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AN OPERATOR-SPLITTING GALERKIN/SUPG FINITE ELEMENT METHOD
FOR POPULATION BALANCE EQUATIONS: STABILITY

AND CONVERGENCE

Sashikumaar Ganesan1

Abstract. We present a heterogeneous finite element method for the solution of a high-dimensional
population balance equation, which depends both the physical and the internal property coordinates.
The proposed scheme tackles the two main difficulties in the finite element solution of population
balance equation: (i) spatial discretization with the standard finite elements, when the dimension of
the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin
approximation due to pure advection in the internal property coordinates. The key idea is to split
the high-dimensional population balance equation into two low-dimensional equations, and discretize
the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical
domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations.
In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline
Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the
Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown
that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is
necessary for the optimal order of convergence. Numerical results are presented to support the analysis.
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1. Introduction

The numerical solution of a population balance equation (PBE) is highly demanded in many industrial
applications such as crystallization, polymerization etc., see for example [3, 25, 26]. The PBE depends not
only on time and space but also contains derivatives with respect to the properties of the particles (internal
variables) such as the size, length, etc. Thus, the PBE is posed on a high-dimensional (more than three) domain.
A population balance equation describing the particle size distribution u in a population balance system (PBS)
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of a crystallization process can be defined as:

∂u

∂t
− εΔxu+ b · ∇xu+ g · ∇�u = f in (0, T ]×Ω,

u(t, x, �) = 0 on (0, T ]× ∂Ω,

u(0, x, �) = u0(x, �) in Ω.

(1.1)

Here, the computational domain Ω is the Cartesian product of the physical space (X-direction) domain ΩX ⊂
R

d, d = 2, 3 and the internal property coordinate (L-direction) domain ΩL ⊂ R
s, s ≥ 1, i.e., Ω := (ΩX ×ΩL) ⊂

R
d+s with a polyhedral boundary ∂Ω. Further, ∇x and ∇� denote the gradient operators in ΩX and ΩL,

respectively, whereasΔx denotes the Laplace operator in ΩX . The fluid transport velocity b(t, x) and the growth
rate g(t, x) are given d- and s-dimensional vector functions, respectively, ε > 0 is a constant diffusion coefficient
in ΩX , u0 is a given initial distribution of u, and T is a given final computational time. The source term f may be
considered as a term arising from the aggregation and breakage. For simplicity, we assume f ∈ C0(0, T ;L2(Ω))
and use the homogeneous Dirichlet boundary condition. Further, to reduce the technicalities as much as possible,
we assume that the fluid transport velocity b(t, x) is divergence free, that is,

∇x · b = 0. (1.2)

In a crystallization process the growth rate g(t, x) is often assumed to be independent of the particle size � ∈ ΩL.
Therefore, we naturally have the property

∇� · g(t, x) = 0. (1.3)

One of the main challenges in the finite element solution of high-dimensional PBE is to discretize it spatially
with the standard finite elements, especially when d + s > 3. Further, developing a fully-practical numerical
scheme to solve a high-dimensional PBE will become more challenging, when the PBE is coupled with the flow
and species concentration equations [8, 15]. Since the dimension of the PBE will be higher than the dimension
of all other equations in a population balance system (PBS), a special care has to be taken in order to handle
the coupling conditions [5, 13, 15, 18].

Several numerical methods, method of moments and its variants, discretization methods, finite difference,
least square method, spectral and finite element methods, have been proposed and used to solve PBEs by several
authors, see for example [16,17,22–26] and the references therein. However, most of these methods are restricted
to one-dimensional (spatially) PBEs or applied to a system of one-dimensional (1D) PBEs which are obtained by
splitting the high-dimensional PBE. For example, in [4] the PBE in R

2 has been split into two 1D equations and
a mixed Euler-Lagrange method has been applied. In the high-resolution finite volume computations [10,19–21]
of PBEs, the dimensional splitting has been applied to the PBE to obtain a system of 1D equations. Handling of
the coupling conditions between the high-dimensional PBE and the 3D flow and species concentration equations
will be more challenging when the PBE is split into a system of 1D equations. Further, a special technique is
needed for the load balancing in parallel computations of the system of operator-split 1D equations [11].

In this paper, we present a heterogeneous finite element method for a high-dimensional population balance
equation. In our approach, we split the PBE into two equations, that is, we split the (d + s)-dimensional
PBE (1.1) into d- and s-dimensional equations. Then, we solve the d- and s-dimensional equations with the
standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite element methods, respectively. The
SUPG discretization suppress the spurious oscillations in the numerical solution due to the absence of the
diffusion in the ΩL. A rigorous numerical analysis of the operator-splitting (first order in time) Galerkin/SUPG
finite element method for the population balance equation is presented in this paper. An advantage in our
splitting approach is that the shape of the physical domain (ΩX) can be arbitrary and it is not the case when
the PBE is split into a system of 1D equations. Further, the coupling conditions between the PBE and the flow
equations can be handled easily in our splitting [8]. Since the decomposition of the physical domain is sufficient
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for parallel computations, load balancing in the proposed splitting approach can be scheduled in an usual
way [8]. Although the splitting is quite natural, to the best of the author’s knowledge, the operator-splitting
finite element method for high-dimensional PBEs has not been proposed before in the literature.

The paper is organized as follows. In the next section, we briefly discuss the standard discrete and algebraic
form of the population balance equation. Then, we present the operator-splitting finite element method for the
population balance equation in Section 3. After that, in Section 4, the stability and a priori error estimates of
the operator-splitting Galerkin/SUPG finite element method for the population balance equation are presented.
Finally, we present the numerical results in Section 5.

2. Finite element method for population balance equations

2.1. Preliminaries

Let Ω := ΩX ×ΩL ⊂ R
d+s be a bounded domain. Assume that the particle size distribution function u(t, x, �)

in (1.1) is measurable, i.e., ∫ T

0

∫
ΩX×ΩL

|u(t, x, �)| d(x, �) dt <∞

then, due to Fubini’s theorem we have∫ T

0

∫
ΩX×ΩL

u(t, x, �) d(x, �) dt =
∫ T

0

∫
ΩX

(∫
ΩL

u(t, x, �)d�
)

dx dt

=
∫ T

0

∫
ΩL

(∫
ΩX

u(t, x, �)dx
)

d� dt.

Moreover, if u(t, x, �) = g(t, x)h(t, �), then we have∫ T

0

∫
ΩX×ΩL

g(t, x)h(t, �) d(x, �) dt =
∫ T

0

∫
ΩX

g(t, x) dx
(∫

ΩL

h(t, �) d�
)

dt.

2.2. Finite element spaces for the operator-splitting method

Let (·, ·) and || · || be the L2-inner product and norm over Ω, respectively, that is,

(v, q) :=
∫

Ω

v(x, �)q(x, �), ||v||2 = (v, v) ∀ v, q ∈ L2(Ω).

Further, let Hm(ΩX) and Hm(ΩL) be the usual Sobolev spaces with the weak derivatives of order m. We now
define

Hm,m(Ω) := (Hm (ΩX ;Hm(ΩL))) ∩ (Hm (ΩL;Hm(ΩX))) . (2.1)

For each integer m ≥ 0, the associated norm of a function u ∈ Hm(ΩX ;Hm(ΩL) can be defined as

‖u‖2
Hm(ΩX ;Hm(ΩL) :=

∑
|β|≤m,

∑
|α|≤m

‖∂β
� ∂

α
x u‖2

L2(Ω).

Hence, the associated norm and seminorm for a function u ∈ Hm,m(Ω) can be defined as

‖u‖2
Hm,m(Ω) :=

∑
|β|≤m,

∑
|α|≤m

‖∂β
� ∂

α
x u‖2

L2(Ω), |u|2Hm,m(Ω) :=
∑

|β|=m,

∑
|α|=m

‖∂β
� ∂

α
x u‖2

L2(Ω).

Note that the space Hm,m(Ω) is slightly more regular than the usual Sobolev space Hm(Ω), i.e., the mixed
partial derivatives of the functions from the space Hm,m(Ω) are bounded. This additional regularity is necessary
in the analysis of operator-splitting finite element method.
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Now, let V := H1
0 (ΩX) and Q := H1

0 (ΩL) be the usual Sobolev spaces, whose function values are zero on
their respective boundaries. Let Th and Sh be the triangulation of ΩX and ΩL respectively, and are assumed to
be shape regular. Suppose Vh ⊂ V and Qh ⊂ Q are conforming finite element (finite dimensional) spaces. We
denote the diameter of the cells K ′ ∈ Th and K ∈ Sh by hK′ and hK , respectively. Further, the global mesh
size in each domain is defined as hx := max{hK′ : K ′ ∈ Th} and h� := max{hK : K ∈ Sh}, respectively, and
the global mesh size h in Ω is defined as h := max{hx, h�}. Let φh := φi(x), i = 1, 2, . . . ,M, and ψh := ψk(�),
k = 1, 2, . . . ,N , be the basis functions of Vh and Qh, respectively, i.e.,

Vh = span{φi(x)}, Qh = span{ψk(�)}. (2.2)

We then define the discrete finite element space Wh such that

Wh = Vh ⊗Qh =

⎧⎨
⎩ξh : ξh =

M∑
j=1

N∑
l=1

ξj,lφj(x)ψl(�); ξj,l ∈ R

⎫⎬
⎭ ⊂ H1,1

0 (Ω),

where
H1,1

0 (Ω) =
{
ξh : ξh ∈ H1,1(Ω); ξ(x, �) = 0, ∀ (x, �) ∈ ∂Ω

}
⊂ H1,1

0 (Ω).

Also, the finite element functions are defined as follows

uh =
M∑
j=1

N∑
l=1

uj,lφjψl, vh =
M∑
i=1

N∑
k=1

vi,kφiψk,

∇xuh =
M∑
j=1

N∑
l=1

uj,l(∇xφj)ψl, ∇xvh =
M∑
i=1

N∑
k=1

vi,k(∇xφi)ψk,

∇�uh =
M∑
j=1

N∑
l=1

uj,lφj(∇�ψl), ∇�vh =
M∑
i=1

N∑
k=1

vi,kφi(∇�ψk).

(2.3)

Further, for all K ′ ∈ Th and K ∈ Sh, we define the mesh-dependent norm

‖vh‖2
0,K′,K :=

∫
K

∫
K′
v2

h, ‖vh‖2
1,1,K′,K :=

∫
K

∫
K′

(∂�∂xvh)2 .

2.3. Galerkin/SUPG stabilized discretization

It is well known that the standard Galerkin discretization of convection diffusion equations is not stable for
small diffusion coefficients (in comparison with convection), and induce spurious oscillations in the solution.
In the considered problem (1.1), even if we assume a sufficiently large ε, the standard Galerkin discretization
still induce spurious oscillations due to the absence of the diffusion in the L-direction. One possibility to
circumvent the instability and suppress spurious oscillations is to use the SUPG method [6, 12]. SUPG is one
of the most popular stabilization methods for finite element discretization, and it adds artificial diffusion along
the streamlines of the solution, see for example [2, 14] and the references there in. Since we assumed that ε is
sufficiently large, it is sufficient to stabilize the equation (1.1) only in the L-direction. Therefore, we use the
standard Galerkin and the consistent SUPG stabilized discretizations in the X- and L-directions, respectively.
Since we use different discretizations in different directions, we call it as a heterogeneous discretization method.
Applying the Galerkin/SUPG discretization, the semi-discrete form of (1.1) reads:

For a given uh(0) = uh,0, find uh(t) ∈ Wh such that for all t ∈ (0, T ](
∂uh

∂t
, vh

)
+ aLS(uh, vh) +

∫
ΩX

∑
K∈Sh

δK

(
∂uh

∂t
, gh · ∇�vh

)
K

= (f, vh) + FS(f, vh), vh ∈Wh, (2.4)
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where

aLS(uh, vh) :=
∫

Ω

(ε∇xuh · ∇xvh + bh · ∇xuh vh + gh · ∇�uh vh) +
∫

ΩX

∑
K∈Sh

δK (gh · ∇�uh,gh · ∇�vh)K ,

FS(f, vh) :=
∫

ΩX

∑
K∈Sh

δK (f, gh · ∇�vh)K .

Here, uh,0 ∈ Wh is a L2-projection of the initial value u0 onto Wh and (·, ·)K denotes the L2-inner product
in the mesh cell K ∈ Sh. Further, {δK} are the local stabilization parameters and in order to guarantee the
coercivity of the bilinear form aLS(·, ·) we assume

0 < δK ≤ δ0h
2
K ≤ 1, (2.5)

where δ0 > 0 is a constant.

Lemma 2.1 (coercivity of aLS(·, ·)). Let the discrete form of the assumptions (1.2) and (1.3) be satisfied and
the assumption (2.5) be fulfilled. Then, the bilinear form associated with the Galerkin/SUPG discretization
satisfies

aLS(uh, uh) ≥ |||uh|||2. (2.6)

Here, the mesh-dependent heterogeneous norm

|||uh|||2 :=
∑

K′∈Th

∑
K∈Sh

(
ε‖∇xuh‖2

0,K′,K + δK‖gh · ∇�uh‖2
0,K′,K

)
. (2.7)

Proof. Using the definition of the aLS , and applying integration by parts we obtain

aLS(uh, uh) =
∫

ΩL

∫
ΩX

(
ε∇xuh · ∇xuh +

1
2
bh · ∇xu

2
h

)
+

1
2

∫
ΩX

∫
ΩL

gh · ∇�u
2
h

+
∫

ΩX

∑
K∈Sh

δK

∫
K

gh · ∇�uh gh · ∇�uh,

=
∫

ΩL

∫
ΩX

(
ε∇xuh · ∇xuh − 1

2
∇x · bhu

2
h

)
− 1

2

∫
ΩX

∫
ΩL

∇� · ghu
2
h

+
∫

ΩX

∑
K∈Sh

δK

∫
K

(gh · ∇�uh)2,

≥
∑

K′∈Th

∑
K∈Sh

(
ε‖∇xuh‖2

0,K′,K + δK‖gh · ∇�uh‖2
0,K′,K

)
,

for all uh ∈ Vh. �

2.4. Temporal discretization

Let 0 = t0 < t1 < · · · < tN = T be a decomposition of the considered time interval [0, T ]. Let us denote
τ = τn = tn - tn−1, 1 ≤ n ≤ N , be an uniform time step, and denote un

h be the approximation of u(tn, x, �) in
Wh. Further, we denoted the one step finite difference operator

∂̄un
h =

un
h − un−1

h

τ
·
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After applying the backward Euler time discretization in (2.4), the heterogeneous discrete form of (1.1) can be
written as:

For given fn, u0
h = uh,0, find un

h ∈Wh in the time interval (tn−1, tn) such that for all vh ∈Wh

(
∂̄un

h, vh

)
+ aLS(un

h, vh) +
∫

ΩX

∑
K∈Sh

δK
(
∂̄un

h, gh · ∇�vh

)
K

= (fn, vh) + FS(fn, vh). (2.8)

Now, using the definition of finite element functions (2.3), the algebraic form of the discrete equation (2.8) can
be written as (

M +MS + τA+ τAS
)
Ūn = τFn + τFS,n +

(
M +MS

)
Ūn−1. (2.9)

Here, Ūn = vec(Un) is the vectorization of the solution matrix Un = [un
j,l]M×N . Further, the mass, stiffness

and stabilization matrices are defined as follows:

M := Mx ⊗M�, MS := Mx ⊗ S� A := Ax ⊗M� +Mx ⊗A�, AS := Mx ⊗G�, (2.10)

where ⊗ denotes the Kronecker product of two matrices. Further,

Ax :=
∫

ΩX

∇xφj · ∇xφi +
∫

ΩX

φj bh · ∇xφi, Mx :=
∫

ΩX

φjφi,

A� :=
∫

ΩL

gh · ∇�ψl ψk, M� :=
∫

ΩL

ψlψk,

S� :=
∑

K∈Sh

δK (ψl, gh · ∇�ψk)K , G� :=
∑

K∈Sh

δK (gh · ∇�ψl, gh · ∇�ψk)K ,

FS,n :=
∫

ΩX

∑
K∈Sh

δK (fn,gh · ∇�vh)K , Fn :=
∫

Ω

fnvh.

(2.11)

Here, the entries in the mass matrix which are obtained by the Kronecker product of the matrices Mx and M�,
are given by:

M = Mx ⊗M� :=

⎡
⎢⎢⎢⎣

[Φ1,1]k,l · · · [Φ1,M]k,l

· · ·
· · ·
· · ·

[ΦM,1]k,l · · · [ΦM,M]k,l

⎤
⎥⎥⎥⎦
MN×MN

,

where the entries in the N ×N block matrix [Φi,j ]k,l, 1 ≤ k, l ≤ N are evaluated by

[Φi,j ]k,l :=
∫

ΩX

φiφj

∫
ΩL

ψkψ�.

Note that solving an algebraic system of size MN ×MN in each time step will be very expensive. Moreover,
when the PBE is coupled with the flow equations in a population balance system, this large system has to be
solved repeatedly several times in each time step to decouple the system of equations. This, requires enormous
computing power.
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3. Operator-splitting finite element method

The operators Δx,∇x and ∇� in the population balance equation (1.1) are the decomposition of unmixed
partial derivatives of the Cartesian coordinates x and �, respectively. Thus, we can take advantage of the
decomposition, and discretize equation (1.1) in space with d- and s-dimensional finite elements instead of
(d + s)-dimensional finite elements. Using the Lie’s operator-splitting method, see for e.g., [9], in the time
interval (tn−1, tn), the operator-split equations of (1.1) read:

Step 1 (L-direction).
For given ûn−1 = u(tn−1, x, �), find ûn in (tn−1, tn) such that for all x ∈ ΩX ,

∂û

∂t
+ g · ∇�û = f in ΩL,

û(t, x, �) = 0 in ∂ΩL,
(3.1)

by considering x as a parameter. In this step the solution is updated in the L-direction. Then, this solution ûn

is taken as the initial solution for the X-direction update.

Step 2 (X-direction).
For given ũn−1 = ûn, find ũ in (tn−1, tn) such that for all for all � ∈ ΩL,

∂ũ

∂t
− εΔxũ+ b · ∇xũ = 0 in ΩX ,

ũ(t, x, �) = 0 in ∂ΩX ,
(3.2)

by considering � as a parameter. Here the solution un in the time step (tn−1, tn) is obtained by first updating
L-direction operators (Eq. (3.1)) and then updating X-direction operators (Eq. (3.2)). Note that the L-direction
equation (3.1) has to be solved only for inner point x ∈ ΩX due to the Dirichlet boundary condition. However,
if we consider non-Dirichlet boundary conditions, then equation (3.1) has to be solved also for all boundary
points x ∈ ∂ΩX . Similar arguments hold for the X-direction equation (3.2).

Next, to derive the discrete forms of the operator-split equations (3.1) and (3.2), we define

ûn
h(xj , �) :=

N∑
l=1

ûn
j,lψl(�), ũn

h(x, �l) :=
M∑
j=1

ũn
j,lφj(x)

as the finite element functions for the equations (3.1) and (3.2), respectively. Here, xj ∈ ΩX , j = 1, . . . , N XP ,
and �l ∈ ΩL, l = 1, . . . , N LP are the Cartesian coordinates which are necessary to evaluate the nodal
functionals of the finite element spaces Vh and Qh, respectively. As discussed before, the X-direction
equation (3.2) is a standard convection-diffusion equation, and with sufficiently large ε in comparison to
|b|, it can be solved with the standard Galerkin method. However, the L-direction equation (3.1) is a pure
advection equation and a stabilization method has to be used since the standard Galerkin method induce
spurious oscillations in the solution. After applying the SUPG to (3.1) and the standard Galerkin to (3.2),
the discrete form of the operator-split equations (3.1) and (3.2) in the time interval (tn−1, tn) with u0

h = u0 read:

Step 1 (L-direction).
For a given fn and ûn−1

h = un−1
h , find ûn

h ∈ Qh such that
(
∂̄ûn

h, ψh

)
�
+aS(ûn

h, ψh)+
∑

K∈Sh

δK
(
∂̄ûn

h, gh · ∇�ψh

)
K

= (fn, ψh)�+FL
S (fn, ψh), ∀ ψh ∈ Qh ∀ x ∈ ΩX , (3.3)
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by considering x as a parameter. Here,

aS(uh, ψh) :=
∫

ΩL

gh · ∇�uh ψh +
∑

K∈Sh

δK (gh · ∇�uh, gh · ∇�ψh)K ,

FL
S (f, ψh) :=

∑
K∈Sh

δK (f, gh · ∇�ψh)K .

Step 2 (X-direction).
For the given ũn−1

h = ûn
h, find ũn

h ∈ Vh, such that(
∂̄ũn

h, φh

)
x

+ aX(ũn
h, φh) = 0, ∀ φh ∈ Vh, ∀ � ∈ ΩL, (3.4)

by considering � as a parameter. Here,

aX(ũh, φh) :=
∫

ΩX

ε∇xũh · ∇xφh +
∫

ΩX

bh · ∇xũh φh.

Here, (·, ·)� and (·, ·)x in equations (3.3) and (3.4) denote the L2-inner products in ΩL and ΩX , respectively.
Finally, we obtain the global discrete solution

un
h(x, �) =

M∑
j=1

N∑
l=1

uj,lφj(x)ψl(�)

by setting uj,l = ũj,l. In the next section, we address the consistency error, the stability and the convergence of
the operator-splitting Galerkin/SUPG finite element scheme for equations (3.3) and (3.4).

4. Analysis of the operator-splitting finite element method

To obtain the stability and a priori error estimates for the operator-split equations (3.3) and (3.4), we first
derive the equivalent one-step operator-split discrete form of the operator-split equations (3.3) and (3.4).

Lemma 4.1 (consistency of the operator-splitting method). The equivalent one-step discrete form of the
operator-split equations (3.3) and (3.4) is

(
∂̄un

h, vh

)
+ aLS(un

h, vh) + aOS(un
h, vh) +

∫
ΩX

∑
K∈Sh

δK
(
∂̄un

h, gh · ∇�vh

)
K

= (fn, vh) + FS(fn, vh) (4.1)

where the consistency error induced by the operator-splitting is

aOS(un
h, vh) = τ

∫
Ω

εgh · ∇�(∇xu
n
h) ∇xvh + τ

∫
Ω

gh · ∇�(bh · ∇xu
n
h) vh

+τ
∫

ΩX

∑
K∈Sh

δK (εgh · ∇�(∇xu
n
h), gh · ∇�(∇xvh))K

+τ
∫

ΩX

∑
K∈Sh

δK (gh · ∇�(bh · ∇xu
n
h), gh · ∇�vh)K

+
∫

ΩX

∑
K∈Sh

δK (−εΔxu
n
h, gh · ∇�vh)K

+
∫

ΩX

∑
K∈Sh

δK (bh · ∇xu
n
h, gh · ∇�vh)K .

(4.2)
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Proof. The algebraic form of the L-direction equation (3.3) can be written as

(M� + S� + τ(A� +G�)) Ûn = τ(Fn
L + FS,n

L ) + (M� + S�) Ûn−1, (4.3)

where
Fn

L :=
∫

ΩL

fnψh, FS,n
L =

∑
K∈Sh

δK (fn,gh · ∇ψh)K .

Here, the matrices S�, G� and FS,n
L belong to the SUPG stabilization terms. Next, the algebraic form of the

X-direction equation (3.4) can be written as

(Mx + τAx) Ũn = MxŨ
n−1. (4.4)

In the above equations (4.3) and (4.4),

Ûn = (Un)T, Ũn = Un, Fn
� :=

∫
ΩL

fnψh.

Now, multiply (4.3) by Mx ⊗ I, and (4.4) by I ⊗ (M� + S� + τA� + τG�), we get

((Mx ⊗M�) + (Mx ⊗ S�) + τ(Mx ⊗A�) + τ(Mx ⊗G�)) Ûn = τ(Mx ⊗ Fn
L ) + τ(Mx ⊗ FS,n

L )

+ ((Mx ⊗M�) + (Mx ⊗ S�))Ûn−1

and

((Mx ⊗M�) + (Mx ⊗ S�) + τ {(Ax ⊗M�) + (Ax ⊗ S�) + (Mx ⊗A�) + (Mx ⊗G�)}

+ τ2 {(Ax ⊗A�) + (Ax ⊗G�)}
)
Ũn = ((Mx ⊗M�) + (Mx ⊗ S�) + τ(Mx ⊗A�) + τ(Mx ⊗G�)) Ũn−1,

respectively. Equating, the above equations, we get

((Mx ⊗M�) + (Mx ⊗ S�) + τ {(Ax ⊗M�) + (Ax ⊗ S�) + (Mx ⊗A�) + (Mx ⊗G�)}

+ τ2 {(Ax ⊗A�) + (Ax ⊗G�)}
)
Ūn = τ(Mx ⊗ Fn

L ) + τ(Mx ⊗ FS,n
L ) + ((Mx ⊗M�) + (Mx ⊗ S�))Ūn−1.

Using the definitions (2.10) in the above equation, we get(
M +MS + τA + τAS + τ2(Ax ⊗A�) + τ2(Ax ⊗G�) + τ(Ax ⊗ S�)

)
Ūn

= τ(Mx ⊗ Fn
L ) + τ(Mx ⊗ FS,n

L ) +
(
M +MS

)
Ūn−1. (4.5)

For the Ax ⊗A� term, we have

(Ax ⊗A�)Ūn =
∫

Ω

εun
j,l∇xφj · ∇xφi gh · ∇�ψlψk + un

j,lbh · ∇xφjφi gh · ∇�ψlψk

=
∫

Ω

εgh · ∇�(un
j,l∇xφjψl) ∇xvh + gh · ∇�(bh · (un

j,l∇xφj)ψl) vh

=
∫

Ω

εgh · ∇�(∇xu
n
h) ∇xvh + gh · ∇�(bh · ∇xu

n
h) vh.
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Similarly, for the cross term Ax ⊗G�, we have
(Ax ⊗G�)Ūn

=
∫

ΩX

∑
K∈Sh

∫
K

εδKu
n
j,l∇xφj · ∇xφi gh · ∇�ψlgh · ∇�ψk + δKu

n
j,lbh · ∇xφjφi gh · ∇�ψlgh · ∇�ψk

=
∫

ΩX

∑
K∈Sh

∫
K

εδKu
n
j,lgh · ∇�(∇xφjψl) gh · ∇�(∇xφiψk) + δKu

n
j,lgh · ∇�(bh · ∇xφjψl) gh · ∇�(φiψk)

=
∫

ΩX

∑
K∈Sh

∫
K

εδKgh · ∇�(∇xu
n
h) gh · ∇�(∇xvh) + δKgh · ∇�(bh · ∇xu

n
h) gh · ∇�vh.

Also for the (Ax ⊗ S�) term, we have

(Ax ⊗ S�)Ūn =
∫

ΩX

∑
K∈Sh

∫
K

εδKu
n
j,l∇xφj · ∇xφi ψlgh · ∇�ψk + δKu

n
j,lbh · ∇xφjφi ψlgh · ∇�ψk

=
∫

ΩX

∑
K∈Sh

∫
K

−φi∇x ·
(
εun

j,l∇xφjδKψl gh · ∇�ψk

)
+ δKu

n
j,lbh · ∇x(φjψl) gh · ∇�(φiψk)

=
∫

ΩX

∑
K∈Sh

∫
K

−εun
j,lδKΔx(φjψl) gh · ∇�(φiψk) + δKbh · ∇xu

n
h gh · ∇�vh

=
∫

ΩX

∑
K∈Sh

∫
K

−εδKΔxu
n
h gh · ∇�vh + δKbh · ∇xu

n
h gh · ∇�vh.

Next, we show that the source term Mx ⊗ Fn
L = Fn. Each equation in the algebraic system (4.5) is obtained

by applying summation to the ansatz indices j and k on both sides of the system. Therefore, the source term
in the algebraic system (4.5) becomes

Mx ⊗ Fn
L =

∫
ΩX×ΩL

M∑
i=1

M∑
j=1

N∑
k=1

fnφiφjψk.

Thus, the right hand side vector, rhsi,k, i = 1, . . . ,M, k = 1, . . . ,N , can be written as

rhsi,k =
∫

ΩX×ΩL

M∑
j=1

fnφiφjψk =
∫

ΩX×ΩL

fnφiψk

M∑
j=1

φj =
∫

ΩX×ΩL

fnφiψk,

which is the source term in the algebraic system (2.9). Thus, we have Mx ⊗ Fn
L = Fn. Similar argument holds

for Mx ⊗ FS,n
L = FS,n. Hence, the statement of the lemma. �

Note that the discrete bilinear form (4.1) of the two-step operator-split equations is not same as the original
discrete form (2.8). The difference is the consistency error due to the operator-splitting method.

Lemma 4.2. Let the discrete form of the assumptions (1.2) and (1.3) be satisfied. Then, for all vh ∈ Wh, we
have ∫

Ω

gh · ∇�(bh · ∇xvh)vh = 0,
∫

ΩX

∑
K∈Sh

δK (gh · ∇�(bh · ∇xv
n
h), gh · ∇�vh)K = 0,

∫
ΩX

∑
K∈Sh

δK (εΔxu
n
h, gh · ∇�vh)K = 0,

∫
ΩX

∑
K∈Sh

δK (bh · ∇xvh, gh · ∇�vh)K = 0.

Proof. We use the definitions of the finite element spaces (2.2) to show this property. In particular, we repeat-
edly use the properties that the basis functions of Vh andQh are independent of � ∈ ΩL and x ∈ ΩX , respectively.
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Also, in the integration by parts, we use the definition that the functions ofWh has zero value on the boundaries.
For the first statement, we have∫

Ω

gh · ∇�(bh · ∇xvh)vh =
∫

Ω

d∑
p=1

s∑
q=1

gq,h
∂

∂�q

(
bp,h

∂vh

∂xp

)
vh =

∫
Ω

d∑
p=1

s∑
q=1

gq,h
∂

∂�q

(
bp,h

∂(φhψh)
∂xp

)
φhψh

=
∫

Ω

d∑
p=1

s∑
q=1

gq,h
∂ψh

∂�q
ψh bp,h

∂φh

∂xp
φh =

1
4

∫
Ω

d∑
p=1

s∑
q=1

gq,h
∂ψ2

h

∂�q
bp,h

∂φ2
h

∂xp

=
1
4

∫
Ω

d∑
p=1

s∑
q=1

gq,h
∂

∂�q

(
bp,h

∂φ2
h

∂xp
ψ2

h

)
=

1
4

∫
Ω

d∑
p=1

s∑
q=1

gq,h
∂

∂�q

(
bp,h

∂(φhψh)2

∂xp

)

=
1
4

∫
Ω

gh · ∇�

(
bh · ∇xv

2
h

)
= −1

4

∫
Ω

∇� · gh

(
bh · ∇xv

2
h

)
= 0.

For the second statement, we have∫
ΩX

∑
K∈Sh

∫
K

δKgh · ∇�(bh · ∇xvh) gh · ∇�vh =
∫

ΩX

∑
K∈Sh

∫
K

δK

d∑
p=1

s∑
q=1

gq,h
∂

∂�q

(
bp,h

∂φh

∂xp
ψh

)
gq,h

∂ψh

∂�q
φh

=
∫

ΩX

∑
K∈Sh

∫
K

δK

d∑
p=1

s∑
q=1

bp,h
∂φh

∂xp
φh gq,h

∂ψh

∂�q
gq,h

∂ψh

∂�q

=
∫

ΩX

∑
K∈Sh

1
2

∫
K

δK

d∑
p=1

s∑
q=1

bp,h
∂φ2

h

∂xp
gq,h

∂ψh

∂�q
gq,h

∂ψh

∂�q

=
∫

ΩX

∑
K∈Sh

1
2

∫
K

δK

d∑
p=1

s∑
q=1

bp,h
∂

∂xp

(
φ2

h

∂ψh

∂�q

∂ψh

∂�q

)
gq,h gq,h

=
∫

ΩX

∑
K∈Sh

1
2

∫
K

δK

d∑
p=1

s∑
q=1

bp,h
∂

∂xp

(
∂vh

∂�q

∂vh

∂�q

)
gq,h gq,h

=
∫

ΩX

∑
K∈Sh

1
2

∫
K

δK |gh|2bh · ∇x(∇�vh∇�vh)

= −
∫

ΩX

∑
K∈Sh

1
2

∫
K

δK |gh|2∇x · bh ∇�vh∇�vh = 0,

∫
ΩX

∑
K∈Sh

δK (εΔxu
n
h, gh · ∇�vh)K =

∫
ΩX

∑
K∈Sh

∫
K

δK

d∑
p=1

s∑
q=1

∂2φh

∂x2
p

ψh gq,h
∂ψh

∂�q
φh

=
∫

ΩX

∑
K∈Sh

1
2

∫
K

δK

d∑
p=1

s∑
q=1

∂2φh

∂x2
p

φh gq,h
∂ψ2

h

∂�q

=
∫

ΩX

∑
K∈Sh

1
2

∫
K

δK

d∑
p=1

s∑
q=1

gq,h
∂

∂�q

(
φhψh

∂2φh

∂x2
p

ψh

)

=
∫

ΩX

∑
K∈Sh

1
2

∫
K

δKgh · ∇� (vhΔxvh)

= −
∫

ΩX

∑
K∈Sh

1
2

∫
K

δK∇� · gh vhΔxvh = 0,
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∫
ΩX

∑
K∈Sh

δK (bh · ∇xvh, gh · ∇�vh)K =
∫

ΩX

∑
K∈Sh

∫
K

δK

d∑
p=1

s∑
q=1

bp,h
∂φh

∂xp
ψh gq,h

∂ψh

∂�q
φh

=
1
4

∫
Ω

d∑
p=1

s∑
q=1

bp,h
∂φ2

h

∂xp
gq,h

∂ψ2
h

∂�q

=
1
4

∫
Ω

gh · ∇�

(
bh · ∇xv

2
h

)
= −1

4

∫
Ω

∇� · gh

(
bh · ∇xv

2
h

)
= 0. �

Lemma 4.3 (coercivity of aOS(·, ·)). Let the discrete form of the assumptions (1.2) and (1.3) be satisfied. Then,
the bilinear form aOS(·, ·) associated with the operator-splitting method satisfies

aOS(un
h, u

n
h) ≥ τ‖|un

h|‖2
OS (4.6)

with
|||un

h|||2OS =
∑

K′∈Th

∑
K∈Sh

δK
(
ε‖gh · ∇�(∇xu

n
h)‖2

1,1,K′,K
)
.

Proof. Using the definitions of the finite element spaces Vh and Qh, and the Lemma 4.2 in aOS(un
h, u

n
h), we get

aOS(un
h, u

n
h) ≥ τ

2

∫
Ω

εgh · ∇�((∇xu
n
h)2) + τ

∫
ΩX

ε
∑

K∈Sh

∫
K

δKgh · ∇�(∇xu
n
h)gh · ∇�(∇xu

n
h)

= τ
∑

K′∈Th

∑
K∈Sh

δK
(
ε‖gh · ∇�(∇xu

n
h)‖2

1,1,K′,K
)
. �

4.1. Stability of the operator-split finite element discretization

The stability of the operator-split discrete equation (4.1) is studied in this section. In the stability analysis,
we use the following discrete form of the Grownwall’s lemma.

Lemma 4.4 (discrete Grownwall’s lemma). Assume that wn, n ≥ 0, satisfies

wn ≤ αn +
n−1∑
k=0

βkwk, for n ≥ 0,

where αn is a non-decreasing and βn ≥ 0. Then, we have

wn ≤ αn exp

{
n−1∑
k=0

βk

}
.

Proof. The proof is rather technical, see for example [27]. �

Lemma 4.5 (stability). For given T > 0, let τ = T/NT , NT ≥ 1 and τ ≤ 1/2, be an uniform time step. Then,
for uN

h ∈Wh with the additional condition

δ ≤ τ

2
, where δ = max{δK}, ∀ K ∈ Sh, (4.7)

we have the following stability estimate

‖uN
h ‖2 + τ

N∑
n=1

|||un
h|||2 + 2τ

N∑
n=1

τ |||un
h|||2OS ≤

{
‖u0

h‖2 + 2
N∑

n=1

τ(1 + 2δ)‖fn‖2

}
exp(2T ),

for 1 ≤ N ≤ NT .
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Proof. Consider the operator-split discrete equation (4.1), and set vh = un
h to get

(
un

h − un−1
h , un

h

)
+ τ aLS(un

h, u
n
h) + τ aOS(un

h, u
n
h) = τ(fn, un

h) + τ

∫
ΩX

∑
K∈Sh

δK (fn, gh · ∇�u
n
h)K

−
∫

ΩX

∑
K∈Sh

δK
(
un

h − un−1
h , gh · ∇�u

n
h

)
K
. (4.8)

Now, applying the identity 2a(a− b) = a2 − b2 + (a− b)2 for the first term, and using the Lemmas 2.1 and 4.3
for the bilinear forms aLS(un

h, u
n
h) and aOS(un

h, u
n
h) in (4.8), we get

‖un
h‖2 + ‖un

h − un−1
h ‖2 + 2τ |||un

h|||2 + 2τ2|||un
h|||2OS ≤ ‖un−1

h ‖2 + 2τ |(fn, un
h)|

+ 2τ

∣∣∣∣∣
∫

ΩX

∑
K∈Sh

δK (fn, gh · ∇�u
n
h)K

∣∣∣∣∣+ 2

∣∣∣∣∣
∫

ΩX

∑
K∈Sh

δK
(
un

h − un−1
h , gh · ∇�u

n
h

)
K

∣∣∣∣∣ .
Applying the Cauchy-Schwarz inequality and Young’s inequality to the right hand side terms, we get

2τ |(fn, un
h)| ≤ τ‖fn‖2 + τ‖un

h‖2,

2τ

∣∣∣∣∣
∫

ΩX

∑
K∈Sh

δK (fn, gh · ∇�u
n
h)K

∣∣∣∣∣ ≤ 2τδ‖fn‖2 +
1
2

∑
K∈Sh

∑
K′∈Th

τδK‖gh · ∇�u
n
h‖2

0,K′,K ,

2

∣∣∣∣∣
∫

ΩX

∑
K∈Sh

δK
(
un

h − un−1
h , gh · ∇�u

n
h

)
K

∣∣∣∣∣ ≤ 2
δ

τ
‖un

h − un−1
h ‖2 +

1
2

∑
K∈Sh

∑
K′∈Th

τδK‖gh · ∇�u
n
h‖2

0,K′,K .

Using δ ≤ τ/2, we get

(1 − τ)‖un
h‖2 + τ |||un

h|||2 + 2τ2|||un
h|||2OS ≤ ‖un−1

h ‖2 + τ(1 + 2δ)‖fn‖2

Divide the inequality by (1− τ), use 1 ≤ 1/(1− τ) ≤ 1 + 2τ ≤ 2 for τ ≤ 1/2, and sum over n = 1, . . . , N, to get

‖uN
h ‖2 +

N∑
n=1

τ |||un
h |||2 + 2τ

N∑
n=1

τ |||un
h|||2OS ≤ ‖u0

h‖2 + 2
N∑

n=1

τ(1 + 2δ)‖fn‖2 + 2
N−1∑
n=1

τ‖un
h‖2.

Finally, applying the discrete form of the Grownwall’s lemma 4.4, we get the statement of the lemma. �

Remark 4.6. Note that we have used δ ≤ τ/2 in the above stability estimate which is a strong assumption.
In [2], unconditional stability has been proved for smooth data. Also, for a special case of rough data this
assumption has be relaxed to δ2 ≤ τ using the time dissipation introduced by the backward Euler method.
However, a complete discussion of this topic is beyond the scope of this paper.

4.2. Apriori error estimates

To derive the error estimate for the solution of the operator-split finite element discretization (4.1), let us
introduce the following approximation properties, (cf. Thm. 4.8.12 and Cor. 4.8.15 in [1]).

(A1) Approximation property of Vh: there exist an interpolation operator IX ∈ L(H1
0 (ΩX);Vh) such that for

all 1 ≤ s ≤ r + 1

‖IXu‖Hs(ΩX ) ≤ C‖u‖Hs(ΩX ), u ∈ Hs(ΩX) ∩H1
0 (ΩX),

‖u− IXu‖L2(ΩX ) + hx‖u− IXu‖H1(ΩX ) ≤ Chs
x|u|Hs(ΩX), u ∈ Hs(ΩX) ∩H1

0 (ΩX).
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(A2) Approximation property of Qh: there exist an interpolation operator IL ∈ L(H1
0 (ΩL);Qh) such that for

all 1 ≤ s ≤ r + 1

‖ILu‖Hs(ΩL) ≤ C‖u‖Hs(ΩL), u ∈ Hs(ΩL) ∩H1
0 (ΩL),

‖u− ILu‖L2(ΩL) + h�‖u− ILu‖H1(ΩL) ≤ Chs
� |u|Hs(ΩL) u ∈ Hs(ΩL) ∩H1

0 (ΩL).

Here, L(X ;Y ) denotes the set of linear and continuous mappings from X to Y . Now, we define a projection
operator Ih ∈ L(Hr+1,r+1(Ω) ∩H1,1(Ω);Vh ⊗Qh) by

Ih : IXIL = ILIX .

Theorem 4.7. Let u be the smooth enough solution of (1.1) and the approximation properties A1 and A2
be satisfied. Further, let the stabilization parameters fulfill (2.5) and (4.7) for all K ∈ Sh. Then, the error
en

h := u(tn) − un
h, the estimate

‖en
h‖2 +

n∑
k=1

τ |||en
h |||2 + τ

n∑
k=1

τ |||en
h|||2OS ≤ Cu

(
h2r + δε2h2r−2 + τ2

)
, n = 1, . . . , N,

holds true. Here, Cu is a constant depending on certain norms of the solution specified within the proof of the
theorem.

Proof. The error analysis of (4.1) starts by decomposition of the error into two parts in which the first measures
the interpolation error and the other measures the difference of the interpolation and the discrete solution.

en
h := u(tn) − un

h = (u(tn) − Ihu(tn)) + (Ihu(tn) − un
h) =: ηn + ξn.

The interpolation error ηn can be estimated using the approximation properties of the finite element spaces.
For the error ξn ∈ Wh, apply ξn = u(tn) − un

h − ηn and vh = ξn in (4.1) to obtain

(
∂̄ξn, ξn

)
+ aLS(ξn, ξn) + aOS(ξn, ξn) +

∫
ΩX

∑
K∈Sh

δK
(
∂̄ξn, gh · ∇�ξ

n
)
K

=
(
∂̄u(tn), ξn

)
+ aLS(u(tn), ξn) + aOS(u(tn), ξn) +

∫
ΩX

∑
K∈Sh

δK
(
∂̄u(tn), gh · ∇�ξ

n
)
K

− (fn, ξn) − FS(fn, ξn)

−
(
∂̄ηn, ξn

)
− aLS(ηn, ξn) − aOS(ηn, ξn) −

∫
ΩX

∑
K∈Sh

δK
(
∂̄ηn, gh · ∇�ξ

n
)
K

=
(
∂̄u(tn) − ∂u(tn)

∂t
, ξn

)
+ aOS(u(tn), ξn) +

∫
ΩX

∑
K∈Sh

δK

(
∂̄u(tn) − ∂u(tn)

∂t
, gh · ∇�ξ

n

)
K

+
∫

ΩX

∑
K∈Sh

δK (εΔxu(tn), gh · ∇�ξ
n)K −

∫
ΩX

∑
K∈Sh

δK (bh · ∇xu(tn), gh · ∇�ξ
n)K

−
(
∂̄ηn, ξn

)
− aLS(ηn, ξn) − aOS(ηn, ξn) −

∫
ΩX

∑
K∈Sh

δK
(
∂̄ηn, gh · ∇�ξ

n
)
K
, (4.9)
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where (2.4) is used in the second step. Multiplying (4.9) with τ , we get

(
ξn − ξn−1, ξn

)
+ τaLS(ξn, ξn) + τaOS(ξn, ξn) = τ(En

1 , ξ
n) + τ

∫
ΩX

∑
K∈Sh

δK(En
2 , gh · ∇�ξ

n)K

−
∫

ΩX

∑
K∈Sh

δK
(
ξn − ξn−1, gh · ∇�ξ

n
)
K

+ τ

∫
ΩX

∑
K∈Sh

δK(En
3 , gh · ∇�∇xξ

n)K + τ(En
4 ,∇xξ

n),

(4.10)

where

En
1 := ∂̄u(tn) − ∂u(tn)

∂t
+ τgh · ∇�(bh · ∇xu(tn)) − ∂̄ηn − gh · ∇�η

n − bh · ∇xη
n − τgh · ∇�(bh · ∇xη

n),

En
2 := En

1 + εΔxη
n,

En
3 := τεgh · ∇�(∇xu(tn)) − τεgh · ∇�(∇xη

n),
En

4 := En
3 − ε∇xη

n.

The error equation (4.10) is similar to the operator-split discrete form (4.8) used in the stability estimate, except
the E3 and E4 terms. Therefore, to use the stability estimate (Lem. 4.5) in (4.10), we first derive the estimates
for E3 and E4 terms. Using the Cauchy-Schwarz’s inequality and Young’s inequality, we get

|(En
4 ,∇xξ

n)| ≤ 1
2ε

‖En
4 ‖2 +

ε

2
‖∇xξ

n‖2 (4.11)

and ∣∣∣∣∣
∫

ΩX

∑
K∈Sh

δK(En
3 , gh · ∇�∇xξ

n)K

∣∣∣∣∣ =

∣∣∣∣∣
∫

ΩX

∑
K∈Sh

δK

(
1

(τε)1/2
En

3 , (τε)1/2gh · ∇�∇xξ
n

)
K

∣∣∣∣∣
≤ 1

4ε
‖En

3 ‖2 +
τε

2

∑
K′∈Th

∑
K∈Sh

δK‖gh · ∇�∇xξ
n‖2, (4.12)

where the assumption δ ≤ τ/2 is applied. Using the estimates (4.11) and (4.12), and applying the Lemma 4.5
to the error equation (4.10), we get

‖ξN‖2+τ
N∑

n=1

|||ξn|||2+τ
N∑

n=1

τ |||ξn|||2OS ≤ exp(2T )

{
‖ξ0‖2 + 2

N∑
n=1

τ

(
‖En

1 ‖2 + 2δ‖En
2 ‖2 +

1
2ε

‖En
3 ‖2 +

1
ε
‖En

4 ‖2

)}
.

(4.13)
Now, using the Cauchy-Schwarz’s inequality and applying the Taylor’s theorem with remainder for the E2 term,
we get

‖En
1 ‖2 ≤ C

(
τ

∫ tn

tn−1

∥∥∥∥∂2u(s)
∂s2

∥∥∥∥
2

ds+
1
τ

∫ tn

tn−1

∥∥∥∥∂η(s)∂s

∥∥∥∥
2

ds

)
+ τ2|b|2|g|2‖∇�∇xu(tn)‖2

+ τ2|b|2|g|2‖∇�∇xη
n‖2 + |g|2‖∇�η

n‖2 + |b|2‖∇xη
n‖2,

δ‖En
2 ‖2 ≤ τ

2
‖En

1 ‖2 + δε2‖Δxη
n‖,

1
ε
‖En

3 ‖2 ≤ τ2|g|2‖∇�∇xu(tn)‖2 + τ2|g|2‖∇�∇xη
n‖2,

1
ε
‖En

4 ‖2 ≤ 1
ε
‖En

3 ‖2 + ‖∇xη
n‖2,
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where |b|2 = ‖b‖2
L∞(0,T ;ΩX) and |g|2 = ‖g‖2

L∞(0,T ;ΩX). Collecting all these bounds, we get

‖ξN‖2 +
N∑

n=1

τ |||ξn|||2 + τ

N∑
n=1

τ |||ξn|||2OS ≤ C exp(2T )

(
‖ξ0‖2 + τ2

∥∥∥∥∂2u

∂s2

∥∥∥∥
2

L2(0,T ;L2(Ω))

+ τ2|b|2|g|2‖∇�∇xu(tn)‖2
l2(0,T ;L2(Ω))

+ τ2|g|2‖∇�∇xu(tn)‖2
l2(0,T ;L2(Ω)) +

∫ T

0

∥∥∥∥∂η(s)∂s

∥∥∥∥
2

ds+
N∑

n=1

τ |b|2‖∇xη
n‖2

+
N∑

n=1

τ |g|2‖∇�η
n‖2 +

N∑
n=1

τ‖∇xη
n‖2 + τ2

N∑
n=1

τ |b|2|g|2‖∇�∇xη
n‖2

+ τ2
N∑

n=1

τ |g|2‖∇�∇xη
n‖2 +

N∑
n=1

τδε2‖Δxη
n‖2

)
. (4.14)

Finally, we estimate the interpolation error to get

‖η‖ = ‖u− IXILu‖ ≤ ‖u− IXu‖ + ‖IXu− IXILu‖

≤
(∫

ΩL

‖u− IXu‖2
L2(ΩX )

) 1
2

+
(∫

ΩX

‖IXu− ILIXu‖2
L2(ΩL)

) 1
2

≤ Chr

(∫
ΩL

|u|2Hr(ΩX )

) 1
2

+ Chr

(∫
ΩX

‖IXu‖2
Hs(ΩL)

) 1
2

≤ Chr
(
‖u‖2

L2(ΩL;Hr(ΩX )) + ‖u|2L2(ΩX ;Hs(ΩL))

)
. (4.15)

Similarly, for the derivatives of η we get the following bounds
∥∥∥∥∂η∂s

∥∥∥∥ ≤ Chr

(∥∥∥∥∂u∂t
∥∥∥∥

L2(ΩL;Hr(ΩX ))

+
∥∥∥∥∂u∂t

∥∥∥∥
L2(ΩX ;Hr(ΩL))

)
,

‖∇xη‖ ≤ ‖∇xu−∇xIXu‖ + ‖∇xIXu− IL∇xIXu‖
≤ Chr

(
‖u‖L2(ΩL;Hr+1(ΩX)) + ‖u‖H1(ΩX ;Hr(ΩL))

)
,

‖∇� η‖ ≤ ‖∇� u−∇� ILu‖ + ‖∇� ILu− IX∇� ILu‖
≤ Chr

(
‖u‖L2(ΩX ;Hr+1(ΩL)) + ‖u‖H1(ΩL;Hr(ΩX))

)
,

‖∇x∇� η‖ ≤ ‖∇x∇� u−∇xIX∇� u‖ + ‖∇� ∇xIXu−∇� IL∇xIXu‖
≤ Chr

(
‖u‖H1(ΩL;Hr+1(ΩX )) + ‖u‖H1(ΩX ;Hr+1(ΩL))

)
,

‖Δxη‖ ≤ ‖Δxu−ΔxIXu‖ + ‖ΔxIXu− ILΔxIXu‖
≤ Chr−1

(
‖u‖L2(ΩL;Hr+1(ΩX)) + ‖u‖H2(ΩX ;Hr(ΩL))

)
.

Substituting the above estimates, and using ‖ξ0‖ ≤ ‖η0‖, we get the statement of the theorem. �

5. Numerical results

From the computational point of view, the communication of the finite element solution ûn
h from L-direction

step to the X-direction step and vice versa is one of the challenging task in splitting schemes. Two variants of
operator-splitting finite element algorithms based on the nodal points of the finite elements and the quadrature
points have been presented in [7]. Here, we use the more efficient nodal point based operator-splitting algorithm
to support the analysis of the proposed Galerkin/SUPG operator-splitting finite element scheme in the previous
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section. As a test example, we consider the equation (1.1) in ΩX = (0, 1)2 and ΩL = (0, 1). Further, we choose
ε = 1, b = (0, 0), g = 1 and T = 1. The source term f is chosen such that

u(t, x, �) = e−0.1t sin(πx1) cos(πx2) cos(π�)

is the solution of (1.1) with the above data. For this configuration, the operator-split population balance
equations (3.1) and (3.2) will reduce to a pure advection and a time dependent diffusion equations, respectively.
At level 1, the initial grid of ΩX contains four quadrilaterals, whereas ΩL contains two intervals. The higher
grid levels of ΩX and ΩL are obtained by successively refining their respective initial grids uniformly. In this
numerical study, we used Q1 ⊗ P1, that is, bilinear and linear finite elements on quadrilaterals and intervals,
respectively, and Q2 ⊗ P2, that is biquadratic and quadratic finite elements on quadrilaterals and intervals,
respectively. Further, the backward Euler scheme with τ = h2 for Q1 ⊗P1 and τ = h3 for Q2 ⊗P2 is used in all
computations. To calculate the error in space and time we use

�∞(0, T ;L2(Ω)) := sup
n=1,...,N

‖u(tn) − uh(tn)‖L2(Ω)

�2(0, T ;L2(Ω)) :=

(
N∑

n=1

δt‖u(tn) − uh(tn)‖2
L2(Ω)

)1/2

,

where the L2 error is calculated by applying the quadrature rules in X- and L-directions, i.e.

||u||2L2(Ω) =
∫

Ω

u2 dx d� =
∫

ΩX

(∫
ΩL

u2(x, � )d�
)

dx ≈
∑
KX

i

NX∑
m=1

wx
m

∫
ΩL

u2(xm, �)d�

≈
∑
KX

i

NX∑
m=1

wx
m

∑
KL

j

NL∑
l=1

w�
lu

2(xm, �l).

Here, KX
i and KL

j are cells in ΩX and ΩL, respectively. Further, NX , wx
m and NL, w�

l are the number of
quadrature points, quadrature weights in each KX

i and KL
j , respectively. The computational results obtained

using the Galerkin/Galerkin and Galerkin/SUPG discretizations are presented in Figure 1. For the Q1 ⊗ P1

finite element pair, the numerical errors obtained in both the Galerkin/Galerkin and Galerkin/SUPG discretiza-
tions are similar. For the Q2 ⊗ P2 finite element pair, the numerical error obtained with the Galerkin/SUPG
discretization is slightly less than the numerical error obtained with Galerkin/Galerkin discretization. Never-
theless, in all cases the optimal order of convergence is obtained. These computational results show that we can
use tailored discretization methods in the operator-splitting finite element scheme. Further, it show that the
consistency error induced by the splitting in the backward Euler heterogeneous finite element scheme does not
affect the optimal order of convergence.

6. Summary

We have presented a novel operator-splitting Galerkin/SUPG finite element method for high-dimensional
population balance equations, which depend on both physical and internal property coordinates. The proposed
scheme alleviates the “curse of dimensionality” associated with the solution of a population balance equation in
a population balance system. In our scheme, we split the population balance equation into two low-dimensional
equations, where the first equation in the physical space domain and the second equation in the internal space
domain. This splitting facilitates to use different discretizations in physical and internal spaces. Thus, to suppress
the spurious oscillations in the numerical solution due to the absence of the diffusion in the internal direction,
the standard Galerkin and the Streamline Upwind Petrov Galerkin (SUPG) finite element discretizations are
used for the physical and internal spaces, respectively. Further, we were able to estimate the operator-splitting
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Figure 1. Numerical errors in �∞(0, 1;L2(Ω)) and �2(0, 1;L2(Ω)) norms for the 2D+1D test
example.

error and prove the stability of the Galerkin/SUPG finite element method for the population balance equation.
In the error estimate, it is shown that a slightly more regularity, i.e., mixed partial derivative of the solution
should be bounded, is required to obtain the optimal order of convergence. Further, the numerical results were
presented to support the analysis and the optimal order of convergence was obtained for the first and second
order spatial approximations.
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