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Abstract. We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous
medium provided with mixed boundary conditions. Since the boundary pressure can present high
variations, the permeability of the medium also depends on the pressure, so that the model is nonlinear.
A posteriori estimates allow us to omit this dependence where the pressure does not vary too much.
We perform the numerical analysis of a spectral element discretization of the simplified model. Finally
we propose a strategy which leads to an automatic identification of the part of the domain where the
simplified model can be used without increasing significantly the error.
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1. Introduction

Let Ω be a bounded connected domain in R
d, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω. We

assume that this boundary is divided into two disjoint parts Γ(p) and Γ(f) such that ∂Γ(p) and ∂Γ(f) are
Lipschitz-continuous submanifolds of ∂Ω. We are interested in studying the following model, suggested by
Rajagopal [24], ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α(p)u + grad p = f in Ω,

div u = 0 in Ω,

p = p0 on Γ(p),

u · n = g on Γ(f),

(1.1)
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where the unknowns are the velocity u and the pressure p of the fluid. This system is an extension of Darcy’s
equations which model the flow of an incompressible viscous fluid in a saturated rigid porous medium, to the
case where the pressure p presents high variations. Indeed, in this case, it is no longer possible to neglect the
dependence of the permeability of the medium, hence of the coefficient α, with respect to p.

We refer to [3] for a first analysis of this nonlinear problem. The idea of this work relies on the following
remark: The pressure presents high variations only on a part Ω� of the domain, so that in the remaining part
Ω� = Ω \ Ω�, replacing α(p) by a constant α0 does not induce a large modification of the solution. Thus, the
iterative algorithm which is needed for handling the nonlinear term could be applied only on the subdomain Ω�,
which highly reduces the computational cost for the solution of any discretization of the problem. Moreover, as
first explained in [12], a posteriori analysis leads to an automatic identification of the domains Ω� and Ω�. We
refer to [7, 8] for the first application of this approach to fluid flows. We recall the existence of solutions to the
full and simplified problems. The consistency of our approach follows from the a posteriori estimate between
their solutions.

In a second step, we propose and study a spectral element discretization of the simplified problem. Such a
discretization has been studied in [4] and more recently in [17] in the linear case of a constant coefficient α.
We perform the numerical analysis of this discretization in the nonlinear case and prove optimal a priori error
estimates. Next, we perform the a posteriori analysis of both the simplification and the discretization. This leads
us to a strategy for determining the subdomains Ω� and Ω� in order that the error issued from the simplification
of the model is of the same order as the error issued from the discretization (see [7] for more details on a very
similar strategy).

We propose an iterative algorithm for solving the nonlinear problem and prove its convergence for small
variations of the function α (a similar algorithm is studied in [15] for a different problem). Only few recent
works deal with the a posteriori analysis of iterative methods (see [16, 19] and the references therein). We
perform this a posteriori analysis in the present case, the aim being of course to stop the iterative procedure
when the error due to this algorithm is of the same order as the discretization error. Numerical experiments
confirm the interest of the model when compared to the linear one and also the efficiency of our approach.

An outline of the paper is as follows.
• In Section 2, we present the variational formulation of problem (1.1) and recall its main properties. Next, we
introduce a simplified problem and thereafter check the existence of a solution.
• Section 3 is devoted to the description and a priori analysis of the spectral element discretization.
• The a posteriori analysis of both the simplification and the discretization is performed in Section 4. We also
describe the strategy for the automatic choice of the subdomains Ω� and Ω�.
• In Section 5, we propose an iterative algorithm for solving the nonlinear problem and prove its convergence
together with optimal a posteriori estimates.
• Numerical experiments are presented in Section 6.

2. The complete and simplified models

From now on, we make the following assumptions:

(i) Γ(p) has a positive (d − 1)-measure in ∂Ω;
(ii) The function α is a continuous function from R into R and satisfies for two positive constants α1 and α2,

∀ξ ∈ R, α1 ≤ α(ξ) ≤ α2. (2.1)

Even if this is not true when the function α is exponential as suggested in [24], it does not seem restrictive to
make this assumption (which is easily recovered by truncating the exponential), since in practical situations
the pressure is always bounded.
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We consider the full scale of Sobolev spaces Hs(Ω), s ∈ R, and Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞, equipped with
the standard norms and seminorms. In order to write a variational formulation of problem (1.1), we introduce
the space

H1
(p)(Ω) =

{
q ∈ H1(Ω); q = 0 on Γ(p)

}
. (2.2)

Note that the traces of functions in H1
(p)(Ω) on Γ(f) belong to H

1
2
00(Γ(f)) (see [21], Chap. 1, Sect. 11).

We recall from [11], Section XIII.1 that Darcy’s equations even for a constant coefficient α admit several
variational formulations. We have chosen here the formulation which enables us to treat the boundary condition
on p as an essential one and also seems the best adapted for handling the nonlinear term α(p)u (see [1] for
more numerical reasons). So, we consider the variational problem:

Find (u, p) in L2(Ω)d × H1(Ω) such that

p = p0 on Γ(p), (2.3)

and
∀v ∈ L2(Ω)d, a[p](u, v) + b(v, p) =

∫
Ω

f(x) · v(x) dx,

∀q ∈ H1
(p)(Ω), b(u, q) = 〈g, q〉(f),

(2.4)

where the bilinear forms a[ξ](·, ·) for any measurable function ξ on Ω and b(·, ·) are defined by

a[ξ](u, v) =
∫

Ω

α
(
ξ(x)

)
u(x) · v(x) dx, b(v, q) =

∫
Ω

v(x) · (grad q)(x) dx. (2.5)

Here, 〈·, ·〉(f) denotes the duality pairing between the dual space H
1
2
00(Γ(f))′ and H

1
2
00(Γ(f)).

It is readily checked that the forms a[ξ](·, ·) and b(·, ·) are continuous on L2(Ω)d×L2(Ω)d and L2(Ω)d×H1(Ω),
respectively. Thus, some density arguments yield the equivalence of this problem with system (1.1).

Proposition 2.1. Assume that D(Ω∪Γ(f)) is dense in H1
(p)(Ω). For any data (f , p0, g) in L2(Ω)d×H

1
2 (Γ(p))×

H
1
2
00(Γ(f))′, problems (1.1) and (2.3)−(2.4) are equivalent, in the sense that any pair (u, p) in L2(Ω)d ×H1(Ω)

is a solution of system (1.1) in the distribution sense if and only if it is a solution of problem (2.3)−(2.4).

The existence of a solution to problem (2.3)−(2.4) is established in [3], Theorem 2.3. Its proof relies on
Brouwer’s fixed point theorem, see e.g. [20], Chapter IV, Corollary 1.1, combined with the addition of a penal-
ization term.

Theorem 2.2. For any data (f , p0, g) in L2(Ω)d×H
1
2 (Γ(p))×H

1
2
00(Γ(f))′, problem (2.3)−(2.4) admits a solution

(u, p) in L2(Ω)d × H1(Ω). Moreover this solution satisfies

‖u‖L2(Ω)d + ‖p‖H1(Ω) ≤ c

(
‖f‖L2(Ω)d + ‖p0‖

H
1
2 (Γ(p))

+ ‖g‖
H

1
2
00(Γ(f))′

)
. (2.6)

The uniqueness result is rather restrictive and has been discussed in [3], Proposition 2.4. It only holds for
a smooth enough solution satisfying an appropriate condition. On the other hand, the following regularity
property of the solution (u, p) is proved in [3], Proposition 2.5 thanks to the arguments in [22]. For the sake of
generality, we state it in the general case of a curvilinear polygon or polyhedron (we refer to [18], Def. 2.2 for
the exact definition of these domains, which of course includes standard polygons and polyhedra).

Proposition 2.3. If Ω is a curvilinear polygon or polyhedron, there exists a real number ρ∗ > 2 only depending
on the geometry of Ω and on the ratio α1/α2 such that, for all ρ, 2 < ρ ≤ ρ∗, and for all data (f , p0, g) in
Lρ(Ω)d×W 1− 1

ρ ,ρ(Γ(p))×W− 1
ρ ,ρ(Γ(f)), any solution (u, p) of problem (2.3)−(2.4) belongs to Lρ(Ω)d×W 1,ρ(Ω).
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To go further, we introduce a partition of Ω without overlap:

Ω = Ω� ∪ Ω�, Ω� ∩ Ω� = ∅. (2.7)

Next, we fix a constant α0 which satisfies
α1 ≤ α0 ≤ α2. (2.8)

We thus define the function α∗ on Ω × R by

∀ξ ∈ R, α∗(x, ξ) =
{

α(ξ) for x a.e. in Ω�,
α0 for x a.e. in Ω�.

(2.9)

Replacing α by α∗ in system (1.1) (we do not write the corresponding problem for brevity) leads to the following
equivalent variational problem:

Find (u∗, p∗) in L2(Ω)d × H1(Ω) such that

p∗ = p0 on Γ(p), (2.10)

and
∀v ∈ L2(Ω)d, a∗[p∗](u∗, v) + b(v, p∗) =

∫
Ω

f(x) · v(x) dx,

∀q ∈ H1
(p)(Ω), b(u∗, q) = 〈g, q〉(f),

(2.11)

where the bilinear form a∗[ξ](·, ·) for any measurable function ξ on Ω is now defined by

a∗[ξ](u, v) =
∫

Ω

α∗(x, ξ(x)
)
u(x) · v(x) dx. (2.12)

It must be noted that the function α∗ satisfies the same properties as α, in particular (2.1). So, proving the
next statement relies on exactly the same arguments as for Theorem 2.2 and Proposition 2.3.

Theorem 2.4. For any data (f , p0, g) in L2(Ω)d × H
1
2 (Γ(p)) × H

1
2
00(Γ(f))′, problem (2.10)−(2.11) admits a

solution (u∗, p∗) in L2(Ω)d × H1(Ω). Moreover this solution still satisfies (2.6) and, if Ω is a curvilinear
polygon or polyhedron, the statement of Proposition 2.3 still holds for this solution, for the same value of ρ0.

The links between the solutions (u, p) of problem (2.3)−(2.4) and (u∗, p∗) of problem (2.10)−(2.11) are
brought to light in Section 4.

3. The discrete problem and its a priori analysis

As standard for spectral element methods, we consider a partition of Ω without overlap into a finite number
of rectangles (d = 2) or rectangular parallelepipeds (d = 3) with edges parallel to the coordinate axes:

Ω =
K⋃

k=1

Ωk and Ωk ∩ Ωk′ = ∅, 1 ≤ k < k′ ≤ K. (3.1)

We assume that

(i) both Γ (p) and Γ (f) are the union of whole edges (d = 2) or faces (d = 3) of elements Ωk,
(ii) the intersection of the boundaries of two subdomains, if not empty, is a vertex, a whole edge or a whole face

(d = 3) of both elements (otherwise, the discretization would involve the mortar method as first proposed
in [2] for this type of equation; we prefer to avoid this further complexity here).

We also make the hypothesis that each Ωk is contained either in Ω� or in Ω�, which is in full agreement with our
adaptivity process, see Section 4. Note however that, as not standard, the decomposition can change according
to the adaptivity process, so that we must be cautious with the dependency of the constants with respect to
the decomposition.
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Let N be a fixed positive integer. We introduce the discrete spaces

XN =
{
vN ∈ L2(Ω)d; vN |Ωk

∈ PN (Ωk)d, 1 ≤ k ≤ K
}
,

MN =
{
qN ∈ H1(Ω); qN |Ωk

∈ PN(Ωk), 1 ≤ k ≤ K
}
,

(3.2)

where, for each nonnegative integer n, Pn(Ωk) stands for the space of restrictions to Ωk of polynomials with
d variables and degree with respect to each variable ≤ n. In view of the essential boundary conditions in
problem (2.3)−(2.4), we also consider the space

M
(p)
N = MN ∩ H1

(p)(Ω). (3.3)

We recall that there exist a unique set of N +1 nodes ξj , 0 ≤ j ≤ N , with ξ0 = −1 and ξN = 1, and a unique
set of N + 1 weights ρj , 0 ≤ j ≤ N , such that the following equality holds

∀Φ ∈ P2N−1(−1, 1),
∫ 1

−1

Φ(ζ) dζ =
N∑

j=0

Φ(ξj) ρj , (3.4)

with obvious notation for the polynomial spaces Pn(−1, 1). Moreover, the ρj are positive. Denoting by Fk one
of the affine mappings that send the square or cube ] − 1, 1[d onto Ωk, we define a discrete product on all
continuous functions u and v on Ωk by

(u, v)k
N =

⎧⎪⎨
⎪⎩

meas(Ωk)
4

∑N
i=0

∑N
j=0 u ◦ Fk(ξi, ξj)v ◦ Fk(ξi, ξj) ρiρj if d = 2,

meas(Ωk)
8

∑N
i=0

∑N
j=0

∑N
m=0 u ◦ Fk(ξi, ξj , ξm)v ◦ Fk(ξi, ξj , ξm) ρiρjρm

if d = 3,

next a global discrete product

((u, v))N =
K∑

k=1

(u, v)k
N .

It is readily checked that the Lagrange interpolation operator IN at all nodes Fk(ξi, ξj) or Fk(ξi, ξj , ξm) maps
continuous functions onto MN .

Similarly, on each edge or face Γ� of the Ωk, assuming for instance that the mapping Fk maps {−1}×]−1, 1[d−1

onto Γ�, we define a discrete product by

(u, v)Γ�

N =

{
meas(Γ�)

2

∑N
j=0 u ◦ Fk(ξ0, ξj)v ◦ Fk(ξ0, ξj) ρj if d = 2,

meas(Γ�)
4

∑N
j=0

∑N
m=0 u ◦ Fk(ξ0, ξj , ξm)v ◦ Fk(ξ0, ξj , ξm) ρjρm if d = 3.

A global product on Γ(f) is then defined by

((u, v))(f)
N =

∑
�∈L(f)

(u, v)Γ�

N ,

where L(f) stands for the set of indices 
 such that Γ� is contained in Γ(f).
Finally, we introduce an approximation p0N of the boundary datum p0: Assuming that p0 is continuous

on Γ (p), for each edge (d = 2) or face (d = 3) Γ� of an element Ωk which is contained in Γ(p), p0N |Γ�
belongs

to PN (Γ�) and is equal to p0 at the (N + 1)d−1 nodes Fk(ξi, ξj) or Fk(ξi, ξj , ξm) which are located on Γ �. We
denote by i

(p)
N the corresponding interpolation operator.

We are thus in a position to write the discrete problem which is constructed from (2.10)−(2.11) by the
Galerkin method with numerical integration. Assuming that all data f , p0 and g are continuous where needed,
it reads
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Find (uN , pN ) in XN × MN such that
pN = p0N on Γ(p), (3.5)

and
∀vN ∈ XN , a

∗[pN ]
N (uN , vN ) + bN(vN , pN) = ((f , vN ))N ,

∀qN ∈ M
(p)
N , bN(uN , qN ) = ((g, qN ))(f)

N ,
(3.6)

where the bilinear forms a
∗[ξ]
N (·, ·) for any continuous function ξ on Ω and bN(·, ·) are defined by

a
∗[ξ]
N (u, v) = ((α∗(·, ξ)u, v))N , bN (v, q) = ((v,grad q))N . (3.7)

The existence of a solution to problem (3.5)−(3.6) can be established thanks to the same arguments as for
the previous problems, i.e. by applying Brouwer’s fixed point theorem. However we prefer to prove directly a
more precise result by using the approach of Brezzi, Rappaz and Raviart [14], which also leads to a priori error
estimates. This requires a modified (and shorter) formulation of both the continuous and discrete problems.
From now on, we set:

Z(Ω) = L2(Ω)d × H1(Ω), ZN = XN × MN . (3.8)

We thus introduce the Darcy operator with coefficient α0, namely the operator T which associates with any
data (f , p0, g) in L2(Ω)d × H

1
2 (Γ(p)) × H

1
2
00(Γ(f))′, the pair (w, r) in Z(Ω) satisfying

r = p0 on Γ(p), (3.9)

and
∀v ∈ L2(Ω)d, a0(w, v) + b(v, r) =

∫
Ω

f(x) · v(x) dx,

∀q ∈ H1
(p)(Ω), b(w, q) = 〈g, q〉(f),

(3.10)

where the bilinear form a0(·, ·) is defined by

a0(w, v) = α0

∫
Ω

w(x) · v(x) dx.

Thus, problem (2.10)−(2.11) can equivalently be written as

F(U∗) = U∗ − T G(U∗) = 0, with G(U) =
(
f −

(
α∗(·, p) − α0

)
u, p0, g

)
, (3.11)

with the notation U∗ = (u∗, p∗).
Similarly, we introduce the operator TN which associates with any data (f , p0, g) in L2(Ω)d × C 0(Γ (p)) ×

H
1
2
00(Γ(f))′, the pair (wN , rN ) in ZN satisfying

rN = i
(p)
N p0 on Γ(p), (3.12)

and
∀vN ∈ XN , a0N (wN , vN ) + bN(vN , rN ) =

∫
Ω

f(x) · vN(x) dx,

∀qN ∈ M
(p)
N , bN (wN , qN ) = 〈g, qN 〉(f),

(3.13)

where the bilinear form a0N (·, ·) is defined on piecewise continuous functions u and w by

a0N(w, v) = α0 ((w, v))N .
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So, problem (3.5)−(3.6) can be written as

FN (UN ) = UN − TNGN (UN ) = 0, with GN (UN ) =
(
HN , p0, KN

)
, (3.14)

with the notation UN = (uN , pN ), the first and third components HN and KN being defined in the dual spaces
of XN and M

(p)
N , respectively, by

∀vN ∈ XN ,

∫
Ω

HN (x) · vN (x) dx = ((f , vN ))N −
((

(α∗(·, pN ) − α0)uN , vN

))
N

,

∀qN ∈ M
(p)
N , 〈KN , qN 〉(f) = ((g, qN ))(f)

N .

We now work with the formulations (3.11) and (3.14). We observe that a pair W = (w, r) satisfies

DF(U) · W = T (h, r0, k)

if and only if it is a solution in L2(Ω)d × H1(Ω) of the problem:

r = r0 on Γ(p), (3.15)

and

∀v ∈ L2(Ω)d, a∗[p](w, v) +
∫

Ω

∂ξα
∗(x, p(x)

)
r(x)u(x) · v(x) dx + b(v, r)

=
∫

Ω

h(x) · v(x) dx,

∀q ∈ H1
(p)(Ω), b(w, q) = 〈k, q〉(f).

(3.16)

Of course this problem makes sense only if the integral in the first line is finite. So, from now on, we assume
that the coefficient α belongs to W 1,∞(R) (further regularity will be required later on) and we work with a
solution (u∗, p∗) which satisfies the following condition.

Assumption 3.1. The solution U∗ = (u∗, p∗) of problem (2.10)−(2.11)

(i) belongs to Hs(Ω)d × Hs+1(Ω) for some s > 0 in dimension d = 2 and s > 1 in dimension d = 3;
(ii) is such that DF(U∗) is an isomorphism of L2(Ω)d × H1(Ω).

The existence of a solution U∗ satisfying part (i) of this assumption can be proved by the same arguments as for
Theorem 2.4 in dimension d = 2 but is not very likely in dimension d = 3. On the other hand, part (ii) of this
assumption is much weaker than the global uniqueness of the solution since it only yields its local uniqueness.
We now state and prove two properties of the operator TN that we need later on.

Lemma 3.2. The following stability property holds

‖TN (f , 0, 0)‖Z(Ω) ≤ c sup
vN∈XN

∫
Ω

f (x) · vN (x) dx

‖vN‖L2(Ω)d

· (3.17)

Proof. Setting (wN , rN ) = TN (f , 0, 0), taking vN equal to wN in (3.13) and using the ellipticity of the form
a0N (·, ·) on XN with ellipticity constant α0 (see [11], Chap. IV, Cor. 1.10), we obtain the desired estimate for
‖wN‖L2(Ω)d . On the other hand, the following inf-sup condition is easily derived by taking vN equal to grad qN

and using the Poincaré–Friedrichs inequality on H1
(p)(Ω): There exists a constant β > 0 independent of N such

that

∀qN ∈ M
(p)
N , qN 
= 0, sup

vN∈XN

bN (vN , qN )
‖vN‖L2(Ω)d

≥ β ‖qN‖H1(Ω). (3.18)

Using this condition in the first line of (3.13) gives the estimate for ‖rN‖H1(Ω).
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Lemma 3.3. Let σ and s be real numbers, σ > d−1
2 , s > 0. The following convergence property holds for all

(f , p0, g) in L2(Ω)d × Hσ+ 1
2 (Γ(p)) × H

1
2
00(Γ(f))′ such that T (f , p0, g) belongs to Hs(Ω)d × Hs+1(Ω)

‖
(
T − TN

)
(f , p0, g)‖Z(Ω) ≤ c

(
N−s ‖T (f , p0, g)‖Hs(Ω)d×Hs+1(Ω) + N−σ ‖p0‖

Hσ+ 1
2 (Γ(p))

)
. (3.19)

Proof. In the simpler case p0 = 0, the estimate is derived from the ellipticity of a0N (·, ·) and the inf-sup
condition (3.18) by very standard arguments. In the general case, we introduce a stable lifting p0 of p0 in
Hσ+1(Ω) and observe that its Lagrange interpolant at all nodes Fk(ξi, ξj) or Fk(ξi, ξj , ξm) belongs to MN and
has its trace on Γ(p) equal to p0N . Adding and subtracting these liftings in (3.10) and (3.13) and using the same
arguments as previously combined with the approximation properties of the Lagrange interpolation operator
([11], Chap. IV, Thm. 2.7) lead to the desired result.

A direct consequence of (3.17) and (3.19) is that, for any f in L2(Ω)d,

lim
N→+∞

‖
(
T − TN

)
(f , 0, 0)‖Z(Ω) = 0. (3.20)

We are thus in a position to prove the preliminary results which we need for applying the theorem of Brezzi,
Rappaz and Raviart [14]. This requires an approximation V ∗

N = (v∗
N , q∗N ) of U∗ in XN × MN which satisfies

(see [11], Chap. III, Th. 2.4 and Chap. VI, Lem. 2.5) for the real number s of Assumption 3.1 and 0 ≤ t ≤ s,

‖u∗ − v∗
N‖Ht(Ω)d ≤ c N t−s ‖u∗‖Hs(Ω)d ,

‖p∗ − q∗N‖Ht+1(Ω) ≤ c N t−s ‖p∗‖Hs+1(Ω).
(3.21)

We denote by E the space of endomorphisms of Z(Ω).

Lemma 3.4. If the coefficient α is of class C 2 on R with bounded derivatives and Assumption 3.1 holds, there
exists a positive integer N0 such that, for all N ≥ N0, the operator DFN(V ∗

N ) is an isomorphism of XN ×MN ,
with the norm of its inverse bounded independently of N .

Proof. We use the expansion

DFN(V ∗
N ) = DF(U∗) +

(
T − TN

)
DG(U∗)

+ TN

(
DG(U∗) − DG(V ∗

N )
)

+ TN

(
DG(V ∗

N ) − DGN (V ∗
N )
)
.

Due to part (ii) of Assumption 3.1, it suffices to check that the last three terms in the right-hand side tend to
zero when N tends to +∞. Let WN = (wN , rN ) be any element in the unit sphere of ZN .
1) We observe that

DG(U∗) · WN =
(
−
(
α∗(·, p∗) − α0

)
wN − ∂ξα

∗(·, p∗)rN u∗, 0, 0
)
.

By combining Assumption 3.1 with [13], Theorem 1’, we observe that the term α∗(·, p∗) − α0 also belongs to
Hmin{s,1}+1(Ω), hence to a compact subset of L∞(Ω). Since wN is bounded in L2(Ω)d,

(
α∗(·, p∗) − α0

)
wN

belongs to a compact subset of L2(Ω)d. Similarly, since Assumption 3.1 yields that u∗ belongs to Lρ(Ω)d,
with ρ > 2 in dimension d = 2 and ρ > 3 in dimension d = 3, we use the compactness of the imbedding
of H1(Ω) into Lρ′

(Ω), with 1
ρ + 1

ρ′ = 1
2 , to derive that the quantity ∂ξα

∗(·, p∗)rN u∗ also belongs to a compact
set of L2(Ω)d. Thus, it follows from (3.17) and (3.20) that

lim
N→+∞

‖
(
T − TN

)
DG(U∗)‖E = 0. (3.22)

2) Due to (3.17) and the definition of DG, we must now investigate the convergence of the three terms(
α∗(·, p∗) − α∗(·, q∗N )

)
wN ,

(
∂ξα

∗(·, p∗) − ∂ξα
∗(·, q∗N )

)
rN u∗, ∂ξα

∗(·, q∗N )rN (u∗ − v∗
N )
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in L2(Ω)d. The convergence of the first one follows from the Lipschitz property of α∗ and (3.21) applied with a
t < s such that Ht+1(Ω) is imbedded in L∞(Ω). From the Lipschitz property of ∂ξα

∗, since rN u∗ is bounded
in L2(Ω)d, the same choice of t yields the convergence of the second term. Finally, the convergence of the third
term results from (3.21) applied with a t < s such that Ht(Ω) is imbedded in Lr(Ω), with r > 2 in dimension
d = 2 and r = 3 in dimension d = 3. Combining all this yields

lim
N→+∞

‖TN

(
DG(U∗) − DG(V ∗

N )
)
‖E = 0. (3.23)

3) The last term comes from numerical integration, so that proving its convergence is rather technical. Using
once more (3.17), we have to evaluate the quantities, for all zN in the unit sphere of XN ,

a∗[q∗
N ](wN , zN ) − a

∗[q∗
N ]

N (wN , zN ), a0(wN , zN ) − a0N (wN , zN ),∫
Ω

∂ξα
∗(·, q∗N )(x)rN (x)v∗

N (x) · zN (x) dx − ((∂ξα
∗(·, q∗N )rN v∗

N , zN ))N .

Since the arguments for evaluating the three of them are very similar, we only consider the third one which
is the more complex. We denote it by BN for brevity. If N� stands for the integer part of N−1

3 , we introduce
approximations AN� of ∂ξα

∗(·, q∗N ) and rN� of rN in MN� , and also vN� of u∗ in XN� (with obvious notation)
and we note the identity∫

Ω

AN�(x)rN�(x)vN�(x) · zN (x) dx = ((AN�rN� vN� , zN ))N .

Inserting it into the definition of BN and using [11], Chap. IV, Cor. 1.10), we obtain

BN ≤ ‖∂ξα
∗(·, q∗N )rN v∗

N − AN�rN� vN�‖L2(Ω)d + ‖IN

(
IN

(
∂ξα

∗(·, q∗N )
)
rN v∗

N − AN�rN� vN�
)
‖L2(Ω)d .

We recall from [10], Remark 13.5 the stability of the operator IN on polynomials of degree ≤ 3N in L2(Ω).
Thus, by using triangle inequalities, the imbedding of H1(Ω) into any Lq(Ω) in dimension d = 2, into L6(Ω)
in dimension d = 3 and some stability properties of the polynomials rN� and vN� , it suffices to prove the
convergence of

‖∂ξα
∗(·, q∗N ) − IN∂ξα

∗(·, q∗N )‖H1(Ω), ‖∂ξα
∗(·, q∗N ) − AN�‖H1(Ω),

‖rN − rN�‖H1(Ω) ‖v∗
N − vN�‖Ht(Ω)d ,

with t > 0 in dimension d = 2, t = 1 in dimension d = 3. This results from the properties of the operator IN

([11], Thm. IV.2.7) and from appropriate choices of AN� , rN� , and vN� ([11], Sect. III.2). Thus, we obtain

lim
N→+∞

‖TN

(
DG(V ∗

N ) − DGN (V ∗
N )‖E = 0. (3.24)

The desired result is now an easy consequence of (3.22), (3.23) and (3.24).

Lemma 3.5. If the coefficient α is of class C 2 on R with bounded derivatives and Assumption 3.1 holds, there
exist a neighbourhood of V ∗

N in ZN and a constant λ > 0 such that the operator DFN satisfies the following
Lipschitz property, for all VN in this neighbourhood,

‖DFN(V ∗
N ) − DFN(VN )‖E ≤ λμ(N)‖V ∗

N − VN‖Z(Ω), (3.25)

with μ(N) equal to | log N | 12 in dimension d = 2 and to N in dimension d = 3.
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Proof. We set: VN = (vN , qN ). Owing to (3.17), we have to evaluate the quantities, for any WN = (wN , rN ) in
the unit sphere of ZN and zN in the unit sphere of XN ,

a
∗[q∗

N ]
N (wN , zN ) − a

∗[qN ]
N (wN , zN )
and ((∂ξα

∗(·, q∗N )rN v∗
N , zN ))N − ((∂ξα

∗(·, qN )rN vN , zN ))N .

For the same reasons as in the previous proof, we only consider the second one, that we denote by CN . Next,
we write

CN =
((

∂ξα
∗(·, qN )rN (v∗

N − vN ), zN

))
N

+
(((

∂ξα
∗(·, q∗N ) − ∂ξα

∗(·, qN )
)
rN v∗

N , zN

))
N

,

whence, by using once more ([11], Chap. IV, Cor. 1.10),

CN ≤ ‖∂ξα
∗(·, qN )‖L∞(Ω)‖IN

(
rN (v∗

N − vN )
)
‖L2(Ω)d

+ ‖∂ξα
∗(·, q∗N ) − ∂ξα

∗(·, qN )‖L∞(Ω)‖IN

(
rN v∗

N

)
‖L2(Ω)d .

By combining the stability of the operator IN on polynomials of degree ≤ 2N [10], Remark 13.5 with the fact
that ∂ξα

∗ is bounded and Lipschitz-continuous with a bounded Lipschitz constant, we derive that, for any ρ > 2
and with 1

ρ + 1
ρ′ = 1

2 ,

|CN | ≤ c
(
‖rN‖L∞(Ω)‖v∗

N − vN‖L2(Ω)d + ‖q∗N − qN‖L∞(Ω)‖rN‖Lρ′(Ω)‖v∗
N‖Lρ(Ω)d

)
.

It can be noted from Assumption 3.1 and (3.21) that v∗
N is bounded in Lρ(Ω), for some ρ > 2 in dimension

d = 2 and ρ = 3 in dimension d = 3. Moreover, H1(Ω) is imbedded into the corresponding space Lρ′
(Ω). We

conclude by applying the inverse inequality [9], Chapter III, Proposition 2.1, valid for any polynomial ϕN in
PN (Ωk),

‖ϕN‖L∞(Ωk) ≤ c N
2d
δ ‖ϕN‖Lδ(Ωk),

and noting that
– in dimension d = 3, H1(Ωk) is embedded in L6(Ωk),
– in dimension d = 2, H1(Ωk) is embedded in any Lδ(Ωk) with norm of the imbedding smaller than c

√
δ,

see [25] (we thus take δ equal to log N).

Lemma 3.6. If the coefficient α is of class C 2 on R with bounded derivatives, Assumption 3.1 holds and the
data (f , p0, g) belong to Hσ(Ω)d × Hσ+ 1

2 (Γ(p)) × Hσ(Γ(f)), σ > d
2 , the following estimate is satisfied

‖FN(V ∗
N )‖Z(Ω) ≤ c

(
N−s

(
‖u∗‖Hs(Ω)d + ‖p∗‖Hs+1(Ω)

)
+ N−σ

(
‖f‖Hσ(Ω)d + ‖p0‖

Hσ+ 1
2 (Γ(p))

+ ‖g‖Hσ(Γ(f))

))
.

(3.26)

Proof. Since F(U∗) is zero, we have

‖FN(V ∗
N )‖Z(Ω) ≤ ‖U∗ − V ∗

N‖Z(Ω) + ‖(T − TN )G(U∗)‖Z(Ω)

+ ‖TN

(
G(U∗) − G(V ∗

N )
)
‖Z(Ω) + ‖TN

(
G(V ∗

N ) − GN (V ∗
N )
)
‖Z(Ω).

The first term is bounded in (3.21). Evaluating the second term follows from (3.19) by noting that T G(U∗)
is equal to U∗. To bound the third one, we apply (3.17) and note from the properties of the function α and
Assumption 3.1 that

‖
(
α∗(·, p∗) − α0

)
u∗ −

(
α∗(·, q∗N ) − α0

)
v∗

N‖L2(Ω)d ≤ c (‖u∗ − v∗
N‖L2(Ω)d + ‖p∗ − q∗N‖H1(Ω)),
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so that the estimate follows from (3.21). Finally, proving the estimate for the fourth term is obtained by
applying (3.17), using the standard arguments for the error issued from numerical integration (see [11], Sect. V.1
for instance) combined with the same arguments as in part 3) of the proof of Lemma 3.4 (i.e. introducing
approximations of α∗(·, q∗N ) in MN� and of u∗ in XN� , where now N� stands for the integer part of N−1

2 ).
Owing to Lemmas 3.4 to 3.6, we are in a position to apply the theorem of Brezzi, Rappaz and Raviart [14].

Note that it requires Assumption 3.1 since we need that, for the quantity μ(N) introduced in Lemma 3.5,
limN→+∞ μ(N)N−s = 0. A similar condition must hold on the data.

Theorem 3.7. If the coefficient α is of class C 2 on R with bounded derivatives, Assumption 3.1 holds and
the data (f , p0, g) belong to Hσ(Ω)d × Hσ+ 1

2 (Γ(p)) × Hσ(Γ(f)), σ > d
2 , there exist a positive integer N∗ and a

positive constant ρ such that, for N ≥ N∗, problem (3.5)−(3.6) has a unique solution (uN , pN) in the ball with
centre (u∗, p∗) and radius ρ μ(N)−1. Moreover this solution satisfies the following a priori error estimate

‖u∗ − uN‖L2(Ω)d + ‖p∗ − pN‖H1(Ω)

≤ c(u∗, p∗)
(
N−s

(
‖u∗‖Hs(Ω)d + ‖p∗‖Hs+1(Ω)

)
+ N−σ

(
‖f‖Hσ(Ω)d + ‖p0‖

Hσ+ 1
2 (Γ(p))

+ ‖g‖Hσ(Γ(f))

))
,

(3.27)

where the constant c(u∗, p∗) only depends on the solution (u∗, p∗).

The assumptions for Theorem 3.7, more precisely part (i) of Assumption 3.1, are very likely in dimension
d = 2 but they are not really for a non convex domain in dimension d = 3. However the convergence of the
discretization when the data are continuous can be derived from the previous statement.

4. A posteriori analysis

As now standard for multistep discretizations, the a posteriori analysis that we perform relies on the triangle
inequalities

‖u − uN‖L2(Ω)d ≤ ‖u − u∗‖L2(Ω)d + ‖u∗ − uN‖L2(Ω)d ,

‖p− pN‖H1(Ω) ≤ ‖p − p∗‖H1(Ω) + ‖p∗ − pN‖H1(Ω).
(4.1)

Indeed, we wish to uncouple as much as possible the errors issued from the simplification and the discretization.
In both cases, proving an upper bound for these errors consists in applying the theorem of Pousin and Rappaz [23]
(see also [26], Prop. 2.1 for a more precise version).

4.1. Error due to the simplification of the model

On each domain Ωk, 1 ≤ k ≤ K, we define the error indicator

η
(s)
N,k = ‖

(
α(pN ) − α∗(·, pN )

)
uN‖L2(Ωk)d . (4.2)

It can be noted that all η
(s)
N,k such that Ωk is contained in Ω� are zero. Otherwise, they are given by

η
(s)
N,k = ‖

(
α(pN ) − α0

)
uN‖L2(Ωk)d . (4.3)

Remark 4.1. In practice, α(pN ) is most often replaced by INα(pN ) in the previous definition (4.3), in order
to make the η

(s)
N,k easier to compute. The next analysis is still valid in this case.
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Using the notation introduced in Section 3, we observe that any solution U = (u, p) of problem (2.3)−(2.4)
satisfies

F0(U) = U − T G0(U) = 0, with G0(U) =
(
f −

(
α(p) − α0

)
u, p0, g

)
, (4.4)

while any solution U∗ = (u∗, p∗) of problem (2.10)−(2.11) satisfies (3.11). Thus, we are led to make the following
analogue of Assumption 3.1.

Assumption 4.2. The solution U = (u, p) of problem (2.3)−(2.4)

(i) belongs to Hs(Ω)d × Hs+1(Ω) for some s > 0 in dimension d = 2 and s > 1
2 in dimension d = 3;

(ii) is such that DF0(U) is an isomorphism of L2(Ω)d × H1(Ω).

Indeed, this assumption is needed to prove the following lemma.

Lemma 4.3. If Assumption 4.2 holds, the mapping: V �→ DF0(V ) is continuous on Hs(Ω)d × Hs+1(Ω) and
Lipschitz-continuous on a neighbourhood of U in this same space.

Proof. We only check the Lipschitz property. Let V1 = (v1, q1) and V2 = (v2, q2) be two elements in the
neighbourhood of U . For the same reasons as in the proof of Lemma 3.5, we have to evaluate the quantities, for
any W = (w, r) in the unit sphere of Z(Ω) and z in the unit sphere of L2(Ω)d,

a[q1](w, z) − a[q2](w, z)

and
∫

Ω

∂ξα
(
x, q1(x)

)
r(x)v1(x) · z(x) dx −

∫
Ω

∂ξα
(
x, q2(x)

)
r(x)v2(x) · z(x) dx.

Bounding the first term follows from the imbedding of Hs+1(Ω) into L∞(Ω). On the other hand, denoting by C
the second term, we have

C =
∫

Ω

(
∂ξα

(
x, q1(x)

)
− ∂ξα

(
x, q2(x)

))
r(x)v1(x) · z(x) dx

+
∫

Ω

∂ξα
(
x, q2(x)

)
r(x) (v1 − v2)(x) · z(x) dx,

whence, with 1
ρ + 1

ρ′ = 1
2 ,

C ≤ c
(
‖q1 − q2‖L∞(Ω)‖r‖Lρ′(Ω)‖v1‖Lρ(Ω)d + ‖r‖Lρ′(Ω)‖v1 − v2‖Lρ(Ω)d

)
.

Finally, we take ρ > 2 in dimension 2 (small enough for Hs(Ω) to be imbedded in Lρ(Ω)) and ρ = 3 in
dimension 3. Thus it follows from Assumption 4.2 and the imbedding of H1(Ω) in Lρ′

(Ω) that all the terms in
the previous inequality are bounded.

Proposition 4.4. If Assumption 4.2 holds, there exists a neighbourhood of U in Hs(Ω)d ×Hs+1(Ω) such that
the following a posteriori error estimate holds for any solution U∗ = (u∗, p∗) of problem (2.10)−(2.11) in this
neighbourhood

‖u − u∗‖L2(Ω)d + ‖p − p∗‖H1(Ω) ≤ c(u, p)

⎛
⎝
(

K∑
k=1

(η(s)
N,k)2

) 1
2

+ ‖u∗ − uN‖L2(Ω)d + ‖p∗ − pN‖H1(Ω)

⎞
⎠ , (4.5)

where the constant c(u, p) only depends on the solution U .
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Proof. Owing to Lemma 4.3, applying a slight extension of [26] Proposition 2.1 yields, for a constant c only
depending on the norm of DF0(U)−1,

‖U − U∗‖Z(Ω) ≤ c ‖F0(U∗)‖Z(Ω) ≤ c′ ‖
(
α(p∗) − α∗(·, p∗)

)
u∗‖L2(Ω)d .

To conclude, we use a triangle inequality and the Lipschitz property of α, together with the same Sobolev
imbeddings as in Section 3:

‖
(
α(p∗) − α∗(·, p∗)

)
u∗‖L2(Ω)d ≤ ‖

(
α(pN ) − α∗(·, pN )

)
uN‖L2(Ω)d

+ c
(
‖p∗ − pN‖H1(Ω)‖u∗‖Hs(Ω)d + ‖u∗ − uN‖L2(Ω)d

)
.

(4.6)

All this gives the desired estimate.

Remark 4.5. As standard in the multistep approach, the estimate on the simplication error involves terms
depending on the discretization error in its right-hand side. It seems impossible to avoid that, because the error
indicator η

(s)
N,k must be computed explicitly, hence only depends on the discrete solution.

On the other hand, the residual equation can be written explicitly by subtracting (2.11) from (2.4). It reads

∀v ∈ L2(Ω)d, a[p](u − u∗, v) + b(v, p − p∗)

= −
∫

Ω

(
α(p) − α∗(x, p∗)

)
u∗(x) · v(x) dx,

∀q ∈ H1
(p)(Ω), b(u − u∗, q) = 0.

(4.7)

Thus, proving the next estimate is nearly obvious.

Proposition 4.6. If Assumption 4.2 holds, the following estimate holds for each indicator η
(s)
N,k defined in (4.2)

η
(s)
N,k ≤ c

(
‖u − u∗‖L2(Ωk)d + ‖p − p∗‖H1(Ωk) + ‖u∗ − uN‖L2(Ωk)d + ‖p∗ − pN‖H1(Ωk)

)
. (4.8)

Proof. By using a triangle inequality similar to (4.6), we only have to bound ‖
(
α(p∗) − α∗(·, p∗)

)
u∗‖L2(Ωk)d .

A further triangle inequality yields

‖
(
α(p∗) − α∗(·, p∗)

)
u∗‖L2(Ωk)d ≤ c ‖p− p∗‖H1(Ωk)‖u∗‖Hs(Ωk)d + ‖

(
α(p) − α∗(·, p∗)

)
u∗‖L2(Ωk)d .

Thus, the desired estimate is obtained by taking the function v in (4.7) equal to

vk =
{(

α(p) − α∗(·, p∗)
)
u∗ in Ωk,

0 elsewhere,

and using the continuity of the forms a[p](·, ·) and b(·, ·).

4.2. Error due to the discretization

We need some further notation: For 1 ≤ k ≤ K, let E0
k and E(f)

k be the set of edges (d = 2) or faces (d = 3) of
Ωk which are not contained in ∂Ω or are contained in Γ (f), respectively. We also introduce an approximation
gN of g defined similarly as p0N : Assuming that g is continuous on Γ (f), for each edge (d = 2) or face (d = 3)
Γ� of an element Ωk which is contained in Γ(f), gN |Γ�

belongs to PN(Γ�) and is equal to g at the (N + 1)d−1

nodes Fk(ξi, ξj) or Fk(ξi, ξj , ξm) which are located on Γ �.
Next, for each k, 1 ≤ k ≤ K, we define the error indicator

η
(d)
N,k = ‖INf − α∗(·, pN )uN − grad pN‖L2(Ωk)d + N−1 ‖div uN‖L2(Ωk)

+
∑
γ∈E0

k

N− 1
2 ‖[uN · n]γ‖L2(γ) +

∑
γ∈E(f)

k

N− 1
2 ‖gN − uN · n‖L2(γ). (4.9)
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Indeed, all solutions U∗ of problem (2.10)−(2.11) and UN of problem (3.5)−(3.6) satisfy the following residual
equations, for all v in L2(Ω)d,

a∗[p∗](u∗, v) − a∗[pN ](uN , v) + b(v, p∗ − pN )

=
∫

Ω

(
INf − α∗(x, pN)uN − grad pN

)
(x) · v(x) dx +

∫
Ω

(
f − INf )(x) · v(x) dx,

(4.10)

and, for all q in H1
(p)(Ω),

b(u∗ − uN , q) = 〈g, q〉(f) − b(uN , q). (4.11)
To handle this last equation, we use the second line of (3.6), together with the definition of gN , and observe by
integrating by parts on each Ωk that, for any qN in MN−1 (with obvious notation)

b(u∗ − uN , q) = 〈g − gN , q〉(f) + 〈gN , q − qN 〉(f)

+
K∑

k=1

(∫
Ωk

(div uN )(x)(q − qN )(x) dx −
∫

∂Ωk

(uN · n)(τ )(q − qN )(τ ) dτ

)
.

(4.12)

We now make an assumption on the solution of problem (2.10)−(2.11) which is very similar but weaker than
Assumption 3.1 (and requires the same notation).

Assumption 4.7. The solution U∗ = (u∗, p∗) of problem (2.10)−(2.11)

(i) belongs to Hs(Ω)d × Hs+1(Ω) for some s > 0 in dimension d = 2 and s > 1
2 in dimension d = 3;

(ii) is such that DF(U∗) is an isomorphism of L2(Ω)d × H1(Ω).

The arguments for proving the next lemma are exactly the same as for Lemma 4.3.

Lemma 4.8. If Assumption 4.7 holds, the mapping: V �→ DF(V ) is continuous on Hs(Ω)d × Hs+1(Ω) and
Lipschitz-continuous on a neighbourhood of U in

∏K
k=1 Hs(Ωk)d ×

∏K
k=1 Hs+1(Ωk).

We also recall from [6], Lemmas 3.3 and 3.4 the next results.

Lemma 4.9. For all q in H1(Ω), there exists a qN in MN satisfying for 1 ≤ k ≤ K and for all edges (d = 2)
or faces (d = 3) γ of Ωk,

‖q − qN‖L2(Ωk) ≤ c ρ(Ω)N−1 ‖q‖H1(Ω), ‖q − qN‖L2(γ) ≤ c N− 1
2 ‖q‖H1(Ω), (4.13)

with ρ(Ω) equal to 1 if the domain Ω is either two-dimensional or convex, to N
1
2 otherwise.

Proposition 4.10. If Assumption 4.7 holds, there exists a neighbourhood of U∗ such that the following a pos-
teriori error estimate holds for any solution UN = (uN , pN ) of problem (3.5)−(3.6) in this neighbourhood

‖u∗ − uN‖L2(Ω)d + ‖p∗ − pN‖H1(Ω) ≤ c(u∗, p∗)

(
ρ(Ω)

(
K∑

k=1

(η(d)
N,k)2

) 1
2

+ ‖f − INf‖L2(Ω)d + ‖p0 − p0N‖
H

1
2 (Γ(p))

+ ‖g − gN‖
H

1
2
00(Γ(f))′

)
,

(4.14)

where the constant c(u∗, p∗) only depends on the solution U∗.

Proof. There also, owing to Lemma 4.8, applying [26], Proposition 2.1 yields, for a constant c only depending
on the norm of DF(U∗)−1,

‖U∗ − UN‖Z(Ω) ≤ c ‖F(UN)‖Z(Ω) ≤ c ‖F(U∗) −F(UN )‖Z(Ω).

The right-hand side is then evaluated from (4.10) and (4.12), combined with Lemma 4.9.
The converse estimate (i.e. the upper bound of each η

(d)
N,k as a function of the error) would likely be not

optimal (see [5], Thm. 2.9). We do not present it because we do not intend to perform adaptivity with respect
to N .
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4.3. Summary of the results

Up to the terms involving the data, namely

‖f − INf‖L2(Ω)d + ‖p0 − p0N‖
H

1
2 (Γ(p))

+ ‖g − gN‖
H

1
2
00(Γ(f))′

, (4.15)

the full error

E = ‖u − u∗‖L2(Ω)d + ‖p − p∗‖H1(Ω) + ‖u∗ − uN‖L2(Ω)d + ‖p∗ − pN‖H1(Ω), (4.16)

satisfies

E ≤ c

(
K∑

k=1

(
(η(s)

N,k)2 + ρ(Ω)2(η(d)
N,k)2

)) 1
2

. (4.17)

This estimate is fully optimal when the domain Ω is two-dimensional or convex. Moreover, for three-dimensional
non-convex domains Ω, the lack of optimality only concerns the terms ‖div uN‖L2(Ωk). On the other hand,
estimate (4.8) is local and proves the optimality of the indicators η

(s)
N,k. So they form an efficient tool for the

automatic simplification of the model, as described in the following strategy.
A little drawback is that these estimates require Assumptions 4.2 and 4.7. However,

• part (i) of these assumptions is always satisfied in dimension d = 2 and is likely for convex domains in
dimension d = 3;

• part (ii) of these assumptions only means that the solutions U and U∗ are nonsingular in the sense of [14],
which is much weaker than the uniqueness assumption.

4.4. The adaptivity strategy

Let η∗ be a fixed tolerance. From now on, we work with N sufficiently large for the quantities in (4.15) to be
smaller than η∗.
Initialization step. We first work with the partition of Ω given by

Ω0
� = ∅, Ω0

� = Ω, (4.18)

and we solve the corresponding linear problem (3.5)−(3.6).
Adaptation step. We now assume that a partition of Ω into Ωm

� and Ωm
� is given. We compute the corre-

sponding solution (uN , pN) of problem (3.5)−(3.6), the indicators η
(s)
N,k and their mean value η

(s)
N , the indicators

η
(d)
N,k and their mean value η

(d)
N . We recall that η

(s)
N,k is not zero only if Ωk is contained in Ωm

� . The new partition
of Ω is thus constructed in the following way:

(i) The domain Ωm+1
� is the union of Ωm

� and of all Ωk such that

η
(s)
N,k ≥ max {η(s)

N , η
(d)
N }; (4.19)

(ii) The domain Ωm+1
� is taken equal to Ω \ Ω

m+1

� .

Remark 4.11. The adaptation step can be improved in the two following ways:

(i) At each step m, the partition into Ωm
� and Ωm

� can be regularized, in order to diminish the number of
connected components of Ωm

� and Ωm
� . For instance, if a domain Ωk in Ωm

� is surrounded by domains in
Ωm

� , it can be inserted into Ωm
� .

(ii) When a domain Ωk of very large size must be inserted into Ωm
� , an idea is to consider a new decomposition

of Ω into subdomains where this Ωk is replaced by smaller Ωk′ and to perform a new computation in order
to determine which of these subdomains must be inserted into Ωm

� .

The adaptation step must be iterated either a fixed number of times or until the Hilbertian sum(∑K
k=1(η

(s)
N,k)2

) 1
2 becomes smaller than η∗ (when possible).
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5. An iterative algorithm

A large number of iterative algorithms exists for solving nonlinear problems of the type considered here, for
instance the Newton’s method (we refer to [14] for the proof of its convergence which relies on the arguments in
Sect. 3, see also [20], Chap. IV, Thm. 6.3). However most of them require to compute the derivative ∂ξα which
is not always possible. So, we now present a low cost algorithm and investigate its convergence.

Assuming that an initial guess (u0
N , p0

N) is given (for instance, it can be the solution of problem (3.5)−(3.6)
with α∗(·, pN ) replaced by α0), we solve iteratively the problems

Find (un
N , pn

N ) in XN × MN such that
pn

N = p0N on Γ(p), (5.1)

and
∀vN ∈ XN , a

∗[pn−1
N ]

N (un
N , vN ) + bN (vN , pn

N ) = ((f , vN ))N ,

∀qN ∈ M
(p)
N , bN (un

N , qN ) = ((g, qN ))(f)
N .

(5.2)

It is readily checked that this problem admits a unique solution. Proving the convergence of the sequence
(un

N , pn
N )n requires some preliminary lemmas.

Lemma 5.1. When all assumptions of Theorem 3.7 hold, there exists a constant λ only depending on U∗ such
that any solution (uN , pN ) of problem (3.5)−(3.6) satisfies

‖uN‖Lρ(Ω)d ≤ λ, (5.3)

with ρ > 2 in dimension d = 2 and ρ = 3 in dimension d = 3.

Proof. We again use the approximation (v∗
N , q∗N ) of (u∗, p∗) which satisfies (3.21). Indeed, we have

‖uN‖Lρ(Ω)d ≤ ‖v∗
N‖Lρ(Ω)d + ‖uN − v∗

N‖Lρ(Ω)d .

Evaluating the first term results from (3.21) and the imbedding of Hs(Ω) into Lρ(Ω). To bound the second
one, we use an inverse inequality, see [9], Chapter III, Proposition 2.1. All this yields

‖uN‖Lρ(Ω)d ≤ ‖u∗‖Hs(Ω)d + c N2d( 1
2− 1

ρ )
(
‖u∗ − v∗

N‖L2(Ω)d + ‖u∗ − uN‖L2(Ω)d

)
.

The quantity ‖u∗ − v∗
N‖L2(Ω)d is bounded in (3.21), while the estimate for ‖u∗ − uN‖L2(Ω)d is stated in

Theorem 3.7 (only this requires Assumption 3.1). To conclude, we choose ρ in dimension d = 2 such that
2d(1

2 − 1
ρ ) − s = 0.

When subtracting equation (5.2) at step n from equation (3.6) we obtain

∀vN ∈ XN , a
∗[pn−1

N ]

N (uN − un
N , vN ) + bN (vN , pN − pn

N )

=
(((

α∗(·, pn−1
N ) − α∗(·, pN )

)
uN , vN

))
N

,

∀qN ∈ M
(p)
N , bN (uN − un

N , qN ) = 0.

(5.4)

We are thus in a position to derive the next result.

Lemma 5.2. When all assumptions of Theorem 3.7 hold, the sequence (un
N , pn

N )n satisfies the following estimate

‖uN − un
N‖L2(Ω)d ≤ c

λα†

α1
‖pN − pn−1

N ‖H1(Ω�),

‖pN − pn
N‖H1(Ω) ≤ c λα†

(
1 +

α2

α1

)
‖pN − pn−1

N ‖H1(Ω�),

(5.5)

where α† stands for the Lipschitz constant of the function α.
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Proof. We take vN equal to uN −un
N in (5.4). The standard properties of the discrete product ((·, ·))N (see [10],

Rem. 13.3 for instance), combined with a Cauchy–Schwarz inequality (note also that pN − pn
N belongs to M

(p)
N ),

thus yield

α1‖uN − un
N‖L2(Ω)d ≤

(((
α∗(·, pn−1

N ) − α∗(·, pN )
)
uN ,

(
α∗(·, pn−1

N ) − α∗(·, pN )
)
uN

)) 1
2

N
.

It follows from the definition of the discrete scalar product together with the Lipschitz property of α that

α1‖uN − un
N‖L2(Ω)d ≤ α†

(((
pn−1

N − pN

)
uN ,

(
pn−1

N − pN

)
uN

)) 1
2

N
.

Note that, in this product, each
(
pn−1

N − pN

)
uN can be replaced by its interpolate in XN . Using once more the

stability of the operator IN on polynomials of degree ≤ 2N (see [10], Rem. 13.5), we obtain, for the ρ introduced
in Lemma 5.1 and with 1

ρ + 1
ρ′ = 1

2 ,

α1‖uN − un
N‖L2(Ω)d ≤ c α† ‖pn−1

N − pN‖Lρ′(Ω)‖uN‖Lρ(Ω)d .

Lemma 5.1 and the imbedding of H1(Ω) into Lρ′
(Ω) then yield

α1‖uN − un
N‖L2(Ω)d ≤ cλα† ‖pN − pn−1

N ‖H1(Ω).

All this leads to the first estimate in (5.5). To prove the second one, we need a more precise form of the inf-sup
condition (3.18): Taking vN equal to grad (pN −pn

N ) in (5.4) gives, thanks to the same arguments as previously
and a Poincaré–Friedrichs inequality,

‖pN − pn
N‖H1(Ω) ≤ c ‖uN − un

N‖L2(Ω)d

+ c′
(((

α∗(·, pn−1
N ) − α∗(·, pN )

)
uN ,

(
α∗(·, pn−1

N ) − α∗(·, pN )
)
uN

)) 1
2

N
.

The two terms in the right-hand side have been evaluated above, which leads to the second estimate.

The geometric convergence of the method can now be easily derived with a further assumption.

Proposition 5.3. When all assumptions of Theorem 3.7 hold, there exists a positive constant c0 independent
of N such that, if

λα†
(

1 +
α2

α1

)
< c0, (5.6)

the sequence (un
N , pn

N )n converges to (uN , pN) in L2(Ω)d ×H1(Ω). Moreover, the following estimate holds with
the constant κ equal to λα†(1 + α2

α1
) c−1

0 ,

‖uN − un
N‖L2(Ω)d ≤ c

λα†

α1
κn−1 ‖pN − p0

N‖H1(Ω�),

‖pN − pn
N‖H1(Ω) ≤ κn ‖pN − p0

N‖H1(Ω�),

(5.7)

where α† stands for the Lipschitz constant of the function α.

Remark 5.4. It can be noted [3], Proposition 2.4 that Assumption (5.6) is exactly the sufficient condition for
problems (2.10)−(2.11) and also (3.5)−(3.6) to have a unique solution. So it is logical that no further assumption
is enforced on the initial guess p0

N to obtain the convergence.
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Assumption (5.6) mainly means that the function α does not present high variations, i.e., that the coefficient
α† is small enough.

We now perform the a posteriori analysis for the iterative algorithm. We follow the approach proposed in [19],
even if our arguments are different. We recall that any solution of (3.5)−(3.6) satisfies (3.14). Similarly, it is
readily checked that the solution Un

N = (un
N , pn

N) of problem (5.1)−(5.2) satisfies

FN(Un
N ) = Un

N − TNGN (Un
N ) = TN

(
Rn

N , 0, 0
)
, (5.8)

the residual Rn
N being given by

∀vN ∈ XN ,

∫
Ω

Rn
N (x) · vN (x) dx =

((
(α∗(·, pn−1

N ) − α∗(·, pn
N ))un

N , vN

))
N

. (5.9)

In view of the previous equations, in each domain Ωk, 1 ≤ k ≤ K, we define the error indicator

η
(ia)
N,k,n = ‖IN

(
α∗(·, pn

N ) − α∗(·, pn−1
N )

)
un

N‖L2(Ωk)d . (5.10)

Here, all η
(ia)
N,k,n such that Ωk is contained in Ω� are zero.

Remark 5.5. The quantity ‖ · ‖N,k defined by

‖ϕN‖2
N,k = (ϕN , ϕN )k

N ,

is obviously a norm on PN(Ωk) (see [11], Chap. IV, Cor. 1.10). Replacing the norm ‖ · ‖L2(Ωk) by this new
norm in (5.10) makes the computation of the η

(ia)
N,k,n easier, and all the following results still hold for this new

definition.

We need some further lemmas which are very similar to Lemmas 3.4 and 3.5. The first one is a direct
consequence of Lemma 3.4, see [20], Chapter IV, Theorem 3.1.

Lemma 5.6. Let N∗ denote the integer introduced in Theorem 3.7. If the coefficient α is of class C 2 on R with
bounded derivatives and Assumption 3.1 holds, for all N ≥ N∗, the operator DFN (UN), where UN stands for
the solution of problem (3.5)−(3.6) exhibited in Theorem 3.7, is an isomorphism of XN × MN , with the norm
of its inverse bounded independently of N .

Exactly the same arguments as for Lemma 3.5 yield the next result.

Lemma 5.7. If the coefficient α is of class C 2 on R with bounded derivatives and Assumption 3.1 holds, there
exist a neighbourhood of UN in ZN and a constant λ∗ > 0 such that the operator DFN satisfies the following
Lipschitz property, for all VN in this neighbourhood,

‖DFN(UN ) − DFN (VN )‖E ≤ λ∗ μ(N)‖UN − VN‖Z(Ω), (5.11)

with μ(N) equal to | log N | 12 in dimension d = 2 and to N in dimension d = 3.

We are thus in a position to derive the first a posteriori error estimate.

Proposition 5.8. If the coefficient α is of class C 2 on R with bounded derivatives and Assumption 3.1 holds,
there exists a constant ν such that the following a posteriori error estimate holds for any solution Un

N = (un
N , pn

N )
of problem (5.1)−(5.2) in the ball with centre UN and radius νμ(N)−1,

‖uN − un
N‖L2(Ω)d + ‖pN − pn

N‖H1(Ω) ≤ c

(
K∑

k=1

(η(ia)
N,k,n)2

) 1
2

, (5.12)

where the constant c is independent of N .
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Proof. Applying once more [26], Proposition 2.1 gives

‖UN − Un
N‖Z(Ω) ≤ c ‖Rn

N‖L2(Ω)d ,

where, owing to Lemma 5.6, the constant c is bounded independently of N . Evaluting Rn
N follows from now

standard arguments.
To prove the converse estimate, we observe that equations (5.8) and (5.9) can equivalently be written as

∀vN ∈ XN , a
[pN ]
N (uN , vN ) − a

[pn
N ]

N (un
N , vN ) + bN (vN , pN − pn

N )

=
((

(α∗(·, pn−1
N ) − α∗(·, pn

N ))un
N , vN

))
N

.
(5.13)

The next proposition can easily be derived from this equation.

Proposition 5.9. If the coefficient α is of class C 2 on R with bounded derivatives and Assumption 3.1 holds,
the following estimate holds for each indicator η

(ia)
N,k,n defined in (5.10)

η
(ia)
N,k,n ≤ c

(
‖uN − un

N‖L2(Ωk)d + ‖pN − pn
N‖H1(Ωk)

)
. (5.14)

Proof. We take the function vN in (5.13) equal to

vk =
{
IN

(
(α∗(·, pn−1

N ) − α∗(·, pn
N ))un

N

)
in Ωk,

0 elsewhere.

Thus, we derive the estimate by using the triangle inequality

a
[pN ]
N (uN , vN ) − a

[pn
N ]

N (un
N , vN ) = a

[pN ]
N (uN , vN ) − a

[pn
N ]

N (uN , vN ) + a
[pn

N ]
N (uN − un

N , vN ),

and combining the Lipschitz property of α with Lemma 5.1.
Estimates (5.12) and (5.14) are fully optimal and would allow us to check the convergence or non convergence

of the iterative algorithm when condition (5.6) is not satisfied.
Of course, the definition of the indicators η

(d)
N,k is now meaningless since the discrete solution (uN , pN ) is

never computed exactly. So let us introduce the modified indicators, now depending on n,

η
(d)
N,k,n = ‖INf − α∗(·, pn−1

N )un
N − grad pn

N‖L2(Ωk)d + N−1 ‖div un
N‖L2(Ωk)

+
∑
γ∈E0

k

N− 1
2 ‖[un

N · n]γ‖L2(γ) +
∑

γ∈E(f)
k

N− 1
2 ‖gN − un

N · n‖L2(γ)· (5.15)

Indeed, exactly the same arguments as for Proposition 4.10 leads to the following statement.

Proposition 5.10. If Assumption 4.7 holds, there exists a neighbourhood of U∗ such that the following a pos-
teriori error estimate holds for any solution Un

N = (un
N , pn

N ) of problem (5.1)−(5.2) in this neighbourhood

‖u∗ − un
N‖L2(Ω)d + ‖p∗ − pn

N‖H1(Ω) ≤ c(u∗, p∗)

(
ρ(Ω)

(
K∑

k=1

(η(d)
N,k,n)2

) 1
2

+ ‖f − INf‖L2(Ω)d + ‖p0 − p0N‖
H

1
2 (Γ(p))

+ ‖g − gN‖
H

1
2
00(Γ(f))′

)
,

(5.16)

where the constant c(u∗, p∗) only depends on the solution U∗.
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In view of all these results, computing the η
(d)
N,k,n at each iteration n seems completely useless. Indeed, if the

algorithm converges, the sequence (un
N , pn

N )n converges to (uN , pN ), so that the η
(d)
N,k,n decrease toward η

(d)
N,k.

Thus, our adaptivity strategy is now very simple: For a given tolerance η∗ (it could be the same as in Sect. 4.4
or not),

(i) iterate the algorithm until (
K∑

k=1

(
η
(ia)
N,k,n

)2
) 1

2

≤ η∗. (5.17)

(ii) if n† denotes the smallest value of n such that (5.17) holds, perform the adaptivity strategy described in
Section 4.4 with each η

(d)
N,k replaced by η

(d)
N,k,n† .

6. Numerical experiments

We check successively the efficiency of the indicators η
(ia)
n,k,n to stop the iterative algorithm at the right

iteration, next the efficiency of the adaptivity strategy proposed in Section 4.4 to construct a correct domain Ω�.
Our experiments are made in dimension d = 2 and for rectangular domains.

6.1. Stopping the iterative algorithm

In a first step, to check the efficiency of the iterative algorithm, we work with Ω� = Ω, this Ω being the
simple domain

Ω =]0.6, 3[×]− 6, 0[, Γ(p) = {0.6}×]− 6, 0[, Γ(f) = ∂Ω \ Γ (p). (6.1)

We consider the given solution

u(x, y) =
(

sin(x) cos(y)
− cos(x) sin(y)

)
, p(x, y) =

(y

6

)4

· (6.2)

The function α is equal to
α(ξ) = exp(ξ), (6.3)

truncated at α1 = 3
4 and α2 = 3, and the data can easily be computed from this.

The discretization is made in the following way: We cut the rectangle Ω into K = 9 equal rectangles, three
in each direction. We take the discretization parameter N equal to 12 and fix the tolerance η∗ to 10−8.

We now denote by η
(d)
n and η

(ia)
n the Hilbertian sum of the indicators η

(d)
N,k,n and η

(ia)
N,k,n, respectively, on k in

{1, . . . , 9} for N = 12 at the iteration n. Figure 1 represents the sums η
(d)
n (plain line) and η

(ia)
n (dashed line)

as a function of the iteration n. The convergence of the method is rather fast and both indicators decrease as a
function of n in a very similar way. These curves are in good coherence with the results of Section 5.

6.2. Convergence of the simplification

We now work on the domain

Ω =] − 1, 1[2, Γ(p) = {−1}×]− 1, 1[, Γ(f) = ∂Ω \ Γ (p), (6.4)

and we consider the given solution

u(x, y) =
(

sin(x) cos(y)
− cos(x) sin(y)

)
, p(x, y) = exp

(
− (x + 1)2 + (y + 1)2

0.05

)
· (6.5)

Indeed, the fact that the pressure presents high variations only on a part of the domain (see Fig. 2) seems well
appropriate for studying a possible simplification of the problem. The function α is still given by (6.3) and the
constant α0 is taken equal to 1.
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Figure 1. The convergence of the indicators for α in (6.3).

Figure 2. The pressure defined in (6.5).

The discretization here is performed with low degree polynomials: N = 4 and much more elements: K =
324 = 182 equal squares. We follow the adaptivity strategy proposed in Section 4.4, still with η∗ = 10−8, and
present in Figure 3 the successive partitions of Ω into Ωm

� (white) and Ωm
� (black) for m varying between 1

and 9. The convergence is obtained for m = 9, which proves the efficiency of our strategy. It can be noted
that Ω9

� contains 22 elements.
We finally present in Figure 4 the values of the function α∗ at the final iteration.
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m=1 m=2

m=4

m=3

m=5 m=6

m=7 m=8 m=9

Figure 3. The successive partitions of Ω into Ω� and Ω�.

6.3. Interest of the simplification

In order to minimize the computational time for the simplified model, we now adapt the iterative algorithm
to the partition of the domain, in the following way: Each iteration is applied on Ω� and only one iteration
over 4 is applied on the whole domain. It can be observed that this does not affect its convergence.
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α∗

Figure 4. The isovalues of the final function α∗.

Table 1. Comparison of the discretizations with and without simplification.

Without simplification With simplification
Number of iterations 7 9
CPU time(s) 4.32 1.06

We now present in Table 1 the computation time with and without simplification. Even if the number of
iterations increases with the simplification, the gain of computational time is undeniable. This proves the interest
of our approach.
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