircase approximation of the Riemann’s integral of the decreasing function x →
(

1
2x+ν

) k
2
. It is convenient to

isolate the first term, that is

G =
ν

k

(
1

2xL+1 + ν

) k
2

+
ν

k

∑
ν
k (L+2)≤xl

(
1

2xl + ν

) k
2

︸ ︷︷ ︸
=H

· (A.3)

Due to
[

k
2

(
1
4ν − 1

)]
+ 1 ≥ k

8ν − k
2 , the first term can be bounded using

2xL+1 + ν =
2ν

k

([
k

2

(
1
4ν

− 1
)]

+ 1
)

+ ν ≥ 2ν

k

(
k

8ν
− k

2

)
+ ν ≥ 1

4

which yields ν
k

(
1

2xL+1+ν

) k
2 ≤ ν2k

k . The rest can be bounded using ν
k

(
1

2xl+ν

) k
2 ≤ ∫ xl

xl− ν
k

dx

(2x+ν)
k
2
. Therefore

H ≤ ∫∞
ν
k (L+1)

dx

(2x+ν)
k
2
. Since

ν

k
(L + 1) =

ν

k

([
k

2

(
1
4ν

− 1
)]

+ 1
)

≥ ν

k

k

2

(
1
4ν

− 1
)

=
1
8
− ν

2

one gets that

H ≤
∫ ∞

1
8− ν

2

dx

(2x + ν)
k
2

=
4

k
2−1

k − 2
=

2k−2

k − 2
·

That is νZ2 ≤ kλk(ν)
(
ν 2k

k + 2k−1

k−2

)
. It ends the proof.

Appendix B. Constant Q for the scheme (3.14)

The control of the fourth order discrete difference used in the scheme (3.14) can be analyzed as in proposi-
tions (3.11) and (3.12). This scheme is also a modified (Le Potier’s) scheme, but closer to the initial Le Potier’s
scheme than (3.16) or (3.20).
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For convenience we start from the fourth order in space and second order in time linear scheme, plus the non
linear correction

uj = uj + νDiv2
j + (1 − 6ν)νDiv3

j + ν|1 − 6ν|
∑

l∈V3(j)

a3
jl(ul − uj) (B.1)

where all terms are defined in (3.14): see also below. The main point is to determine the continuity constant of
the non linear correction g = (gj) where

gj =
∑

l∈V3(j)

a3
jl(ul − uj),

and ⎧⎪⎪⎨⎪⎪⎩
a3

jl = a3
lj =

∣∣∣Div3
j

∣∣∣
Σ3

j
+

∣∣∣Div3
l

∣∣∣
Σ3

l
,

Σ3
j =

∑
l∈V3(j) |ul − uj| ,

V3(j) = {j + 2, j + 1, j − 1, j − 2}.
One has that gj = hj + kj+2 + lj+1 + mj−1 + nj−2 where the first term h = (hj) is

hj =

∑
l∈V3(j) (ul − uj)

Σ3
j

∣∣Div3
j

∣∣ =⇒ |hj | ≤
∣∣Div3

j

∣∣ =⇒ ‖h‖ ≤ ∥∥Div3
∥∥

and the other terms are ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

kj+2 = aj+2

∣∣Div3
j+2

∣∣ , aj+2 = uj+2−uj

Σ3
j+2

,

lj+1 = bj+1

∣∣Div3
j+1

∣∣ , bj+1 = uj+1−uj

Σ3
j+1

,

mj−1 = cj−1

∣∣Div3
j−1

∣∣ , cj−1 = uj−1−uj

Σ3
j−1

,

nj−2 = dj−1

∣∣Div3
j−2

∣∣ , dj−2 = uj−2−uj

Σ3
j−2

·
One has the relation

|aj | + |bj | + |cj | + |dj | =
|uj − uj−2| + |uj − uj−1| + |uj − uj+1| + |uj − uj+2|

Σ3
j

= 1 ∀j.

Since
‖k + l + m + n‖2

≤ Δx
∑

j

(|aj+2|
∣∣Div3

j+2

∣∣+ |bj+1|
∣∣Div3

j+1

∣∣+ |cj−1|
∣∣Div3

j−1

∣∣+ |dj−2|
∣∣Div3

j−2

∣∣)2
≤ 4Δx

∑
j

|aj+2|2
∣∣Div3

j+2

∣∣2 + 4Δx
∑

j

|bj+1|2
∣∣Div3

j+1

∣∣2
+4Δx

∑
j

|cj−1|2
∣∣Div3

j−1

∣∣2 + 4Δx
∑

j

|dj−2|2
∣∣Div3

j−2

∣∣2
≤ 4Δx

∑
j

(
|aj |2 + |bj |2 + |cj |2 + |dj |2

) ∣∣Div3
j

∣∣2 ≤ 4‖Div3‖2.

Therefore
‖g‖ ≤ ‖h‖ + ‖k + l + m + n‖ ≤ (1 +

√
4)‖Div3‖ = 3‖Div3‖ ≤ 1

4
‖D4u‖

by definition of Div3, see (3.12).
We now refer Remark 5.4 where it is proved that this numerical value Q = |1−6ν|

4 is sufficiently small to be
sure that the control of the fourth order difference holds. It yields the convergence at order 3 of this scheme.
Notice however that the time step to achieve the maximum principle is a priori more stringent than for (3.20).
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