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CONSTRAINT PRESERVING SCHEMES USING POTENTIAL-BASED FLUXES.
III. GENUINELY MULTI-DIMENSIONAL SCHEMES FOR MHD

EQUATIONS ∗, ∗∗

Siddhartha Mishra
1

and Eitan Tadmor
2

Abstract. We design efficient numerical schemes for approximating the MHD equations in multi-
dimensions. Numerical approximations must be able to deal with the complex wave structure of the
MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-
dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010)
688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are
formulated in terms of vertex-centered potentials. A suitable choice of the potential results in GMD
schemes that preserve a discrete version of divergence. First- and second-order divergence preserv-
ing GMD schemes are tested on a series of benchmark numerical experiments. They demonstrate the
computational efficiency and robustness of the GMD schemes.
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1. Introduction

Modeling of plasmas lies at the core of many interesting problems in astrophysics, solar physics, electrical and
aerospace engineering. Macroscopic plasma dynamics is characterized by the interaction of the moving plasma
with the magnetic field which is often modeled by the equations of ideal Magnetohydrodynamics (MHD). In
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two space dimensions, the MHD equations are

Ut + f(U)x + g(U)y = 0, (x, y, t) ∈ R × R × R+, (1.1a)

where

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu1

ρu2

ρu3

B1

B2

B3

E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu1

ρ(u1)2 + p̃− 1
2 (B1)2

ρu1u2 −B1B2

ρu1u3 −B1B3

0
−(u2B1 − u1B2)
u1B3 − u3B1

(E + p̃)u1 − (u ·B)B1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu2

ρu1u2 −B1B2

ρ(u2)2 + p̃− 1
2 (B2)2

ρu1u3 −B1B3

u2B1 − u1B2

0
u2B3 − u3B2

(E + p̃)u2 − (u · B)B2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.1b)

Here, ρ denotes the density of the plasma and u = (u1, u2, u3)�, B = (B1, B2, B3)� are, respectively, the
velocity and magnetic fields, E is the total energy and p̃ is the total pressure,

p̃ = p+
1
2
|B|2, (1.1c)

where p is the thermal pressure dictated by the equation of state of an ideal gas with a gas constant γ,

E =
p

γ − 1
+

1
2
(ρ|u|2 + |B|2). (1.1d)

The MHD equations combine conservation laws of the mass, momentum and energy with the magnetic
induction equations. The special structure of the equations in their two-dimensional setup (1.1) is observed in
the 8-vector fluxes which satisfy

f5 = g6 ≡ 0, −f6 = g5 = h, h ≡ h(U) := u2B1 − u1B2. (1.2)

For an arbitrary 8-vector w, we let w̃ denote the reduced 6-vector w̃ := (w1, w2, w3, w4, w7, w8)�; then we can
rewrite (1.1), (1.2) in the equivalent form

Ũt + f̃(U)x + g̃(U)y = 0, (1.3a)
(B1)t + h(U)y = 0, (1.3b)
(B2)t − h(U)x = 0. (1.3c)

The last two equations imply that solutions of (1.1) satisfy the two-dimensional divergence constraint

(div
(
(B1, B2)�

)
)t ≡ 0. (1.4)

Similarly, the magnetic field in the MHD equations in their three-dimensional setup satisfy the special form of
the Maxwell’s equations, e.g., [36],

Bt + curl(B × u) = 0, (x, y, t) ∈ R × R × R+, (1.5)

which in turn, implies the divergence constraint:

(divB)t ≡ 0. (1.6)

Since magnetic monopoles have not been observed in nature, the initial magnetic field is assumed to be divergence
free. The divergence constraints (1.4), (1.6) imply that the divergence of the magnetic field remains zero.

The system of ideal MHD equations is an example for a non-strictly hyperbolic system of conservation laws
with an intrinsic constraint [37]. The solutions of a non-linear system like (1.1) develop generic discontinuities
in the form of shock waves and contact discontinuities. The lack of strict hyperbolicity and the non-convexity
of the MHD equations lead to a complex shock structure, consisting of intermediate and compound shocks [38].
Consequently, relatively few theoretical results are currently available for the MHD equations and numerical
methods for the approximate solution of these equations are sought.
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1.1. Finite-volume schemes

Finite-volume methods are among the most widely used numerical methods for the approximate solution
of systems of conservation laws such as the MHD equations (1.1), see [25, 41] and the references therein. In
a finite volume approximation, the computational domain is discretized into cells and an integral form of the
conservation law (1.1) is realized on each cell in terms of cell averages. To this end we cover the x-y plane with
discrete cells, Ci,j := [xi− 1

2
, xi+ 1

2
)× [yj− 1

2
, yj+ 1

2
), centered at the mesh points (xi, yj) = (iΔx, jΔy), (i, j) ∈ Z

2

with fixed mesh sizes Δx,Δy in the x- and y-directions. The cell averages of U over Ci,j at time t, denoted
Ui,j(t), are then evolved by the semi-discrete scheme [25,41]:

d
dt

Ui,j = − 1
Δx

(
Fi+ 1

2 ,j − Fi− 1
2 ,j

) − 1
Δy

(
Gi,j+ 1

2
− Gi,j− 1

2

)
. (1.7)

The time dependence of all the quantities in the above expression is suppressed for notational convenience.
Classical first-order schemes employ two-point numerical fluxes of the form

Fi+ 1
2 ,j = F(Ui,j ,Ui+1,j), Gi,j+ 1

2
= G(Ui,j ,Ui,j+1). (1.8)

A canonical example is provided by the first-order Rusanov numerical flux:

Fi+ 1
2 ,j =

1
2
(
f(Ui,j) + f(Ui+1,j)

) − max{|αi,j |, |αi+1,j |}J
(
Ui+1,j − Ui,j

)
,

Gi,j+ 1
2

=
1
2
(
g(Ui,j) + g(Ui,j+1)

) − max{|βi,j |, |βi,j+1|}
(
Ui,j+1 − Ui,j

)
.

(1.9)

Here, J is the 8 × 8 scaling matrix:
J = diag{1, 1, 1, 1, 1,−1, 1, 1},

reflecting the special structure in the opposite signs, f5 = −g6, reflected in the fluxes specified in (1.3b)
and (1.3c). The αi,j and βi,j in (1.9) are the maximal eigenvalues of the corresponding Jacobians A := ∂Uf and
B := ∂Ug at a given state Ui,j , i.e.,

αi,j = |(u1

)
i,j
| + |c1|, βi,j = |(u2

)
i,j
| + |c2|; (1.10a)

here

c2k =
1
2

(
a2

i,j + |bi,j |2 +
√(

a2
i,j + |bi,j |2

)2 − 4a2
i,jb

2
k

)
, k = 1, 2, (1.10b)

where
a2

i,j :=
γpi,j

ρi,j
, and |bi,j |2 =

(
b1

)2

i,j
+

(
b2

)2

i,j
+

(
b3

)2

i,j
, bi,j :=

Bi,j√
ρi,j

· (1.10c)

The Rusanov flux (1.9) has been used in [2,3] as a simple yet highly effective building block for solving the ideal
MHD equations using high-resolution central schemes. Other popular numerical fluxes used for the solution
of MHD equations include linearized Roe solvers [9, 36, 37] and HLL type solvers [7, 17, 21, 26, 32]. Detailed
comparisons of different solvers are performed in [18,31]. The Rusanov flux is particularly simple since it is free
of the eigenstructure of the Jacobians – only a local estimate on the wave speeds is needed. But the resolution
of these various fluxes is limited by their first-order accuracy.

The first-order accuracy of the two-point schemes (1.7), (1.8) can be extended to higher order by employing
numerical fluxes which are based on wider, 2p-point stencils, Ii+ 1

2
:= {i′ ∣∣ |i′ − i − 1/2| < p} along the x-axis

and Jj+ 1
2

:= {j′ ∣∣ |j′ − j − 1/2| < p} along the y-axis,

Fi+ 1
2 ,j = F

(
{Ui′,j}i′∈I

i+ 1
2

)
, Gi,j+ 1

2
= G

(
{Ui,j′}j′∈J

j+ 1
2

)
. (1.11)
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The building blocks for such extensions are still the two-point numerical fluxes, F(·, ·) and G(·, ·). As a proto-
type example, we recall the class of second-order schemes based on piecewise bilinear MUSCL reconstruction [45],

pi,j(x, y) := Ui,j +
U′

i,j

Δx
(x − xi) +

U�
i,j

Δy
(y − yj). (1.12a)

Here, U′ and U� denote the numerical derivatives

U′
i,j = minmod

(
Ui+1,j − Ui,j ,

1
2
(Ui+1,j − Ui−1,j),Ui,j − Ui−1,j

)
,

U�
i,j = minmod

(
Ui,j+1 − Ui,j ,

1
2
(Ui,j+1 − Ui,j−1),Ui,j − Ui,j−1

)
,

(1.12b)

which utilize the minmod limiter

minmod(a, b, c) :=
{

sgn(a)min{|a|, |b|, |c|}, if sgn(a) = sgn(b) = sgn(c),
0, otherwise.

(1.12c)

In this manner, one can reconstruct in each cell Ci,j , the point values

UE
i,j := pi,j(xi+ 1

2
, yj), UW

i,j := pi,j(xi− 1
2
, yj), UN

i,j := pi,j(xi, yj+ 1
2
), US

i,j := pi,j(xi, yj− 1
2
), (1.12d)

from the given neighboring cell averages Ui,j ,Ui±1,j and Ui,j ,Ui,j±1. The resulting second-order fluxes are
then given by

Fi+ 1
2 ,j = F(UE

i,j ,U
W
i+1,j), Gi,j+ 1

2
= G(UN

i,j ,U
S
i,j+1). (1.12e)

The use of minmod limiter ensures the non-oscillatory behavior of the second-order schemes (1.7), (1.12).
Observe that the resulting second-order MUSCL fluxes in (1.12e) are based on 4-point stencils

Fi+ 1
2 ,j = F(Ui−1,j ,Ui,j ,Ui+1,j ,Ui+2,j), Gi,j+ 1

2
= G(Ui,j−1,Ui,j ,Ui,j+1,Ui,j+2).

Similar reconstructions together with upwind or central averaging yield a large class of high-resolution finite-
volume semi-discrete schemes, e.g., [22,23,33,40], which could then be integrated in time using standard stable
high order Runge-Kutta methods [20].

1.2. Genuinely multi-dimensional (GMD) fluxes

Despite their considerable success, finite volume schemes (1.7) are known to be deficient in resolving genuinely
multi-dimensional (GMD) waves [25]. Observe that the numerical fluxes Fi+ 1

2 ,j,Gi,j+ 1
2

in (1.11) are based on
one-dimensional stencils which are supported in each normal direction but lack explicit transverse information.
This could result in poor approximation of genuinely multi-dimensional waves, particularly for complicated
systems like the ideal MHD equations (1.1). A characteristic feature of the MHD equations in this context, are the
divergence constraints (1.4), (1.6), which reflect the essential multi-dimensional character of the MHD equations.
Considerable effort has been devoted for devising numerical methods which address the multi-dimensional
character of nonlinear system such as (1.1). These methods include dimensional splitting [25], wave propagation
algorithms [24,25], method of transport [15,16,34], bi-characteristics based evolution Galerkin methods [27,28]
and fluctuation splitting schemes [12].

The absence of an optimal strategy for designing GMD schemes for constrained systems of conservation laws
such as the MHD equations, leaves room for designing stable GMD schemes that are easy to formulate and
code, have a low computational cost and preserve other desirable properties rendered by the multi-dimensional
structure of the system (1.1) like the divergence constraint. Their numerical fluxes take a general form

Fi+ 1
2 ,j = F

({
U(i′,j′)∈S

i+ 1
2 ,j

})
, Gi,j+ 1

2
= G

({
U(i′,j′)∈S

i,j+ 1
2

})
. (1.13a)
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Here, Si+ 1
2 ,j and Si,j+ 1

2
are genuinely two-dimensional stencils which, in contrast to (1.11), allow us to incor-

porate information from both the normal and transverse directions,

Si+ 1
2 ,j :=

{
(i′, j′)

∣∣ |i′ − i− 1/2|+ |j′ − j| < q
}
, Si,j+ 1

2
:=

{
(i′, j′)

∣∣ |i′ − i| + |j′ − j − 1/2| < q
}
. (1.13b)

Thus, in contrast to the standard use of one-dimensional stencils in (1.11), we advocate here the use of two-
dimensional “clouds”, as the basic stencil for conservative GMD schemes. We present such a family of GMD
schemes in Section 2, based on the potential-based framework introduced in our recent papers [29, 30].

1.3. Divergence preserving schemes

A major issue for the numerical approximation of multi-dimensional ideal MHD equations (1.1) is the diver-
gence constraint (1.4), (1.6). Standard finite volume schemes may not preserve discrete versions of the constraint,
leading to numerical instabilities [17, 44]. Different approaches have been suggested to handle the divergence
constraint in MHD codes and we mention three of the currently available approaches below.

(i) The projection method, [6, 8, 10], is based on the Hodge decomposition of the solution B of (1.5): the
corrected field B∗ := Bn −∇Δ−1div(Bn) is divergence free. The method is rather expensive, however, as
it requires a global elliptic solver together with a proper set of boundary conditions to be solved at every
time step, e.g. [44].

(ii) The method of adding a source term, [35, 36], proportional to the divergence in (1.5) results in

Bt + curl(B × u) = −udiv(B). (1.14)

The form (1.14) is symmetrizable [35]. A variant of this approach is found in the Generalized Lagrange
multiplier method [13]. Applying the divergence to both sides, we obtain

(divB)t + div(udivB) = 0.

Hence, any potential divergence errors are transported away from the computational domain by the flow.
Recent papers [17,19] have demonstrated that the added source term in (1.14) needs to be discretized in a
very careful manner for numerical stability. Another difficulty with this approach lies in the non-conservative
form of (1.14) which may result in wrong shock speeds [44].

(iii) The method of designing special divergence operators/staggering is a popular family of methods which
consist of staggering the discretizations of the velocity and magnetic fields in (1.5). A wide variety of
strategies for staggering the meshes has been proposed [2–5, 11, 14, 39, 44] and references therein. The
presence of different sets of meshes leads to problems when the staggered schemes are parallelized, boundary
treatments, etc. Unstaggered variants of this approach have also been proposed in [1, 42, 43].

The above discussion suggests that there is still a room for simple, computationally cheap finite volume
schemes for the constrained equations that resolves GMD waves and preserve a discrete version of the associated
constraint. In this paper, we present such a method with these desired properties for the divergence-free MHD
equations. Our starting point are the GMD finite volume schemes proposed in [29, 30]. These schemes modify
standard finite volume fluxes by introducing vertex centered numerical potentials. The potentials incorporate
explicit transverse information and lead to a stable and accurate resolution of genuinely multi-dimensional
waves. A suitable choice of potentials results in GMD schemes that preserve constraints like divergence in the
magnetic induction equation [29] or vorticity in the system of wave equations [30]. The schemes are very simple
to implement and have low computational cost.

The extension of the potential-based GMD framework of [30] to the ideal MHD equations (1.1) is carried
out in Section 2. A suitable choice of numerical potentials outlined in Section 3 is shown to yield schemes that
preserves discrete divergence. Numerical experiments are reported in Section 4.
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2. Genuinely multi-dimensional (GMD) schemes

Following the presentation of [30], we introduce the numerical potentials φi+ 1
2 ,j+ 1

2
and ψi+ 1

2 ,j+ 1
2

at each
vertex (xi+ 1

2
, yj+ 1

2
), with the sole requirement that these potentials are consistent with the differential fluxes,

i.e.,
φi+ 1

2 ,j+ 1
2
(U, . . . ,U) = f(U), ψi+ 1

2 ,j+ 1
2
(U, . . . ,U) = g(U).

We need the following notation for standard averaging and (undivided) difference operators,

μxaI,J :=
aI+ 1

2 ,J + aI− 1
2 ,J

2
, μyaI,J :=

aI,J+ 1
2

+ aI,J− 1
2

2
,

δxaI,J := aI+ 1
2 ,J − aI− 1

2 ,J , δyaI,J := aI,J+ 1
2
− aI,J− 1

2
.

(2.1)

A word about our notations: we note that the above discrete operators could be used with indexes I, J which
are placed at the center or at the edge of the computational cells, e.g., I = i or I = i + 1

2 . In either case, we
tag the resulting discrete operators according to the center of their stencil; thus, for example, μxwi+ 1

2
employs

grid values placed on the integer-indexed edges, wi and wi+1, whereas δywj employs the half-integer indexed
centers, wj± 1

2
.

We now set the numerical fluxes:
Fi+ 1

2 ,j = μyφi+ 1
2 ,j ,

Gi,j+ 1
2

= μxφi,j+ 1
2
.

(2.2)

The resulting finite volume scheme written in terms of the numerical potentials reads

d
dt

Ui,j = − 1
Δx

δxμyφi,j − 1
Δy

δyμxψi,j

= − 1
Δx

(
1
2

(
φi+ 1

2 ,j+ 1
2

+ φi+ 1
2 ,j− 1

2

)
− 1

2

(
φi− 1

2 ,j+ 1
2

+ φi− 1
2 ,j− 1

2

))
− 1
Δy

(
1
2

(
ψi+ 1

2 ,j+ 1
2

+ ψi− 1
2 ,j+ 1

2

)
− 1

2

(
ψi+ 1

2 ,j− 1
2

+ ψi− 1
2 ,j− 1

2

))
.

(2.3)

The potential based scheme (2.3) is clearly conservative as well as consistent as the potentials φ, ψ are consistent.
The genuinely multi-dimensional nature of the scheme is evident from (2.3): the potentials are differenced in
the normal direction but averaged in the transverse direction. We claim that the family of potential-based
schemes (2.3) is rich: any standard finite volume flux can be used as a building block for constructing the
numerical potentials in (2.2), and the resulting potential-based scheme inherits the accuracy of the underlying
numerical flux. There are several ways to pursue the construction of numerical potentials and we outline three
of them below.

2.1. Symmetric potentials

In this approach, the potentials are defined by averaging the finite volume fluxes neighboring a vertex:

φi+ 1
2 ,j+ 1

2
= μyFi+ 1

2 ,j+ 1
2
,

ψi+ 1
2 ,j+ 1

2
= μxGi+ 1

2 ,j+ 1
2
,

(2.4)

where F,G are any numerical fluxes consistent with f and g respectively. An explicit computation of (2.3) with
potentials (2.4) leads to the revealing form,

d
dt

Ui,j = − 1
2Δx

(
μyFi+ 1

2 ,j+ 1
2

+ μyFi+ 1
2 ,j− 1

2
− μyFi− 1

2 ,j+ 1
2
− μyFi− 1

2 ,j− 1
2

)
− 1

2Δy

(
μxGi+ 1

2 ,j+ 1
2

+ μxGi− 1
2 ,j+ 1

2
− μxGi+ 1

2 ,j− 1
2
− μxGi− 1

2 ,j− 1
2

)
.

(2.5)
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Comparing the potential based scheme (2.5) with the standard finite volume scheme (1.7), we observe that the
potential based scheme modifies (1.7) by averaging the fluxes in the transverse direction. Hence, it incorporates
explicit transverse information in each direction. When employing two-point fluxes, the local stencil for the GMD
scheme (2.5) consists of nine points instead of the standard five point stencil for the finite volume scheme (1.7).
One can use wider stencils to achieve higher-order of accuracy; for example, the symmetric potential-based
scheme based on second-order four-point MUSCL flux (1.12) yields a second-order GMD scheme based on a
stencil of twenty-three points.

2.2. Weighted symmetric potentials

Weighted averages of the neighboring fluxes can be considered in place of the simple averaging used in (2.4).
For prescribed θi+ 1

2 ,j+ 1
2
, κi+ 1

2 ,j+ 1
2
∈ (0, 1), the weighted potential is defined as

φi+ 1
2 ,j+ 1

2
= θi+ 1

2 ,j+ 1
2
Fi+ 1

2 ,j+1 +
(
1 − θi+ 1

2 ,j+ 1
2

)
Fi+ 1

2 ,j ,

ψi+ 1
2 ,j+ 1

2
= κi+ 1

2 ,j+ 1
2
Gi+1,j+ 1

2
+

(
1 − κi+ 1

2 ,j+ 1
2

)
Gi,j+1/2.

(2.6)

The weights can be chosen based on the local characteristic speeds,

θi+ 1
2 ,j+ 1

2
=

max{−(β1)i+ 1
2 ,j+ 1

2
, 0}

max
{
−(β1)i+ 1

2 ,j+ 1
2
, 0

}
+ max

{
(β8)i+ 1

2 ,j+ 1
2
, 0

} ,
κi+ 1

2 ,j+ 1
2

=
max

{
−(α1)i+ 1

2 ,j+ 1
2
, 0

}
max

{
−(α1)i+ 1

2 ,j+ 1
2
, 0

}
+ max

{
(α8)i+ 1

2 ,j+ 1
2
, 0

} ·
(2.7)

Here, αl and , βl, l = 1, 2, . . . , N are the real eigenvalues of A = ∂Uf(μyμxUi+ 1
2 ,j+ 1

2
) and B =

∂Ug(μxμyUi+ 1
2 ,j+ 1

2
), sorted in an increasing order. This choice of weights implies that the potential (2.6)

is “upwinded”.

2.3. Diagonal potentials

We define the diagonal potentials [29],

φi+ 1
2 ,j+ 1

2
=

1
2

(
F+

i+ 1
2 ,j+ 1

2
+ F−

i+ 1
2 ,j+ 1

2

)
,

ψi+ 1
2 ,j+ 1

2
=

1
2

(
G+

i+ 1
2 ,j+ 1

2
+ G−

i+ 1
2 ,j+ 1

2

)
.

(2.8a)

Here, F±,G± are the diagonal fluxes

F+
i+ 1

2 ,j+ 1
2

:= F (Ui,j ,Ui+1,j+1) , F−
i+ 1

2 ,j− 1
2

= F (Ui,j ,Ui+1,j−1)

G+
i+ 1

2 ,j+ 1
2

:= G (Ui,j ,Ui+1,j+1) , G−
i− 1

2 ,j+ 1
2

:= G (Ui,j ,Ui−1,j+1) .
(2.8b)

which amount to rotating the x- and y-axis by angles of π
4 and −π

4 , where F(·, ·) and G(·, ·) are any two-point
numerical fluxes consistent with f and g.

2.4. Isotropic GMD scheme

We conclude our list for recipes of GMD schemes with an example which is not rendered by a numerical
potential, but nevertheless, highlights the use of a GMD stencil. Let F(·, ·) and G(·, ·) are any two-point



668 S. MISHRA AND E. TADMOR

consistent numerical fluxes and let F±,G± be the corresponding diagonal numerical fluxes in (2.8b). We define
the isotropic fluxes,

Fi+ 1
2 ,j :=

1
4

(
F+

i+ 1
2 ,j+ 1

2
+ 2Fi+ 1

2 ,j + F−
i+ 1

2 ,j− 1
2

)
,

Gi,j+ 1
2

:=
1
4

(
G+

i+ 1
2 ,j+ 1

2
+ 2Gi,j+ 1

2
+ G−

i− 1
2 ,j+ 1

2

)
.

(2.9)

The resulting finite volume scheme reads as

d
dt

Ui,j = − 1
Δx

δxFi,j − 1
Dy

δyGi,j ,

= − 1
4Δx

(
δ/F

+
i,j + 2δxFi,j + δ\F

−
i,j

) − 1
4Δy

(
δ/G

+
i,j + 2δyGi,j − δ\G

−
i,j

)
;

(2.10)

here, δ/ and δ\ denote the diagonal difference operators,

δ/aI,J := aI+ 1
2 ,J+ 1

2
− aI− 1

2 ,J− 1
2
, δ\aI,J := aI+ 1

2 ,J− 1
2
− aI− 1

2 ,J+ 1
2
. (2.11)

The GMD structure of the scheme is clear from (2.10): the scheme averages the fluxes along transverse
directions. In contrast to the symmetric scheme (2.5), however, the explicit transverse information in (2.10) is
obtained by “rotating” the fluxes. Since the scheme (2.10) is based on all nine grid points in a cell by involving
all four directions, we term it as an isotropic GMD scheme. The isotropic GMD scheme (2.10) was shown to be
entropy stable if the underlying two-point fluxes, F(·, ·),G(·, ·) are, consult [30].

Second-order version of the isotropic schemes can be obtained by the piecewise bilinear reconstruction (1.12).
Here, in addition to the point values reconstructed on (1.12e), we also need the corner point values,

UNE
i,j := pi,j

(
xi+ 1

2
, yj+ 1

2

)
, UNW

i,j := pi,j

(
xi− 1

2
, yj+ 1

2

)
,

USE
i,j := pi,j

(
xi+ 1

2
, yj− 1

2

)
, USW

i,j := pi,j

(
xi− 1

2
, yj− 1

2

)
,

(2.12a)

and the corresponding diagonal fluxes,

F+
i+ 1

2 ,j+ 1
2

:= F
(
UNE

i,j ,U
SW
i+1,j+1

)
, F−

i+ 1
2 ,j− 1

2
:= F

(
USE

i,j ,U
NW
i+1,j+1

)
,

G+
i+ 1

2 ,j+ 1
2

:= G
(
UNE

i,j ,U
SW
i+1,j+1

)
, G−

i− 1
2 ,j+ 1

2
:= F

(
UNW

i,j ,USE
i−1,j+1

)
,

(2.12b)

to define the second order accurate version of the isotropic GMD scheme (2.10), (2.12).

3. Divergence preserving schemes

The divergence of the magnetic field in (1.1a) is preserved (1.4), due to the special structure of the MHD fluxes
in (1.3). Accordingly, to ensure a divergence-free numerical solution we need to respect this special structure
at the discrete level by choosing a suitable form of the potential. Let φi+ 1

2 ,j+ 1
2

and ψi+ 1
2 ,j+ 1

2
be numerical

potentials associated with the MHD fluxes f and g; one may employ here any consistent potential such as the
(weighted) symmetric, diagonal or isotropic potentials constructed in Section 2. Let η and ζ be the reduced
6-vector potentials consistent with the reduced fluxes f̃ and g̃:

ηi+ 1
2 ,j+ 1

2
:=

(
(φ1)i+ 1

2 ,j+ 1
2
, . . . , (φ4)i+ 1

2 ,j+ 1
2
, (φ7)i+ 1

2 ,j+ 1
2
, (φ8)i+ 1

2 ,j+ 1
2

)�
,

ζi+ 1
2 ,j+ 1

2
:=

(
(ψ1)i+ 1

2 ,j+ 1
2
, . . . , (ψ4)i+ 1

2 ,j+ 1
2
, (ψ7)i+ 1

2 ,j+ 1
2
, (ψ8)i+ 1

2 ,j+ 1
2

)�
.

(3.1)
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Our scheme will evolve the cell averages of the reduced vector Ũ :=
(
ρ, ρu1, ρu2, ρu3, B3, E

)� together with
the x- and y-components of the magnetic field, B1 and B2. The potential-based approximation of (1.3) reads

d
dt

Ũi,j = − 1
Δx

δxμyηi,j − 1
Δy

δyμxζi,j ,

d
dt

(B1)i,j = − 1
Δy

δyμxχi,j ,

d
dt

(B2)i,j =
1
Δx

δxμyχi,j .

(3.2)

Here, χi+ 1
2 ,j+ 1

2
is any numerical potential consistent with h(U) = u1B2 − u2B1.

The divergence preserving property of (3.2) is summarized below.

Lemma 3.1. Let ηi+ 1
2 ,j+ 1

2
, ζi+ 1

2 ,j+ 1
2

and χi+ 1
2 ,j+ 1

2
be arbitrary numerical potentials consistent with f̃ , g̃ and,

respectively, h. Let Bi,j be the approximate magnetic fields computed with the corresponding potential-based
GMD scheme (3.2). Then, their discrete divergence div∗,

div∗((B1, B2)�i,j
)

:=
1
Δx

μyδx(B1)i,j +
1
Δy

μxδy(B2)i,j , (3.3a)

is preserved in time,
d
dt

(
div∗((B1, B2)�i,j

)) ≡ 0, ∀i, j. (3.3b)

Verification of (3.3b) is straightforward: the difference operators δx, δy and the averaging operators μx, μy

commute with each other. We apply the discrete divergence operator div∗ to the numerical scheme (3.2) to find

ΔxΔy
d
dt

div∗((B1, B2)�i,j
)

= (μxδyδxμy − μyδxδxμx)χi,j ≡ 0.

Remark 3.2. A similar treatment of divergence-preserving potential-based schemes for the 3D magnetic trans-
port (1.5) was carried out in [29], Section 2.5. This could be served as the building block for divergence-preserving
potential-based scheme for the 3D MHD equations along the lines of our treatment of 2D MHD equations in
Lemma 3.1.

Remark 3.3. One approach in designing constraint preserving schemes is to satisfy that constraint approxi-
mately: for example, the discrete statement of the divergence constraint could be interpreted as a second-order
approximation of the differential divergence,

div∗ (
(B1, B2)�i,j

)
= div

(
(B1, B2)�

)
(xi, yj) + O(Δx2 +Δy2).

This, however, requires the smoothness of the underlying solution. Instead, a key feature of constraint preserving
schemes based on numerical potentials is that they satisfy exactly a discrete constraint, so that their numerical
solution remains on a discrete sub-manifold, independent of the underlying smoothness. Similarly, a related
potential-based GMD scheme which preserves a discrete vorticity was described in [30].

The scalar potential χ in (3.2) can be chosen in different ways. We mention two possible choices below.

3.1. Divergence preserving symmetric GMD scheme

The potentials η, ζ are defined as in (2.4). A natural choice [29] of the potential χ is the symmetric potential:

χi+ 1
2 ,j+ 1

2
=

1
4

(
(F6)i+ 1

2 ,j + (F6)i+ 1
2 ,j+1 + (G5)i,j+ 1

2
+ (G5)i+1,j+ 1

2

)
(3.4)
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with F5,6,G5,6 being components of any consistent numerical fluxes F,G. Let

F̃ = (F1, . . . ,F4,F7,F8)
�
, G̃ = (G1, . . . ,G4,G7,G8)�

be the corresponding reduced fluxes associated with any consistent F,G. The potential-based symmetric GMD
scheme (3.2) takes the explicit form:

d
dt

Ũi,j = − 1
2Δx

(
μyF̃i+ 1

2 ,j+ 1
2

+ μyF̃i+ 1
2 ,j− 1

2
− μyF̃i− 1

2 ,j+ 1
2
− μyF̃i− 1

2 ,j− 1
2

)
− 1

2Δy

(
μxG̃i+ 1

2 ,j+ 1
2

+ μxG̃i− 1
2 ,j+ 1

2
− μxG̃i+ 1

2 ,j− 1
2
− μxG̃i− 1

2 ,j− 1
2

)
,

d
dt

(B1)i,j = − 1
4Δy

(μx(F6)i,j+1 − μx(F6)i,j−1) − 1
4Δy

(
δy

(
μx(G5)i+ 1

2 ,j+ 1
2

+ μx(G5)i− 1
2 ,j+ 1

2

))
,

d
dt

(B2)i,j =
1

4Δx
(μy(G5)i+1,j − μy(G5)i−1,j) +

1
4Δx

(
δx

(
μy(F6)i+ 1

2 ,j+ 1
2

+ μy(F6)i+ 1
2 ,j− 1

2

))
.

(3.5)

3.2. Divergence preserving isotropic GMD scheme

We define a diagonal form of the potential χ:

χi+ 1
2 ,j+ 1

2
=

1
4

((
F+

6

)
i+ 1

2 ,j+ 1
2

+
(
G+

5

)
i+ 1

2 ,j+ 1
2

+
(
F−

6

)
i+ 1

2 ,j+ 1
2

+
(
G−

5

)
i+ 1

2 ,j+ 1
2

)
(3.6)

for diagonal fluxes F±,G± defined in (2.8b). Denote

F̃± =
(
F±

1 , . . . ,F
±
4 ,F

±
7 ,F

±
8

)�
, G̃± =

(
G±

1 , . . . ,G
±
4 ,G

±
7 ,G

±
8

)�
.

The potential-based modification of the isotropic GMD scheme (2.10) based on the potential (3.6) reads

d
dt

Ũi,j = − 1
4Δx

(
δ/F̃

+
i,j + 2δxF̃i,j + δ\F̃

−
i,j

)
− 1

4Δy

(
δ/G̃

+
i,j + 2δyG̃i,j − δ\G̃

−
i,j

)
,

d
dt

(B1)i,j = − 1
4Δy

(
μxδy

((
F+

6

)
i,j

+
(
F−

6

)
i,j

+
(
G+

5

)
i,j

+
(
G−

5

)
i,j

))
,

d
dt

(B2)i,j =
1

4Δx

(
μyδx

((
F+

6

)
i,j

+
(
F−

6

)
i,j

+
(
G+

5

)
i,j

+
(
G−

5

)
i,j

))
.

(3.7)

Remark 3.4. Observe that the isotropic scheme (3.7) is not a potential-based scheme: the reduced vector Ũi,j

is computed using the GMD isotropic fluxes. Instead, only the x- and y-components of the magnetic field are
evaluated using the diagonal-based potential χi+ 1

2 ,j+ 1
2
, consistent with (1.3b), (1.3c) which in turn, imply the

desired divergence-preserving property.

4. Numerical results

All the potential based GMD schemes described in the previous section are semi-discrete. We define a fully
discrete version of the first-order GMD schemes by using standard forward Euler time integration. Second-order
strong stability preserving Runge-Kutta method [20] defines fully discrete versions of the second-order accurate
GMD schemes. The time step is determined by a standard CFL condition. A CFL number of 0.45 is used in all
the subsequent simulations.
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(a) SYM (b) SCP

(c) ISO (d) ICP

Figure 1. The pressure p for the Orszag-Tang vortex computed at t = π on a 200× 200 mesh
with first-order GMD schemes.

We test the following schemes:

SYM (SYM2) First (second)-order version of the symmetric GMD scheme (2.5).
ISO (ISO2) First (second)-order version of the isotropic GMD scheme (2.10).
SCP (SCP2) First (second)-order version of the divergence preserving symmetric GMD scheme (3.5).
ICP (ICP2) First (second)-order version of the divergence preserving isotropic GMD scheme (3.7).

4.1. Orszag-Tang vortex

The Orszag-Tang vortex is a widely reported benchmark for multi-dimensional MHD equations [44]. The
initial data is

(ρ, u1, u2, u3, B1, B2, B3, p) =
(
γ2,− sin(y), sin(x), 0,− sin(y), sin(2x), 0, γ

)
,

in the computational domain: (x, y, t) ∈ [0, 2π]2 × [0, π] with periodic boundary conditions.
Although the exact solution is not known, qualitative features have been reported [44]. The solution consists

of shocks along the diagonals and interesting smooth features including a vortex near the center of the domain.
The approximate pressures, computed on a 200 × 200 mesh, are shown in Figures 1 and 2.
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(a) SYM2 (b) SCP2

(c) ISO2 (d) ICP2

Figure 2. The pressure p for the Orszag-Tang vortex computed at t = π on a 200× 200 mesh
with second-order GMD schemes.

Figure 1 shows the approximate pressure computed with the first-order GMD schemes. The solution is
smeared at this resolution, but the qualitative features are captured without any spurious oscillations and other
numerical artifacts. The divergence preserving SCP and ICP schemes are clearly more accurate than the SYM
and ISO schemes, indicating that preserving a discrete version of the constraint leads to a gain in accuracy.
The results for the second-order schemes are plotted in Figure 2 and show a considerable improvement in the
resolution. The gain in accuracy is pronounced, both at the shocks and at the central vortex. The divergence
preserving SCP2 and ICP2 are slightly more accurate than the SYM2 and ISO2 schemes.

In the absence of an exact formula for the solution, the maximum pressure [17, 44] has been suggested as a
measure of accuracy. The maximum pressure at time t = π, computed on a sequence of meshes, is presented
in Table 1. The table provides a quantitative comparison between the schemes and vindicates the conclusions
from the plots. The gain in resolution with the second-order schemes is considerable.

As the initial data is divergence free, the divergence constraint (1.6) implies that the divergence should remain
zero during the evolution. We show the errors in the discrete divergence operator div∗ (3.3a), measured in the
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Table 1. Maximum pressure for the Orszag-Tang vortex with all the GMD schemes on a
M ×M mesh at time t = π.

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 3.17 3.19 3.27 3.32 4.85 4.34 4.89 4.37
100 3.54 3.57 3.65 3.71 4.91 5.00 5.1 5.14
200 4.24 4.22 4.37 4.42 5.75 5.64 5.76 5.71
400 4.78 4.79 4.94 5.00 6.03 6.1 6.08 6.15

Table 2. Discrete divergence div∗ (3.3a) in L1 for the Orszag-Tang vortex with all the GMD
schemes on a M ×M mesh at time t = π.

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 0.60 0.49 5.58e-14 4.43e-14 1.78 1.66 8.55e-14 5.73e-14
100 0.89 0.71 2.23e-13 1.78e-13 3.26 2.99 3.16e-13 1.99e-13
200 0.90 0.75 7.97e-13 5.85e-13 3.87 3.58 2.88e-13 6.49e-13
400 0.81 0.70 2.51e-12 1.82e-12 3.88 3.32 3.27e-12 1.93e-12

Table 3. Discrete divergence divc (4.1) in L1 for the Orszag-Tang vortex with all the GMD
schemes on a M ×M mesh at time t = π.

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 0.62 0.49 0.18 0.27 2.43 2.09 1.20 1.55
100 0.89 0.71 0.17 0.26 4.09 3.44 1.38 1.69
200 0.90 0.75 0.14 0.20 4.59 4.02 1.23 1.57
400 0.82 0.70 0.10 0.13 4.60 3.63 1.10 1.48

L1 norm, in Table 2. The table shows that the standard GMD schemes lead to O(1) divergence errors. The
divergence error is larger for the second-order SYM2 and ISO2 schemes than the first-order schemes. This is to
be expected as the second-order schemes resolve the shocks sharply. On the other hand the SCP, SCP2, ICP
and ICP2 schemes preserve this discrete divergence to machine precision.

It is natural to question whether controlling one discrete version of divergence, div∗, will imply control of a
different discrete version of the divergence operator. The standard central discrete divergence operator is defined
by,

divc
(
(B1, B2)�i,j

)
:=

1
Δx

δx(B1)i,j +
1
Δy

δy(B2)i,j . (4.1)

Note that the central discrete divergence operator divc differs from the discrete divergence operator div∗ by
O(Δx2 +Δy2) provided that the underlying magnetic field is smooth. However, since the magnetic field in this
example has shocks and other discontinuities, it is not clear that preserving div∗ will lead to some control in
divc. We explore this question by presenting errors in divc at time t = π on a sequence of meshes in Table 3.

A closer investigation of Table 3 and comparison between Tables 2 and 3 reveal an interesting picture. As
with div∗ errors, the errors in the discrete divergence divc increase when the second-order schemes are used.
Furthermore, the errors for both discrete divergence operators with the first- and second-order SYM and ISO
schemes are of comparable magnitude. On the other hand, controlling div∗ errors to machine precision does not
imply that the errors in divc with the SCP and ICP schemes are very low. In fact, the errors are O(1) due to
the formation of discontinuities in this problem.

However, the errors in divc with the SCP and ICP schemes are consistently lower than the corresponding
errors with the SYM and ISO schemes. The difference ranges from a factor of about four for the second-order
schemes to almost an order of magnitude for the first-order schemes. Furthermore, the errors with the SCP and
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(a) SYM2 (b) SCP2

Figure 3. The discrete divergence divc (4.1) for the Orszag-Tang vortex computed at t = π
on a 400 × 400 mesh with second-order SYM2 and SCP2 schemes.

ICP schemes are reduced by decreasing the mesh size indicating some convergence (but at a very slow rate) as
the mesh is refined.

In-order to explain the above observations, we plot the discrete divergence divc for the SYM2 and SCP2
schemes on a 400 × 400 mesh in Figure 3. The figure clearly shows that errors in the discrete divergence
operator divc with the SCP2 scheme are created at shocks and sharp gradients in the solution, see Figure 2
for a comparison. However, the errors in the SYM2 scheme are not localized. The largest magnitude of error
is still at the discontinuities but there are large errors away from them. Figure 3 and Tables 2 and 3 suggest
that preserving one version of discrete divergence implies leads to some control on another version of discrete
divergence in the smooth parts of the solution and localization of divergence errors at shocks. Therefore, the
overall divergence error with the SCP and ICP schemes is lower than that of the SYM and ISO schemes.

4.2. Rotor problem

Another benchmark test for the MHD equations is the rotor problem [44]. The computational domain is
(x, y, t) ∈ [0, 1]2 × [0, 0.295] with artificial Neumann type boundary conditions. The initial density is

ρ =

⎧⎪⎨⎪⎩
10.0 if r < 0.1,
1 + 9f(r) if 0.1 ≤ r < 0.115,
1.0 otherwise,

with r(x, y) = |(x, y) − (0.5, 0.5)| and

f(r) =
23 − 200r

3
·

The other initial variables are,

(ρu1, ρu2) =

⎧⎪⎨⎪⎩
((10y − 5)ρ,−(10x− 5)ρ) if r < 0.1,
((10y − 5)f(r)ρ,−(10x− 5)f(r)ρ) if 0.1 ≤ r < 0.115,
(0.0, 0.0) otherwise,

(ρu3, B1, B2, B3, p) =
(
0.0, 2.5/

√
π, 0.0, 0.0, 0.5

)
.
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(a) SYM (b) ISO

(c) SCP (d) ICP

Figure 4. The pressure p for the rotor problem computed at t = 0.295 on a 200 × 200 mesh
with first-order schemes.

The initial velocity and magnetic fields are such that the variables are rotated in the domain. The pressure
drops to very low values in the center, and this test case is set up in order to determine how a scheme handles
low pressures. The approximate pressure computed with the first-order GMD schemes, on a 200× 200 mesh, is
shown in Figure 4. The figure shows that all the schemes are stable at this resolution and the low pressure at
the center is resolved. The first-order schemes are diffusive. The divergence preserving SCP and ICP schemes
are more accurate in this case. The results for the second-order schemes are plotted in Figure 5. They reveal a
significant gain in resolution with the second-order schemes, particularly at shocks. The errors in the discrete
divergence div∗ are displayed in Table 4. The divergence errors generated by the SYM and ISO schemes and their
second-order versions are again O(1). These errors increase with increasing resolution, i.e., either by reducing
mesh size or by increasing the order of accuracy of the scheme, indicating that the bulk of the divergence errors
are generated near the shocks. The SCP, ICP, SCP2 and ICP2 schemes preserve discrete divergence to machine
precision.
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Table 4. Discrete divergence div∗ (3.3a) in L1 for the rotor problem with all the eight schemes
on a M ×M mesh at time t = 0.295.

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 0.70 0.57 6.0e-12 4.49e-12 1.03 1.03 6.3e-13 4.7e-13
100 1.25 0.93 2.3e-12 1.73e-12 1.92 1.9 2.4e-13 1.8e-13
200 1.7 1.23 8.8e-13 6.35e-13 3.41 3.27 4.1e-13 1.6e-13
400 2.09 1.56 3.3e-13 2.49e-13 6.0 5.7 4.2e-13 1.1e-13

(a) SYM2 (b) ISO2

(c) SCP2 (d) ICP2

Figure 5. The pressure p for the rotor problem computed at t = 0.295 on a 200 × 200 mesh
with second-order schemes.

4.3. Cloud-Shock interaction

The next benchmark test case for the MHD equations involves the interaction of a high density cloud with a
shock. The initial data for this cloud-shock interaction problem [38] consists of a shock located at x = 0.05 with

(ρ, u1, u2, u3, B1, B2, B3, p) =

{
(3.86859, 11.2536, 0, 0, 0, 2.1826182,−2.1826182, 167.345), if x < 0.05
(1.0, 0, 0, 0, 0, 0.56418958, 0.56418958, 1.0), if x < 0.05.

(4.2)
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(a) SYM (b) ISO

(c) SCP (d) ICP

Figure 6. The density ρ for the cloud-shock interaction computed at t = 0.06 on a
200 × 200 mesh with first-order schemes.

and a circular cloud of density ρ = 10 with radius 0.15, centered at (x, y) = (0.25, 0.5). The computational
domain is [0, 1]× [0, 1]. The test is configured in such a way that a right moving shock violently interacts with a
high density cloud. The solution has a extremely complex structure, consisting of bow shock at the left, trailing
shocks at the right and a complicated smooth region with turbulent features in the center.

We plot the approximate density, on a 200 × 200 mesh, at time t = 0.06 in Figures 6 and 7.
The first-order results in Figure 6 show that the first-order GMD schemes are stable but quite diffusive. The

divergence preserving SCP and ICP schemes are again more accurate than the SYM and ISO schemes. The
second-order results are plotted in Figure 7 and show a dramatic increase in resolution. Both the bow shock and
the trailing shock are captured accurately. The smooth region with turbulent like features is also resolved quite
well. The divergence errors for discrete divergence div∗ are shown in Table 5. The table shows large divergence
errors for the SYM (SYM2) and ISO (ISO2) schemes. On the other hand, the constraint preserving SCP (SCP2)
and ICP (ICP2) schemes preserve discrete divergence to machine precision.

Remark 4.1. The first-order GMD schemes were quite diffusive. A possible reason is the use of the Rusanov
flux (1.9). This flux is known to produce excessive smearing at the shocks. However, we advocate the use of the
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Table 5. Discrete divergence div∗ (3.3a) in L1 for cloud shock interaction with all the eight
schemes on a M ×M mesh at time t = 0.06.

M SYM ISO SCP ICP SYM2 ISO2 SCP2 ICP2
50 4.56 2.59 2.8e-12 2.1e-12 5.79 5.38 3.4e-13 2.27e-13
100 4.47 3.3 1.2e-12 8.7e-13 12.58 11.75 2.1e-13 1.14e-13
200 5.19 4.05 5.0e-13 3.7e-13 27.1 26.48 1.4e-13 1.34e-13
400 7.5 6.4 2.3e-13 1.5e-13 38.0 41.3 1.8e-13 2.2e-13

Figure 7. The density ρ for the cloud-shock interaction computed at t = 0.06 on a
200 × 200 mesh with second-order schemes.

Rusanov flux as the accuracy is recovered at second-order. The Rusanov flux is very easy to implement, uses
minimal characteristic information and has a low computational cost. It fits into the black box framework of our
GMD schemes.

The three numerical experiments show that the GMD schemes are quite robust. There does not appear to be
a strong connection between the divergence errors and stability of a GMD scheme. The GMD structure of the
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schemes incorporates stability. However, there is a gain in accuracy (at least at first-order) when the divergence
preserving versions of the scheme are used.

Physicists are generally reluctant to use numerical schemes that produce divergence errors. Hence, we advo-
cate the use of the divergence preserving GMD schemes. Furthermore, the computational cost of a divergence
preserving GMD scheme is virtually identical to the cost of other GMD schemes.

5. Conclusion

The ideal MHD equations (1.1a) are considered. The equations are non-strictly hyperbolic and posses a
complex shock structure. Design of stable and accurate numerical methods for the MHD equations in multi-
dimensions is complicated on account of its genuinely multi-dimensional structure and the divergence constraint.

We extend the potential based GMD framework of recent papers [29, 30] to the MHD equations. The fi-
nite volume schemes are formulated in terms of vertex centered numerical potentials. Symmetric (2.5) and
isotropic (2.10) versions of the potential based GMD schemes are described. The GMD schemes are modified
with a suitable choice of potentials to yield divergence preserving GMD schemes. Second-order versions are
obtained by employing non-oscillatory piecewise bilinear reconstructions. The schemes are constraint preserving
GMD extensions of the central schemes of Kurganov and Tadmor [23].

Benchmark numerical experiments for the MHD equations are presented. They show that the first-order
GMD schemes resolve the waves with some diffusion. There is a gain in accuracy when the divergence preserving
versions are used. The gain in resolution with the second-order schemes is considerable. The multi-dimensional
shocks are vortices are captured, with good accuracy.

The non divergence preserving versions of the GMD schemes can generate large divergence errors, particularly
at shocks. These errors do not seem to affect the stability of the schemes, at least in our tests. But large divergence
errors might create instabilities at finer resolutions. Hence, we advocate using the divergence preserving versions
of the GMD schemes. The GMD approach is simple to implement, robust and has a very low computational
cost. It will be extended to higher than second-order of accuracy and to unstructured meshes in future papers.
Other future projects include using the divergence preserving GMD schemes to compute realistic flows in solar
physics and astrophysics.
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