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THE MIXED REGULARITY OF ELECTRONIC WAVE FUNCTIONS
MULTIPLIED BY EXPLICIT CORRELATION FACTORS ∗, ∗∗

Harry Yserentant
1

Abstract. The electronic Schrödinger equation describes the motion of N electrons under Coulomb
interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave
functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is
thus inordinately challenging. As is shown in the author’s monograph [Yserentant, Lecture Notes in
Mathematics 2000, Springer (2010)], the regularity of the solutions, which increases with the number
of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the
Pauli principle contribute properties that allow these functions to be approximated with an order
of complexity which comes arbitrarily close to that for a system of two electrons. The present paper
complements this work. It is shown that one can reach almost the same complexity as in the one-electron
case adding a simple regularizing factor that depends explicitly on the interelectronic distances.
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1. Introduction

Atoms, molecules, and ions are described by the Schrödinger equation for a system of charged particles that
interact by Coulomb attraction and repulsion forces. As the nuclei are much heavier than the electrons, the
electrons almost instantaneously follow their motion. Therefore it is usual in quantum chemistry and related
fields to separate the motion of the nuclei from that of the electrons and to start from the electronic Schrödinger
equation, the equation that describes the motion of a finite set of electrons in the field of a finite number of
clamped nuclei, or in other words to look for the eigenvalues and eigenfunctions of the Hamilton operator
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already written down here in dimensionless form or atomic units. It acts on functions with arguments x1, . . . , xN
in R

3, which are associated with the positions of the considered electrons. The a1, . . . , aK in R
3 are the fixed

positions of the nuclei and the values Zν > 0 the charges of the nuclei in multiples of the electron charge. The
problem with this equation is its high dimensionality which immediately rules out classical discretization meth-
ods like finite elements. To overcome this curse of dimensionality, procedures like the Hartree-Fock method and
its many variants and successors and density functional theory based methods have been developed. They are
used with much success and form the basis of a steadily expanding branch of chemistry. See the comprehensive
monograph [6] and the Nobel lectures [9,15] of Kohn and Pople for an overview on the present state of the art
in quantum chemistry, and [1,12,13] for mathematically oriented expositions.

Modern quantum-chemical approximation methods are based on deep insights into the nature of atoms and
molecules. Their power and efficiency are impressive. There is, however, no real mathematical explanation
for their often amazing accuracy. In fact, all these methods have a decisive drawback. They either simplify
the basic equation and suffer, like the Hartree-Fock method or density functional theory based methods, from
a priori modeling errors, or it is absolutely unclear how the accuracy can be systematically improved without
that the effort truly explodes with the number of electrons. This holds for example for configuration interaction
methods, in mathematical terms Ritz-Galerkin methods with given tensor product-like ansatz spaces. The
current quantum-chemical approximation methods can therefore hardly be considered as true discretizations of
the electronic Schrödinger equation in the sense of numerical analysis. There are a few points of attack that
such discretizations could utilize, or which could help to improve existent methods in this sense and to develop
them further. One is the surprisingly high regularity of the electronic wave functions, which increases with the
number of electrons, and the decay behavior of their mixed derivatives. As shown in [17–19], the expression
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remains finite for the physically admissible eigenfunctions u of the electronic Schrödinger operator (1.1). The
frequency or momentum variable ω ∈ (R3)N is here decomposed into parts ωi ∈ R

3 associated with the
momentums of the single electrons; |ωi| denotes the Euclidean norm of ωi. The set of the electron indices
1, 2, . . . , N is split into the set I− of the indices of the electrons with spin −1/2 and the set I+ of the indices of
the electrons with spin +1/2. The reason why it is not possible to bound the expression
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|û(ω)|2 dω (1.3)

is the singularities of the wave functions at the places where electrons of distinct spin meet. Physically admissi-
ble wave functions are by the Pauli principle antisymmetric under the exchange of electrons with the same spin.
Thus they vanish where such electrons meet, which counterbalances the singularities of the electron-electron
interaction potential there. It has moreover been shown in [19] that the mixed weak derivatives of the wave func-
tions, whose existence is guaranteed by this result, decay exponentially in the L2-sense. Using these properties,
the convergence rate of sparse-grid like expansions of the wave functions into correspondingly antisymmetrized
tensor products of three-dimensional basis functions can be estimated [19]. The result is surprising in view
of the high-dimensionality of the equation. The convergence rate of these expansions, measured in terms of
the number of the antisymmetrized tensor products of basis functions involved, is essentially the same for the
N -electron case as for the two-electron case and does not deteriorate with the number of the electrons.

The ultimate goal is to come down to the one-particle case. This is not possible without a refined regularity
theory that exploits the behavior of the solutions at the singular points of the electron-electron interaction
potential better. The aim of this paper is to develop such a theory. We start from an observation that goes back
to the work of Hylleraas [8] in the nascency of quantum mechanics. Hylleraas calculated the ground state energy
of the Helium atom approximately with remarkably high accuracy for the time. The results that he obtained
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marked a breakthrough and showed that quantum mechanics was able to predict the behavior of atoms and
molecules beyond hydrogen. Hylleraas used an ansatz that takes the distance of the two electrons explicitly into
account and that differs in this respect substantially from most other approaches in quantum chemistry. Only
recently, probably beginning with the work [10] of Kutzelnigg and [11] of Kutzelnigg and Klopper, methods
of this kind became again popular. They are denoted as r12-methods in quantum chemistry and deliver very
accurate results. See [16] for a recent survey. Inspired by such approaches, we partition the solutions u of the
electronic Schrödinger equation, the eigenfunctions of the differential operator (1.1), into a regular part

u0(x) = exp
(
−

∑
i<j

φ(xi − xj)
)
u(x) (1.4)

and a universal factor that covers the electron cusps already to a large extent. The precise conditions on the
function φ will be given in Section 3. Possible examples for the choice of the function φ are

φ(xi − xj) =
1
2
|xi − xj |, φ(xi − xj) = ln

(
1 +

1
2
|xi − xj |

)
. (1.5)

If v0 is an approximation for the regular part u0, the wave function u itself is conversely approximated by

exp
( ∑
i<j

φ(xi − xj)
)
v0(x). (1.6)

We will show that the norm of the regular parts u0 defined according to (1.3) remains finite and that the mixed
weak derivatives of the regular parts, which therefore exist, decay exponentially in the L2-sense. In contrast to
the mentioned regularity results from [17–19], this even holds for unphysical wave functions not possessing the
symmetry properties enforced by the Pauli principle. In fact, these symmetry properties enter at no place into
our proofs. Our results can be used to study the convergence behavior of sparse grid approximation techniques
as described in [19]. For that purpose the (partial) antisymmetry of the wave functions is again needed. It turns
out that it is possible with such techniques to approximate the regular part u0 of the wave functions, and with
that indirectly also the wave functions themselves, with an order of convergence that comes arbitrarily close to
that for the one-electron case. The convergence rate becomes asymptotically the same as that of the solution
of second-order elliptic boundary value problems in three space dimensions with linear finite elements.

The paper is organized as follows. In Section 2, the eigenvalue problem for the electronic Schrödinger operator
is precisely formulated and put into a variational framework such as in the L2-theory of linear elliptic equations.
This approach is not as common as the operator theoretic approach, but is very natural from a physical point
of view, since it starts from a quadratic form representing the total energy of the system. The solution space
naturally associated with this quadratic or the associated bilinear form is the Sobolev space H1, which is the
largest subspace of L2 for which the expectation value of the kinetic energy can be given a meaning. The main
technical tool in this section (and in some sense for the rest of this paper as well) is the classical Hardy inequality
in three space dimensions. In Section 3, we set up an equation for the modified wave functions (1.4) and their
exponentially weighted counterparts and fix the conditions on the function φ. The study of the regularity of
the modified wave functions is based on this equation. The idea to start from such an equation is by no means
new and can in the given context be traced back to [7]. Our work has been inspired by the article [4], in which
the regularity of the wave functions in isotropic Hölder spaces is analyzed in much detail. Section 4 deals with
the function spaces involved. Our technique of proof is outlined in this section. The core of this work, and the
main technical challenge, are the a priori estimates for the low-order part of the modified equation in Section 5.
They are used in Section 6 to prove the main theorem of this paper. The modifications that are actually needed
are derived in Section 7. Sections 8 and 9 finally come back to the approximation of the wave functions.



806 H. YSERENTANT

The same kind of results as for the regular parts (1.4) of the eigenfunctions u also hold for modifications

u1(x) = exp
(

2
∑
i,ν

Zν φ(xi − aν) −
∑
i<j

φ(xi − xj)
)
u(x) (1.7)

that contain an additional term smoothing the singularities at the positions aν of the nuclei. Our technique of
proof can be directly extended to this situation. This observation might be helpful in the approximation of the
wave functions in view of their analytic structure outside the coalescence points of more than two particles [5].

2. The weak form of the eigenvalue problem

The solution space of the electronic Schrödinger equation is the Hilbert space H1 that consists of the one
times weakly differentiable, square integrable functions

u : (R3)N→ R : (x1, . . . , xN ) → u(x1, . . . , xN ) (2.1)

with square integrable first-order weak derivatives. The norm ‖ · ‖1 on H1 is composed of the L2-norm ‖ · ‖0

and the H1-seminorm | · |1, the L2-norm of the gradient. The space H1 is the space of the wave functions for
which the total position probability remains finite and the expectation value of the kinetic energy can be given
a meaning. By D we denote the space of all infinitely differentiable functions (2.1) with bounded support. The
functions in D form a dense subset of H1. Before we can state the problem, we have to study the potential

V (x) = −
N∑
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K∑
ν=1

Zν
|xi − aν | +

1
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i�=j

1
|xi − xj | (2.2)

in the Schrödinger operator (1.1) that is composed of the nucleus-electron interaction potential, the first term
in (2.2), and the electron-electron interaction potential. The basic observation is:

Theorem 2.1. There is a θ > 0 such that for all infinitely differentiable functions u and v with compact support∫
V u v dx ≤ θ ‖u‖0‖∇v‖0. (2.3)

Theorem 2.1 is folklore and can be found in this or a similar form in many mathematical texts on the
Schrödinger equation. Its proof is based on the three-dimensional Hardy inequality, the estimate∫

1
|x|2 v

2 dx ≤ 4
∫
|∇v|2 dx (2.4)

for infinitely differentiable functions v : R
3 → R with compact support. See [19] for a proof. The Hardy inequal-

ity plays a central role in this work and represents a decisive tool in the proof of many of our estimates. By (2.3),

a(u, v) = (Hu, v) (2.5)

is a H1-bounded bilinear form on D, where (· , ·) denotes the L2-inner product. It can be uniquely extended to
a bounded bilinear form on H1. In this setting, a function u �= 0 in H1 is an eigenfunction of the electronic
Schrödinger operator (1.1) for the eigenvalue λ if

a(u, v) = λ (u, v), v ∈ H1. (2.6)

The weak form (2.6) of the eigenvalue equation Hu = λu in particular fixes the behavior of the eigenfunctions
at the singularities of the interaction potential and at infinity. For normed u, a(u, u) is the expectation value
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of the total energy. It should, however, be noted that only those solutions u ∈ H1 of the equation (2.6) are
physically admissible that are antisymmetric with respect to the permutation of the positions xi of electrons of
the same spin. This is a consequence of the Pauli principle and is explained in more detail for example in [19].
In contrast to the estimates in [19], here we will not need this property to derive our regularity results.

We are interested in eigenfunctions u for eigenvalues below the bottom of the essential spectrum, a value
less than or equal to zero. Such eigenfunctions and their first-order weak derivatives decay exponentially in the
L2-sense, as has first been shown by O’Connor [14]. That means there is a γ > 0 such that the functions

x → exp
(
γ

N∑
i=1

|xi|
)
u(x), exp

(
γ

N∑
i=1

|xi|
)

(∇u)(x) (2.7)

are square integrable. This constant γ depends on the distance of the eigenvalue under consideration to the
bottom of the essential spectrum. More details and references to the literature can be found in [19].

3. A Modified eigenvalue problem

In this section we set up, analogously to [4,7], the modified equation whose regularity properties will be
studied later and fix the needed properties of the regularizing factor. This factor is first only defined on the set

M =
{
(x1, . . . , xN ) ∈ (R3)N

∣∣xi �= 0, xi �= xj for i, j = 1, . . . , N
}
, (3.1)

in particular outside the singularities of the electron-electron interaction potential. We assume that F : M → R

is an infinitely differentiable, locally bounded function with bounded first-order derivatives and that an estimate∫
ΔF uv dx � ‖∇u‖0‖v‖0 (3.2)

holds for the functions u, v ∈ H1. The notion a � b means a ≤ b up to an unspecified constant. We will
make extensive use of this notation in the rest of this paper. Our aim is to study the regularizing effect of the
factor eF onto eigenfunctions u of the Schrödinger operator (1.1), that is, the regularity of the products

ũ(x) = exp(F (x))u(x). (3.3)

The corresponding functions F will later be specified in more detail and conditions will be given under which
(3.2) holds. To simplify our considerations, we introduce the space D0 of the infinitely differentiable functions
from (R3)N to R with compact support that vanish on a neighborhood of the singular set Γ = (R3)N \M.

Lemma 3.1. Every function u in the space D of the infinitely differentiable functions with compact support can
be approximated arbitrarily well in the H1-sense by functions in D0 that vanish outside the support of u itself.

Proof. We proceed step by step multiplying u with cut-off functions. Let χ : R
3 → [0, 1] be an infinitely

differentiable function that takes the values χ(x) = 0 for |x| ≤ 1 and χ(x) = 1 for |x| ≥ 2. Set χε(x) = χ(x1/ε).
The functions uε(x) = χε(x)u(x) vanish then on a neighborhood in (R3)N of the hyperspace x1 = 0. As

|(∇χε)(x)| ≤ c

|x1| ,

with c a constant independent of ε, and χε(x) → 1 and (∇χε)(x) → 0 for x1 �= 0 as ε goes to zero, the dominated
convergence theorem shows that the uε tend to u in the H1-sense. The other sets xi = 0 and the diagonals
xi = xj are successively treated in the same way until the approximating functions are found. �

Since D is a dense subspace of H1, the space D0 is therefore a dense subspace of H1, too.



808 H. YSERENTANT

Lemma 3.2. Let u ∈ H1. The function ũ defined as in (3.3) is then not only locally square integrable but also
has locally square integrable first-order weak partial derivatives. They read

Dkũ = eFDkF u + eFDku, (3.4)

where the operator Dk denotes weak differentiation for u and pointwise for F .

Proof. We first consider functions u ∈ D and test functions ϕ ∈ D0. Integration by parts then yields∫ (
eFDkF u+ eFDku

)
ϕdx = −

∫
eFuDkϕdx.

Since F and its first-order derivatives are by assumption locally bounded, both sides of this equation represent
H1-bounded linear functionals in ϕ for u fixed. The relation transfers therefore by Lemma 3.1 to all ϕ ∈ D. If
conversely ϕ ∈ D is fixed, both sides represent H1-bounded linear functionals in u. As D is a dense subspace
of H1, the relation holds therefore for all u ∈ H1 and ϕ ∈ D, which proves the proposition. �

Lemma 3.3. For all functions u ∈ H1 and all test functions v ∈ D0,

a
(
eFu, v

)
+ c

(
eFu, v

)
= a

(
u, eFv

)
, (3.5)

where c(u, v) denotes the H1-bounded bilinear form

c(u, v) =
1
2

∫ {
2∇F · ∇u +

(
ΔF − |∇F |2)u} v dx (3.6)

and the derivatives of F have again to be understood pointwise.

Proof. We consider again first only functions u ∈ D. A short calculation yields

Δ
(
eFu

)
= eFΔu + 2∇F · ∇(

eFu
)

+
(
ΔF − |∇F |2) eFu

outside the singular set Γ. If one multiplies this equation by a test function v ∈ D0 and integrates by parts

−
∫

∇(
eFu

) · ∇v dx = −
∫

∇u · ∇(
eF v

)
dx + 2 c

(
eFu, v

)
follows. That is, (3.5) holds for all u ∈ D and test functions v ∈ D0. For v ∈ D0 fixed, the linear functionals

u → a
(
eFu, v

)
, a

(
u, eFv

)
, c

(
eFu, v

)
can be continuously extended to H1, as follows from the boundedness of F , ∇F , and ΔF on the support of v
and the density of D in H1. The equation (3.5) holds therefore for all u ∈ H1 and v ∈ D0. The H1-boundedness
of the bilinear form (3.6) follows from the assumed boundedness of ∇F and the estimate (3.2). �

Theorem 3.4. If u is an eigenfunction for the eigenvalue λ and F is chosen such that the function (3.3) and
its first-order derivatives (3.4) are square integrable, the function (3.3) satisfies the eigenvalue equation

a(ũ, v) + c(ũ, v) = λ (ũ, v), v ∈ H1. (3.7)

Proof. If v ∈ D0 the function eF v is infinitely differentiable and has a compact support. Hence

a
(
u, eF v

)
= λ

(
u, eF v

)
= λ

(
eFu, v

)
.
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For all functions v ∈ D0, by Lemma 3.3 therefore

a
(
eFu, v

)
+ c

(
eFu, v

)
= λ

(
eFu, v

)
.

As by assumption eFu ∈ H1, both sides of this equation represent bounded linear functionals in v ∈ H1. The
proposition follows therefore from Lemma 3.1, which implies the density of D0 in H1. �

From now on we restrict ourselves to functions

F (x) = − 1
2

N∑
i,j=1
i�=j

φ(xi − xj) + γ

N∑
i=1

|xi|, (3.8)

where φ : R
3 \ {0} → R is assumed to be an infinitely differentiable, locally bounded function with bounded

first-order derivatives. We assume that φ takes only values ≥ 0, that φ(−x) = φ(x), and that an estimate

|(Δφ)(x)| � 1
|x| (3.9)

holds. The task of the interaction terms φ(xi − xj) is to regularize the singularities of the wave functions at
the places where electrons meet, particularly those with distinct spin. The second term is needed to prove that
the mixed derivatives of the wave functions decay exponentially. The constant γ ≥ 0 is the same as in (2.7), or
bounded from above by that constant, and has to be chosen such that the corresponding modified eigenfunction
(3.3) and its first-order weak derivatives (3.4) remain square integrable.

Lemma 3.5. The gradient of F with respect to the components of xk is given by

(∇kF )(x) =
N∑
i=1
i�=k

(∇φ)(xi − xk) + γ
xk
|xk| · (3.10)

The Laplacian of F , with respect to the complete set of variables, reads

(ΔF )(x) = −
N∑

i,j=1
i�=j

(Δφ)(xi − xj) + 2γ
N∑
i=1

1
|xi| · (3.11)

Proof. The symmetry of φ implies that (Dνφ)(−x) = − (Dνφ)(x). Hence

∂

∂xk,ν
F (x) = − 1

2

N∑
i,j=1
i�=j

(Dνφ)(xi − xj)(δik − δjk) + γ
xk,ν
|xk| =

N∑
i=1
i�=k

(Dνφ)(xi − xk) + γ
xk,ν
|xk| ,

which proves (3.10). Differentiating this equation once more one finds

∂2

∂x2
k,ν

F (x) = −
N∑
i=1
i�=k

(D2
νφ)(xi − xk) + γ

(
1 − x2

k,ν

|xk|2
)

1
|xk| ·

Summation first over the indices ν = 1, 2, 3 and then over k = 1, . . . , N yields (3.11). �
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The assumptions on φ imply that F is locally bounded and ∇F bounded. The assumption (3.2) follows, via
(3.9) and (3.11), from the Cauchy-Schwarz inequality, Fubini’s theorem, and the Hardy inequality, that is, from∫

1
|xi − xj |2 u

2 dx ≤ 2
∫ {|∇iu|2 + |∇ju|2

}
dx, (3.12)∫

1
|xi|2 u

2 dx ≤ 4
∫

|∇iu|2 dx. (3.13)

Inserting (3.10) and (3.11) into (3.6), we find the explicit representation

a(u, v) + c(u, v) =
1
2

∫
∇u · ∇v dx + s(u, v) (3.14)

of the bilinear form on H1 on the left hand side of (3.7), where the low-order part is composed of the terms

s(u, v) = −
N∑
i=1

K∑
ν=1

∫
Zν

|xi − aν | u v dx (3.15)

+
N∑

i,k=1
i�=k

∫
(∇φ)(xi − xk) · ∇ku v dx (3.16)

+ γ

N∑
k=1

∫
xk
|xk| · ∇ku v dx (3.17)

− 1
2

N∑
i,j,k=1
i�=j �=k

∫
(∇φ)(xi − xk) · (∇φ)(xj − xk)u v dx (3.18)

− 1
2

N∑
i,k=1
i�=k

∫
(∇φ)(xi − xk) · (∇φ)(xi − xk)u v dx (3.19)

− γ

N∑
i,k=1
i�=k

∫
xk
|xk| · (∇φ)(xi − xk)u v dx (3.20)

− 1
2
Nγ2

∫
u v dx (3.21)

+
1
2

N∑
i,j=1
i�=j

∫ {
1

|xi − xj | − (Δφ)(xi − xj)
}
u v dx (3.22)

+ γ

N∑
i=1

∫
1
|xi| u v dx. (3.23)

The term on the right hand side of (3.15) stems from the nucleus-electron interaction potential, (3.16) and
(3.17) represent the terms coming from the expression ∇F · ∇u in (3.6), and (3.18) to (3.21) the part with the
coefficient function |∇F |2. The sum in (3.18) runs over the indices i, j, and k that are all different from each
other. The two remaining terms (3.22) and (3.23) combine the term resulting from ΔF and the electron-electron
interaction potential. The given assumptions imply:
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Theorem 3.6. The expressions (3.15) to (3.23) define a bilinear form on H1 × L2 that satisfies an estimate

s(u, v) ≤ κ ‖u‖1‖v‖0, u ∈ H1, v ∈ L2. (3.24)

The proof of Theorem 3.6 is based on the Cauchy-Schwarz inequality, Fubini’s theorem, and the Hardy
inequality. The crucial term giving the additional regularity is (3.22). With help of the function

W (x) =
1
|x| − (Δφ)(x) (3.25)

from R
3 to R it can, in short form, be rewritten as

1
2

N∑
i,j=1
i�=j

∫
W (xi − xj)u v dx. (3.26)

Choosing φ(x) = |x|/2, the electron-electron interaction potential and the φ-part of ΔF cancel and the term
(3.22) disappears completely. We assume in the sequel that φ(x) = φ̃(|x|), where φ̃ : [0,∞) → R is an infinitely
differentiable function with values φ̃(r) ≥ 0 whose first-order derivative remains bounded and whose second-
and third-order derivatives decrease at least like ∼ 1/r as r goes to infinity. Then

|(Diφ)(x)| � 1, |(DiDjφ)(x)| � 1
|x| · (3.27)

These estimates follow from the fact that, with r = |x| and x1, x2, and x3 here the components of x ∈ R
3,

(Diφ)(x) = φ̃′(r)
xi
r
, (DiDjφ)(x) = φ̃′′(r)

xi
r

xj
r

+
1
r
φ̃′(r)

(
δij − xi

r

xj
r

)
· (3.28)

The representation of the function (3.25) in terms of the function φ̃ is

W (x) =
1 − 2 φ̃′(r)

r
− φ̃′′(r). (3.29)

The condition that guarantees that the function (3.25) remains bounded and its gradient satisfies an estimate

|(∇W )(x)| � 1
|x| (3.30)

is thus φ̃′(0) = 1/2. Examples of such functions are φ̃(r) = r/2 and φ̃(r) = ln(1 + r/2). For approximation
purposes it is more advantageous when φ(x) itself remains bounded or even goes to zero as |x| goes to infinity.

4. The function spaces

In the previous sections we have decomposed the vectors x = (x1, . . . , xN ) ∈ (R3)N into parts xi ∈ R
3 that

are associated with the electron positions. The components of these vectors are the real numbers xi,1, xi,2, and
xi,3. Accordingly, we label partial derivatives doubly, that is, by multi-indices

α = (α1, . . . , αN ) ∈ (Z3
≥0)

N , αi = (αi,1, αi,2, αi,3) ∈ Z
3
≥0. (4.1)
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The differential operator Dα and the monomial xα of order |α| =
∑

i,ν αi,ν are in this notation

Dα =
N∏
i=1

3∏
ν=1

( ∂

∂xi,ν

)αi,ν

, xα =
N∏
i=1

3∏
ν=1

x
αi,ν

i,ν . (4.2)

We are particularly concerned with operators Dα with multi-indices α in the set

A =
{
(α1, . . . , αN )

∣∣αi ∈ Z
3
≥0, αi,1 + αi,2 + αi,3 ≤ 1

}
, (4.3)

that is, that are of most first-order in each of the variables xi ∈ R
3. We introduce by

|||u|||20 =
∑
α∈A

‖Dαu‖2
0, |||u|||21 =

∑
α∈A

‖Dαu‖2
1 (4.4)

two norms on the space D of the infinitely differentiable functions with compact support or, somewhat more
generally, on the Schwartz space S of the rapidly decreasing functions. Introducing the differential operator

L =
∑
α∈A

(−1)|α|D2α =
N∏
i=1

( I − Δi), Δi =
∂2

∂x2
i,1

+
∂2

∂x2
i,2

+
∂2

∂x2
i,3

, (4.5)

these norms can be rewritten in terms of the quadratic forms

|||u|||20 = (u,Lu), |||u|||21 = (u, ( I − Δ)Lu). (4.6)

Their Fourier representation is therefore given by expressions like those mentioned in the introduction:

|||u|||21 =
∫ {

1 +
N∑
i=1

|ωi|2
}{ N∏

i=1

(
1 + |ωi|2

)}
|û(ω)|2 dω, (4.7)

|||u|||20 =
∫ { N∏

i=1

(
1 + |ωi|2

)}
|û(ω)|2 dω, (4.8)

where the frequency variable ω ∈ (R3)N is again decomposed into parts ωi ∈ R
3 and |ωi| denotes the Euclidean

norm of ωi. The completions of the space D of the infinitely differentiable functions with compact support
under these norms are the Hilbert spaces denoted as X0 and X1. They consist of the functions from (R3)N to
the real numbers whose weak derivatives of corresponding order exist and are square integrable.

As follows from (3.7) and (3.14), the modified eigenfunction (3.3) for the eigenvalue λ satisfies the equation

a0(ũ,Lv) + s(ũ,Lv) = λ (ũ,Lv), v ∈ S, (4.9)

where a0(u, v) is an abbreviation for the leading part of the bilinear form a(u, v), the Dirichlet integral

a0(u, v) =
1
2

∫
∇u · ∇v dx. (4.10)

Our strategy will be to reinterpret the equation (4.9) as an equation in the space X1 just defined and to show
in this way that its solution possesses high-order mixed derivatives. This can only work if the bilinear form on
the left hand side of (4.9) is bounded in the corresponding norm. This is easily shown for its main part since

a0(u,Lv) =
1
2

∑
α∈A

∫
Dα∇u · Dα∇v dx (4.11)
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for all u ∈ D and v ∈ S. This representation implies that the bilinear form

ã0 : D × S → R : (u, v) → a0(u,Lv) (4.12)

can be extended to a bounded bilinear form from X1 ×X1 to R that satisfies the estimate

ã0(u, v) ≤ 1
2
|||∇u|||0|||∇v|||0 (4.13)

for all u and v in X1, and that is moreover coercive in the sense that

ã0(u, u) ≥ 1
2
|||∇u|||20 (4.14)

holds for all u ∈ X1. The defining relation

ã0(u, v) = a0(u,Lv) (4.15)

transfers to all u ∈ X1 and v ∈ S as both sides of this equation represent bounded linear functionals in u ∈ X1

for v ∈ S given. Similarly, the positive definite bilinear form given by

m̃(u, v) =
∑
α∈A

∫
DαuDαv dx = (u,Lv) (4.16)

can be continuously extended from D × S to X0 ×X0. For u ∈ X0 and v ∈ S,

m̃(u, v) = (u,Lv). (4.17)

To show that estimates of similar type hold for the more complicatedly built low-order part

s̃ : D × S → R : (u, v) → s(u,Lv) (4.18)

of the bilinear form on the left hand side of (4.9) is a much harder task to which the next section is devoted.

5. A bound for the low-order part

To show that the bilinear form (4.18) can be continuously extended to X0×X1 we have to show that s(u,Lv)
can be estimated by the corresponding norms (4.4) of u and v for u and v in the space D of the infinitely
differentiable functions with compact support. We consider for this the terms q(u, v) of which the sums (3.15)
to (3.21) are composed to a large extent separately from each other and then have to estimate the expressions

(−1)|α|q(u,D2αv) (5.1)

for multi-indices α in the set (4.3). The most simple case is that the coefficient functions in the integral defining
the bilinear form q(u, v) do not depend on the variables on which the differential operator Dα acts. Then

(−1)|α|q(u,D2αv) = q(Dαu,Dαv). (5.2)

The proof is simple. The integral is first split with help of Fubini’s theorem into an inner integral with respect to
the variables on which Dα acts and a remaining outer integral. The inner integral is transformed by integration
by parts and the result again recombined with help of Fubini’s theorem. Since

q(u, v) � ‖u‖0‖v‖0 or q(u, v) � ‖∇iu‖0‖v‖0 (5.3)
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for some index i, the relation (5.2) already proves the desired estimate

(−1)|α|q(u,D2αv) � |||u|||0|||v|||1, (5.4)

where αi = 0 has to be taken into account when the second estimate in (5.3) applies.
The case that Dα acts on one (and only one) of the position vectors xi on which the coefficient function

in the defining integral depends is treated similarly. We split the differential operator Dα = DσDβ then into
a first-order operator Dσ acting upon one of the components of the relevant xi and a rest Dβ . As before then

(−1)|α|q(u,D2αv) = − q(Dβu,D2σDβv). (5.5)

The expression on the right-hand side is again estimated with help of the estimates in (5.3), where as in the
previous case βi = 0 when the second estimate in (5.3) applies. Since in the expression on the right hand side
only one second-order derivative acts on v and the derivatives with respect to the components of the other
position vectors are at most first-order, one obtains again an estimate (5.4).

The critical case is when Dα acts onto components of two or even three of the position vectors on which the
coefficient function in the integral depends. Then one has to work harder. The first step is to again decompose
the operator D2α = D2σD2β into an uncritical part D2β that can as before be distributed in equal parts to
both sides and therefore be ignored in the sequel, and a fourth- or even sixth-order operator D2σ that has
to be considered separately and treated with more care. One or in the latter case even two of the remaining
derivatives have to be shifted to the left hand side. This is essentially a two- or at most three-particle problem.
In the general case, the arising integrals can again be split with help of Fubini’s theorem and the estimate in
this way be reduced to the two- or three-electron case. To simplify the presentation, we restrict ourselves for the
rest of this section to the two- or three-electron case and denote the three-dimensional position vectors of the
electrons temporarily by x, y, and z. Their components are x1, x2, and x3, y1, y2, and y3, and z1, z2, and z3.

The first term for which this situation can occur is (3.16). The estimate that covers then this term reads:

Lemma 5.1. For all infinitely differentiable functions u and v in the variables x, y ∈ R
3 with compact support,

3∑
i,j,k=1

∫
(Diφ)(x − y)

∂u

∂xi

∂4v

∂x2
j∂y

2
k

d(x, y) (5.6)

�
( 3∑
i,k=1

∫ ( ∂2u

∂xi∂yk

)2

d(x, y)
)1/2( 3∑

j,k=1

∫ ( ∂3v

∂x2
j∂yk

)2

d(x, y)
)1/2

.

Proof. The first problem is that one has to shift one of the derivatives with respect to yk from v to the other
parts. Because of the singularities of φ it is not immediately clear whether one can integrate by parts. To solve
this problem, let χ : R

3 → [0, 1] be an infinitely differentiable function as in the proof of Lemma 3.1 that takes
the values χ(x) = 0 for |x| ≤ 1 and χ(x) = 1 for |x| ≥ 2. Set χε(x) = χ(x/ε). Integration by parts then yields

∫
χε(x− y)(Diφ)(x − y)

∂u

∂xi

∂4v

∂x2
j∂y

2
k

dy

=
∫

(Dkχε)(x− y)(Diφ)(x − y)
∂u

∂xi

∂3v

∂x2
j∂yk

dy

+
∫
χε(x− y)(DiDkφ)(x − y)

∂u

∂xi

∂3v

∂x2
j∂yk

dy

−
∫
χε(x− y)(Diφ)(x − y)

∂2u

∂xi∂yk

∂3v

∂x2
j∂yk

dy.
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The following inequalities hold uniformly in ε,

|(Dkχε)(x − y)| � 1
|x− y| , |(DiDkφ)(x − y)| � 1

|x− y| ,

by the assumptions on the function φ and the construction of the cut-off function χε. As the remaining terms
are uniformly bounded, and as u and v vanish outside a bounded set, the integrands are uniformly dominated
by integrable functions, and the dominated convergence theorem yields

3∑
i,j,k=1

∫
(Diφ)(x − y)

∂u

∂xi

∂4v

∂x2
j∂y

2
k

dy

=
3∑

i,j,k=1

∫
(DiDkφ)(x − y)

∂u

∂xi

∂3v

∂x2
j∂yk

dy

−
3∑

i,j,k=1

∫
(Diφ)(x − y)

∂2u

∂xi∂yk

∂3v

∂x2
j∂yk

dy

for ε tending to zero, where the derivatives of φ have to be understood pointwise. Integration by parts is thus
allowed here. The first term is estimated with help of the Hardy inequality, that is, using (3.27) and

∫
1

|x− y|2
( ∂u
∂xi

)2

dy ≤ 4
3∑
k=1

∫ ( ∂2u

∂xi∂yk

)2

dy,

and the second, using the boundedness of ∇φ, simply applying the Cauchy-Schwarz inequality. Integrating the
resulting estimate with respect to x, or in the general case with respect to all remaining variables, and applying
the Cauchy-Schwarz inequality once more, now to the outer integral, the proposition follows. �

A similar situation arises with the terms in (3.19) and (3.20). They are covered by the following two estimates:

Lemma 5.2. For all infinitely differentiable functions u and v in the variables x, y ∈ R
3 with compact support,

3∑
i,j,k=1

∫
(Diφ)(x − y)2 u

∂4v

∂x2
j∂y

2
k

d(x, y) (5.7)

�
( 3∑
k=1

∫ ( ∂u

∂yk

)2

d(x, y)
)1/2( 3∑

j,k=1

∫ ( ∂3v

∂x2
j∂yk

)2

d(x, y)
)1/2

.

Proof. The same type of arguments as above shows that integration by parts is possible here too and that

3∑
i,j,k=1

∫
(Diφ)(x − y)2 u

∂4v

∂x2
j∂y

2
k

dy

= 2
3∑

i,j,k=1

∫
(Diφ)(x − y)(DiDkφ)(x − y)u

∂3v

∂x2
j∂yk

dy

−
3∑

i,j,k=1

∫
(Diφ)(x− y)2

∂u

∂yk

∂3v

∂x2
j∂yk

dy.

The estimate follows again with help of the Cauchy-Schwarz and the Hardy inequality and Fubini’s theorem
using the given bounds for the first- and the second-order derivatives of the function φ. �
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Lemma 5.3. For all infinitely differentiable functions u and v in the variables x, y ∈ R
3 with compact support,

3∑
i,j,k=1

∫
xi
|x| (Diφ)(x − y)u

∂4v

∂x2
j∂y

2
k

d(x, y) (5.8)

�
( 3∑
k=1

∫ ( ∂u

∂yk

)2

d(x, y)
)1/2( 3∑

j,k=1

∫ ( ∂3v

∂x2
j∂yk

)2

d(x, y)
)1/2

.

Proof. Integration by parts is again possible. Therefore

3∑
i,j,k=1

∫
xi
|x| (Diφ)(x − y)u

∂4v

∂x2
j∂y

2
k

dy

=
3∑

i,j,k=1

∫
xi
|x| (DiDkφ)(x − y)u

∂3v

∂x2
j∂yk

dy

−
3∑

i,j,k=1

∫
xi
|x| (Diφ)(x − y)

∂u

∂yk

∂3v

∂x2
j∂yk

dy.

The proposition follows with help of the Cauchy-Schwarz and the Hardy inequality and Fubini’s theorem, using
the bounds for the first- and the second-order derivatives of φ. �

Technically more challenging than the previous estimates are the estimates for the terms coming from (3.18)
since the coefficient functions depend in this case on three electron positions. The task is to estimate integrals

∫
(Diφ)(x − z)(Diφ)(y − z)u

∂6v

∂x2
j∂y

2
k∂z

2
�

d(x, y, z), (5.9)

∫
(Diφ)(x − z)(Diφ)(y − z)u

∂4v

∂x2
j∂y

2
k

d(x, y, z), (5.10)

∫
(Diφ)(x − z)(Diφ)(y − z)u

∂4v

∂x2
j∂z

2
�

d(x, y, z), (5.11)

∫
(Diφ)(x− z)(Diφ)(y − z)u

∂4v

∂y2
k∂z

2
�

d(x, y, z). (5.12)

Equations (5.10), (5.11), and (5.12) indicate the case that derivatives with respect to components of two of the
variables x, y, and z arise. In these cases, one proceeds as in the proofs of the previous two lemmas and shifts
one of the derivatives with respect to xj respectively yk to the other side and applies the Hardy inequality to
estimate the term with the second-order derivative of φ. Most delicate is the case indicated by equation (5.9)
where two derivatives have to be brought to the other side. To master this situation, one needs:

Lemma 5.4. For all infinitely differentiable functions u and v in the variables x, y, z ∈ R
3 with compact support,

3∑
i,j,k,�=1

∫
(Diφ)(x − z)(Diφ)(y − z)u

∂6v

∂x2
j∂y

2
k∂z

2
�

d(x, y, z) (5.13)

�
( 3∑
j,k=1

∫ ( ∂2u

∂xj∂yk

)2

d(x, y, z)
)1/2( 3∑

j,k,�=1

∫ ( ∂4v

∂xj∂yk∂z2
�

)2

d(x, y, z)
)1/2

.
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Proof. Splitting the integrals to be estimated with help of Fubini’s theorem first into an inner integral with
respect to x and an outer integral with respect to y, bringing the x-derivative in the inner integral to the other
side as before, exchanging the order of integration, and once more integrating by parts, one obtains

∫
(Diφ)(x − z)(Diφ)(y − z)u

∂6v

∂x2
j∂y

2
k∂z

2
�

d(x, y)

=
∫

(DiDjφ)(x − z)(DiDkφ)(y − z)u
∂4v

∂xj∂yk∂z2
�

d(x, y)

+
∫

(DiDjφ)(x − z)(Diφ)(y − z)
∂u

∂yk

∂4v

∂xj∂yk∂z2
�

d(x, y)

+
∫

(Diφ)(x − z)(DiDkφ)(y − z)
∂u

∂xj

∂4v

∂xj∂yk∂z2
�

d(x, y)

+
∫

(Diφ)(x − z)(Diφ)(y − z)
∂2u

∂xj∂yk

∂4v

∂xj∂yk∂z2
�

d(x, y).

The proposition follows estimating the single terms separately using again the Cauchy-Schwarz inequality,
Fubini’s theorem, and the Hardy inequality. To estimate the first term, that is, in the end to show that

∫
1

|x− z|2
1

|y − z|2 u
2 d(x, y) �

3∑
j,k=1

∫ ( ∂2u

∂xj∂yk

)2

d(x, y),

the Hardy inequality needs to be applied twice. The integral is first split into an inner integral with respect to
the variable x and an outer integral with respect to y. The inner integral is estimated with help of the Hardy
inequality, the order of integration is exchanged, and the Hardy inequality is applied a second time. �

What remains is the term (3.22) respectively (3.26). To estimate this term, the fact that the electron-electron
interaction potential and the singular parts coming from Δφ cancel enter decisively. Otherwise only a restricted
version of the desired estimate could be proved bringing the Pauli principle into play, see [19]. One obtains:

Lemma 5.5. For all infinitely differentiable functions u and v in the variables x, y ∈ R
3 with compact support,

3∑
i,j=1

∫
W (x− y)u

∂4v

∂x2
i ∂y

2
j

d(x, y) (5.14)

�
( 3∑
j=1

∫ ( ∂u
∂yj

)2

d(x, y)
)1/2( 3∑

i,j=1

∫ ( ∂3v

∂x2
i ∂yj

)2

d(x, y)
)1/2

.

Proof. Utilizing that W itself is bounded and the gradient of W satisfies an estimate (3.30), one can again
integrate by parts and obtains the proposition in the same way as before. �

All terms of which the bilinear form (4.18) is composed can thus be estimated as desired. The differentiation
orders are heavily intermixed with each other in the estimates. The essential point is that one gains, in
comparison to the estimates (4.13), (4.14) for the main part, one differentiation order in u. We summarize:

Theorem 5.6. There is a κ̃ > 0 such that for all infinitely differentiable functions u and v with compact support

s̃ (u, v) ≤ κ̃ |||u|||0|||v|||1. (5.15)
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The estimate obviously remains true for functions u ∈ D and v ∈ S. The bilinear form (4.18) can thus be
extended from its domain of definition D × S to a bounded bilinear form on X0 ×X1. The defining relation

s̃ (u, v) = s(u,Lv) (5.16)

transfers to all u ∈ X0 and v ∈ S as both sides of this equation represent bounded linear functionals in u ∈ X0

for v ∈ S given. The estimate (5.15) transfers to all functions u and v in the full spaces X0 respectively X1.

6. The regularity of the solutions of the modified equation

Besides the given a priori estimates, some Fourier analysis enters into the proof of our regularity theorem.
The idea is to split the modified eigenfunctions into a high-frequency part and a low-frequency part and first
to estimate the high-frequency part by the low frequency part. A rapidly decreasing high-frequency function
is a rapidly decreasing function with a Fourier transform that vanishes on a ball of a radius Ω ≥ 1, still to be
fixed, around the origin of the frequency space. The closure of the corresponding space

SH = { v ∈ S | v̂(ω)= 0 for |ω| ≤ Ω } (6.1)

of rapidly decreasing functions in H1 and X1, respectively, is denoted as H 1
H and X 1

H . The closure of

SL = { v ∈ S | v̂(ω)= 0 for |ω| ≥ Ω } (6.2)

in H1 and X1 are the spaces H 1
L and X 1

L , respectively, of low-frequency functions. The low-frequency and the
high-frequency functions decompose the spaces

H1 = H 1
L ⊕H 1

H , X1 = X 1
L ⊕X 1

H (6.3)

into orthogonal parts. The functions in H 1
L are infinitely differentiable and all their derivatives are square

integrable. Of central importance for our further considerations are the estimates

‖uH‖0 ≤ Ω−1‖∇uH‖0, |||uH |||0 ≤ Ω−1|||∇uH |||0 (6.4)

for the high-frequency functions uH in H 1
H and X 1

H respectively, which follow from the Fourier representation
of the norms. On H 1

H , the seminorm ‖∇v‖0 and the norm ‖v‖1 thus are equivalent. The same holds for the
seminorm |||∇v|||0 and the norm |||v|||1 on X 1

H . The low-order parts s(u, v), respectively s̃ (u, v), of the bilinear
forms under consideration become small perturbations of the main part for large Ω. We require in the sequel

Ω ≥ 4
√

2 max {κ, κ̃}, (6.5)

with κ and κ̃ the constants in (3.24) and (5.15). This implies the estimates

s(uH , vH) ≤ 1
4
‖∇uH‖0‖∇vH‖0, s̃ (uH , vH) ≤ 1

4
|||∇uH |||0|||∇vH |||0 (6.6)

for the functions uH and vH in H 1
H , respectively in X 1

H , and therefore the lower estimates

ã0(uH , uH) + s̃ (uH , uH) ≥ 1
4
|||∇uH |||21, uH ∈ X 1

H , (6.7)

a0(uH , uH) + s(uH , uH) ≥ 1
4
‖∇uH‖2

1, uH ∈ H 1
H , (6.8)

establishing the coercivity of the bilinear forms on the corresponding spaces of high-frequency functions.
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Due to the orthogonality properties of the low- and the high-frequency functions, the low- and the high-
frequency part of a solution of the equation (3.7), here rewritten with help of (3.14) and (4.10) as

a0(ũ, χ) + s(ũ, χ) = λ (ũ, χ), χ ∈ H1, (6.9)

for the modified eigenfunction (3.3) interact only by the low-order part in the bilinear form on the left hand side.
The aim is to control the high-frequency part by the low-frequency part of the given solution. The first step to
reach this goal is the following lemma that follows from the orthogonality of the low- and the high-frequency
functions both with respect to the L2 - and the H1-inner product.

Lemma 6.1. Let ũ = uL + uH be the decomposition of a solution ũ ∈ H1 of the equation (6.9) into its
low-frequency and its high-frequency part. Then

a0(uH , χH) + s(uH , χH) − λ (uH , χH) = − s(uL, χH), χH ∈ H 1
H . (6.10)

We will keep the low-frequency part uL fixed for a while and will consider (6.10) as an equation for the high-
frequency part uH . We will show that such equations are uniquely solvable for frequency bounds (6.5) and that
the regularity of the right hand side transfers to the regularity of the solution. Before we start with the proof,
we recall that the eigenvalues under consideration below the bottom of the essential spectrum are negative.

Lemma 6.2. For frequency bounds Ω as in (6.5), the equation

a0(uH , χH) + s(uH , χH) − λ (uH , χH) = s(ϕ, χH), χH ∈ H 1
H , (6.11)

possesses a unique solution uH ∈ H 1
H for all given functions ϕ ∈ H1.

Proof. As λ < 0, the additional term does not alter the coercivity (6.8) of the bilinear form on the left hand
side of (6.11). The Lax-Milgram theorem hence guarantees the existence and uniqueness of a solution. �

A corresponding result holds for the high-order counterpart of the equation (6.11) that formally results from
this equation after replacing the test functions χH by test functions LvH .

Lemma 6.3. For frequency bounds Ω as in (6.5), the equation

ã0(uH , vH) + s̃ (uH , vH) − λ m̃(uH , vH) = s̃ (ϕ, vH), vH ∈ X 1
H , (6.12)

possesses a unique solution uH ∈ X 1
H for all given functions ϕ ∈ X0.

Proof. This follows again from the Lax-Milgram theorem. �
As follows from the relations (4.15), (4.17), and (5.16), the equation (6.12) becomes

a0(uH ,LvH) + s(uH ,LvH) − λ (uH ,LvH) = s(ϕ,LvH), (6.13)

for test functions vH ∈ SH . The argument that closes the gap between the equations (6.11) and (6.12) is
therefore the observation that every function in χH ∈ SH can be represented in the form χH = LvH , vH ∈ SH .

Lemma 6.4. For all rapidly decreasing high-frequency functions χH ∈ SH there is a uniquely determined rapidly
decreasing high-frequency function vH ∈ SH that solves the equation LvH = χH .

Proof. The proof utilizes that the Fourier transform of a rapidly decreasing function is a rapidly decreasing
function and vice versa. Because of the representation (4.5) of L, the equation reads in Fourier representation

{ N∏
i=1

(
1 + |ωi|2

)}
v̂H(ω) = χ̂H(ω)

and determines the Fourier transform v̂H of the rapidly decreasing high-frequency function vH uniquely. �
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The solution of equation (6.12) therefore satisfies the original equation (6.11) for all χH ∈ SH and, as SH is
dense in H 1

H , for all χH ∈ H 1
H . Since equation (6.11) possesses only one solution, the solutions of both equations

coincide for ϕ in the subspace X0 of H1 given. This proves:

Lemma 6.5. If the bound Ω separating the high from the low frequencies is chosen according to (6.5) and
ϕ ∈ X0, the solution uH ∈ H 1

H of equation (6.11) is contained in the space X 1
H .

Since the low-frequency part uL of the solution ũ of the modified eigenvalue equation (6.9) is contained in X0,
we can apply the result just proved to the equation (6.10). From this it follows that the high-frequency part
uH of ũ can be controlled by the low-frequency part uL and that ũ itself is contained in X1.

Theorem 6.6. The solutions ũ ∈ H1 of the modified eigenvalue problem (6.9) for negative eigenvalues λ are
contained in X1, that is, possess mixed weak derivatives Dαũ ∈ H1 for multi-indices α in the set (4.3).

7. Existence and exponential decay of the mixed derivatives

We have shown that, for every eigenfunction u ∈ H1 of the Schrödinger operator (1.1), the modified function

ũ(x) = exp
(
ψ(x) − ψ0(x)

)
u(x) (7.1)

is contained in the space X1, that is, has mixed derivatives Dαũ ∈ H1 for multi-indices α in the set (4.3), where
we have split here the function (3.8) into the sum F = ψ − ψ0 of the functions

ψ0(x) =
∑
i<j

φ(xi − xj), ψ(x) = γ

N∑
i=1

|xi|. (7.2)

The universal factor e−ψ0 attenuates the singular behavior of the eigenfunctions at the places where the electrons
meet. The admissible constants γ > 0 in the factor eψ are bounded from above, dependent on the decay behavior
of the eigenfunction under consideration. In this section we will use these results to study the existence and the
exponential decay of high-order mixed derivatives of the regular parts

u0(x) = exp
(− ψ0(x)

)
u(x), (7.3)

equipped only with the universal regularizing factor e−ψ0 and without the exponentially increasing factor eψ.

Theorem 7.1. Let Dαu0, α in the set (4.3), be one of the weak derivatives of the regular part (7.3) of the eigen-
function u whose existence and square integrability follows from Theorem 6.6, and let eψ be one of the associated
weight factors for which Dα(eψu0) has been shown to be square integrable too. The weighted derivatives

eψDαu0, eψ
∂

∂xi,k
Dαu0 (7.4)

are then square integrable as well.

Proof. The proof is based on the representation

Dα(eψu0) =
∑
μ≤α

γ |μ|aμ eψDα−μu0

of the corresponding weak derivatives of eψu0, where the relation μ ≤ α has to be understood componentwise.
This representation is a generalization of the product rule from Lemma 3.1 and can be derived from it taking
into account the special structure of the multi-indices α considered. The coefficient functions are the products

aμ(x) =
∏
μi �=0

xμi

i

|xi| ,
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written down here in multi-index notation, where aμ(x) = 1 for μ = 0. This representation allows us to express
eψDαu0 in terms of the derivative Dα(eψu0) of eψu0 and the weighted lower order derivatives eψDα−μu0

of u0. Since the coefficient functions aμ are bounded, the square integrability of eψDαu0 follows by induction
on the order of differentiation. The square integrability of the second function is proven differentiating the
representation above. To cover the resulting derivatives of the aμ one needs again the Hardy inequality. �

The exponential functions x → exp(ψ(x)) dominate every polynomial, regardless of the decay rate γ > 0
determined by the decay behavior of the eigenfunction under consideration. This yields the following corollary:

Theorem 7.2. Let Dαu0, α in the set (4.3), be one of the weak derivatives of the regular part (7.3) of the eigen-
function u whose existence and square integrability has been shown, and let P be an arbitrary polynomial. Then

P Dαu0, P
∂

∂xi,k
Dαu0 ∈ L2. (7.5)

This statement can again be reversed. For every multi-index μ the function Dα(xμu0) and the weighted
derivative ωαDμû0 of its Fourier transform are in L2. The μ are not subject to restrictions, due to the exponential
decay of the wave functions and their mixed derivatives, but the α are, because of the restricted regularity.

8. The radial-angular decomposition

An interesting consequence of Theorem 7.2 is the following. Consider a complete L2-orthonormal system

φn�m(x) =
1
r
fn�(r)Y m� (x), n, � = 0, 1, . . . , m = −�, . . . , �, (8.1)

of functions from R
3 to R, where r = |x| has been set and the Y m� are the spherical harmonics. The joint

eigenfunctions of the harmonic oscillator and the angular momentum operators L2 and L3 represent an example
of such a system. Every square integrable function u : (R3)N → R can then be expanded into an orthogonal series

u(x) =
∑
n,�,m

û(n, �,m)
N∏
i=1

φni�imi(xi), (8.2)

where n, �, and m are multi-indices here with components ni, �i, and mi. Define the L2-orthogonal projections

(
Q(�,m)u

)
(x) =

∑
n

û(n, �,m)
N∏
i=1

φni�imi(xi) (8.3)

in which the angular parts are kept fixed and the sum extends only over the corresponding radial parts. These
projections can in fact be defined without recourse to the given expansion. They are not only L2-orthogonal
but also orthogonal as projections of many other L2-like Sobolev spaces into themselves. For functions in H1,

‖u‖2
1 =

∑
�,m

‖Q(�,m)u‖2
1. (8.4)

The point is that the weighted norm defined by the expression

|||u|||2 =
∑
�,m

{ N∏
i=1

(
1 + �i (�i + 1)

)}
‖Q(�,m)u‖2

1 (8.5)

of the regular parts (7.3) of the eigenfunctions remains finite. The proof uses that the functions (8.1) are
eigenfunctions of the square of the angular momentum operator. Thus only very few of the projections make
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a significant contribution to the regular parts u0 of the eigenfunctions. Their contributions essentially decrease
with the product of the angular momentum quantum numbers �i. To quantify this, let u0,ε be that part of the
expansion of u0 that is made up of the contributions assigned to the multi-indices � for which

N∏
i=1

(
1 + �i (�i + 1)

)
≤ 1

ε2
· (8.6)

Since the decomposition is orthogonal with respect to the H1-norm,

‖u0 − u0,ε‖1 ≤ ε |||u0 − u0,ε||| ≤ ε |||u0|||. (8.7)

For details we refer to [19] where a corresponding situation is analyzed.

9. Approximation and complexity of the eigenfunctions

One reason to study the regularity of functions is to derive bounds for the speed of convergence of approxima-
tion procedures, or to construct such methods that are adapted to the regularity properties that these functions
have. That is also the case here. The point is that it is much easier to approximate the regular parts

u0(x) = exp
(− ψ0(x)

)
u(x), ψ0(x) =

∑
i<j

φ(xi − xj), (9.1)

of the eigenfunctions than the eigenfunctions u themselves. The reason is that the singularities of the eigenfunc-
tions, particularly at the places where electrons with opposite spin meet, are strongly damped by the exponential
factor. We assume in this section, in addition to the assumptions made before, that the function φ itself is
bounded. Let v0 be a function that approximates u0. The obvious idea is then to approximate u by

v(x) = exp
(
ψ0(x)

)
v0(x). (9.2)

Since the total error d = u− v and its gradient can be expressed via

d = eψ0d0, ∇d = eψ0∇d0 − eψ0d0∇ψ0 (9.3)

in terms of the error d0 = u0 − v0 in the approximation of u0 and both ψ0 and ∇ψ0 are bounded, the H1-norm

‖u− v‖1 � ‖u0 − v0‖1 (9.4)

of the total error can be estimated in terms of the approximation error for the regular part. This observation
can also be reinterpreted as follows. Every approximation space or manifold V0 that is suitable for functions
that are as smooth as the regular parts of the eigenfunctions induces, via

V =
{
v

∣∣ v = eψ0v0, v0 ∈ V0

}
, V ′ =

{
v

∣∣ v = eψ0v0 + w0, v0, w0 ∈ V0

}
, (9.5)

approximation spaces or manifolds of at least the same quality for the eigenfunctions themselves. One does not
need to solve the complicated equation for the regular parts that has been used here to analyze them. It suffices
to multiply the ansatz functions by the factor eψ0 to keep the approximation properties. The price to be paid
is the necessity to evaluate more complicated integrals than for a pure tensor product construction.

Physically admissible solutions u of the electronic Schrödinger equation are antisymmetric with respect to
the exchange of the positions xi of electrons with the same spin. This is a consequence of the Pauli principle
as has already been mentioned in Section 2. Since the function ψ0 is invariant to any permutation of the xi,
the function u0 shares these symmetry properties with u but possesses at the same time square integrable weak
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partial derivatives Dαu0 ∈ H1 for multi-indices α in the set (4.3). This is not the case for the eigenfunctions u
themselves that have stronger singularities at the points where electrons of distinct spin meet. Moreover, all
these derivatives decay exponentially in the L2-sense. With help of the sparse grid techniques from [19] it
is therefore possible to approximate the regular part u0 of the eigenfunction u, and with that indirectly the
eigenfunction itself, up to an H1-error of order O(1/n) with linear combinations of no more than

O(n3+ϑ), ϑ > 0 arbitrarily small, (9.6)

correspondingly antisymmetrized tensor products of given three-dimensional basis functions. This convergence
rate is independent of the number N of electrons and comes arbitrarily close to that for the one-electron case.
We conjecture that the convergence rate can even still be improved as the studies [2,3] indicate.

10. Removing the singularities at the positions of the nuclei

If one replaces the regularized version (1.4) of the eigenfunctions by their counterparts (1.7), also paying
regard to the singularities at the positions of the nuclei, the role of the term (3.15) is taken over by

−
N∑
i=1

K∑
ν=1

Zν

∫ {
1

|xi − aν | − (Δφ)(xi − aν)
}
u v dx, (10.1)

that is, the nucleus-electron interaction potential is replaced by the less singular kernel (3.25), as with the
electron interaction. The term coming from the expression ∇F · ∇u in (3.6) splits now into (3.16), (3.17), and

2
N∑
k=1

K∑
ν=1

Zν

∫
(∇φ)(xk − aν) · ∇ku v dx. (10.2)

The parts originating from the coefficient function |∇F |2 in (3.6) have to be complemented by the terms

− 2
N∑
k=1

K∑
ν,ν′=1

ZνZν′

∫
(∇φ)(xk − aν) · (∇φ)(xk − aν′)u v dx, (10.3)

− 2
N∑

i,k=1
i�=k

K∑
ν=1

Zν

∫
(∇φ)(xk − aν) · (∇φ)(xi − xk)u v dx, (10.4)

− γ

N∑
k=1

K∑
ν=1

Zν

∫
xk
|xk| · (∇φ)(xk − aν)u v dx. (10.5)

All these additional new terms can be estimated in the same way as before. Our results transfer therefore
without any change to the present case, provided φ is chosen such that the functions (1.7) are in H1.

The additional term does not improve the mixed regularity of the wave functions and from this point of view
is of little value. The crucial observation is that the eigenfunctions can be locally represented in the form

u(x) = exp
(
− 2

∑
i,ν

Zν φ(xi − aν) +
∑
i<j

φ(xi − xj)
)
v(x) + w(x) (10.6)

with real-analytic functions v and w. The condition is that φ(x) = φ̃(|x|) and φ̃(r) is an analytic function.
Locally means here on a neighborhood of every point at which no more than two electrons or nuclei meet.
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This can be deduced without much effort from the results in [5]. The regularizing factor thus covers the
singularities of the eigenfunctions in the neighborhood of such points completely. Approximation methods can
clearly benefit from this property although it is difficult to quantify this effect.
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[2] H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations. I. One-electron

reduced density matrix. ESAIM: M2AN 40 (2006) 49–61.
[3] H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations. II. Jastrow

factors. ESAIM: M2AN 41 (2007) 261–279.
[4] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergard Sørensen, Sharp regularity estimates for

Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183–227.
[5] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergard Sørensen, Analytic structure of many-body

Coulombic wave functions. Commun. Math. Phys. 289 (2009) 291–310.
[6] T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic Structure Theory. John Wiley & Sons (2000).
[7] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergard Sørensen, Electron wavefunctions and densities for atoms.

Ann. Henri Poincaré 2 (2001) 77–100.
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