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Abstract. We derive an optimal lower bound of the interpolation error for linear finite elements on
a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true
solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain
two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided
bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis.
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1. Introduction

The first known two-sided estimate goes back to the antiquity, when Archimedes estimated π from below
and above by means of inscribed and circumscribed regular polygons to the unit circle. Two-sided bounds of
the energy of the weak solution of elliptic problems can be obtained by a simultaneous use of the primal and
dual finite element method, see e.g. [9], p. 65, [12], p. 261. Two-sided a posteriori bounds of the discretization
error for the finite element for elliptic problems are given e.g. in [7], p. 239–242, [15], p. 29. In this paper we
introduce two-sided a priori bounds of the discretization error for linear and bilinear finite elements. To the
authors’ knowledge, such bounds were obtained for the first time.

Let Ω ⊂ R
2 be a bounded polygonal domain. Consider a strongly regular family F = {Th}h→0 of face-to-face

triangulations Th of Ω, i.e., there exists a constant C > 0 such that for any Th ∈ F and any triangle T ∈ Th we
have

measT ≥ Ch2. (1.1)

Throughout the paper the symbol C (possibly with subindices) stands for a positive generic constant independent
of the discretization parameter h, but which may be dependent on a given fixed function. The generic constant
may attain different values at different occurrences.

Keywords and phrases. Lagrange finite elements, Céa’s lemma, superconvergence, lower error estimates
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Denote by Vh the space of functions that are linear over each triangle T ∈ Th and continuous over Ω. Then
for the standard linear Lagrangian interpolation operator Lh : C(Ω) → Vh we have the well-known estimate

‖v − Lhv‖1 ≤ Ch|v|2 as h → 0, (1.2)

where ‖ · ‖k and | · |k stand for the usual Hk-Sobolev norm and seminorm, respectively. It is said that approxi-
mation order of Lh in (1.2) is optimal, i.e., it cannot be improved. calculating the norm ‖v −Lhv‖1 for a given
quadratic function v. Then the norm is asymptotically bounded from below by h multiplied by a positive
constant.

In the next section we show that such a lower bound holds for an arbitrary nonlinear smooth function v, not
only quadratic. It generalizes results from [2,3] for a one-dimensional problem into two dimensions. A similar
result without proof is also stated in [14], Theorem 3.5. In Section 3 we shall apply the finite element method
to a second order elliptic boundary value problem with variable coefficients. Using the lower bound for the
interpolation error and some superconvergence property, we derive two-sided bounds of the discretization error
by means of the interpolation error, namely

(1 − Ch)‖u − Lhu‖1 ≤ ‖u − uh‖1 ≤ (1 + Ch)‖u − Lhu‖1 as h → 0,

where uh is the finite element solution over uniform triangulations. Note that superconvergence results are
usually applied to get a higher accuracy or some a posteriori error estimates or to perform mesh adaptation.
Derivation of the two-sided a priori bounds of the discretization error ‖u − uh‖1 is a new application of
superconvergence theory.

An extension of results from Sections 2 and 3 to bilinear finite elements is given in Section 4. Finally, in
Section 5 some numerical tests are presented.

2. Lower bound of the interpolation error for linear elements

To show the main idea of the lower bound estimate of the interpolation error, we will first consider special
uniform triangulations.

Theorem 2.1. Let v ∈ C2+ε(Ω)\P1(Ω) for some ε > 0. Then for a family of uniform triangulations consisting
of isoceles right triangles there exists a constant C > 0 depending on v such that

|v − Lhv|1 ≥ Ch as h → 0. (2.1)

Proof. Since v is not linear, it follows for the matrix Hes v of second derivatives that

M := max
(x,y)∈Ω

2∑
k,�=1

(Hes v(x, y))2k� > 0.

Thus, there exists a nonempty subdomain Ω0 ⊂ Ω such that for any (x, y) ∈ Ω0 we have

2∑
k,�=1

(Hes v(x, y))2k� >
M

2
· (2.2)
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Let K ∈ Th be a triangle with vertices (xi, yj), (xi + h, yj), (xi + h, yj + h) and let K ⊂ Ω0. First, we shall
compute |v − Lhv|21,K under the assumption that v is a quadratic polynomial, i.e., ∂11v = a, ∂12v = b, and
∂22v = c are constants. In this special case we obtain

∂1(v − Lhv)(x, y) = a

(
x − xi −

1
2
h

)
+ b(y − yj),

∂2(v − Lhv)(x, y) = b(x − xi − h) + c

(
y − yj −

1
2
h

)
. (2.3)

To see this, we set z = ∂1(v − Lhv) on K. Then the Taylor expansion of the linear function z at the point
P = (xP , yP ) ∈ K reads

z(x, y) = z(P ) + ∂1z(P )(x − xP ) + ∂2z(P )(y − yP )
= z(P ) + a(x − xP ) + b(y − yP ). (2.4)

Setting P = D = (xi + h
2 , yj), we come to

z(x, y) = a

(
x − xi −

1
2
h

)
+ b(y − yj),

since the values of ∂1v and ∂1Lhv coincide at the midpoint D. The second equation of (2.3) can be derived
similarly for the midpoint E = (xi + h, yj + h

2 ), see also the identities for the interpolation error in [11].
Denote by F = (xi + h

2 , yj + h
2 ) the third midpoint of edges of K. Applying the midpoint quadrature rule

∫
K

p dK =
meas

3
K (p(D) + p(E) + p(F )) (2.5)

which is valid for all quadratic polynomials p (see [8], p. 55), we get by (2.3)

|v − Lhv|21,K =
∫

K

{
[∂1(v − Lhv)]2 + [∂2(v − Lhv)]2

}
dK

=
1
3

h2

2

∑
(x,y)∈{D,E,F}

{[
a

(
x − xi −

1
2
h

)
+ b(y − yj)

]2

+
[
b(x − xi − h) + c

(
y − yj −

1
2
h

) ]2
}

=
h2

6
· 1
4

{
(bh + ch)2 + (ah + bh)2 + b2h2 + b2h2

}
=

h4

24
(
a2 + 2ab + 4b2 + 2bc + c2

)
. (2.6)

This value is positive due to (2.2).
Now let v ∈ C2+ε(K) and let z = ∂1(v − Lhv). Then by the Taylor expansion we get like in (2.4) that

z(x, y) = z(P ) + a(x − xP ) + b(y − yP ) + o(h),
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where a and b are constant approximations of ∂11v and ∂12v on K, respectively. Using a similar expansion for
∂2(v − Lhv), we find by (2.6) that

|v − Lhv|21,K =
h4

24
(
a2 + 2ab + 4b2 + 2bc + c2

)
+ o(h4) ≥ C1h

4 with C1 > 0 (2.7)

for h sufficiently small. The constant C1 is independent of K ⊂ Ω0, but depends on v due to (2.2). An analogous
lower bound can be obtained for a triangle K ′ ∈ Th with vertices (xi, yj), (xi, yj + h), and (xi + h, yj + h).

Summing up (2.7) over all elements K ⊂ Ω0 (and similar inequalities for elements K ′ ⊂ Ω0), we come to

|v − Lhv|21,Ω0
≥ C2h

2, (2.8)

since the number of these elements is greater than or equal C3h
−2. Hence, (2.1) holds. �

Further, we will derive a lower bound similar to (2.1) for unstructured triangulations. The proof will be quite
similar to that of Theorem 2.1, so we will present only the main points.

Consider an arbitrary triangle T with vertices Ak (defined as column vectors) for k = 0, 1, 2 and the linear
affine mapping FT : T̂ → T , where T̂ is the reference triangle with vertices Â0 = (0, 0)�, Â1 = (1, 0)�, and
Â2 = (0, 1)�. Then (

x
y

)
= FT

(
x̂
ŷ

)
= BT

(
x̂
ŷ

)
+ bT , (2.9)

where

BT =
(

b11 b12

b21 b22

)
= (A1 − A0, A2 − A0) (2.10)

is a nonsingular 2 × 2 matrix, bT = A0 ∈ R
2, and FT (Âk) = Ak, k = 0, 1, 2.

Assume now that a given family of triangulations is strongly regular (see (1.1)). Then the Euclidean norm
of every column of BT can be estimated as follows

C1h ≤ ‖Ak − A0‖ ≤ C2h for k = 1, 2 (2.11)

and
C1h

2 ≤ | detBT | = 2 meas T ≤ C2h
2. (2.12)

For every w ∈ C(T ) ∩ H1(T ) and every (x̂, ŷ)� ∈ T̂ we define by (2.9),

ŵ(x̂, ŷ) = w(x, y). (2.13)

Thus, we have a one-to-one correspondence between ŵ and w.

Theorem 2.2. Let v ∈ C2+ε(Ω) \ P1(Ω) for some ε > 0. Then for a strongly regular family of triangulations
there exists a constant C > 0 depending on v such that

|v − Lhv|1 ≥ Ch as h → 0.

Proof. Since

B−1
T =

1
detBT

(
b22 −b12

−b21 b11

)
,

the Euclidean norm of every row of

B−1
T =

(
α γ
β δ

)
(2.14)
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can be estimated from below by Ch−1 due to (2.10), (2.11), and (2.12), i.e.,

α2 + γ2 ≥ Ch−2, β2 + δ2 ≥ Ch−2. (2.15)

Set
w = v − Lhv

and assume that (2.2) holds. Using the transformation (2.9), (2.13), and (2.14), we get

∂1w = α∂̂1ŵ + β∂̂2ŵ,

∂2w = γ∂̂1ŵ + δ∂̂2ŵ. (2.16)

First assume that w is a quadratic polynomial. Then ŵ is also a quadratic polynomial and

Ĥes ŵ =
(

â b̂

b̂ ĉ

)
= B�

T (Hes w)BT , (2.17)

where

Hes w =
(

a b
b c

)
.

Analogously to (2.3) we obtain

∂̂1ŵ(x̂, ŷ) = â

(
x̂ − 1

2

)
+ b̂ŷ,

∂̂2ŵ(x̂, ŷ) = b̂x̂ + ĉ

(
ŷ − 1

2

)
,

where â = ∂̂11ŵ, b̂ = ∂̂12ŵ, and ĉ = ∂̂22ŵ. From this, (2.16), and (2.12) we find similarly to (2.6) that
(cf. [8], p. 46])

|w|21,T = | detBT |
∫

T̂

((
α∂̂1ŵ + β∂̂2ŵ

)2

+
(
γ∂̂1ŵ + δ∂̂2ŵ

)2
)

dx̂dŷ

= 2 measT

∫
T̂

{[
α

(
â

(
x̂ − 1

2

)
+ b̂ŷ

)
+ β

(
b̂x̂ + ĉ

(
ŷ − 1

2

))]2

+
[
γ

(
â

(
x̂ − 1

2

)
+ b̂ŷ

)
+ δ

(
b̂x̂ + ĉ

(
ŷ − 1

2

))]2
}

dx̂ dŷ.

Applying the midpoint quadrature rule (cf. (2.5)), we arrive by (1.1) and (2.15) at

|w|21,T =
1
2
measT

((
β2 + δ2

)
(b̂ + ĉ)2 + (α2 + γ2)(â + b̂)2 + (α2 + β2 + γ2 + δ2)b̂2

)
≥ Ch2

((
β2 + δ2

)
(b̂ + ĉ)2 + (α2 + γ2)(â + b̂)2

)
≥ C′

((
b̂ + ĉ

)2

+ (â + b̂)2
)

.

Hence, by (2.10), (2.11), and (2.17) we find similarly to (2.7) that

|w|21,T ≥ C1h
4 with C1 > 0

for w ∈ C2+ε(T ) and h sufficiently small. Summing up these inequalities over all triangles T ⊂ Ω0, we get the
desired lower bound. �
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3. Application of supercloseness

Consider a second order elliptic problem

−∇ · (A(x, y)∇u) = f in Ω,

u = 0 on ∂Ω, (3.1)

where f ∈ L2(Ω) and A = A(x, y) is a symmetric 2× 2-matrix whose entries are Lipschitz continuous functions
on Ω and for which there exists a constant C > 0 such that

ξ�A(x, y)ξ ≥ Cξ�ξ ∀ξ ∈ R
2 ∀(x, y) ∈ Ω. (3.2)

Assume that u ∈ H3(Ω) is a weak solution of the above problem and let uh ∈ Vh denote its Galerkin approxima-
tions over uniform triangulations, i.e., when two adjacent triangles form a parallelogram. Then for a strongly
regular family of uniform triangulations we have (see [1], p. 498)

‖uh − Lhu‖1 ≤ Ch2‖u‖3 as h → 0. (3.3)

This phenomenon is called supercloseness (see [16]). It was first discovered by Oganesjan and Ruhovec [13].
Supercloseness has several important applications, e.g., in proving superconvergence of the finite element

method for elliptic or parabolic problems (see [11,13]), or uniform convergence of finite element solution for
singularly perturbed problems (see [5]). Superconvergence is also a useful tool in a posteriori error estimation,
mesh refinement and adaptivity, higher order calculation of mechanical stresses or magnetic fields. In the next
theorem we apply the above supercloseness property (3.3) to show that the ratio between the discretization
error and the interpolation error behaves like 1 + O(h).

Theorem 3.1. Let u ∈ H3(Ω) ∩ C2+ε(Ω) for some ε > 0. Then for a strongly regular family of uniform
triangulations with h → 0 we have

(1 − C1h)|u − Lhu|1 ≤ |u − uh|1 ≤ (1 + C1h)|u − Lhu|1 (3.4)

and
(1 − C2h)‖u − Lhu‖1 ≤ ‖u − uh‖1 ≤ (1 + C2h)‖u − Lhu‖1. (3.5)

Proof. If u ∈ P1(Ω), then by (3.1) we have u = Lhu = uh ≡ 0, and thus Theorem 3.1 holds. So let u �∈ P1(Ω).
Now, according to the Poincaré-Friedrichs inequality, (3.3), and Theorem 2.2, there exists a constant C3 > 0
such that

C3‖uh − Lhu‖1 ≤ |uh − Lhu|1 ≤ C4h
2‖u‖3 ≤ C1h|u − Lhu|1, (3.6)

where C1 > 0 depends on u. From this and the triangle inequality, we get the upper bounds of the discretization
errors in (3.4) and (3.5),

|u − uh|1 ≤ |u − Lhu|1 + |uh − Lhu|1 ≤ (1 + C1h)|u − Lhu|1

and
‖u − uh‖1 ≤ ‖u − Lhu‖1 + ‖uh − Lhu‖1 ≤ (1 + C2h)‖u − Lhu‖1.

By the triangle inequality and (3.6),

|u − Lhu|1 ≤ |u − uh|1 + |uh − Lhu|1 ≤ |u − uh|1 + C1h|u − Lhu|1 (3.7)

for h → 0, which implies the lower bound for the discretization error in (3.4).
Replacing the seminorms by norms in (3.7), we obtain the first inequality in (3.5). �
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Remark 3.2. By the famous Céa’s lemma there exists a constant C such that

‖u − uh‖ ≤ C inf
vh∈Vh

‖u − vh‖, (3.8)

where ‖ · ‖ is a norm in V = H1
0 (Ω). The right-hand side of (3.8) can be clearly estimated from above by

C‖u− uh‖. From this we find that the maximal possible lower bound is 1 ≤ C. This bound is attainable in an
appropriate norm as we shall see from Theorem 3.3 below.

Céa’s lemma plays an important role in finite element theory, since it enables us to transform the question of
convergence of the finite element method (and a priori estimation for the discretization error) to the investigation
of approximation properties of finite element spaces that are used. However, the constant C coming from the
standard proof of (3.8) can be very large (see [4]) especially when ‖ · ‖ = ‖ · ‖1 and A = A(x) varies widely
(e.g., if this coefficient is highly oscillating). We usually bound the right-hand side of (3.8) by the interpolation
error, i.e.,

‖u − uh‖1 ≤ C inf
vh∈Vh

‖u − vh‖1 ≤ C‖u − Lhu‖1. (3.9)

A similar relation is valid also for the norm ‖ · ‖ = | · |1. From (3.4) and (3.5) we see that the supercloseness
reduces the constant C appearing on the right-hand side of (3.9) to 1 + O(h) as h → 0. The knowledge of the
best possible value of C is important in obtaining reliable a priori bounds for the discretization error.

For v, w ∈ V denote by a(v, w) = (A∇v,∇w)0 the bilinear form corresponding to (3.1) and let

‖v‖ =
√

a(v, v) (3.10)

be the standard energy norm, which is equivalent to the ‖ · ‖1-norm. The two-sided error estimate in the next
theorem shows that the ratio between the discretization error and the interpolation error in norm (3.10) can
even be much better than 1 + O(h). Note that the knowledge of constants in finite element analysis is very
important from practical point of view.

Theorem 3.3. Let u ∈ H3(Ω) ∩ C2+ε(Ω) for some ε > 0. Then for a strongly regular family of uniform
triangulations with h → 0 we have

(1 − Ch2)‖u − Lhu‖ ≤ ‖u − uh‖ ≤ ‖u − Lhu‖. (3.11)

Proof. Using the orthogonality relation a(u − uh, vh) = 0 for all vh ∈ Vh and the symmetry of a(., .), we get

‖u − uh‖2 + ‖uh − Lhu‖2 = a(u − uh, u − uh) + 2a(u − uh, uh − Lhu) + a(uh − Lhu, uh − Lhu)
= a(u − uh, u − Lhu) + a(u − Lhu, uh − Lhu)
= a(u − uh + uh − Lhu, u − Lhu) = ‖u − Lhu‖2, (3.12)

i.e., the right-hand inequality in (3.11) holds without any assumption on the partition of Ω.
If u ∈ P1(Ω), then by (3.1) we have u = Lhu = uh ≡ 0, and thus Theorem 3.3 holds. So let u �∈ P1(Ω).

From (3.12), (3.3) which holds for uniform partitions, and Theorem 2.2 we see that there exist constants
C1, C > 0 such that

1 ≥ ‖u − uh‖
‖u − Lhu‖ =

√
1 − ‖uh − Lhu‖2

‖u − Lhu‖2
≥

√
1 − C1h4

‖u − Lhu‖2
≥

√
1 − Ch2

for h → 0. Using the Taylor expansion
√

1 − Ch2 = 1 − Ch2

2 + O(h4), we find that

(1 − Ch2)‖u − Lhu‖ ≤ ‖u − uh‖ as h → 0. �
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Remark 3.4. According to [17], the upper bound of order O(h2) in (3.3) can be weakened to O(h1+θ), θ ∈ (0, 1],
for weakly uniform triangulations, i.e., when two adjacent triangles form almost a parallelogram. Theorems 3.1
and 3.3 can be then correspondingly modified.

4. Bilinear elements

Let Bh be the standard bilinear Lagrangian interpolation operator on the square mesh defined for continuous
functions v, i.e., Bhv is also continuous and Bhv|S ∈ Q1(S) is a bilinear function on each square S of the mesh.

Theorem 4.1. Let v ∈ C2+ε(Ω) \ Q1(Ω) for some ε > 0. Then for a family of square meshes there exists
a constant C > 0 depending on v such that

|v − Bhv|1 ≥ Ch as h → 0. (4.1)

Proof. Since v is not bilinear, it follows that

M := max
(x,y)∈Ω

((∂11v(x, y))2 + (∂22v(x, y))2) > 0.

Thus, there exists a nonempty subdomain Ω0 ⊂ Ω such that for any (x, y) ∈ Ω0 we have

(∂11v(x, y))2 + (∂22v(x, y))2 >
M

2
· (4.2)

Let S ⊂ Ω0 be a square with vertices (xi, yj), (xi + h, yj), (xi + h, yj + h), and (xi, yj + h). First, we again
compute |v − Bhv|21,S under the assumption that v is quadratic, i.e., ∂11v = a, ∂12v = b, and ∂22v = c are
constants. In this special case we obtain

∂1(v − Bhv)(x, y) = a
(
x − xi − 1

2h
)
,

∂2(v − Bhv)(x, y) = c
(
y − yj − 1

2h
)
. (4.3)

To see this, it is enough to verify (4.3) for two purely quadratic terms a
2x2 and c

2y2.
From (4.3) we immediately see that

|v − Bhv|21,S =
∫

S

(
(∂1(v − Lhv))2 + (∂2(v − Lhv))2

)
dS

= a2h

∫ xi+h

xi

(
x − xi −

1
2
h

)2

dx + c2h

∫ yj+h

yj

(
y − yj −

1
2
h

)2

dy

=
h4

12
(
a2 + c2

)
.

This value is positive due to (4.2). From this we get similarly to (2.7) and (2.8) the lower bound (4.1). �

The following supercloseness for bilinear elements can be found, e.g., in [6], [10], p. 314, [18], p. 9,

‖uh − Bhu‖1 ≤ Ch2‖u‖3 as h → 0, (4.4)

where uh is a continuous piecewise bilinear finite element solution of (3.1). Now the proof of Theorems 3.1
and 3.3 for bilinear elements is essentially the same as for linear elements.

For a strongly regular family of uniform rectangular (nonsquare) meshes formulae (4.1) and (4.4) hold as
well. The corresponding analysis is thus similar.
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Table 1. Numerical results for Example 5.1.

h−1 |u − uh|1 |u − Lhu|1 |uh − Lhu|1 1 − Ch Ch

4 0.058775737 0.059199680 0.007072123 0.007161247 0.992838753
8 0.030161134 0.030221195 0.001904372 0.001987383 0.998012617

16 0.015180770 0.015188520 0.000485122 0.000510212 0.999489788
32 0.007603031 0.007604008 0.000121857 0.000128412 0.999871588

Table 2. Numerical results for Example 5.1.

h−1 ‖u − uh‖1 ‖u − Lhu‖1 ‖uh − Lhu‖1 1 − Ch Ch

4 0.059027858 0.059353209 0.007222771 0.005481610 0.994518390
8 0.030195558 0.030241036 0.001948652 0.001503846 0.998496154

16 0.015185172 0.015191020 0.000496651 0.000385017 0.999614983
32 0.007603585 0.007604321 0.000124768 0.000096838 0.999903162

Table 3. Numerical results for Example 5.2.

h−1 |u − uh|1 |u − Lhu|1 |uh − Lhu|1 1 − Ch Ch

4 0.060204808 0.059202235 0.010173002 –0.01693472 1.01693472
8 0.030588994 0.030222536 0.004332142 –0.01212533 1.01212533

16 0.015253591 0.015189213 0.001297402 –0.00423840 1.00423840
32 0.007612842 0.007604386 0.000334686 –0.00111207 1.00111207
64 0.003804323 0.003803473 0.000077143 –0.00022355 1.00022355

5. Numerical experiments

In the next two examples we use triangulations from Theorem 2.1.

Example 5.1. Consider the Poisson equation −Δu = f in Ω = (0, 1) × (0, 1) with homogeneous Dirichlet
boundary conditions. The exact solution is chosen as follows: u(x, y) = (x−x2)(y−y2). Then the corresponding
right-hand side is given by f(x, y) = 2(x−x2 + y− y2). All integrals were calculated by the quadrature formula
from [8], p. 58, which is exact for all quintic polynomials on triangles. For numerical results see Tables 1 and 2,
where Ch = |u − uh|1/|u − Lhu|1 and Ch = ‖u − uh‖1/‖u − Lhu‖1, respectively. The last column of Table 2
shows that the constant C appearing in (3.9) can be reduced to 1 + O(h).

Example 5.2. Let again Ω = (0, 1) × (0, 1) and let

A(x, y) =
(

100x2 + 1 0
0 100y2 + 1

)
(5.1)

which clearly satisfies (3.2). The exact solution is chosen as in the previous example. Then the corresponding
right-hand side of (3.1) is given by f(x, y) = −1200x2y2 + 800x2y + 800xy2 − 400xy − 2x2 − 2y2 + 2x + 2x. In
Tables 3 and 4 we see similar results as those in Example 5.1.

From the last columns we observe that the ratio between the discretization error and the interpolation error
in the H1-seminorm and norm seems to be even 1 + O(h2), i.e., better than stated in Theorem 3.1.

According to [7], p. 246, the minimal possible constant appearing in the Friedrichs inequality ‖w‖0 ≤ C0|w|1
for all w ∈ H1

0 (Ω) is C0 = 2−1/2/π. Hence, ‖u‖2
1 ≤ (1 + 1/(2π2))|u|21. The maximal and minimal eigenvalues of

the matrix A(x, y) from (5.1) equal to 101 and 1, respectively. They are attained at the vertices (1, 1) and (0, 0),
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Table 4. Numerical results for Example 5.2.

h−1 ‖u − uh‖1 ‖u − Lhu‖1 ‖uh − Lhu‖1 1 − Ch Ch

4 0.060357589 0.059355945 0.010240942 –0.01687521 1.01687521
8 0.030608735 0.030242479 0.004361628 –0.01211065 1.01211065

16 0.015256190 0.015191767 0.001305424 –0.00424065 1.00424065
32 0.007613208 0.007604728 0.000336609 –0.00111503 1.00111503
64 0.003804395 0.003803532 0.000077551 –0.00022699 1.00022699

respectively. The above facts imply that the standard choice of the constant C appearing in Céa’s lemma
(see [4], p. 105) is about C = 106.1 which is much larger than the constants Ch.
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[1] J. Brandts and M. Kř́ıžek, Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23
(2003) 489–505.
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