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FINITE ELEMENT APPROXIMATION OF KINETIC DILUTE
POLYMER MODELS WITH MICROSCOPIC CUT-OFF

John W. Barrett1 and Endre Süli2

Abstract. We construct a Galerkin finite element method for the numerical approximation of weak
solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory
of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of
the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ R

d, d = 2 or 3, for
the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the
momentum equation. The extra-stress tensor stems from the random movement of the polymer chains
and is defined through the associated probability density function that satisfies a Fokker–Planck type
parabolic equation, crucial features of which are the presence of a centre-of-mass diffusion term and a
cut-off function βL(·) := min(·, L) in the drag and convective terms, where L � 1. We focus on finitely-
extensible nonlinear elastic, FENE-type, dumbbell models. We perform a rigorous passage to the limit
as the spatial and temporal discretization parameters tend to zero, and show that a (sub)sequence
of these finite element approximations converges to a weak solution of this coupled Navier–Stokes–
Fokker–Planck system. The passage to the limit is performed under minimal regularity assumptions
on the data. Our arguments therefore also provide a new proof of global existence of weak solutions
to Fokker–Planck–Navier–Stokes systems with centre-of-mass diffusion and microscopic cut-off. The
convergence proof rests on several auxiliary technical results including the stability, in the Maxwellian-
weighted H1 norm, of the orthogonal projector in the Maxwellian-weighted L2 inner product onto
finite element spaces consisting of continuous piecewise linear functions. We establish optimal-order
quasi-interpolation error bounds in the Maxwellian-weighted L2 and H1 norms, and prove a new elliptic
regularity result in the Maxwellian-weighted H2 norm.
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1. Introduction

This paper is concerned with the construction and convergence analysis of a Galerkin finite element approxi-
mation to weak solutions of a system of nonlinear partial differential equations that arises from the kinetic theory
of dilute polymer solutions. The solvent is an incompressible, viscous, isothermal Newtonian fluid confined to
an open set Ω ⊂ R

d, d = 2 or 3, with boundary ∂Ω. For the sake of simplicity of presentation we shall suppose
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that Ω has ‘solid boundary’ ∂Ω; the velocity field u∼ will then satisfy the no-slip boundary condition u∼ = 0∼
on ∂Ω. The polymer chains, which are suspended in the solvent, are assumed not to interact with each other.
The conservation of momentum and mass equations for the solvent then have the form of the incompressible
Navier–Stokes equations in which the elastic extra-stress tensor τ≈ (i.e., the polymeric part of the Cauchy stress
tensor,) appears as a source term:

Find u∼ : (x∼, t) ∈ Ω× [0, T ] �→ u∼(x∼, t) ∈ R
d and p : (x∼, t) ∈ Ω× (0, T ] �→ p(x∼, t) ∈ R such that

∂u
∼
∂t

+ (u
∼
· ∇

∼
x )u

∼
− νΔx u

∼
+∇

∼
x p = f

∼
+∇

∼
x · τ

≈
in Ω× (0, T ], (1.1a)

∇
∼
x · u

∼
= 0 in Ω× (0, T ], (1.1b)

u
∼

= 0
∼

on ∂Ω× (0, T ], (1.1c)

u
∼
(x
∼
, 0) = u

∼
0(x

∼
) ∀x

∼
∈ Ω; (1.1d)

where u∼ is the velocity field, p is the pressure, ν ∈ R>0 is the viscosity of the solvent, and f
∼

is the density of
body forces acting on the fluid.

The extra stress tensor τ≈ is defined via a weighted average of ψ, the probability density function of the
(random) conformation vector of the polymer molecules (cf. (1.3) below); the progressive Kolmogorov equation
satisfied by ψ is a Fokker–Planck type second-order parabolic equation whose transport coefficients depend on
the velocity field u∼.

Kinetic theories of polymeric fluids ignore quantum mechanical and atomistic effects, and focus on ‘coarse-
grained’ models of the polymeric conformations, i.e., the orientation and the degree of stretching experienced
by polymer molecules. The coarsest in the hierarchy of kinetic models of dilute polymers is the dumbbell model,
which describes the polymer molecule by two beads connected by a massless elastic spring [8]; the elastic force
F∼ : D ⊆ R

d → R
d of the spring connecting the two beads is defined by a (sufficiently smooth) spring potential

U : R≥0 → R≥0 through
F∼ (q

∼
) = H U ′(1

2 |q∼|
2) q

∼
, q

∼
∈ D, (1.2)

where H ∈ R>0 is a spring constant. The elongation (or conformation) vector q
∼
, whose direction and length

define the direction and length of the polymer chain represented by the dumbbell, is assumed to be confined
to a balanced convex open set D ⊂ R

d; the term balanced means that 0∼ ∈ D, and −q
∼
∈ D whenever q

∼
∈ D.

Typically, D is an open d-dimensional ball of fixed radius rD > 0, or an ellipse with fixed half-axes, or the whole
of R

d. Our analytical results in this paper are concerned with the physically realistic case when D is bounded,
although we shall also comment on the idealized situation when D = R

d.
The governing equations of the dumbbell model considered here are (1.1a–d), where the elastic extra-stress

tensor τ≈ is defined by the Kramers expression:

τ≈(x∼, t) = k μ

(∫
D

q
∼
q
∼

T U ′
(

1
2 |q∼|

2
)
ψ(x∼, q∼, t) dq

∼
− ρ(x∼, t) I≈

)
; (1.3)

here k is the Boltzmann constant and μ is the absolute temperature. Further,

ρ(x∼, t) =
∫
D

ψ(x∼, q∼, t) dq
∼

(1.4)

signifies density, and the probability density function ψ(x∼, q∼, t) is a solution to the Fokker–Planck equation

∂ψ

∂t
+ (u∼ · ∇∼ x )ψ +∇∼ q · ((∇≈ x u∼) q

∼
ψ) = εΔxψ +

1
2λ
∇∼ q · (∇∼ q ψ + U ′ q

∼
ψ). (1.5)



FINITE ELEMENT APPROXIMATION OF A KINETIC POLYMER MODEL 41

Here λ ∈ R>0 and ε ∈ R>0 are fixed positive real numbers, called the relaxation time and the centre-of-mass
diffusion coefficient, respectively. We refer to [4] for the derivation of the model; see also the recent paper of
Schieber [42] for a justification of the presence of the x∼-dissipative centre-of-mass diffusion term εΔxψ on the
right-hand side of (1.5).

When D is B(0∼, b
1
2 ), a ball of radius b

1
2 in R

d centred at the origin, a typical spring force F∼ (q
∼
) for a

finitely-extensible model, such as the FENE (finitely-extensible nonlinear elastic) model for example in which

U(s) = − b
2

ln
(

1− 2s
b

)
, s ∈ [0, b2 ),

explodes as q
∼

approaches ∂D; see Section 2.2 below. Parabolic PDEs with unbounded coefficients are studied,
for example, in the monographs of Cerrai [12] and Lorenzi and Bertoldi [36]; see also the article of Da Prato and
Lunardi [15] and references therein. We note in passing that, on letting b→ +∞, the FENE potential converges
to the (linear) Hookean spring potential U(s) = s while D then becomes the whole of R

d – corresponding to
a mathematically simple(r) albeit physically unrealistic scenario in which a polymer chain can have arbitrarily
large elongation.

We note in passing that in contrast with the case of Hookean dumbbells, the FENE model does not have
an exact closure at the macroscopic level, though Du et al. [17] and Yu et al. [47] have recently considered
the analysis of approximate closures of the FENE model. Previously, El-Kareh and Leal [19] had proposed a
macroscopic model, with added dissipation in the equation which governs the evolution of the conformation
tensor A≈ (x∼, t) :=

∫
D
q
∼
q
∼

Tψ(x∼, q∼, t) dq
∼

in order to account for Brownian motion across streamlines; the model
can be thought of as an approximate macroscopic closure of a FENE-type microscopic-macroscopic model with
centre-of-mass diffusion.

An early effort to show the existence and uniqueness of local-in-time solutions to a family of bead-spring type
polymeric flow models is due to Renardy [41]. While the class of potentials F∼ (q

∼
) considered by Renardy [41]

(cf. hypotheses (F) and (F′) on pp. 314–315) does include the case of Hookean dumbbells, it excludes the
practically relevant case of the FENE model (see Sect. 2.2 below). More recently, E et al. [18] and Li et al. [33]
have revisited the question of local existence of solutions for dumbbell models.

The existence of global weak solutions to the coupled Navier–Stokes–Fokker–Planck systems of the form
(1.1a)–(1.5) with FENE type potentials, and related systems of partial differential equations, have been studied
by Barrett et al. [7], Constantin [14], Lions and Masmoudi [35], Barrett and Süli [4,5], Otto and Tzavaras [40],
and Masmoudi [39]. We refer to [5] for a detailed survey of the relevant literature.

For a review of numerical algorithms for the approximation of kinetic models of dilute polymers see, for
example, Section 4 of the survey article of Li and Zhang [32]; for recent progress on deterministic algorithms
for the approximation of Fokker–Planck and coupled Navier–Stokes–Fokker–Planck systems, see, for example,
Lozinski et al. [37,38], and Knezevic and Süli [26,27].

The present paper is a continuation of our recent work [6]; there, under very general assumptions on the finite-
dimensional spaces used for the purpose of spatial discretization, including, in particular, classical conforming
finite element spaces and spectral Galerkin subspaces, we showed the convergence of a (sub)sequence of numerical
approximations to a weak solution of the coupled Navier–Stokes–Fokker–Planck system (1.1a)–(1.5), for a large
class of unbounded spring potentials, including the FENE potential, in the case of the corotational model, where
∇≈ x u∼ in the Fokker–Planck equation is replaced by its skew-symmetric part 1

2 (∇≈ x u∼ − (∇≈ x u∼)T).
Here, we shall be concerned with the general noncorotational model (1.1a)–(1.5), but where a cut-off function

βL(·) := min(·, L), with L
 1, is introduced into the drag and convective terms of (1.5). The paper is organized
as follows. Section 2 is devoted to the statement of the problem, including our structural assumptions on the
admissible class of nonlinear spring potentials. In addition, we review the energy law satisfied by the system.
In Section 3, we introduce the appropriate function spaces for the problem. Finally, in Section 4 we introduce
our Galerkin finite element method for this coupled Navier–Stokes–Fokker–Planck system with microscopic
cut-off, which involves an additional regularization parameter δ > 0. We show the existence of this numerical
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approximation, and that it satisfies a discrete analogue of the energy law for the continuous system. We then
pass to the limit as the spatial discretization parameter h and the time step parameter Δt, as well as the
regularization parameter δ, tend to zero; using a weak-compactness argument in Maxwellian-weighted Sobolev
spaces we show that a subsequence of the sequence {{u∼Δt

δ,h, ψ̂
Δt
δ,h}}δ>0,h>0,Δt>0 of numerical approximations to

the velocity field u∼ and the scaled probability density function ψ̂ = ψ/M , where M is the normalized Maxwellian

M(q
∼
) = Z−1exp

(
−U(1

2 |q∼|
2)
)
, where Z :=

∫
D

exp
(
−U(1

2 |q∼|
2)
)

dq
∼
, (1.6)

converges to a weak solution {u∼, ψ̂} of the coupled Navier–Stokes–Fokker–Planck system with microscopic
cut-off. We close the paper with an Appendix, where we use the Brascamp–Lieb inequality to construct a
quasi-interpolation operator in Maxwellian-weighted Sobolev spaces. By applying an extension of the Bramble–
Hilbert Lemma due to Tartar, we prove sharp approximation error bounds; we also establish an, apparently
new, elliptic regularity result in the Maxwellian-weighted H2 norm on D; we then use these results to show that
the orthogonal projection operator in the Maxwellian-weighted L2 inner product is stable in the Maxwellian-
weighted H1 norm – a result that plays a crucial role in our convergence proof of the numerical method.

The passage to the limit in the paper is performed under minimal regularity assumptions on the data. Our
arguments therefore also provide a new proof of global existence of weak solutions to the general noncorotational
Fokker–Planck–Navier–Stokes system with centre-of-mass diffusion and microscopic cut-off. The definition of
the sequence of approximating solutions is completely constructive in the sense that it is based on a fully-discrete
and practically implementable Galerkin finite element method. To the best of our knowledge this is the first
rigorous result concerning the convergence of a sequence of numerical approximations to a global weak solution
of the coupled Navier–Stokes–Fokker–Planck model in the case of a general, noncorotational, drag term.

A key ingredient in our convergence proof is a special testing procedure based on a discrete counterpart of
the convex entropy function

s ∈ R≥0 �→ F(s) := (ln s− 1) s+ 1 ∈ R≥0

in the weak formulation of the Fokker–Planck equation. This leads to a fortuitous cancellation of the extra
stress term on the right-hand side of the finite element approximation of the Navier–Stokes equation with the
drag term in the finite element approximation of the Fokker–Planck equation, and results in an L∞(0, T ;L1(Ω))
bound on the discrete counterpart of the Kullback relative entropy EM (ψ) of ψ with respect to M , where

EM (ψ) :=
∫
D

F
(
ψ

M

)
M(q

∼
) dq

∼
.

The choice of the entropy function F in the present context has been motivated by recent papers of Arnold
et al. [2], Desvillettes and Villani [16], Chapter 8 in the Ph.D. Thesis of Lelièvre [31], the subsequent paper by
Jourdain et al. [25], and the work of Lin et al. [34].

It is important to note that the cut-off function βL and the entropy function F are closely related, viz. βL(s) :=
min{1/F ′′(s), L} for s > 0, and this connection will play a crucial role in our argument. Due to the fact that
F ′′(s) is unbounded at s = 0, in Section 2 the strictly convex entropy function F will be replaced by a strictly
convex regularizationFLδ whose second derivative is bounded above by 1/δ and bounded below by 1/L, δ ∈ (0, 1),
L > 1; at the same time the cut-off function βL will be replaced by a strictly positive cut-off function βLδ defined
by βLδ (s) = 1/[FLδ ]′′(s). Ideally, one would like to replace βL(s) := min{s, L} by β(s) := s in the Fokker–Planck
equation. However, our current proof of convergence of a subsequence of finite element approximations to a
weak solution of the coupled Navier–Stokes–Fokker–Planck system with center-of-mass diffusion, in the general
non-corotational case, requires the presence of the microscopic cut-off function βL on the drag and convective
terms in the Fokker–Planck equation. Nevertheless, we showed in [5] that, in the case of a corotational drag term
at least, passage to the limit L → ∞ recovers the Fokker–Planck equation with centre-of-mass diffusion (1.5),
without cut-off.
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2. Polymer models

We term polymer models under consideration here microscopic-macroscopic type models, since the continuum
mechanical macroscopic equations of incompressible fluid flow are coupled to a microscopic model: the Fokker–
Planck equation describing the statistical properties of particles in the continuum. We first present these
equations and collect the assumptions on the parameters in the model.

2.1. Microscopic-macroscopic polymer models

Let Ω ⊂ R
d be a bounded open set with a Lipschitz-continuous boundary ∂Ω, and suppose that the set

D ⊆ R
d, d = 2 or 3, of admissible elongation vectors q

∼
in (1.5) is a balanced convex open set. For the sake

of simplicity of presentation, we shall suppose that D is a bounded open ball in R
d. Gathering (1.1a–d), (1.3)

and (1.5), we then consider the following initial-boundary-value problem:
(P) Find u∼ : (x∼, t) ∈ Ω× [0, T ] �→ u∼(x∼, t) ∈ R

d and p : (x∼, t) ∈ Ω× (0, T ) �→ p(x∼, t) ∈ R such that

∂u
∼
∂t

+ (u
∼
· ∇
∼
x )u

∼
− νΔx u

∼
+∇

∼
x p = f

∼
+∇

∼
x · τ

≈
(ψ) in Ω× (0, T ], (2.1a)

∇
∼
x · u

∼
= 0 in Ω× (0, T ], (2.1b)

u
∼

= 0
∼

on ∂Ω× (0, T ], (2.1c)

u
∼
(x
∼
, 0) = u

∼
0(x

∼
) ∀x

∼
∈ Ω; (2.1d)

where ν ∈ R>0 is the given viscosity, f
∼

is the given density of the body forces acting on the fluid, and
τ≈(ψ) : (x∼, t) ∈ Ω× (0, T ) �→ τ≈(ψ)(x∼, t) ∈ R

d×d is the symmetric extra-stress tensor, dependent on a probability
density function ψ : (x∼, q∼, t) ∈ Ω×D × (0, T ) �→ ψ(x∼, q∼, t) ∈ R, defined as

τ≈(ψ) = k μ (C≈ (ψ) − ρ(ψ) I≈). (2.2)

Here k, μ ∈ R>0 are, respectively, the Boltzmann constant and the absolute temperature, I≈ is the unit d × d
tensor,

C≈ (ψ)(x∼, t) =
∫
D

ψ(x∼, q∼, t)U
′(1

2 |q∼|
2) q

∼
q
∼

T dq
∼

and ρ(ψ)(x∼, t) =
∫
D

ψ(x∼, q∼, t) dq
∼
. (2.3)

In addition, the real-valued, continuous, nonnegative and strictly monotonic increasing function U , defined on
a relatively open subset of [0,∞), is an elastic potential which gives the elastic force F∼ : D → R

d on the springs
via (1.2).

The probability density ψ(x∼, q∼, t) represents the probability at time t of finding the centre of mass of a
dumbbell in the volume element x∼ + dx∼ and having the endpoint of its elongation vector within the volume
element q

∼
+ dq

∼
. Hence ρ(ψ)(x∼, t) is the density of the polymer chains located at x∼ at time t. The function ψ

satisfies the following Fokker–Planck equation, together with suitable boundary and initial conditions:

∂ψ

∂t
+ (u

∼
· ∇
∼
x )ψ +∇

∼
q · ((∇

≈
x u

∼
) q

∼
ψ) =

1
2λ
∇
∼
q · (∇

∼
q ψ + U ′ q

∼
ψ) + εΔx ψ in Ω×D × (0, T ], (2.4a)[

1
2λ

(∇
∼
q ψ + U ′ q

∼
ψ)− (∇

≈
x u

∼
) q

∼
ψ

]
· n

∼
∂D = 0 on Ω× ∂D × (0, T ], (2.4b)

ε∇
∼
x ψ · n

∼
∂Ω = 0 on ∂Ω×D × (0, T ], (2.4c)

ψ(x
∼
, q
∼
, 0) = ψ0(x

∼
, q
∼
) ≥ 0 ∀(x

∼
, q
∼
) ∈ Ω×D; (2.4d)
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where n∼∂D and n∼∂Ω are the outward unit normal vectors to ∂D and ∂Ω, respectively, and U ′ := U ′(1
2 |q∼|

2).
Here

∫
D
ψ0(x∼, q∼) dq

∼
= 1 for a.e. x∼ ∈ Ω. The boundary conditions for ψ on Ω× ∂D× (0, T ] and ∂Ω×D× (0, T ]

have been chosen so as to ensure that ρ(ψ)(x∼, t) =
∫
D
ψ(x∼, q∼, t) dq

∼
=
∫
D
ψ0(x∼, q∼) dq

∼
= 1 for a.e. (x∼, t) ∈ ΩT .

In (2.4a–c) the parameters ε, λ ∈ R>0, with λ characterizing the elastic relaxation property of the fluid, and

(∇≈ x u∼)(x∼, t) ∈ R
d×d with {∇≈ x u∼}ij =

∂ui
∂xj

.

On introducing the (normalized) Maxwellian (1.6), we have that

M ∇∼ qM
−1 = −M−1∇∼ qM = ∇∼ q U = U ′ q

∼
. (2.5)

Thus, the Fokker–Planck system (2.4a–d) can be rewritten in terms of the scaled probability density function
ψ̂ = ψ/M as

M

[
∂ψ̂

∂t
+ (u

∼
· ∇

∼
x )ψ̂

]
+∇

∼
q · ((∇

≈
x u

∼
) q

∼
Mψ̂) =

1
2λ
∇
∼
q · (M ∇

∼
q ψ̂) + εM Δx ψ̂ in Ω×D × (0, T ], (2.6a)

M

[
1

2λ
∇
∼
q ψ̂ − (∇

≈
x u

∼
) q

∼
ψ̂

]
· n

∼
∂D = 0 on Ω× ∂D × (0, T ], (2.6b)

εM ∇
∼
x ψ̂ · n

∼
∂Ω = 0 on ∂Ω×D × (0, T ], (2.6c)

M ψ̂(x
∼
, q
∼
, 0) = Mψ̂0(x

∼
, q
∼
) = ψ0(x

∼
, q
∼
) ≥ 0 ∀(x

∼
, q
∼
) ∈ Ω×D. (2.6d)

2.2. FENE model

We present an example of a spring potential: the FENE potential, where D is a bounded open ball in R
d.

In this widely used model

D = B(0∼, b
1
2 ) and U(s) = − b

2
ln
(

1− 2 s
b

)
, and hence e−U( 1

2 |q∼|2) =

(
1−
|q
∼
|2

b

)b
2

· (2.7)

Here B(0∼, s) is the bounded open ball of radius s > 0 in R
d centred at the origin, and b > 0 is an input

parameter. Hence the length |q
∼
| of the elongation vector q

∼
cannot exceed b

1
2 .

Letting b→∞ in (2.7) leads to the so-called Hookean dumbbell model where

D = R
d and U(s) = s, and therefore e−U( 1

2 |q∼|2) = e−
1
2 |q∼|2

. (2.8)

This particular kinetic model, with ε ∈ R>0, corresponds formally to a dissipative Oldroyd-B type model; see [4]
for details.

2.3. General structural assumptions on the potential

As has been noted above, the choice ofD = R
d (corresponding to the Hookean model) is physically unrealistic;

thus, we shall henceforth suppose for simplicity that D = B(0∼, rD) is a bounded open ball in R
d of radius

rD ∈ R>0 centred at the origin. We assume that q
∼
�→ U(1

2 |q∼|
2) ∈ C∞(D); that q

∼
�→ U(1

2 |q∼|
2) is nonnegative,

convex and has a positive definite Hessian at each q
∼
∈ D; that q

∼
�→ U ′(1

2 |q∼|
2) is positive on D; and that there

exist constants ci > 0, i = 1→ 5, such that the Maxwellian M and the associated elastic potential U satisfy

c1 [dist(q
∼
, ∂D)]ζ ≤M(q

∼
) ≤ c2 [dist(q

∼
, ∂D)]ζ ∀q

∼
∈ D, (2.9a)

c3 ≤ [dist(q
∼
, ∂D)]U ′(1

2 |q
∼
|2) ≤ c4, [U ′(1

2 |q
∼
|2)]2 ≤ c5 U ′′(1

2 |q
∼
|2) ∀q

∼
∈ D. (2.9b)
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It is an easy matter to show that the Maxwellian M and the elastic potential U of the FENE dumbbell model
satisfy conditions (2.9a,b) with D = B(0∼, b

1
2 ) and ζ = b

2 . Since [U(q
∼
)]2 = (− lnM(q

∼
) + Const.)2, it follows

from (2.9a,b) that if ζ > 1, then ∫
D

M
[
1 + U2 + |U ′|2

]
dq

∼
<∞. (2.10)

We shall therefore suppose that ζ > 1. For the FENE model (2.7), ζ = b
2 , and so the condition ζ > 1 translates

into the requirement that b > 2. It is interesting to note that in the, equivalent, stochastic version of the FENE
model, a solution to the system of stochastic differential equations associated with the Fokker–Planck equation
exists and has trajectorial uniqueness if, and only if, b > 2 (cf. [24] for details). Thus, the assumption ζ > 1
can be seen as the weakest reasonable requirement on the decay-rate of M as dist(q

∼
, ∂D)→ 0+.

2.4. Formal estimates

We end this section by identifying formally the energy structure for (P). Multiplying (2.1a) by u∼, integrating
over Ω, and noting (2.1b,c) yields that

1
2

d
dt

[∫
Ω

|u
∼
|2 dx

∼

]
+ ν

∫
Ω

|∇
≈
x u

∼
|2 dx

∼
−
∫

Ω

f
∼
· u

∼
dx

∼
= −

∫
Ω

τ
≈
(M ψ̂) : ∇

≈
x u

∼
dx

∼

= −k μ
∫

Ω

C
≈

(M ψ̂) : ∇
≈
x u

∼
dx

∼
. (2.11)

Let F(s) := (ln s − 1) s + 1 for s > 0, with F(0) := 1. Multiplying the Fokker–Planck equation (2.6a) by
F ′(ψ̂) ≡ ln ψ̂, on assuming that ψ̂ > 0, integrating over Ω×D and noting (2.6b,c) yields that

d
dt

[∫
Ω×D

M F(ψ̂) dq
∼

dx
∼

]
+
∫

Ω×D
M

[
1

2λ
∇
∼
q ψ̂ · ∇

∼
q [F ′(ψ̂)] + ε∇

∼
x ψ̂ · ∇

∼
x [F ′(ψ̂)]

]
dq

∼
dx

∼

=
∫

Ω×D
M ψ̂ [(∇

≈
x u

∼
) q

∼
] · ∇

∼
q [F ′(ψ̂)] dq

∼
dx

∼
. (2.12)

It follows, on noting that F ′′(s) = s−1 > 0 for s > 0 and hence that ψ̂∇∼ q [F ′(ψ̂)] = ∇∼ q ψ̂ , (2.5), (2.1b) and
M = 0 on ∂D that∫

Ω×D
M ψ̂ [(∇

≈
x u

∼
) q

∼
] · ∇

∼
q [F ′(ψ̂)] dq

∼
dx

∼
=
∫

Ω×D
M [(∇

≈
x u

∼
) q

∼
] · ∇

∼
q ψ̂ dq

∼
dx

∼

=
∫

Ω×D
M U ′ q

∼
· [(∇

≈
x u

∼
) q

∼
] ψ̂ dq

∼
dx

∼

=
∫

Ω

C
≈

(M ψ̂) : ∇
≈
x u

∼
dx

∼
, (2.13)

on recalling (2.3). Combining (2.11)–(2.13), we obtain the following energy law for (P):

d
dt

[
1
2

∫
Ω

|u
∼
|2 dx

∼
+ k μ

∫
Ω×D

M F(ψ̂) dq
∼

dx
∼

]
+ ν

∫
Ω

|∇
≈
x u

∼
|2 dx

∼

+ k μ

∫
Ω×D

M

[
1

2λ
∇
∼
q ψ̂ · ∇

∼
q [F ′(ψ̂)] + ε∇

∼
x ψ̂ · ∇

∼
x [F ′(ψ̂)]

]
dq

∼
dx

∼
=
∫

Ω

f
∼
· u

∼
dx

∼
. (2.14)
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To make the above rigorous, and for computational purposes, we replace the convex function F ∈ C(R≥0)∩
C∞(R>0) by its convex regularization FLδ ∈ C2,1(R) defined, for any δ ∈ (0, 1) and L > 1, as follows:

FLδ (s) :=

⎧⎪⎨⎪⎩
s2−δ2

2 δ + (ln δ − 1) s+ 1 s ≤ δ,
F(s) ≡ (ln s− 1) s+ 1 δ ≤ s ≤ L,
s2−L2

2L + (lnL− 1) s+ 1 L ≤ s.
(2.15)

Hence, we have that

[FLδ ]′(s) =

⎧⎪⎨⎪⎩
s
δ + ln δ − 1 s ≤ δ,
ln s δ ≤ s ≤ L,
s
L + lnL− 1 L ≤ s,

and [FLδ ]′′(s) =

⎧⎪⎨⎪⎩
δ−1 s ≤ δ,
s−1 δ ≤ s ≤ L,
L−1 L ≤ s.

(2.16)

In addition, we introduce

βLδ (s) := [[FLδ ]′′(s)]−1 =

⎧⎪⎨⎪⎩
δ s ≤ δ,
s δ ≤ s ≤ L,
L L ≤ s.

(2.17)

It follows from (2.17), for any sufficiently smooth ϕ̂, that

βLδ (ϕ̂)∇
∼
x ([FLδ ]′(ϕ̂) ) = ∇

∼
x ϕ̂ and βLδ (ϕ̂)∇

∼
q ([FLδ ]′(ϕ̂) ) = ∇

∼
q ϕ̂. (2.18)

Let {u∼Lδ , ψ̂Lδ } solve problem (PLδ ), which is a regularization of the problem (P) where the drag term
∇∼ q · ((∇≈ x u∼) q

∼
M ψ̂) in the Fokker–Planck equation (2.6a) is replaced by

∇
∼
q · ((∇

≈
x u

∼
L
δ ) q

∼
M βLδ (ψ̂Lδ )). (2.19)

Multiplying the Fokker–Planck equation in (PLδ ) by [FLδ ]′(ψ̂Lδ ), integrating over Ω × D, noting (2.18) yields,
similarly to (2.12) and (2.13), that

d
dt

[∫
Ω×D

M FLδ (ψ̂Lδ ) dq
∼

dx
∼

]
+

1
2λ

∫
Ω×D

M ∇
∼
q ψ̂

L
δ · ∇∼ q

[
[FLδ ]′(ψ̂Lδ )

]
dq

∼
dx

∼

+ ε

∫
Ω×D

M ∇
∼
x ψ̂

L
δ · ∇∼ x

[
[FLδ ]′(ψ̂Lδ )

]
dq

∼
dx

∼
=
∫

Ω

C
≈

(M ψ̂Lδ ) : ∇
≈
x u

∼
L
δ dx

∼
. (2.20)

Combining (2.20) and the (PLδ ) version of (2.11), we obtain the following energy law for (PLδ ), the regularized
analogue of (2.14):

d
dt

[
1
2

∫
Ω

|u
∼
L
δ |2 dx

∼
+ k μ

∫
Ω×D

M FLδ (ψ̂Lδ ) dq
∼

dx
∼

]
+ ν

∫
Ω

|∇
≈
x u

∼
L
δ |2 dx

∼

+ k μ

∫
Ω×D

M

[
1

2λ
∇
∼
q ψ̂

L
δ · ∇∼ q

[
[FLδ ]′(ψ̂Lδ )

]
+ ε∇

∼
x ψ̂

L
δ · ∇∼ x

[
[FLδ ]′(ψ̂Lδ )

]]
dq

∼
dx

∼
=
∫

Ω

f
∼
· u
∼
L
δ dx

∼
. (2.21)

On noting that [FLδ ]′′ ≥ L−1, and

min{FLδ (s), s [FLδ ]′(s)} ≥
{

s2

2 δ if s ≤ 0,
s2

4L − C(L) if s ≥ 0,
(2.22)
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one deduces from (2.21), on assuming that ψ̂0 ≤ L, that

sup
t∈(0,T )

[∫
Ω

|u
∼
L
δ |2 dx

∼

]
+ ν

∫
ΩT

|∇
≈
x u

∼
L
δ |2 dx

∼
dt+ δ−1 sup

t∈(0,T )

[∫
Ω×D

M |[ψ̂Lδ ]−|2 dq
∼

dx
∼

]
≤ C. (2.23)

In addition, one can show that

sup
t∈(0,T )

[∫
Ω×D

M |ψ̂Lδ |2 dq
∼

dx
∼

]
+

1
λ

∫ T

0

∫
Ω×D

M
∣∣∣∇
∼
q ψ̂

L
δ

∣∣∣2 dq
∼

dx
∼

dt

+ ε

∫ T

0

∫
Ω×D

M
∣∣∣∇
∼
x ψ̂

L
δ

∣∣∣2 dq
∼

dx
∼

dt+ sup
t∈(0,T )

[∫
Ω

|C
≈

(M ψ̂Lδ )|2 dx
∼

]
≤ C(L, T ). (2.24)

The above formal bounds have been made rigorous and the existence of a global-in-time weak solution {u∼Lδ , ψ̂Lδ }
to (PLδ ) has been established in [5]; see also the next section. Moreover, one can take the limit δ → 0+ in
problem (PLδ ) to establish the existence of a global-in-time weak solution {u∼L, ψ̂L} to problem (PL), which is a
regularization of the problem (P) where the drag term ∇∼ q ·((∇≈ x u∼) q

∼
M ψ̂) in the Fokker–Planck equation (2.6a)

is replaced by

∇
∼
q · ((∇

≈
x u

∼
L) q

∼
M βL(ψ̂Lδ )) with βL(s) :=

{
s s ≤ L,
L L ≤ s. (2.25)

Once again, see [5] and the next section.
The aim of this paper is to construct a finite element approximation of problem (PLδ ), which mimics the energy

law (2.21) at a discrete level, and to show that this approximation converges to a weak solution of (PL), as the
spatial discretization parameter h and the time step parameter Δt, as well as the regularization parameter δ, tend
to zero. At the moment we are only able to carry out this program if we apply the cut-off βL to both the drag
and convective terms in the Fokker–Planck equation. The corresponding δ regularized version (PLδ ) is stated
in the next section, see (3.17a,b). In Section 4 we introduce (Ph,Δtδ ), a finite element element approximation
of (PLδ ) – see (4.32a,b), which mimics the energy law (2.21) at a discrete level. We show that this approximation
converges to (P), (4.93a,b), as h, Δt and δ tend to zero. We suppress the L dependence in (Ph,Δtδ ) as, at the
moment, we are unable to pass to the limit L→∞. Note, however, that there is no limitation in our analysis
on the size of L: it can be taken arbitrarily large, as long as it is greater than 1 and fixed.

3. Function spaces

Assuming that ∂Ω ∈ C0,1, let

H∼ := {w∼ ∈ L∼ 2(Ω) : ∇∼ x · w∼ = 0} and V∼ := {w∼ ∈ H∼ 1
0(Ω) : ∇∼ x · w∼ = 0}, (3.1)

where the divergence operator ∇∼ x · is to be understood in the sense of vector-valued distributions on Ω. Here,
and throughout, we adopt, for example, the notation L∼

2(Ω) ≡ [L2(Ω)]d and H∼
1
0(Ω) ≡ [H1

0 (Ω)]d. Let V∼
′ be the

dual of V∼ . Let S∼ : V∼
′ → V∼ be such that S∼ v∼ is the unique solution to the Helmholtz–Stokes problem∫

Ω

S∼ v∼ · w∼ dx∼ +
∫

Ω

∇≈ x S∼ v∼ : ∇≈ x w∼ dx∼ = 〈v∼, w∼ 〉V ∀w∼ ∈ V∼ , (3.2)

where 〈·, ·〉V denotes the duality pairing between V∼
′ and V∼ . We note that

〈v∼, S∼ v∼〉V = ‖S∼ v∼‖2H1(Ω) ∀v∼ ∈ V∼ ′ ⊃ (H∼
1
0(Ω))′ ≡ H∼ −1(Ω), (3.3)
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and ‖S∼ · ‖H1(Ω) is a norm on V∼
′. Here, and throughout, we adopt, for example, the notation ‖ · ‖H1(Ω) for

the norm, and | · |H1(Ω) for the semi-norm, on H1(Ω) or H∼
1(Ω). We require also the duality pairing 〈·, ·〉H1

0 (Ω)

between H∼
−1(Ω) and H∼

1
0(Ω).

For later purposes, we recall the following well-known Gagliardo–Nirenberg inequality. Let r ∈ [2,∞) if
d = 2, and r ∈ [2, 6] if d = 3 and θ = d

(
1
2 −

1
r

)
. Then, there is a constant C, depending only on Ω, r and d,

such that the following inequality holds for all η ∈ H1(Ω):

‖η‖Lr(Ω) ≤ C ‖η‖1−θL2(Ω) ‖η‖
θ
H1(Ω). (3.4)

We make the following assumptions on the given initial data and the cut-off parameter L occurring in (2.15):

u
∼

0 ∈ H
∼

and ψ̂0 := M−1ψ0 ∈ L∞(Ω×D) with 0 ≤ ψ̂0 ≤ L a.e. in Ω×D; (3.5a)

and the body force density

f
∼
∈ L2(0, T ;H

∼
−1(Ω)). (3.5b)

Let L2
M (Ω×D) be the Maxwellian-weighted L2 space over Ω×D with norm

‖ϕ̂‖L2
M(Ω×D) :=

{∫
Ω×D

M |ϕ̂|2 dq
∼

dx∼

} 1
2

.

Similarly, we consider L2
M (D), the Maxwellian-weighted L2 space over D. On introducing

‖ϕ̂‖H1
M (Ω×D) :=

{∫
Ω×D

M
[
|ϕ̂|2 + |∇∼ x ϕ̂|2 + |∇∼ q ϕ̂|2

]
dq

∼
dx∼

} 1
2

, (3.6)

we then set

X̂ ≡ H1
M (Ω×D) :=

{
ϕ̂ ∈ L1

loc(Ω×D) : ‖ϕ̂‖H1
M (Ω×D) <∞

}
. (3.7)

It follows that

C∞(Ω×D) is dense in X̂. (3.8)

This can be shown, for example, by a simple adaptation of Lemma 3.1 in Barrett et al. [7], which appeals
to fundamental results on weighted Sobolev spaces in Triebel [46] and Kufner [30]. We have from Sobolev
embedding that

H1(Ω;L2
M (D)) ↪→ Ls(Ω;L2

M (D)), (3.9)

where s ∈ [1,∞) if d = 2 or s ∈ [1, 6] if d = 3. Similarly to (3.4) we have, with r and θ as defined there, that
there exists a constant C, depending only on Ω, r and d, such that

‖ϕ̂‖Lr(Ω;L2
M(D)) ≤ C ‖ϕ̂‖1−θL2(Ω;L2

M (D))
‖ϕ̂‖θH1(Ω;L2

M (D)) ∀ϕ̂ ∈ H1(Ω;L2
M (D)). (3.10)
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In addition, we note that the embeddings

H1
M (D) ↪→ L2

M (D), (3.11a)

H1
M (Ω×D) ≡ L2(Ω;H1

M (D)) ∩H1(Ω;L2
M (D)) ↪→ L2

M (Ω×D) ≡ L2(Ω;L2
M (D)) (3.11b)

are compact if ζ ≥ 1 in (2.9a); see the Appendix in [5].
Let X̂ ′ be the dual space of X̂ with L2

M (Ω×D) being the pivot space. Then, similarly to (3.2), let G : X̂ ′ → X̂
be such that G η̂ is the unique solution of∫

Ω×D
M

[
(G η̂) ϕ̂+∇

∼
q (G η̂) · ∇

∼
q ϕ̂+∇

∼
x (G η̂) · ∇

∼
x ϕ̂

]
dq

∼
dx

∼
= 〈M η̂, ϕ̂〉X̂ ∀ϕ̂ ∈ X̂, (3.12)

where 〈M ·, ·〉X̂ denotes the duality pairing between X̂ ′ and X̂ . Then, similarly to (3.3), we have that

〈M η̂,G η̂〉X̂ = ‖G η̂‖2
X̂

∀η̂ ∈ X̂ ′, (3.13)

and ‖G · ‖X̂ is a norm on X̂ ′.
We recall the following compactness result, see, e.g., Temam [45] and Simon [44]. Let Y0, Y and Y1 be Banach

spaces, Yi, i = 0, 1, reflexive, with a compact embedding Y0 ↪→ Y and a continuous embedding Y ↪→ Y1. Then,
for αi > 1, i = 0, 1, the embedding

{ η ∈ Lα0(0, T ;Y0) : ∂η∂t ∈ Lα1(0, T ;Y1) } ↪→ Lα0(0, T ;Y) (3.14)

is compact.
We note for future reference that (2.3) and (2.10) yield that, for ϕ̂ ∈ L2

M (Ω×D),

∫
Ω

|C
≈

(M ϕ̂)|2 dx
∼

=
∫

Ω

d∑
i=1

d∑
j=1

(∫
D

M ϕ̂U ′ qi qj dq
∼

)2

dx
∼

≤
(∫

D

M |U ′|2 |q
∼
|4 dq

∼

)(∫
Ω×D

M |ϕ̂|2 dq
∼

dx
∼

)
≤ C

(∫
Ω×D

M |ϕ̂|2 dq
∼

dx
∼

)
. (3.15)

In [5], for any ε > 0, L > 1 and T > 0 existence of a solution to the following weak formulation was
established:

(PL) Find u∼
L ∈ L∞(0, T ;L∼

2(Ω))∩L2(0, T ;V∼ )∩W 1, 4d (0, T ;V∼
′) and ψ̂L ∈ L∞(0, T ;L2

M(Ω×D))∩L2(0, T ; X̂)∩
W 1, 4d (0, T ; X̂ ′) with ψ̂L ≥ 0 a.e. in Ω×D × (0, T ) and C≈ (M ψ̂L) ∈ L∞(0, T ;L≈

2(Ω)), such that u∼
L(·, 0) = u∼

0(·),
ψ̂L(·, ·, 0) = ψ̂0(·, ·) and∫ T

0

〈
∂u

∼
L

∂t
, w
∼

〉
V

dt+
∫

ΩT

[[
(u
∼
L · ∇

∼
x )u

∼
L
]
· w

∼
+ ν∇

≈
x u

∼
L : ∇

≈
x w

∼

]
dx

∼
dt

=
∫ T

0

〈f
∼
, w
∼
〉H1

0 (Ω) dt− k μ
∫

ΩT

C
≈

(M ψ̂L) : ∇
≈
xw

∼
dx

∼
dt ∀w

∼
∈ L 4

4−d (0, T ;V
∼

); (3.16a)∫ T

0

〈
∂ψ̂L

∂t
, ϕ̂

〉
X̂

dt+
∫ T

0

∫
Ω×D

M
[
ε∇

∼
x ψ̂

L − u
∼
L ψ̂L

]
· ∇

∼
x ϕ̂ dq

∼
dx

∼
dt

+
∫ T

0

∫
Ω×D

M

[
1

2λ
∇
∼
q ψ̂

L − (∇
≈
x u

∼
L) q

∼
βL(ψ̂L)

]
· ∇

∼
q ϕ̂ dq

∼
dx

∼
dt = 0 ∀ϕ̂ ∈ L 4

4−d (0, T ; X̂). (3.16b)
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Remark 3.1. If d = 2, then u∼
L ∈ C([0, T ];H∼ ) (cf. Lem. 1.2 on p. 176 of Temam [45]), whereas if d = 3,

then u∼
L is weakly continuous only as a mapping from [0, T ] into H∼ (similarly as in Thm. 3.1 on p. 191 in

Temam [45]). It is in the latter, weaker sense that the imposition of the initial condition to the u∼
L-equation

will be understood for d = 2, 3: that is, limt→0+

∫
Ω
(u∼
L(x∼, t) − u∼0(x∼)) · v∼(x∼) dx∼ = 0 for all v∼ ∈ H∼ . Similarly, for

the initial conditions of the ψ̂L-equation for d = 2, 3: limt→0+

∫
Ω×DM (ψ̂L(x∼, q∼, t)− ψ̂0(x∼, q∼)) ϕ̂(x∼, q∼) dq

∼
dx∼ = 0

for all ϕ̂ ∈ L2
M (Ω×D).

Remark 3.2. Since the test functions in V∼ are divergence-free, the pressure has been eliminated in (3.16a,b);
it can be recovered in a very weak sense following the same procedure as for the incompressible Navier–Stokes
equations discussed on p. 208 in Temam [45]; i.e., one obtains that

∫ t
0
pL(·, s) ds ∈ C([0, T ];L2(Ω)).

As stated in Section 2, in order to prove convergence of our finite element approximation we need to apply
the cut-off βL to both the drag and convective terms in the Fokker–Planck equation. We end this section by
introducing the corresponding δ-regularized version of the problem:

(PLδ ) Find u∼
L
δ ∈ L∞(0, T ;L∼

2(Ω))∩L2(0, T ;V∼ )∩W 1, 4d (0, T ;V∼
′) and ψ̂Lδ ∈ L∞(0, T ;L2

M(Ω×D))∩L2(0, T ; X̂)∩
W 1, 4d (0, T ; X̂ ′) with C≈ (M ψ̂Lδ ) ∈ L∞(0, T ;L≈

2(Ω)), such that u∼
L
δ (·, 0) = u∼

0(·), ψ̂Lδ (·, ·, 0) = ψ̂0(·, ·) and

∫ T

0

〈
∂u

∼
L
δ

∂t
, w
∼

〉
V

dt+
∫

ΩT

[[
(u
∼
L
δ · ∇∼ x )u

∼
L
δ

]
· w

∼
+ ν∇

≈
x u

∼
L
δ : ∇

≈
x w

∼

]
dx

∼
dt

=
∫ T

0

〈f
∼
, w
∼
〉H1

0 (Ω) dt− k μ
∫

ΩT

C
≈

(M ψ̂Lδ ) : ∇
≈
xw

∼
dx

∼
dt ∀w

∼
∈ L 4

4−d (0, T ;V
∼

); (3.17a)∫ T

0

〈
∂ψ̂Lδ
∂t

, ϕ̂

〉
X̂

dt+
∫ T

0

∫
Ω×D

M
[
ε∇

∼
x ψ̂

L
δ − u∼

L
δ β

L
δ (ψ̂Lδ )

]
· ∇

∼
x ϕ̂ dq

∼
dx

∼
dt

+
∫ T

0

∫
Ω×D

M

[
1

2λ
∇
∼
q ψ̂

L
δ − (∇

≈
x u

∼
L
δ ) q

∼
βLδ (ψ̂Lδ )

]
· ∇

∼
q ϕ̂ dq

∼
dx

∼
dt = 0 ∀ϕ̂ ∈ L 4

4−d (0, T ; X̂). (3.17b)

4. Finite element approximation

Let us denote the measure of a bounded open region ω ⊂ R
d by m(ω). We make the following assumption

on Ω and the partitions of Ω and D.

(A1) For ease of exposition, we shall assume that Ω is a convex polytope. Let {T xh }h>0 be a quasiuniform
family of partitions of Ω into disjoint open nonobtuse simplices κx, so that

Ω ≡
⋃

κx∈T x
h

κx with hκx := diam(κx), hx := max
κx∈T x

h

hκx ≤ diam(Ω)h and m(κx) ≥ C hd.

Let {T qh }h>0 be a quasiuniform family of partitions of D ≡ B(0∼, rD), rD ∈ R>0, into disjoint open nonobtuse
simplices κq, with possibly one curved edge, d = 2, or face, d = 3, on ∂D, so that

D ≡
⋃

κq∈T q
h

κq with hκq := diam(κq), hq := max
κq∈T q

h

hκq ≤ diam(D)h and m(κq) ≥ C hd.

A “simplex” κq with a curved edge/face is nonobtuse if it is convex and the enclosed simplex with the same
vertices is nonobtuse, in the sense that all of its dihedral angles are ≤ π/2. It follows from the above that

hx
hq

+
hq
hx
≤ C as h→ 0+. (4.1)
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We note that such nonobtuse simplicial partitions of Ω and D are easily constructed in the case d = 2.
For the construction of nonobtuse three-dimensional simplicial partitions we refer to the papers of Korotov
and Kŕıžek [28,29] for example; the reader should note, however, that in [28] the authors use the term acute
when they mean nonobtuse. Elsewhere in the computational geometry literature the term acute is reserved
for a simplicial partition where all dihedral angles of any simplex in the partition are < π/2, which is a more
restrictive requirement (especially in the case of d = 3) than what we assume here; see, for example, the articles
of Brandts et al. [10], Eppstein et al. [20], and Itoh and Zamfirescu [23], and references therein. Nonobtuse
simplicial partitions are sometimes also called weakly acute (cf. [43], p. 363).

We adopt the standard notation for L2 inner products:

(η1, η2)Ω :=
∫

Ω

η1 η2 dx
∼
∀ηi ∈ L2(Ω) and (η1, η2)Ω×D :=

∫
Ω×D

η1 η2 dq
∼

dx
∼
∀ηi ∈ L2(Ω×D), (4.2)

which are naturally extended to vector/matrix functions.
Let P

x
k and P

q
k denote polynomials of degree less than or equal to k in x∼ and q

∼
, respectively. We approximate

the pressure and velocity with the lowest order Taylor–Hood element; that is,

Rh := {ηh ∈ C(Ω) : ηh |κx∈ P
x
1 ∀κx ∈ T xh }, (4.3a)

W
∼

h := {w
∼
h ∈ [C(Ω)]d : w

∼
h |κx∈ [Px2 ]d ∀κx ∈ T xh and w

∼
h = 0 on ∂Ω} ⊂ [H1

0 (Ω)]d, (4.3b)

V
∼
h := {v

∼
h ∈W

∼
h : (∇

∼
x · v

∼
h, ηh)Ω = 0 ∀ηh ∈ Rh}. (4.3c)

It is well-known that Rh and W∼ h satisfy the inf-sup condition

sup
w
∼

h∈W
∼

h

(∇
∼
x · w

∼
h, rh)Ω

‖w
∼
h‖H1(Ω)

≥ C0 ‖rh‖L2(Ω) ∀rh ∈ Rh, (4.4)

see e.g. [11], Section VI.6. Hence for all v∼ ∈ V∼ , there exists a sequence {v∼h}h>0, with v∼h ∈ V∼ h, such that

lim
h→0+

‖v
∼
− v

∼
h‖H1(Ω) = 0. (4.5)

We require the L2 projector Q
∼ h : V∼ → V∼ h defined by

(v
∼
−Q

∼
h v

∼
, w
∼
h)Ω = 0 ∀w

∼
h ∈ V

∼
h. (4.6)

We note that the convexity of Ω and the quasiuniformity of {T xh }h>0 imply that Q
∼ h is uniformly H1(Ω) stable;

that is,

‖Q
∼
h v

∼
‖H1(Ω) ≤ C ‖v∼‖H1(Ω) ∀v

∼
∈ V

∼
, (4.7)

see [22].
For the approximation of the advection term in the Navier–Stokes equation we note that, for all v∼ ∈ V∼ and

w∼ , z∼ ∈ H∼ 1(Ω), we have that

( (v
∼
· ∇
∼
x )w

∼
, z
∼
)Ω ≡ 1

2

[
( (v

∼
· ∇

∼
x )w

∼
, z
∼
)Ω − ( (v

∼
· ∇
∼
x )z

∼
, w
∼

)Ω
]
. (4.8)
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In addition, the choice w∼ = z∼ leads to both sides of (4.8) vanishing. Obviously, as V∼ h �⊂ V∼ , the discrete analogue
of the above does not hold; that is, it is not generally true that, for all v∼h ∈ V∼ h, w∼ h, z∼h ∈W∼ h,

( (v
∼
h · ∇

∼
x )w

∼
h, z

∼
h)Ω ≡ 1

2

[
( (v

∼
h · ∇

∼
x )w

∼
h, z

∼
h)Ω − ( (v

∼
h · ∇

∼
x )z

∼
h, w

∼
h)Ω
]
. (4.9)

We note that the right-hand side of (4.9) vanishes if w∼ h = z∼h, which is not necessarily true for the left-hand side.
Hence, we use the right-hand side form of (4.9) for the approximation of the advection term in the Navier–Stokes
equation.

To approximate X̂, we first introduce

X̂x
h := {ϕ̂xh ∈ C(Ω) : ϕ̂xh |κx∈ P

x
1 ∀κx ∈ T xh } ⊂W 1,∞(Ω), (4.10a)

X̂q
h := {ϕ̂qh ∈ C(D) : ϕ̂qh |κq∈ P

q
1 ∀κq ∈ T qh } ⊂W

1,∞(D). (4.10b)

We then set

X̂h := X̂x
h ⊗ X̂

q
h ⊂ X̂. (4.11)

We note from (4.3a,c), (4.10a) and (4.11) that, for any v∼h ∈ V∼ h and any q
∼
∈ D,

(∇
∼
x · v

∼
h, ϕ̂h(·, q

∼
))Ω = 0 ∀ϕ̂h ∈ X̂h. (4.12)

We note that for (4.12) to hold in general, we require that X̂x
h ⊆ Rh.

We introduce the interpolation operators πxh : C(Ω)→ X̂x
h and πqh : C(D)→ X̂q

h such that

πxh ϕ̂
x(P

∼
x
i ) = ϕ̂x(P

∼
x
i ), i = 1→ Ix, and πqh ϕ̂

q(P
∼
q
i ) = ϕ̂q(P

∼
q
i ), i = 1→ Iq, (4.13)

where {P∼ x
i }I

x

i=1 and {P∼
q
i }I

q

i=1 are the nodes (vertices) of T xh and T qh , respectively. The associated basis functions
are

χxi ∈ X̂x
h such that χxi (P

x
j ) = δij for i, j = 1→ Ix, (4.14a)

and χqi ∈ X̂
q
h such that χqi (P

q
j ) = δij for i, j = 1→ Iq. (4.14b)

We introduce also πh : C(Ω×D)→ X̂h such that

(πh ϕ̂)(P
∼
x
i , P∼

q
j) = ϕ̂(P

∼
x
i , P∼

q
j) for i = 1→ Ix, j = 1→ Iq. (4.15)

Of course, we have that πh ≡ πxh π
q
h ≡ π

q
h π

x
h. The vector versions of the above interpolation operators are

π
∼
x
h : [C(Ω)]d → [X̂x

h ]d, π
∼
q
h : [C(D)]d → [X̂q

h]
d and π

∼
h : [C(Ω×D)]d → [X̂h]d. (4.16)

We require also the local interpolation operators

πxh,κx
≡ πxh |κx , πqh,κq

≡ πqh |κq , πh,κx×κq ≡ πh |κx×κq , π
∼
x
h,κx
≡ π

∼
x
h |κx ,

π
∼
q
h,κq
≡ π

∼
q
h |κq and π

∼
h,κx×κq ≡ π∼h |κx×κq ∀κx ∈ T xh , ∀κq ∈ T qh . (4.17)
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For any ϕ̂h ∈ X̂h, there exist [Ξ≈
q
δ(ϕ̂h)](x∼, q∼) , [Ξ≈

x
δ (ϕ̂h)](x∼, q∼) ∈ R

d×d for a.e. (x∼, q∼) ∈ Ω × D such that on
κx × κq, for all κx ∈ T xh , κq ∈ T

q
h ,

Ξ
≈
x
δ (ϕ̂h) ∈ [Pq1]

d×d and π
∼
h,κx×κq

[
Ξ
≈
x
δ (ϕ̂h)∇∼ x (πh[ [FLδ ]′(ϕ̂h)] )

]
= ∇

∼
x ϕ̂h; (4.18a)

Ξ
≈

q
δ(ϕ̂h) ∈ [Px1 ]d×d and π

∼
h,κx×κq

[
Ξ
≈

q
δ(ϕ̂h)∇∼ q (πh[ [FLδ ]′(ϕ̂h)] )

]
= ∇

∼
q ϕ̂h. (4.18b)

Hence (4.18a,b) are discrete analogues of the relations (2.18). We now give the construction of Ξ≈
x
δ (·) and Ξ≈

q
δ(·).

Let {e∼i}di=1 be the orthonormal vectors in R
d, such that the jth component of e∼i is δij , i, j = 1 → d. Let κ̃

be the standard reference simplex in R
d with vertices {P̃∼ i}di=0, where P̃∼ 0 is the origin and P̃∼ i = e∼i, i = 1→ d.

Given ϕ̂h ∈ X̂h, κx ∈ T xh with vertices {P∼ x
ij
}dj=0 and κq ∈ T qh with vertices {P∼

q
ij
}dj=0, then for a fixed vertex P∼

q
ik

of κq, let Λ≈
x
δ (P∼

q
ik

) ∈ R
d×d be diagonal with entries

[Λ
≈
x
δ (P∼

q
ik

)]jj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ̂h(P∼ x

ij
, P∼

q
ik

)− ϕ̂h(P∼ x
i0
, P∼

q
ik

)

[FLδ ]′(ϕ̂h(P∼ x
ij
, P∼

q
ik

))− [FLδ ]′(ϕ̂h(P∼ x
i0
, P∼

q
ik

))
if ϕ̂h(P∼ x

ij
, P∼

q
ik

) �= ϕ̂h(P∼ x
i0
, P∼

q
ik

),

1
[FLδ ]′′(ϕ̂h(P∼ x

ij
, P∼

q
ik

))
= βLδ (ϕ̂h(P∼

x
ij , P∼

q
ik

)) if ϕ̂h(P∼ x
ij
, P∼

q
ik

) = ϕ̂h(P∼ x
i0
, P∼

q
ik

),

j = 1→ d. (4.19)

Let Bκx ∈ R
d×d be such that the affine mapping Bκx : y

∼
∈ R

d �→ P∼
x
i0

+ Bκx y∼ maps the vertex P̃∼ j to P∼
x
ij

,

j = 0→ d, and hence κ̃ to κx. For any ϕ̂xh ∈ X̂x
h , let ϕ̂xh,y(x∼) ≡ ϕ̂xh(Bκxy∼) for all y

∼
∈ κ̃. Hence it follows that

∇
∼
x ϕ̂

x
h = [BT

κx
]−1∇

∼
y ϕ̂

x
h,y. (4.20)

Therefore, for k = 0→ d,

Ξ
≈
x
δ (P∼

q
ik

) = [BT
κx

]−1 Λ
≈
x
δ (P∼

q
ik

)BT
κx

(4.21)

is such that

Ξ
≈
x
δ (P∼

q
ik

)∇
∼
x (πh[[FLδ ]′(ϕ̂h)])(x

∼
, P
∼
q
ik

) = ∇
∼
x ϕ̂h(x

∼
, P
∼
q
ik

) ∀x
∼
∈ κx. (4.22)

Finally, on recalling (4.14b), we set

Ξ
≈
x
δ (x∼, q∼

) =
d∑
k=0

Ξ
≈
x
δ (P∼

q
ik

)χqik(q
∼
) ∀x

∼
∈ κx, ∀q

∼
∈ κq. (4.23)

Hence Ξ≈
x
δ satisfies (4.18a). A similar construction yields Ξ≈

q
δ satisfying (4.18b). The only difference is for those

κq with a curved side or face, the corresponding linear mapping Bκq maps κ̃ to the enclosed simplex with the
same vertices as κq. As T hx , T hq are quasiuniform partitions, we have from (4.23), (4.21) and (4.19), and their
Ξ≈
q
δ counterparts that, for all ϕ̂h ∈ X̂h,

‖Ξ
≈
x
δ (ϕ̂h)‖2L∞(Ω×D) + ‖Ξ

≈

q
δ(ϕ̂h)‖

2
L∞(Ω×D) ≤ C L2. (4.24)

We note that the construction of Ξ≈
x
δ (·) and Ξ≈

q
δ(·) satisfying (4.18a,b) is an extension of ideas used in e.g. [3,21]

for the finite element approximation of fourth-order degenerate nonlinear parabolic equations, such as the thin
film equation.
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As the partitions T xh and T qh are nonobtuse, we deduce (see, for example, [13] Chap. 3, Bibliography and
Comments on Sect. 3.3; and Sect. 4 in the paper of Brandts et al. [10]) that

∇
∼
x χ

x
i · ∇∼ x χ

x
j ≤ 0 on κx i �= j, i, j = 1→ Ix, ∀κx ∈ T xh ; (4.25a)

and ∇
∼
q χ

q
i · ∇∼ q χ

q
j ≤ 0 on κq i �= j, i, j = 1→ Iq, ∀κq ∈ T qh . (4.25b)

Let g ∈ C0,1(R) be monotonically increasing with Lipschitz constant gLip; then it follows from (4.25a,b) that,
for all κx ∈ T xh , κq ∈ T qh and for all ϕ̂h ∈ X̂h,

∫
κx×κq

M πh,κx×κq

[ ∣∣∣∇
∼
x (πh,κx×κq [ g

′(ϕ̂h)])
∣∣∣2 ] dq

∼
dx

∼

≤ gLip

∫
κx×κq

M πh,κx×κq

[
∇
∼
x ϕ̂h · ∇

∼
x (πh,κx×κq [ g

′(ϕ̂h)])
]

dq
∼

dx
∼
; (4.26a)

and
∫
κx×κq

M πh,κx×κq

[ ∣∣∣∇
∼
q (πh,κx×κq [ g

′(ϕ̂h)])
∣∣∣2 ] dq

∼
dx

∼

≤ gLip

∫
κx×κq

M πh,κx×κq

[
∇
∼
q ϕ̂h · ∇

∼
q (πh,κx×κq [ g

′(ϕ̂h)])
]

dq
∼

dx
∼
. (4.26b)

Let 0 = t0 < t1 < . . . < tN−1 < tN = T be a partition of the time interval [0, T ] into time steps Δtn =
tn − tn−1, n = 1 → N . We set Δt = maxn=1→N Δtn. We make the following assumptions on the time steps
{Δtn}Nn=1 and the discrete initial data.

(A2) We assume that there exists C ∈ R>0 such that

Δtn ≤ CΔtn−1, n = 2→ N, as Δt→ 0+. (4.27)

With Δt1 and C as above, let Δt0 ∈ R>0 be such that Δt1 ≤ CΔt0. Given initial data satisfying (3.5a), we
choose u∼

0
h ∈ V∼ h and ψ̂0

h ∈ X̂h such that

(u
∼

0
h, v∼h

)Ω + Δt0 (∇
≈
x u

∼
0
h,∇≈ x v

∼
h)Ω = (u

∼
0, v

∼
h)Ω ∀v

∼
h ∈ V

∼
h, (4.28a)

(M,πh[ψ̂0
h ϕ̂h])Ω×D + Δt0 (M,πh[∇

∼
x ψ̂

0
h · ∇∼ x ϕ̂h +∇

∼
q ψ̂

0
h · ∇∼ q ϕ̂h])Ω×D = (M ψ̂0, ϕ̂h)Ω×D ∀ϕ̂h ∈ X̂h. (4.28b)

It follows from (4.28a,b), (3.5a) and (4.26a,b) that

∫
Ω

[
|u
∼

0
h|2 + Δt0 |∇

≈
x u

∼
0
h|2
]

dx
∼
≤ C, 0 ≤ ψ̂0

h ≤ ‖ψ̂0‖L∞(Ω×D) ≤ L,

and
∫

Ω×D
M πh

[
(ψ̂0
h)

2 + Δt0
[
|∇
∼
x ψ̂

0
h|2 + |∇

∼
q ψ̂

0
h|2
]]

dq
∼

dx
∼
≤ C. (4.29)

We set

f
∼

n(·) :=
1

Δtn

∫ tn

tn−1

f
∼
(·, t) dt ∈ H

∼
−1(Ω). (4.30)
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It is easily deduced from (3.5b) and (4.30) that

N∑
n=1

Δtn ‖f
∼

n‖rH−1(Ω) ≤
∫ T

0

‖f
∼
‖rH−1(Ω) dt ≤ C for any r ∈ [1, 2], (4.31a)

and f
∼

Δt,+ → f
∼

strongly in L2(0, T ;H
∼

−1(Ω)) as Δt→ 0+, (4.31b)

where f
∼

Δt,+(·, t) := f
∼
n(·) for t ∈ (tn−1, tn], n = 1→ N .

Our numerical approximation of (PLδ ) is then defined as follows, with u∼
0
δ,h := u∼

0
h and ψ̂0

δ,h := ψ̂0
h.

(Ph,Δtδ ) For n = 1→ N , given {u∼
n−1
δ,h , ψ̂n−1

δ,h } ∈ V∼ h × X̂h, find {u∼nδ,h, ψ̂nδ,h} ∈ V∼ h × X̂h such that

(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn
, w
∼
h

)
Ω

+ ν (∇
≈
x u

∼
n
δ,h,∇≈ x w

∼
h)Ω + 1

2

[
((u

∼
n−1
δ,h · ∇∼ x )u

∼
n
δ,h, w∼ h)Ω − ((u

∼
n−1
δ,h · ∇∼ x )w

∼
h, u

∼
n
δ,h)Ω

]
= 〈f

∼

n, w
∼
h〉H1

0 (Ω) − k μ (C
≈

(M ψ̂nδ,h),∇≈ x w
∼
h)Ω ∀w

∼
h ∈ V

∼
h, (4.32a)(

M,πh

[
ψ̂nδ,h − ψ̂n−1

δ,h

Δtn
ϕ̂h + ε∇

∼
x ψ̂

n
δ,h · ∇∼ x ϕ̂h +

1
2λ
∇
∼
q ψ̂

n
δ,h · ∇∼ q ϕ̂h

])
Ω×D

=
(
M (∇

≈
x u

∼
n
δ,h) q

∼
, π
∼
h

[
Ξ
≈

q
δ(ψ̂

n
δ,h)∇∼ q ϕ̂h

])
Ω×D

+
(
M u

∼
n
δ,h, π∼h

[
Ξ
≈
x
δ (ψ̂

n
δ,h)∇∼ x ϕ̂h

])
Ω×D

∀ϕ̂h ∈ X̂h; (4.32b)

where for ease of notation, we write πh and π∼h in (4.32b) whereas it should really be πh,κx×κq and π∼h,κx×κq ,
respectively, on each κx×κq of Ω×D. We note that these interpolation operators play a crucial role in (4.32b)
in obtaining a discrete version of (2.20). For example, we can exploit the results (4.18a,b) and (4.26a,b) on
choosing the test function ϕ̂h = πh[ [FLδ ]′(ψ̂nδ,h)]. We have suppressed the dependence of the solution {u∼nδ,h, ψ̂nδ,h}
on L through the dependence of Ξ≈

x
δ and Ξ≈

q
δ on FLδ . This is because we will not be passing to the limit L→∞,

but only to the limit δ → 0+ in addition to letting the discretization parameters h, Δt→ 0+.
We note that the approximations u∼

n
δ,h and ψ̂nδ,h at time level tn to the velocity field and the scaled probability

distribution satisfy a coupled nonlinear system, (4.32a,b). We will show existence of a solution to (4.32a,b)
below, see Theorem 4.2, via a Brouwer fixed point theorem. First, assuming existence, we show that (Ph,Δtδ )
satisfies a discrete analogue of the energy equality (2.21). For all the following lemmas and theorems we assume
the assumptions (A1) and (A2) hold.

Lemma 4.1. For n = 1→ N , a solution {u∼nδ,h, ψ̂nδ,h} ∈ V∼ h × X̂h of (4.32a,b), if it exists, satisfies

1
2

[
‖u

∼
n
δ,h‖2L2(Ω) + ‖u

∼
n
δ,h − u∼

n−1
δ,h ‖2L2(Ω)

]
+ k μ (M,πh[FLδ (ψ̂nδ,h)])Ω×D + Δtn ν ‖∇

≈
x u

∼
n
δ,h‖2L2(Ω)

+ Δtn k μ
(
M,πh

[
ε∇

∼
x ψ̂

n
δ,h · ∇∼ x (πh[ [FLδ ]′(ψ̂nδ,h)]) +

1
2λ
∇
∼
q ψ̂

n
δ,h · ∇∼ q (πh[ [FLδ ]′(ψ̂nδ,h)])

])
Ω×D

≤ 1
2 ‖u∼

n−1
δ,h ‖2L2(Ω) + k μ (M,πh[FLδ (ψ̂n−1

δ,h )])Ω×D + Δtn 〈f
∼

n, u
∼
n
δ,h〉H1

0 (Ω)

≤ 1
2 ‖u∼

n−1
δ,h ‖2L2(Ω) + k μ (M,πh[FLδ (ψ̂n−1

δ,h )])Ω×D + Δtn

[
ν

2
‖∇

≈
x u

∼
n
δ,h‖2L2(Ω) + C ‖f

∼

n‖2H−1(Ω)

]
. (4.33)
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Proof. On choosing w∼ h = u∼
n
δ,h in (4.32a), it follows that

1
2

∫
Ω

[
|u∼nδ,h|2 + |u∼nδ,h − u∼

n−1
δ,h |

2 − |u∼
n−1
δ,h |

2
]

dx∼ + Δtn ν
∫

Ω

|∇≈ x u∼
n
δ,h|2 dx∼

= Δtn
[
〈f
∼
n, u∼

n
δ,h〉H1

0 (Ω) − k μ (C≈ (M ψ̂nδ,h),∇≈ x u∼
n
δ,h)Ω

]
, (4.34)

where we have noted the simple identity

2 (s1 − s2) s1 = s21 + (s1 − s2)2 − s22 ∀s1, s2 ∈ R. (4.35)

On choosing ϕ̂h = πh[ [FLδ ]′(ψ̂nδ,h)] in (4.32b), and noting the convexity of FLδ , (4.18a,b), (2.5), (4.12) and (2.3),
we have that

(M,πh[FLδ (ψ̂nδ,h)−FLδ (ψ̂n−1
δ,h )])Ω×D

+ Δtn

(
M,πh

[
ε∇

∼
x ψ̂

n
δ,h · ∇∼ x (πh[ [FLδ ]′(ψ̂nδ,h)]) +

1
2λ
∇
∼
q ψ̂

n
δ,h · ∇∼ q (πh[ [FLδ ]′(ψ̂nδ,h)])

])
Ω×D

≤ (M (∇
≈
x u

∼
n
δ,h) q

∼
,∇
∼
q ψ̂

n
δ,h)Ω×D + (M u

∼
n
δ,h,∇∼ x ψ̂

n
δ,h)Ω×D

= (M U ′ q
∼
· [(∇

≈
x u

∼
n
δ,h) q

∼
], ψ̂nδ,h)Ω×D − 2 (M ∇

∼
x · u

∼
n
δ,h, ψ̂

n
δ,h)Ω×D

= (C
≈

(M ψ̂nδ,h),∇≈ x u
∼
n
δ,h)Ω. (4.36)

Combining (4.34) and (4.36) yields the first inequality (4.33). The second inequality follows from using Young’s
inequality and a Poincaré inequality. �

We now show using a Brouwer fixed point theorem that there exists a solution {u∼nδ,h, ψ̂nδ,h} at time level tn
to (4.32a,b).

Theorem 4.2. Given {u∼
n−1
δ,h , ψ̂n−1

δ,h } ∈ V∼ h×X̂h and for any time step Δtn > 0, there exists at least one solution

{u∼nδ,h, ψ̂nδ,h} ∈ V∼ h × X̂h to (4.32a,b).

Proof. We define the inner product, ((·, ·)), on the Hilbert space V∼ h × X̂h as follows:

(({u∼h, ψ̂h}, {w∼ h, ϕ̂h})) := (u∼h, w∼ h)Ω + (M,πh[ψ̂h ϕ̂h])Ω×D ∀{u∼h, ψ̂h}, {w∼ h, ϕ̂h} ∈ V∼ h × X̂h.

Given {u∼
n−1
δ,h , ψ̂n−1

δ,h } ∈ V∼ h × X̂h, let H : V∼ h × X̂h → V∼ h × X̂h be such that, for any {u∼h, ψ̂h} ∈ V∼ h × X̂h,

((H(u
∼
h, ψ̂h), {w

∼
h, ϕ̂h})) :=

(
u
∼
h − u

∼
n−1
δ,h

Δtn
, w
∼
h

)
Ω

+ ν (∇
≈
x u

∼
h,∇

≈
x w

∼
h)Ω − 〈f

∼

n, w
∼
h〉H1

0 (Ω) + k μ (C
≈

(M ψ̂h),∇
≈
x w

∼
h)Ω

+ 1
2

[
((u

∼
n−1
δ,h · ∇∼ x )u

∼
h, w

∼
h)Ω − ((u

∼
n−1
δ,h · ∇∼ x )w

∼
h, u

∼
h)Ω
]

+

(
M,πh

[
ψ̂h − ψ̂n−1

δ,h

Δtn
ϕ̂h + ε∇

∼
x ψ̂h · ∇

∼
x ϕ̂h +

1
2λ
∇
∼
q ψ̂h · ∇

∼
q ϕ̂h

])
Ω×D

−
(
M (∇

≈
x u

∼
h) q

∼
, π
∼
h

[
Ξ
≈

q
δ(ψ̂h)∇∼ q ϕ̂h

])
Ω×D

−
(
M u

∼
h, π

∼
h

[
Ξ
≈
x
δ (ψ̂h)∇∼ x ϕ̂h

])
Ω×D

∀{w
∼
h, ϕ̂h} ∈ V

∼
h × X̂h.

(4.37)
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We note that a solution {u∼nδ,h, ψ̂nδ,h} to (4.32a,b), if it exists, corresponds to a zero of H; that is,

((H(u
∼
n
δ,h, ψ̂

n
δ,h), {w∼ h, ϕ̂h})) = 0 ∀{w

∼
h, ϕ̂h} ∈ V

∼
h × X̂h. (4.38)

On noting the construction of Ξ≈
x
δ and Ξ≈

q
δ, (4.19)–(4.23), it is easily deduced that the mapping H is continuous.

For any {u∼h, ψ̂h} ∈ V∼ h × X̂h, on choosing {w∼ h, ϕ̂h} = {u∼h, πh[[FLδ ]′(ψ̂h)]}, we obtain analogously to (4.33),
on noting (4.26a,b) and neglecting some nonnegative terms, that

((H(u
∼
h, ψ̂h), {u

∼
h, πh[[FLδ ]′(ψ̂h)]}))

≥ 1
Δtn

[
1
2

(
‖u

∼
h‖2L2(Ω) − ‖u∼

n−1
δ,h ‖2L2(Ω)

)
+ k μ (M,πh[FLδ (ψ̂h)−FLδ (ψ̂n−1

δ,h )])Ω×D
]

+
ν

2
‖∇

≈
x u

∼
h‖2L2(Ω) − C ‖f

∼

n‖2H−1(Ω). (4.39)

Let us now assume that, for any γ ∈ R>0, the continuous mapping H has no zero {u∼nδ,h, ψ̂nδ,h} satisfying (4.38),
which lies in the ball

Zγ := {{w∼ h, ϕ̂h} ∈ V∼ h × X̂h : |||{w∼ h, ϕ̂h}||| ≤ γ};
where

|||{w∼ h, ϕ̂h}||| := [(({w∼ h, ϕ̂h}, {w∼ h, ϕ̂h}))]
1
2 =

[
‖w∼ h‖2L2(Ω) + (M,πh[(ϕ̂h)2])Ω×D

] 1
2
.

Then, for such γ, we can define the continuous mapping Eγ : Zγ → Zγ such that, for all {w∼ h, ϕ̂h} ∈ Zγ ,

Eγ(w∼ h, ϕ̂h) := −γ H(w∼ h, ϕ̂h)
|||H(w∼ h, ϕ̂h)|||

·

By the Brouwer fixed point theorem, Eγ has at least one fixed point {u∼
γ
h, ψ̂

γ
h} in Zγ ; hence it satisfies

|||{u∼
γ
h, ψ̂

γ
h}||| = |||Eγ(u∼

γ
h, ψ̂

γ
h)||| = γ. (4.40)

It follows from (2.22) and (4.40) that

1
2
‖u

∼
γ
h‖2L2(Ω) + k μ (M,πh[FLδ (ψ̂γh)])Ω×D ≥

1
2
‖u

∼
γ
h‖2L2(Ω) +

k μ

4L
(M,πh[(ψ̂

γ
h)2])Ω×D − C(L)

≥ min
{

1
2
,
k μ

4L

}
|||{u

∼
γ
h, ψ̂

γ
h}|||

2 − C(L)

= min
{

1
2
,
k μ

4L

}
γ2 − C(L). (4.41)

Hence for all γ sufficiently large, it follows from (4.39) and (4.41) that

((H(u
∼
γ
h, ψ̂

γ
h), {u

∼
γ
h, πh[[F

L
δ ]′(ψ̂γh)]})) > 0. (4.42)

On the other hand as {u∼
γ
h, ψ̂

γ
h} is a fixed point of Eγ , we have that

((H(u
∼
γ
h, ψ̂

γ
h), {u

∼
γ
h, πh[[FLδ ]′(ψ̂γh)]})) = −

|||H(u
∼
γ
h, ψ̂

γ
h)|||

γ

[
‖u

∼
γ
h‖2L2(Ω) + (M,πh[ψ̂

γ
h [FLδ ]′(ψ̂γh)])Ω×D

]
. (4.43)
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Similarly to (4.41), we have from (2.22) and (4.40) that

‖u
∼
γ
h‖

2
L2(Ω) + (M,πh[ψ̂

γ
h [FLδ ]′(ψ̂γh)])Ω×D ≥

1
4L

γ2 − C(L). (4.44)

Therefore on combining (4.43) and (4.44), we have for all γ sufficiently large that

((H(u
∼
γ
h, ψ̂

γ
h), {u

∼
γ
h, πh[[F

L
δ ]′(ψ̂γh)]})) < 0, (4.45)

which obviously contradicts (4.42). Hence the mapping H has a zero in Zγ for γ sufficiently large. �

In order to establish a stability result for our approximation (Ph,Δtδ ), we need first to prove a number of
auxiliary results. Applying Jensen’s inequality, we have that, for all κx ∈ T hx with vertices {P∼ x

ij
}dj=0,

| [πxh,κx
ϕ̂x](x

∼
)|2 =

∣∣∣∣ d∑
j=0

ϕ̂x(P
∼
x
ij )χ

x
ij (x∼)

∣∣∣∣2 ≤ d∑
j=0

[ϕ̂x(P
∼
x
ij )]

2 χxij (x∼) = [πxh,κx
[(ϕ̂x)2] ](x

∼
)

∀x
∼
∈ κx, ∀ϕ̂x ∈ C(κx), (4.46a)

where we have used (4.14a) and that χxij are nonnegative, and
∑d

j=0 χ
x
ij

(x∼) = 1 for all x∼ ∈ κx. Similarly, we
have for all κx ∈ T hx , κq ∈ T hq that

| [πqh,κq
ϕ̂q](q

∼
)|2 ≤ [πqh,κq

[(ϕ̂q)2] ](q
∼
) ∀q

∼
∈ κq, ∀ϕ̂q ∈ C(κq), (4.46b)

| [πh,κx×κq ϕ̂](x
∼
, q
∼
)|2 ≤ [πh,κx×κq [ϕ̂2] ](x

∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq, ∀ϕ̂ ∈ C(κx × κq), (4.46c)

| [π
∼
h,κx×κq ϕ̂

∼
](x

∼
, q
∼
)|2 ≤ [πh,κx×κq [ |ϕ̂

∼
|2] ](x

∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq, ∀ϕ̂

∼
∈ [C(κx × κq)]d. (4.46d)

In addition, for all κx ∈ T hx , κq ∈ T hq and for all ϕ̂, ψ̂ ∈ C(κx × κq), ϕ̂∼ , ψ̂∼ ∈ [C(κx × κq)]d the following
inequalities are easily deduced for any η ∈ R>0:

| [πh,κx×κq [ϕ̂ ψ̂] ](x
∼
, q
∼
)| ≤ 1

2 [πh,κx×κq [η ϕ̂2 + η−1 ψ̂2] ](x
∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq, (4.47a)

and | [πh,κx×κq [ϕ̂
∼
· ψ̂

∼
] ](x

∼
, q
∼
)| ≤ 1

2 [πh,κx×κq [η |ϕ̂
∼
|2 + η−1 |ψ̂

∼
|2] ](x

∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq. (4.47b)

The following interpolation stability results are easily established, using the mean value theorem, for all
κx ∈ T xh and κq ∈ T qh , respectively:

‖∇
∼
x π

x
h,κx

ϕ̂x‖L∞(κx) ≤ d ‖∇∼ x ϕ̂
x‖L∞(κx) ∀ϕ̂x ∈W 1,∞(κx), (4.48a)

‖∇
∼
q π

q
h,κq

ϕ̂q‖L∞(κq) ≤ d ‖∇∼ q ϕ̂
q‖L∞(κq) ∀ϕ̂q ∈W 1,∞(κq); (4.48b)

furthermore,

d∑
i=1

d∑
j=1

∥∥∥∥ ∂2

∂xi ∂qj
πh,κx×κq ϕ̂

∥∥∥∥
L∞(κx×κq)

=
d∑
i=1

d∑
j=1

∥∥∥∥ ∂

∂xi
πxh,κx

[
∂

∂qj
πqh,κq

ϕ̂

]∥∥∥∥
L∞(κx×κq)

≤
d∑
i=1

d∑
j=1

∥∥∥∥ ∂2

∂xi ∂qj
ϕ̂

∥∥∥∥
L∞(κx×κq)

∀ϕ̂ ∈ W 2,∞(κx × κq). (4.49)
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We recall the following well-known approximation results for all κx ∈ T xh and κq ∈ T qh :

‖(I − πxh,κx
)ϕ̂x‖L∞(κx) ≤ C h2

x |ϕ̂x|W 2,∞(κx) ∀ϕ̂x ∈W 2,∞(κx), (4.50a)

‖(I − πqh,κq
)ϕ̂q‖L∞(κq) ≤ C h2

q |ϕ̂q|W 2,∞(κq) ∀ϕ̂q ∈ W 2,∞(κq). (4.50b)

We require the following inverse bounds for all ϕ̂xh ∈ P
x
1 , ϕ̂qh ∈ P

q
1 and for all κ
x ⊂ κx ∈ T xh , κ
q ⊂ κq ∈ T qh

with m(κx) ≤ Cm(κ
x), m(κq) ≤ C m(κ
q):

‖ϕ̂xh‖2L∞(κx) ≤ C [m(κ
x)]
−1

∫
κ�

x

|ϕ̂xh|2 dx
∼
, (4.51a)

‖ϕ̂qh‖2L∞(κq) ≤ C [m(κ
q)]
−1

∫
κ�

q

|ϕ̂qh|2 dq
∼
, (4.51b)∫

κ�
x

|∇
∼
x ϕ̂

x
h|2 dx

∼
≤ C h−2

x

∫
κ�

x

|ϕ̂xh|2 dx
∼
≤ C h−2

x

∫
κ�

x

πxh,κx
[ |ϕ̂xh|2] dx∼, (4.51c)∫

κ�
q

|∇
∼
q ϕ̂

q
h|2 dq

∼
≤ C h−2

q

∫
κ�

q

|ϕ̂qh|2 dq
∼
≤ C h−2

q

∫
κ�

q

πqh,κq
[ |ϕ̂qh|2] dq

∼
. (4.51d)

The bounds (4.51a,b) are standard inverse bounds in the case κ
x ≡ κx and κ
q ≡ κq. The results are easily
generalized to κ
x ⊂ κx and κ
q ⊂ κq under the stated conditions, since then ‖ϕ̂xh‖L∞(κx) ≤ C ‖ϕ̂xh‖L∞(κ�

x)

and ‖ϕ̂qh‖L∞(κq) ≤ C ‖ϕ̂qh‖L∞(κ�
q). The first inequalities in (4.51c,d) then follow immediately from (4.51a,b),

respectively; whereas the second inequalities in (4.51c,d) follow from (4.46a,b), respectively. The following
bounds follow immediately from (4.51a,b) under the same stated conditions:∫

κ�
x

πxh,κx
[ |ϕ̂xh|2] dx∼ ≤ C

∫
κ�

x

|ϕ̂xh|2 dx
∼

and
∫
κ�

q

πqh,κq
[ |ϕ̂qh|

2] dq
∼
≤ C

∫
κ�

q

|ϕ̂qh|
2 dq

∼
. (4.52)

In addition, we require the following weighted bounds.

Lemma 4.3. For all κq ∈ T hq and for all ϕ̂qh ∈ P
q
1 we have that∫

κq

M |∇
∼
q ϕ̂

q
h|2 dq

∼
≤ C h−2

q

∫
κq

M |ϕ̂qh|2 dq
∼
≤ C h−2

q

∫
κq

M πqh,κq
[ |ϕ̂qh|2] dq

∼
, (4.53a)

∫
κq

M πqh,κq
[ |ϕ̂qh|2] dq

∼
≤
(∫

κq

M dq
∼

)
‖ϕ̂qh‖2L∞(κq) ≤ C

∫
κq

M |ϕ̂qh|2 dq
∼
. (4.53b)

Proof. If κq has no vertices on ∂D, let q
∼min be the nearest point of κq to ∂D. It follows from the quasiuniformity

of T hq that dist(q
∼min, ∂D) ≥ C hq, and hence, on noting (2.9a), it follows that

maxq
∼
∈κq M(q

∼
)

minq
∼
∈κq M(q

∼
)
≤
c2 [dist(q

∼
min, ∂D) + hq]ζ

c1 [dist(q
∼

min, ∂D)]ζ
≤ C. (4.54)

The first inequality in (4.53a) then follows immediately from (4.51d) and (4.54). Similarly, (4.53b) follows
immediately from (4.51b) and (4.54).

If κq has vertices on ∂D, we introduce, for appropriate Ci ∈ R>0,

κ
q := {q
∼
∈ κq : dist(q

∼
, ∂D) ≥ C1 hq} ⊂ κq and m(κq) ≤ C2m(κ
q). (4.55)
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Similarly to (4.54), we have from (4.54) and (2.9a) that

maxq
∼
∈κq M(q

∼
)

minq
∼
∈κ�

q
M(q

∼
)
≤ C. (4.56)

It follows from (4.55), (2.9a), (4.56) and (4.51d) that∫
κq

M |∇
∼
q ϕ̂

q
h|2 dq

∼
≤ C2

∫
κ�

q

M |∇
∼
q ϕ̂

q
h|2 dq

∼
≤ C h−2

q

∫
κ�

q

M |ϕ̂qh|2 dq
∼
≤ C h−2

q

∫
κq

M |ϕ̂qh|2 dq
∼
, (4.57)

and hence the first inequality in (4.53a). Similarly, the bound (4.53b) in this case follows immediately from
(4.51b), (4.55) and (4.56).

Finally, the second inequality in (4.53a) follows in both cases from (4.46b). �

In addition, we require the following inverse inequalities.

Lemma 4.4. For all ϕ̂h ∈ P
x
1 ⊗ P

q
1 and for all κx ∈ T xh , κq ∈ T qh we have that∫

κx×κq

M πh,κx×κq [ |∇
∼
x ϕ̂h|2] dq

∼
dx

∼
≤
∫
κx×κq

M |∇
∼
x ϕ̂h|2 dq

∼
dx

∼
≤ C h−2

x

∫
κx×κq

M |ϕ̂h|2 dq
∼

dx
∼
, (4.58a)∫

κx×κq

M πh,κx×κq [ |∇
∼
q ϕ̂h|2] dq

∼
dx

∼
≤
∫
κx×κq

M |∇
∼
q ϕ̂h|2 dq

∼
dx

∼
≤ C h−2

q

∫
κx×κq

M |ϕ̂h|2 dq
∼

dx
∼
. (4.58b)

Proof. The first inequalities in (4.58a,b) follow immediately from (4.53b) and (4.52), respectively. The second
inequalities in (4.58a,b) follow immediately from the first inequalities in (4.51c) and (4.53a), respectively. �

We require the following results.

Lemma 4.5. For all κx ∈ T xh , κq ∈ T qh and for all ψ̂h, ϕ̂h ∈ X̂h we have that∣∣∣∣∣
∫
κx×κq

M (I − πh,κx×κq) [∇
∼
q ψ̂h · ∇

∼
q ϕ̂h] dq

∼
dx

∼

∣∣∣∣∣
≤ C hx

(∫
κx×κq

M |∇
∼
q ψ̂h|2 dq

∼
dx

∼

) 1
2
⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠
1
2

, (4.59a)

∣∣∣∣∣
∫
κx×κq

M (I − πh,κx×κq) [∇
∼
x ψ̂h · ∇

∼
x ϕ̂h] dq

∼
dx

∼

∣∣∣∣∣
≤ C hq

(∫
κx×κq

M |∇
∼
x ψ̂h|2 dq

∼
dx

∼

) 1
2
⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠
1
2

, (4.59b)

and ∣∣∣∣∣
∫
κx×κq

M (I − πh,κx×κq)[ψ̂h ϕ̂h] dq
∼

dx
∼

∣∣∣∣∣ ≤ C h2
x

(∫
κx×κq

M |∇
∼
x ψ̂h|2 dq

∼
dx

∼

) 1
2
(∫

κx×κq

M |∇
∼
x ϕ̂h|2 dq

∼
dx

∼

) 1
2

+ C h2
q

(∫
κx×κq

M |∇
∼
q ψ̂h|2dq

∼
dx

∼

) 1
2
(∫

κx×κq

M |∇
∼
q ϕ̂h|2 dq

∼
dx

∼

) 1
2

. (4.59c)
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Proof. As ∇∼ q ψ̂h, ∇∼ q ϕ̂h ∈ [Px1 ]d on κx × κq, it follows from (4.50a) that∣∣∣∣∣
∫
κx×κq

M (I − πh,κx×κq) [∇
∼
q ψ̂h · ∇

∼
q ϕ̂h] dq

∼
dx

∼

∣∣∣∣∣
≤
(∫

κx×κq

M dq
∼

dx
∼

)
‖(I − πxh,κx

) [∇
∼
q ψ̂h · ∇

∼
q ϕ̂h]‖L∞(κx)

≤ C h2
x

(∫
κx×κq

M dq
∼

dx
∼

)
|∇
∼
q ψ̂h · ∇

∼
q ϕ̂h|W 2,∞(κx)

≤ C h2
x

⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣∣ ∂2ψ̂h
∂xi∂qj

∣∣∣∣∣
2

dq
∼

dx
∼

⎞⎠
1
2
⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠
1
2

. (4.60)

The desired result (4.59a) then follows from (4.60) on applying (4.58a) to the first integral.
Similarly, as ∇∼ x ψ̂h, ∇∼ x ϕ̂h ∈ [Pq1]

d on κx × κq, it follows from (4.50b) that∣∣∣∣∣
∫
κx×κq

M (I − πh,κx×κq) [∇
∼
x ψ̂h · ∇

∼
x ϕ̂h] dq

∼
dx

∼

∣∣∣∣∣
≤ C h2

q

⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣∣ ∂2ψ̂h
∂xi∂qj

∣∣∣∣∣
2

dq
∼

dx
∼

⎞⎠
1
2
⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠
1
2

. (4.61)

The desired result (4.59b) then follows from (4.61) on applying (4.58b) to the first integral.
To prove (4.59c), we first note that I−πh,κx×κq ≡ (I−πxh,κx

)+ (I−πqh,κq
)πxh,κx

. It follows from (4.50a) that∫
κx×κq

M ‖(I − πxh,κx
) [ψ̂h ϕ̂h]‖L∞(κx) dq

∼
dx

∼
≤ C h2

x

∫
κx×κq

M |∇
∼
x ψ̂h| |∇

∼
x ϕ̂h| dq

∼
dx

∼

≤ C h2
x

(∫
κx×κq

M |∇
∼
x ψ̂h|2 dq

∼
dx

∼

) 1
2
(∫

κx×κq

M |∇
∼
x ϕ̂h|2 dq

∼
dx

∼

) 1
2

. (4.62)

It follows from (4.50b) and (4.51a) that(∫
κx×κq

M dq
∼

dx
∼

)
‖(I − πqh,κx

)πxh,κx
[ψ̂h ϕ̂h]‖L∞(κx×κq)

≤ C h2
q

(∫
κx×κq

M dq
∼

dx
∼

)
d∑
i=1

d∑
j=1

∥∥∥∥∥πxh,κx

[
∂ψ̂h
∂qi

∂ϕ̂h
∂qj

]∥∥∥∥∥
L∞(κx)

≤ C h2
q

(∫
κx×κq

M dq
∼

dx
∼

)
‖∇

∼
q ψ̂h‖L∞(κx) ‖∇∼ q ϕ̂h‖L∞(κx)

≤ C h2
q

(∫
κx×κq

M |∇
∼
q ψ̂h|2 dq

∼
dx

∼

) 1
2
(∫

κx×κq

M |∇
∼
q ϕ̂h|2 dq

∼
dx

∼

) 1
2

. (4.63)

Hence combining (4.62) and (4.63) yields the desired result (4.59c). �
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Lemma 4.6. For all κx ∈ T xh , κq ∈ T qh and for all ψ̂h, ϕ̂h ∈ X̂h we have that∫
κx×κq

M

[∣∣∣(I
∼
− π

∼
h,κx×κq) [Ξ

≈

q
δ(ψ̂h)∇∼ q ϕ̂h]

∣∣∣2 +
∣∣∣(I

∼
− π

∼
h,κx×κq) [Ξ

≈
x
δ (ψ̂h)∇∼ x ϕ̂h]

∣∣∣2] dq
∼

dx
∼

≤ C(L) (h2
x + h2

q)

⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠ . (4.64)

Proof. As Ξ≈
q
δ(ψ̂h) ∈ [Px1 ]d×d and ∇∼ q ϕ̂h ∈ [Px1 ]d on κx × κq, it follows from (4.50a), (4.51c) and (4.24) that∫

κx×κq

M
∣∣∣(I

∼
− π

∼
h,κx×κq) [Ξ

≈

q
δ(ψ̂h)∇∼ q ϕ̂h]

∣∣∣2 dq
∼

dx
∼

≤ C h4
x

(∫
κx×κq

M dq
∼

dx
∼

) ⎛⎝ d∑
i=1

d∑
j=1

‖∇
∼
x [Ξ

≈

q
δ(ψ̂h)]ij‖

2
L∞(κx)

⎞⎠ ⎛⎝ d∑
i=1

d∑
j=1

‖ ∂
2ϕ̂h

∂xi∂qj
‖2L∞(κx)

⎞⎠
≤ C(L)h2

x

⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠ . (4.65)

Similarly, as Ξ≈
x
δ (ψ̂h) ∈ [Pq1]

d×d and ∇∼ x ϕ̂h ∈ [Pq1]
d on κx × κq, it follows from (4.50b), (4.53a) and (4.24) that

∫
κx×κq

M
∣∣∣(I

∼
− π

∼
h,κx×κq) [Ξ

≈
x
δ (ψ̂h)∇∼ x ϕ̂h]

∣∣∣2 dq
∼

dx
∼
≤ C(L)h2

q

⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠ . (4.66)

Combining (4.65) and (4.66) yields the desired result (4.64). �

In addition, we introduce QMh : X̂ → X̂h and Q̃Mh : X̂ → X̂h such that

(M QMh ψ̂, ϕ̂h)Ω×D = (Mψ̂, ϕ̂h)Ω×D ∀ϕ̂h ∈ X̂h, (4.67a)

(M,πh[(Q̃Mh ψ̂) ϕ̂h])Ω×D = (Mψ̂, ϕ̂h)Ω×D ∀ϕ̂h ∈ X̂h. (4.67b)

In the Appendix, it is shown that

‖QMh ψ̂‖2X̂ ≤ C ‖ψ̂‖
2
X̂

∀ψ̂ ∈ X̂. (4.68)

We require a related result for Q̃Mh .

Lemma 4.7. The following bounds hold

‖Q̃Mh ψ̂‖2X̂ ≤
(
M,πh

[
|Q̃Mh ψ̂|2 + |∇

∼
x (Q̃Mh ψ̂)|2 + |∇

∼
q (Q̃Mh ψ̂)|2

])
Ω×D

≤ C ‖ψ̂‖2
X̂

∀ψ̂ ∈ X̂. (4.69)

Proof. Given ψ̂ ∈ X̂, let E = (QMh − Q̃Mh )ψ̂. It follows from (4.46c), (4.67a,b), (4.59c), (4.68), (4.58a,b) that

(M,E2)Ω×D ≤ (M,πh[E2])Ω×D = (M, (πh − I)[(QMh ψ̂)E])Ω×D

≤ C ‖ψ̂‖X̂

[
h2
x

(∫
Ω×D

M |∇
∼
xE|2 dq

∼
dx

∼

) 1
2

+ h2
q

(∫
Ω×D

M |∇
∼
q E|2 dq

∼
dx

∼

) 1
2
]

≤ C (hx + hq) ‖ψ̂‖X̂ [ (M,E2)Ω×D ]
1
2 ≤ C (hx + hq)2 ‖ψ̂‖2X̂ . (4.70)
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It follows from (4.58a,b), (4.70) and (4.1) that

‖(QMh − Q̃Mh )ψ̂‖2
X̂
≤ C ‖ψ̂‖2

X̂
. (4.71)

The desired result (4.69) then follows from (4.71), (4.68), (4.58a,b), (4.59c) and (4.46c,d). �

We are now in a position to prove the following stability result for (Ph,Δtδ ).

Lemma 4.8. A solution {u∼nδ,h, ψ̂nδ,h}Nn=1 of (Ph,Δtδ ) satisfies the following stability bounds:

max
n=1→N

‖u
∼
n
δ,h‖2L2(Ω) + max

n=1→N
(M,πh[FLδ (ψ̂nδ,h)])Ω×D +

N∑
n=1

Δtn ‖∇
≈
x u

∼
n
δ,h‖2L2(Ω) +

N∑
n=1

‖u
∼
n
δ,h − u∼

n−1
δ,h ‖

2
L2(Ω)

+ δ

N∑
n=1

Δtn
[
(M,πh[ |∇

∼
x (πh[ [FLδ ]′(ψ̂nδ,h)])|2])Ω×D + (M,πh[ |∇

∼
q (πh[ [FLδ ]′(ψ̂nδ,h)])|2])Ω×D

]
≤ C

[
‖u

∼
0
δ,h‖2L2(Ω) + (M,πh[FLδ (ψ̂0

δ,h)])Ω×D +
n∑
n=1

Δtn ‖f
∼

n‖2H−1(Ω)

]
≤ C, (4.72a)

max
n=1→N

(M,πh[ |ψ̂nδ,h|2] )Ω×D +
N∑
n=1

Δtn (M,πh[ |∇
∼
q ψ̂

n
δ,h|2 + |∇

∼
x ψ̂

n
δ,h|2 ] )Ω×D +

N∑
n=1

(M,πh[ |ψ̂nδ,h − ψ̂n−1
δ,h |2 ] )Ω×D

≤ C(L) + C (M,πh[ |ψ̂0
h|2 ] )Ω×D ≤ C(L), (4.72b)

and

max
n=1→N

[∫
Ω

|C
≈

(M ψ̂nδ,h)|2 dx
∼

]
+

N∑
n=1

Δtn

∥∥∥∥∥S∼
(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)∥∥∥∥∥
4
ϑ

H1(Ω)

+
N∑
n=1

Δtn

∥∥∥∥∥G
(
ψ̂nδ,h − ψ̂n−1

δ,h

Δtn

)∥∥∥∥∥
2

X̂

≤ C(L, T ),

(4.72c)

where

ϑ ∈ (2, 4) if d = 2 and ϑ = 3 if d = 3. (4.73)

Proof. Summing (4.33) from n = 1→ m, for m = 1→ N , yields the desired result (4.72a) on noting (4.26a,b),
(4.29), (2.15) and (4.31a).

On choosing ϕ̂h = ψ̂nδ,h in (4.32b) and noting (4.35), we obtain

Tn : =
(
M,πh

[
|ψ̂nδ,h|2 + |ψ̂nδ,h − ψ̂n−1

δ,h |2
])

Ω×D
+ Δtn

(
M,πh

[
2 ε |∇

∼
x ψ̂

n
δ,h|2 +

1
λ
|∇
∼
q ψ̂

n
δ,h|2

])
Ω×D

=
(
M,πh

[
|ψ̂n−1
δ,h |2

])
Ω×D

+ 2 Δtn

(
M (∇

≈
x u

∼
n
δ,h) q

∼
, π
∼
h

[
Ξ
≈

q
δ(ψ̂

n
δ,h)∇∼ q ψ̂

n
δ,h

])
Ω×D

+ 2 Δtn
(
M u

∼
n
δ,h, π∼h

[
Ξ
≈
x
δ (ψ̂

n
δ,h)∇∼ x ψ̂

n
δ,h

])
Ω×D

.
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Hence, recalling (4.46d) and (4.24), for any η ∈ R>0, we have that

Tn ≤
(
M,πh

[
|ψ̂n−1
δ,h |

2
])

Ω×D
+ Δtn C(η−1)

[
‖u

∼
n
δ,h‖2L2(Ω) + ‖∇

≈
x u

∼
n
δ,h‖2L2(Ω)

]
+ Δtn η

(
M,
∣∣∣π
∼
h

[
Ξ
≈
x
δ (ψ̂

n
δ,h)∇∼ x ψ̂

n
δ,h

]∣∣∣2 +
∣∣∣π
∼
h

[
Ξ
≈

q
δ(ψ̂

n
δ,h)∇∼ q ψ̂

n
δ,h

]∣∣∣2)
Ω×D

≤
(
M,πh

[
|ψ̂n−1
δ,h |2

])
Ω×D

+ Δtn C(η−1)
[
‖u

∼
n
δ,h‖2L2(Ω) + ‖∇

≈
x u

∼
n
δ,h‖2L2(Ω)

]
+ Δtn C L2 η

(
M,πh

[
|∇
∼
x ψ̂

n
δ,h|2 + |∇

∼
q ψ̂

n
δ,h|2

])
Ω×D

. (4.74)

On noting the definition of Tn, summing (4.74) from n = 1 → m, for m = 1 → N , with η chosen sufficiently
small, and recalling inequalities (4.72a) and (4.29), yields the desired result (4.72b).

The first bound in (4.72c) follows immediately from the first bound in (4.72b), (3.15) and (4.46c).

On choosing w∼ h = Q
∼ h

[
S∼

(
u∼

n
δ,h−u∼

n−1
δ,h

Δtn

)]
∈ V∼ h in (4.32a) yields, on noting (4.6), (3.3), (4.7), Sobolev embed-

ding and Young’s inequality, that

∥∥∥∥∥S∼
(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)∥∥∥∥∥
2

H1(Ω)

=

(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn
, Q
∼
h

[
S
∼

(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)])
Ω

= −ν
(
∇
≈
x u

∼
n
δ,h,∇≈ x

[
Q
∼
h

[
S
∼

(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)]])
Ω

− k μ
(
C
≈

(M ψ̂nδ,h),∇≈ x

[
Q
∼
h

[
S
∼

(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)]])
Ω

− 1
2

(
(u
∼
n−1
δ,h · ∇∼ x )u

∼
n
δ,h, Q

∼
h

[
S
∼

(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)])
Ω

+
1
2

(
u
∼
n
δ,h, (u∼

n−1
δ,h · ∇∼ x )

[
Q
∼
h

[
S
∼

(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)]])
Ω

+

〈
f
∼

n, Q
∼
h

[
S
∼

(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)]〉
H1

0 (Ω)

≤ C
[
‖C

≈
(M ψ̂nδ,h)‖2L2(Ω) + ‖∇

≈
x u

∼
n
δ,h‖2L2(Ω) + ‖ |u

∼
n−1
δ,h | |u∼

n
δ,h| ‖2L2(Ω)

+ ‖ |u
∼
n−1
δ,h | |∇≈ x u

∼
n
δ,h| ‖2L1+θ(Ω) + ‖f

∼

n‖2H−1(Ω)

]
, (4.75)

for any θ > 0 if d = 2 and for θ = 1
5 if d = 3. Applying the Cauchy–Schwarz and the algebraic-geometric mean

inequalities, in conjunction with (3.4) and a Poincaré inequality yields that

‖ |u
∼
n−1
δ,h | |u∼

n
δ,h| ‖2L2(Ω) ≤ ‖u∼

n−1
δ,h ‖

2
L4(Ω) ‖u∼

n
δ,h‖2L4(Ω) ≤ 1

2

n∑
m=n−1

‖u
∼
m
δ,h‖4L4(Ω)

≤ C
n∑

m=n−1

[
‖u

∼
m
δ,h‖4−dL2(Ω) ‖∇≈ x u

∼
m
δ,h‖dL2(Ω)

]
. (4.76)
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Similarly, we have for any θ ∈ (0, 1), if d = 2, that

‖ |u
∼
n−1
δ,h | |∇≈ x u

∼
n
δ,h| ‖2L1+θ(Ω) ≤ ‖u∼

n−1
δ,h ‖

2

L
2(1+θ)
1−θ (Ω)

‖∇
≈
x u

∼
n
δ,h‖2L2(Ω) ≤ C ‖u∼

n−1
δ,h ‖

2(1−θ)
1+θ

L2(Ω)

n∑
m=n−1

‖∇
≈
x u

∼
m
δ,h‖

2(1+3θ)
1+θ

L2(Ω) ; (4.77a)

and if d = 3, (θ = 1
5 ), that

‖ |u
∼
n−1
δ,h | |∇≈ x u

∼
n
δ,h| ‖2L 6

5 (Ω)
≤ ‖u

∼
n−1
δ,h ‖2L3(Ω) ‖∇≈ x u

∼
n
δ,h‖2L2(Ω) ≤ C ‖u∼

n−1
δ,h ‖L2(Ω)

n∑
m=n−1

‖∇
≈
x u

∼
m
δ,h‖3L2(Ω). (4.77b)

On taking the 2
ϑ power of both sides of (4.75), recall (4.73), multiplying by Δtn, summing from n = 1→ N and

noting (4.76), (4.77a) with θ = (ϑ − 2)/(6 − ϑ), (4.77b), (4.27), (4.31a), (4.72a,b), (4.29) and the first bound
in (4.72c) yields that

N∑
n=1

Δtn

∥∥∥∥∥S∼
(
u
∼
n
δ,h − u∼

n−1
δ,h

Δtn

)∥∥∥∥∥
4
ϑ

H1(Ω)

≤ C
[
N∑
n=1

Δtn ‖C
≈

(M ψ̂nδ,h)‖
4
ϑ

L2(Ω)

]
+ C(T )

[
N∑
n=1

Δtn

[
‖∇

≈
x u

∼
n
δ,h‖2L2(Ω) + ‖f

∼

n‖2H−1(Ω)

]] 2
ϑ

+ C

[
max

n=0→N

(
‖u

∼
n
δ,h‖2L2(Ω)

) 4
ϑ−1

] [ N∑
n=0

Δtn ‖∇
≈
x u

∼
n
δ,h‖2L2(Ω)

]
≤ C(L, T ); (4.78)

and hence the second bound in (4.72c).

On choosing ϕ̂h = Q̃Mh

[
G
(
ψ̂n

δ,h−ψ̂
n−1
δ,h

Δtn

)]
∈ X̂h in (4.32b) yields, on noting (4.67b), (3.13), (4.47b), (4.46d),

(4.24), (4.69) and Young’s inequality, that∥∥∥∥∥G
(
ψ̂nδ,h − ψ̂n−1

δ,h

Δtn

)∥∥∥∥∥
2

X̂

=

(
M,πh

[(
ψ̂nδ,h − ψ̂n−1

δ,h

Δtn

)
Q̃Mh

[
G
(
ψ̂nδ,h − ψ̂n−1

δ,h

Δtn

)]])
Ω×D

= − 1
2λ

(
M,πh

[
∇
∼
q ψ̂

n
δ,h · ∇∼ q

[
Q̃Mh

[
G
(
ψ̂nδ,h − ψ̂

n−1
δ,h

Δtn

)]]])
Ω×D

− ε
(
M,πh

[
∇
∼
x ψ̂

n
δ,h · ∇∼ x

[
Q̃Mh

[
G
(
ψ̂nδ,h − ψ̂n−1

δ,h

Δtn

)]]])
Ω×D

+

(
M (∇

≈
x u

∼
n
δ,h) q

∼
, π
∼
h

[
Ξ
≈

q
δ(ψ̂

n
δ,h)∇∼ q

[
Q̃Mh

[
G
(
ψ̂nδ,h − ψ̂n−1

δ,h

Δtn

)]]])
Ω×D

+

(
M u

∼
n
δ,h, π∼h

[
Ξ
≈
x
δ (ψ̂

n
δ,h)∇∼ x

[
Q̃Mh

[
G
(
ψ̂nδ,h − ψ̂n−1

δ,h

Δtn

)]]])
Ω×D

≤ C(L)
[
‖u

∼
n
δ,h‖2L2(Ω) + ‖∇

≈
x u

∼
n
δ,h‖2L2(Ω)

]
+ C

(
M,πh

[
|∇
∼
q ψ̂

n
δ,h|2 + |∇

∼
x ψ̂

n
δ,h|2

])
Ω×D

.

(4.79)

Multiplying (4.79) by Δtn, summing from n = 1→ N and noting (4.72a,b) yields the desired result (4.72c). �
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Now we introduce some definitions prior to passing to the limit δ, h, Δt→ 0+. In line with (4.31b), let

u
∼

Δt
δ,h(·, t) :=

t− tn−1

Δtn
u
∼
n
δ,h(·) +

tn − t
Δtn

u
∼
n−1
δ,h (·), t ∈ [tn−1, tn], n ≥ 1, (4.80a)

u
∼

Δt,+
δ,h (·, t) := u

∼
n
δ,h(·), u

∼
Δt,−
δ,h (·, t) := u

∼
n−1
δ,h (·), t ∈ (tn−1, tn], n ≥ 1, (4.80b)

and Δ(t) := Δtn, t ∈ (tn−1, tn], n ≥ 1. (4.80c)

We note for future reference that

u∼
Δt
δ,h − u∼

Δt,±
δ,h = (t− t±n )

∂u∼
Δt
δ,h

∂t
, t ∈ (tn−1, tn), n ≥ 1, (4.81)

where t+n := tn and t−n := tn−1. Using the above notation, and introducing analogous notation for {ψ̂nδ,h}Nn=0,
(4.32a) multiplied by Δtn and summed for n = 1→ N can be restated as:

∫ T

0

∫
Ω

[
∂u

∼
Δt
δ,h

∂t
· w
∼
h + ν∇

≈
x u

∼
Δt,+
δ,h : ∇

≈
xw

∼
h

]
dx

∼
dt

+
1
2

∫ T

0

∫
Ω

[[
(u
∼

Δt,−
δ,h · ∇

∼
x )u

∼
Δt,+
δ,h

]
· w

∼
h −

[
(u
∼

Δt,−
δ,h · ∇

∼
x )w

∼
h

]
· u

∼
Δt,+
δ,h

]
dx

∼
dt

=
∫ T

0

[
〈f
∼

Δt,+, w
∼
h〉H1

0 (Ω) − k μ
∫

Ω

C
≈

(M ψ̂Δt,+
δ,h ) : ∇

≈
xw

∼
h dx

∼

]
dt ∀w

∼
h ∈ L

4
4−θ (0, T ;V

∼
h), (4.82)

where ϑ is as defined in (4.73). Similarly, (4.32b) multiplied by Δtn and summed for n = 1→ N can be restated
as:

∫ T

0

∫
Ω×D

M πh

[
∂ψ̂Δt

δ,h

∂t
ϕ̂h

]
dq

∼
dx

∼
dt−

∫ T

0

∫
Ω×D

M u
∼

Δt,+
δ,h · π

∼
h

[
Ξ
≈
x
δ (ψ̂

Δt,+
δ,h )∇

∼
x ϕ̂h

]
dq

∼
dx

∼
dt

+
∫ T

0

∫
Ω×D

M πh

[
1

2λ
∇
∼
q ψ̂

Δt,+
δ,h · ∇

∼
q ϕ̂h + ε ∇

∼
x ψ̂

Δt,+
δ,h · ∇

∼
x ϕ̂h

]
dq

∼
dx

∼
dt

−
∫ T

0

∫
Ω×D

M (∇
≈
x u

∼
Δt,+
δ,h q

∼
) · π

∼
h

[
Ξ
≈

q
δ(ψ̂

Δt,+
δ,h )∇

∼
q ϕ̂h

]
dq

∼
dx

∼
dt = 0 ∀ϕ̂h ∈ L2(0, T ; X̂h). (4.83)

It follows from (4.72a–c), (4.80a–c), (2.22), (4.46c,d) and (4.29) that

sup
t∈(0,T )

[
‖u

∼

Δt(,±)
δ,h ‖2L2(Ω)

]
+

1
δ

sup
t∈(0,T )

[ (M,πh[ [ψ̂
Δt(,±)
δ,h ]2− ] )Ω×D ] +

∫ T

0

‖∇
≈
x u

∼

Δt(,±)
δ,h ‖2L2(Ω) dt

+ δ

∫ T

0

[
(M, |∇

∼
x (πh[ [FLδ ]′(ψ̂Δt,+

δ,h )])|2 + |∇
∼
q (πh[ [FLδ ]′(ψ̂Δt,+

δ,h )])|2)Ω×D
]

dt

+
∫ T

0

∫
Ω

|u
∼

Δt,+
δ,h − u

∼
Δt,−
δ,h |2

Δ(t)
dx

∼
dt ≤ C (4.84a)



FINITE ELEMENT APPROXIMATION OF A KINETIC POLYMER MODEL 67

and

sup
t∈(0,T )

[
(M, |ψ̂Δt(,±)

δ,h |2)Ω×D
]

+
∫ T

0

(M, |∇
∼
q ψ̂

Δt(,±)
δ,h |2 + |∇

∼
x ψ̂

Δt(,±)
δ,h |2)Ω×D dt

+
∫ T

0

[∫
Ω×D

M
|ψ̂Δt,+
δ,h − ψ̂Δt,−

δ,h |2

Δ(t)
dq

∼
dx

∼

]
dt+ sup

t∈(0,T )

[
‖C

≈
(ψ̂Δt(,±)
δ,h )‖2L2(Ω)

]

+
∫ T

0

∥∥∥∥∥S∼ ∂u
∼

Δt
δ,h

∂t

∥∥∥∥∥
4
ϑ

H1(Ω)

dt+
∫ T

0

∥∥∥∥∥G ∂ψ̂Δt
δ,h

∂t

∥∥∥∥∥
2

X̂

dt ≤ C(L, T ), (4.84b)

where ϑ is as defined in (4.73). In the above and throughout, the notation u∼
Δt(,±)
δ,h means u∼

Δt
δ,h with or without

the superscripts ±, and similarly ψ̂Δt(,±)
δ,h .

Before proving a convergence result for (Ph,Δtδ ), we need the following result.

Lemma 4.9. For all κx ∈ T xh , κq ∈ T qh and for all ϕ̂h ∈ X̂h we have that∫
κx×κq

M |Ξ
≈
x
δ (ϕ̂h)− βL(ϕ̂h) I

≈
|2 dq

∼
dx

∼

≤ C
(
δ2 + h2

x

∫
κx×κq

M |∇
∼
x ϕ̂h|2 dq

∼
dx

∼
+
∫
κx×κq

M πh,κx×κq

[
[ϕ̂h]2−

]
dq

∼
dx

∼

)
, (4.85a)∫

κx×κq

M |Ξ
≈

q
δ(ϕ̂h)− βL(ϕ̂h) I

≈
|2 dq

∼
dx

∼

≤ C
(
δ2 + h2

q

∫
κx×κq

M |∇
∼
q ϕ̂h|2 dq

∼
dx

∼
+
∫
κx×κq

M πh,κx×κq

[
[ϕ̂h]2−

]
dq

∼
dx

∼

)
. (4.85b)

Proof. Firstly, we have from (4.21), (4.19), the Lipschitz continuity of βLδ , (2.17), and (4.53b) that∫
κx×κq

M |Ξ
≈
x
δ (ϕ̂h)− βLδ (ϕ̂h) I

≈
|2 dq

∼
dx

∼
≤
(∫

κx×κq

M dq
∼

dx
∼

)
‖Λ

≈
x
δ (ϕ̂h)− βLδ (ϕ̂h) I

≈
‖2L∞(κx×κq)

≤ C h2
x

(∫
κx×κq

M dq
∼

dx
∼

)
‖∇

∼
x [βLδ (ϕ̂h)]‖2L∞(κx×κq)

≤ C h2
x

∫
κx×κq

M |∇
∼
x ϕ̂h|2 dq

∼
dx

∼
. (4.86)

Similarly, we have from (4.21), (4.19), (2.17) and (4.51a) that∫
κx×κq

M |Ξ
≈

q
δ(ϕ̂h)− β

L
δ (ϕ̂h) I

≈
|2 dq

∼
dx

∼
≤ C h2

q

∫
κx×κq

M |∇
∼
q ϕ̂h|2 dq

∼
dx

∼
. (4.87)

Next we note from (2.17) and (2.25) that, for all s ∈ R,

|βLδ (s)− βL(s)| ≤ δ − [s]−, (4.88)

where [s]− := min{s, 0}. In addition, we note that

[ϕ̂h]−(x
∼
, q
∼
) ≥ πh,κx×κq [[ϕ̂h]−] (x

∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq. (4.89)
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Hence (4.88), (4.89) and (4.46c) yield that∫
κx×κq

M |βLδ (ϕ̂h)− βL(ϕ̂h)|2 dq
∼

dx
∼
≤
∫
κx×κq

M |δ − [ϕ̂h]−|2 dq
∼

dx
∼

≤
∫
κx×κq

M |δ − πh,κx×κq [ϕ̂h]−|2 dq
∼

dx
∼

≤ C
[
δ2 +

∫
κx×κq

M |πh,κx×κq [ϕ̂h]−|2 dq
∼

dx
∼

]
. (4.90)

Combining (4.86), (4.87) and (4.90) yields the desired results (4.85a,b). �

We are now in a position to prove the following convergence result for (Ph,Δtδ ).

Theorem 4.10. There exists a subsequence of { {u∼Δt
δ,h, ψ̂

Δt
δ,h} }δ>0,h>0,Δt>0, and functions u∼ ∈ L∞(0, T ; L∼

2(Ω))∩
L2(0, T ;V∼ ) ∩ W 1, 4ϑ (0, T ;V∼

′) and ψ̂ ∈ L∞(0, T ;L2
M(Ω × D)) ∩ L2(0, T ; X̂) ∩ H1(0, T ; X̂ ′) with ψ̂ ≥ 0 a.e. in

Ω×D × (0, T ) such that, as δ, h, Δt→ 0+,

u
∼

Δt(,±)
δ,h → u

∼
weak* in L∞(0, T ;L

∼
2(Ω)), (4.91a)

u
∼

Δt(,±)
δ,h → u

∼
weakly in L2(0, T ;H

∼
1
0(Ω)), (4.91b)

S
∼

∂u
∼

Δt
δ,h

∂t
→ S

∼

∂u
∼
∂t

weakly in L
4
ϑ (0, T ;V

∼
), (4.91c)

u
∼

Δt(,±)
δ,h → u

∼
strongly in L2(0, T ;L

∼
r(Ω)), (4.91d)

and

M
1
2 ψ̂

Δt(,±)
δ,h →M

1
2 ψ̂ weak* in L∞(0, T ;L2(Ω×D)), (4.92a)

M
1
2 ∇

∼
q ψ̂

Δt(,±)
δ,h →M

1
2 ∇

∼
q ψ̂ weakly in L2(0, T ;L

∼
2(Ω×D)), (4.92b)

M
1
2 ∇

∼
x ψ̂

Δt(,±)
δ,h →M

1
2 ∇

∼
x ψ̂ weakly in L2(0, T ;L

∼
2(Ω×D)), (4.92c)

G
∂ψ̂Δt

δ,h

∂t
→ G ∂ψ̂

∂t
weakly in L2(0, T ; X̂), (4.92d)

M
1
2 ψ̂

Δt(,±)
δ,h →M

1
2 ψ̂ strongly in L2(0, T ;L2(Ω×D)), (4.92e)

M
1
2 Ξ

≈
x
δ (ψ̂

Δt(,±)
δ,h )→M

1
2 βL(ψ̂) I

≈
strongly in L2(0, T ;L

≈
2(Ω×D)), (4.92f)

M
1
2 Ξ

≈

q
δ(ψ̂

Δt(,±)
δ,h )→M

1
2 βL(ψ̂) I

≈
strongly in L2(0, T ;L

≈
2(Ω×D)), (4.92g)

C
≈

(M ψ̂
Δt(,±)
δ,h )→ C

≈
(M ψ̂) strongly in L2(0, T ;L

≈
2(Ω)); (4.92h)

where ϑ is defined by (4.73) and r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3.
Furthermore, {u∼, ψ̂} solves the following problem:
(P) Find u∼ ∈ L∞(0, T ;L∼

2(Ω)) ∩ L2(0, T ;V∼ ) ∩W 1, 4ϑ (0, T ;V∼
′) and ψ̂ ∈ L∞(0, T ;L2

M(Ω×D)) ∩ L2(0, T ; X̂) ∩
H1(0, T ; X̂ ′) with ψ̂ ≥ 0 a.e. in Ω × D × (0, T ) and C≈ (M ψ̂) ∈ L∞(0, T ;L≈

2(Ω)), such that u∼(·, 0) = u∼
0(·),
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ψ̂(·, ·, 0) = ψ̂0(·, ·) and∫ T

0

〈
∂u

∼
∂t
, w
∼

〉
V

dt+
∫

ΩT

[[
(u
∼
· ∇

∼
x )u

∼

]
· w

∼
+ ν∇

≈
x u

∼
: ∇

≈
x w

∼

]
dx

∼
dt

=
∫ T

0

〈f
∼
, w
∼
〉H1

0 (Ω) dt− k μ
∫

ΩT

C
≈

(M ψ̂) : ∇
≈
x w

∼
dx

∼
dt ∀w

∼
∈ L 4

4−ϑ (0, T ;V
∼

); (4.93a)∫ T

0

〈
∂ψ̂

∂t
, ϕ̂

〉
X̂

dt+
∫ T

0

∫
Ω×D

M
[
ε∇

∼
x ψ̂ − u

∼
βL(ψ̂)

]
· ∇

∼
x ϕ̂ dq

∼
dx

∼
dt

+
∫ T

0

∫
Ω×D

M

[
1

2λ
∇
∼
q ψ̂ − (∇

≈
x u

∼
) q

∼
βL(ψ̂)

]
· ∇

∼
q ϕ̂ dq

∼
dx

∼
dt = 0 ∀ϕ̂ ∈ L2(0, T ; X̂). (4.93b)

Proof. The results (4.91a–c) follow immediately from the bounds (4.84a,b) on recalling the notation (4.80a–c).
The denseness of

⋃
h>0Rh in L2(Ω) and (4.3c) yield that u∼ ∈ L2(0, T ;V∼ ). The strong convergence result (4.91d)

for u∼
Δt
δ,h follows immediately from (4.91a–c), (3.3) and (3.14), on noting that V∼ ⊂ H∼ 1

0(Ω) is compactly embedded
in L∼

r(Ω) for the stated values of r. We now prove (4.91d) for u∼
Δt,±
δ,h . First we obtain from the bound on the

last term on the left-hand side of (4.84a) and (4.81) that

‖u∼Δt
δ,h − u∼

Δt,±
δ,h ‖2L2(0,T,L2(Ω)) ≤ CΔt. (4.94)

Second, we note from Sobolev embedding that, for all η ∈ L2(0, T ;H1(Ω)),

‖η‖L2(0,T ;Lr(Ω)) ≤ ‖η‖θL2(0,T ;L2(Ω)) ‖η‖1−θL2(0,T ;Ls(Ω)) ≤ C ‖η‖
θ
L2(0,T ;L2(Ω)) ‖η‖1−θL2(0,T ;H1(Ω)) (4.95)

for all r ∈ [2, s), with any s ∈ (2,∞) if d = 2 or any s ∈ (2, 6] if d = 3, and θ = [2 (s − r)]/[r (s − 2)] ∈ (0, 1].
Hence, combining (4.94), (4.95) and (4.91d) for u∼

Δt
δ,h yields (4.91d) for u∼

Δt,±
δ,h .

The result (4.92a) follows immediately from the bounds on the first and third terms on the left-hand side
of (4.84b). It follows immediately from the bound on the second term on the left-hand side of (4.84b) that (4.92b)
holds for some limit g

∼
∈ L2(0, T ;L∼

2(Ω × D)), which we need to identify. However for any η
∼
∈ L2(0, T ;

C∼
∞
0 (Ω×D)), it follows from (2.5) and the compact support of η

∼
on D that [∇∼ q ·(M

1
2 η

∼
) ]/M

1
2 ∈ L2(0, T ;L2(Ω×

D)) and hence the above convergence implies, on noting (4.92a), that

∫ T

0

∫
Ω×D

g
∼
· η
∼

dq
∼

dx∼ dt ← −
∫ T

0

∫
Ω×D

M
1
2 ψ̂

Δt(,±)
δ,h

∇∼ q · (M
1
2 η

∼
)

M
1
2

dq
∼

dx∼ dt

→ −
∫ T

0

∫
Ω×D

M
1
2 ψ̂
∇∼ q · (M

1
2 η

∼
)

M
1
2

dq
∼

dx∼ dt (4.96)

as δ, h, Δt → 0+. Hence the desired result (4.92b) follows from (4.96) on noting the denseness of C∞
0 (Ω×D)

in L2(Ω × D). Similar arguments also prove (4.92c,d) on noting (4.92a) and the second and sixth bounds
in (4.84b). The strong convergence result (4.92e) for ψ̂Δt

δ,h follows immediately from (4.92a–c), (3.13), (3.14)

and (3.11b). Similarly to (4.94), the third bound in (4.84b) then yields that (4.92e) holds for ψ̂Δt(,±)
δ,h . The

desired results (4.92f,g) follow immediately from (4.85a,b) the second bounds in (4.84a,b), (2.25) and (4.92e).
The desired result (4.92h) follows immediately from (4.92a), (2.3) and (3.15). Finally, the nonnegativity of ψ̂
follows from (4.92e) and the second bound in (4.84a).

It remains to prove that {u∼, ψ̂} solve (P). It follows from (4.5), (4.84a,b), (4.91a–d), (4.92h), (4.31b), (3.2)
and (4.8) that we may pass to the limit, δ, h, Δt → 0+, in (4.82) to obtain that u∼ ∈ L∞(0, T ;L∼

2(Ω)) ∩
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L2(0, T ;V∼ ) ∩W 1, 4ϑ (0, T ;V∼
′) and C≈ (M ψ̂) ∈ L∞(0, T ;L≈

2(Ω)) satisfy (4.93a). It also follows from (4.28a), (4.5),
(4.84a) and (4.91d) that u∼(·, 0) = u∼

0(·) in the required sense; recall Remark 3.1.
It follows from (4.92a–g), (4.91b,d), (3.12), (4.59a–c), (4.64), (4.84a,b), (4.48a,b), (4.49) and (4.50a,b) that

we may pass to the limit δ, h, Δt → 0+ in (4.83) with ϕ̂h = πh ϕ̂ to obtain equation (4.93b) for any function
ϕ̂ ∈ C∞

0 (0, T ;C∞(Ω×D)). In order to pass to the limit on the first term in (4.83), we note that

∫ T

0

∫
Ω×D

M πh

[
∂ψ̂Δt

δ,h

∂t
[πh ϕ̂]

]
dq

∼
dx

∼
dt

=
∫ T

0

∫
Ω×D

M
∂ψ̂Δt

δ,h

∂t
[πh ϕ̂] dq

∼
dx

∼
dt+

∫ T

0

∫
Ω×D

M (I − πh)
[
ψ̂Δt
δ,h

∂[πh ϕ̂]
∂t

]
dq

∼
dx

∼
dt. (4.97)

The desired result (4.93b) then follows from noting that C∞
0 (0, T ;C∞(Ω×D)) is dense in L2(0, T ; X̂), on

recalling (3.8). Finally, it follows from (4.28b), (4.59c), (4.51c), (4.53a), (4.50a,b), (3.8), (4.84b) and (4.92e)
that ψ̂(·, ·, 0) = ψ̂0(·, ·) in the required sense; recall Remark 3.1. �

Remark 4.11. We note that (P), (4.93a,b) where we recall the suppression of the superscript L, differs slightly
from (PL), (3.16a,b), in that u∼ ∈ W 1, 4ϑ (0, T, V∼

′) for the stated value of ϑ, recall (4.73), is slightly weaker than
u∼
L ∈ W 1, 4d (0, T, V∼

′) in the case d = 2 with the subsequent slight strengthening of the regularity of the test
functions in (4.93a). In addition, ψ̂L in the convective term in (3.16b) is replaced by βL(ψ̂) in (4.93b). It
does not appear possible to construct a variation of the finite element approximation (Ph,Δtδ ) that converges to
the former version of the convective term, and at the same time converges to the other terms in (4.93b). The
presence of the cut-off βL(·) in this convective term improves the regularity in time of ψ̂ in (4.93a,b), to that
in (3.16a,b), and hence the weakening of the regularity in time of the test functions in (4.93b).

Remark 4.12. It follows from (4.84a) and (4.91a,b) that

sup
t∈(0,T )

[
‖u

∼
‖2L2(Ω)

]
+
∫ T

0

‖∇
≈
x u

∼
‖2L2(Ω) dt ≤ C. (4.98)

Hence, although we have introduced a cut-off L
 1 to ψ̂ in the drag and convective terms, and added diffusion
in the x∼ direction with a positive coefficient ε � 1 in the Fokker–Planck equation compared to the standard
polymer model; the bound (4.98) on u∼, the variable of real physical interest, is independent of the parameters
L and ε.

Remark 4.13. Before embarking on the research reported herein, we gave careful thought to the possibility of
mimicking at the discrete level the entropy estimates in Barrett et al. [7], based on considering the expression

d
dt

∫
Ω×D

U(1
2 |q∼|

2)ψ(q
∼
, x∼, t) dq

∼
dx∼.

Unfortunately, we encountered technical obstacles with that approach, which we were unable to overcome. Here
is a brief list of the key difficulties. The energy estimate in [7] is based on testing the Fokker–Planck equation
with U(1

2 |q∼|
2), integrating over D, and then moving the Laplacian over to U by partial integration. The discrete

counterpart of this would be to use a certain interpolant or projection of U onto the finite element space as
test function in the finite element approximation of the Fokker–Planck equation, and then move the (discrete)
Laplacian onto the interpolant or projection of U . However:

(a) one needs to ensure the non-negativity of the finite element approximation of the probability density
function ψ;
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(b) the classical finite element interpolant of U over D is not defined, since the FENE potential blows up
on ∂D; therefore either a quasi-interpolant or a certain projection of U would need to be used as test
function;

(c) one would need to mimic at the discrete level the identities (2.8) in [7], namely:

∇qU = U ′q
∼
, ∇qU ′ = U ′′q

∼
, ΔqU = U ′′|q

∼
|2 + U ′d,

with now U replaced by a certain quasi-interpolant or projection of U ; this seems less than trivial to
achieve with C0 finite element spaces;

(d) the alternative would be to use Ck elements, with k ≥ 1, but then one could not ensure the non-
negativity of the finite element approximation of the probability density function ψ;

(e) one also has to guarantee that the testing procedure is such that it reproduces at the discrete level the
fortuitous cancellation between the drag term in the Fokker–Planck equation and the right-hand side
of the Navier–Stokes momentum equation.

In the light of these nontrivial technical obstacles we eventually decided to pursue the approach based on the
entropy estimate presented herein.

A. Quasi-interpolation in Maxwellian-weighted Sobolev norms

The aim of this Appendix is to prove the stability result (4.68). To do so, we first need to show certain
quasi-interpolation results in Maxwellian weighted Sobolev spaces. The starting point for the construction of
the relevant quasi-interpolation operators is the Brascamp–Lieb inequality stated below.

Suppose that D is a convex open set, D ⊂ R
d (e.g., a bounded open ball in R

d centred at the origin; or,
more specifically, in the case of the FENE model, D = B(0∼; b

1
2 ), b > 2). Consider a probability measure μ

supported on D with density e−V (q
∼

), q
∼
∈ D, with respect to the Lebesgue measure dq

∼
on R

d, where V is a
convex function on D; μ is usually referred to as a Gibbs measure. In particular,

μ(B) =
∫
B

dμ =
∫
B

e−V (q
∼

) dq
∼
,

for any μ-measurable set B ⊂ D, with μ(D) = 1. The following geometric functional inequality comes from the
paper of Bobkov and Ledoux [9].

Theorem A.1 (Brascamp–Lieb inequality). Assume that V is a twice continuously differentiable and convex
function on a convex open set D ⊂ R

d, such that, for each q
∼
∈ D, the Hessian

H≈ (q
∼
) :=

(
∂2V (q

∼
)

∂qi ∂qj

)

is positive definite. Then, for any sufficiently smooth function f ,

Varμ[f ] := Eμ[(f − Eμ[f ])2] ≤
∫
D

[H≈
−1(q

∼
)∇∼ q f ] · ∇∼ q f dμ, where Eμ[f ] =

∫
D

f dμ.

In terms of simpler notation, the Brascamp–Lieb inequality can be restated as follows:∫
D

[
f(q

∼
)−
∫
D

f(p
∼
) e−V (p

∼
) dp

∼

]2
e−V (q

∼
) dq

∼
≤
∫
D

[H≈
−1(q

∼
)∇∼ q f ] · ∇∼ q f e−V (q

∼
) dq

∼
,

for any sufficiently smooth function f .
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A.1. The univariate case

Suppose that d = 1, D := (0, q1) ⊂ R, and V (q) := ln
[
q1
α+1

(
q1
q

)α]
with α > 0. Clearly,

∫
D e−V (q) dq = 1.

By the Brascamp–Lieb inequality,∫ q1

0

[
f(q)− α+ 1

qα+1
1

∫ q1

0

f(p) pα dp
]2
qα dq ≤ 1

α

∫ q1

0

|f ′(q)|2 qα+2 dq ≤ q21
α

∫ q1

0

|f ′(q)|2 qα dq. (A.1)

Let us consider the nonuniform partition 0 = q0 < q1 < . . . < qN = 1 of the interval [0, 1], with hq :=
maxk=1→N (qk − qk−1), and let X̂q

h denote the set of all continuous piecewise linear functions defined on this
partition. For m ∈ Z≥0 and a nonempty open interval (a, b) ⊂ R>0, let

Hm((a, b); qα) :=

{
ϕ̂ ∈ Hm

loc(a, b) : ‖ϕ̂‖2Hm((a,b);qα) :=
m∑
k=0

∫ b

a

|ϕ̂(k)(q)|2 qα dq <∞
}
.

When m = 0, we write L2((a, b); qα) instead of H0((a, b); qα).
For ψ̂ ∈ H1((0, 1); qα), let Iqhψ̂ ∈ X̂q

h denote the continuous piecewise linear (quasi-)interpolant of ψ̂, de-
fined by

(Iqhψ̂)(q) :=

⎧⎨⎩ ψ̂(q1) + (q − q1) α+1
qα+1
1

∫ q1
0
ψ̂′(p) pα dp, q ∈ [0, q1],

ψ̂(qk)−ψ̂(qk−1)
qk−qk−1

(q − qk−1) + ψ̂(qk−1), q ∈ [qk−1, qk], k = 2→ N.

We note that since H1((0, 1); qα) ⊂ C(0, 1], the definition is meaningful. Observe, further, that (Iqhψ̂)(qk) =
ψ̂(qk), k = 1 → N ; i.e. the function Iqhψ̂ interpolates ψ̂ at q = qk, k = 1 → N , but not at q = q0 = 0. In
the interval [0, q1] the function Iqhψ̂ has been chosen so as to ensure that (Iqhψ̂)′(q) = α+1

qα+1
1

∫ q1
0 ψ̂′(p) pα dp and

(Iqhψ̂)(q1) = ψ̂(q1). Hence, on applying the inequality (A.1),∫ q1

0

[
ψ̂′(q) − (Iqhψ̂)′(q)

]2
qα dq ≤ q21

α

∫ q1

0

|ψ̂′′(q)|2 qα dq.

On the remaining subintervals in the partition, using qαk−1 ≤ qα ≤ qαk and a standard error bound for the linear
interpolant of ψ̂ ∈ H2(qk−1, qk), k = 2→ N , we have that∫ qk

qk−1

[
ψ̂′(q)− (Iqhψ̂)′(q)

]2
qα dq ≤

(
qk
qk−1

)α (qk − qk−1)2

π2

∫ qk

qk−1

|ψ̂′′(q)|2 qα dq, k = 2→ N.

On summing our bounds through k = 1→ N and noting that q1 ≤ hq and qk − qk−1 ≤ hq for k = 1→ N , we
obtain ∫ 1

0

[
ψ̂′(q)− (Iqhψ̂)′(q)

]2
qα dq ≤ max

(
h2
q

α
, max
k=2→N

(
qk
qk−1

)α h2
q

π2

)∫ 1

0

|ψ̂′′(q)|2 qα dq.

We shall henceforth assume that the partition 0 = q0 < q1 < . . . < qN = 1 is such that there exists a fixed
constant C0 > 1 such that

max
k=2→N

qk
qk−1

≤ C0. (A.2)

Now, letting Cα := max
(

1
α ,

1
π2C

α
0

)
, we get∫ 1

0

[
ψ̂′(q)− (Iqhψ̂)′(q)

]2
qα dq ≤ Cα h2

q

∫ 1

0

|ψ̂′′(q)|2 qα dq. (A.3)
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We note the following weighted Poincaré inequality for all v̂ ∈ H1((0, 1); qα) with v̂(1) = 0:

∫ 1

0

|v̂(q)|2 qα dq =
∫ 1

0

(∫ 1

q

v̂′(t) t
α
2 t−

α
2 dt

)2

qα dq

≤
(∫ 1

0

qα
(∫ 1

q

t−α dt
)

dq
)∫ 1

0

|v̂′(q)|2 qα dq =
1

2(α+ 1)

∫ 1

0

|v̂′(q)|2 qα dq, (A.4)

which, in fact, holds for any α > −1. Applying (A.4) with v̂ = ψ̂ − Iqhψ̂, and noting (A.3) we deduce that

∫ 1

0

[
ψ̂(q) − (Iqhψ̂)(q)

]2
qα dq ≤ Cα

2(α+ 1)
h2
q

∫ 1

0

|ψ̂′′(q)|2 qα dq,

and therefore

‖ψ̂ − Iqhψ̂‖2H1((0,1);qα) ≤ Cα
(

1 +
1

2(α+ 1)

)
h2
q ‖ψ̂′′‖2L2((0,1);qα). (A.5)

Let P qh denote the orthogonal projector from H1((0, 1); qα) onto X̂q
h with respect to the qα-weighted H1(0, 1)

inner product

a(ψ̂, ϕ̂) :=
∫ 1

0

ψ̂′(q) ϕ̂′(q) qα dq +
∫ 1

0

ψ̂(q) ϕ̂(q) qα dq,

where α > 0. That is,

a(ψ̂ − P qh ψ̂, ϕ̂h) = 0 ∀ϕ̂h ∈ X̂q
h. (A.6)

Now, consider the following boundary-value problem:

a(ϕ̂, ẑ) = �(ϕ̂) ∀ϕ̂ ∈ H1((0, 1); qα), (A.7)

where

�(ϕ̂) :=
∫ 1

0

ĝ(q) ϕ̂(q) qα dq, with ĝ := ψ̂ − P qh ψ̂.

The existence of a unique weak solution ẑ ∈ H1((0, 1); qα) to (A.7) follows from the Lax–Milgram theorem.
Hence, on taking ϕ̂ = ẑ in (A.7), we obtain

‖ẑ‖2H1((0,1);qα) = a(ẑ, ẑ) ≤ ‖ẑ‖L2((0,1);qα)‖ψ̂ − P qh ψ̂‖L2((0,1);qα) ≤ ‖ẑ‖H1((0,1);qα)‖ψ̂ − P qh ψ̂‖L2((0,1);qα),

and therefore

‖ẑ‖H1((0,1);qα) ≤ ‖ψ̂ − P qh ψ̂‖L2((0,1);qα).

Problem (A.7) is the weak form of the following boundary value problem:

−ẑ′′ − α

q
ẑ′ + ẑ = ψ̂ − P qh ψ̂, q ∈ (0, 1), lim

q→0+
qα ẑ′(q) = 0, ẑ′(1) = 0.

Formally differentiating this equation, multiplying the resulting equation by ẑ′qα, integrating over q ∈ (0, 1)
and integrating by parts in the first term on the left-hand side and on the right-hand side yields∫ 1

0

|ẑ′′|2 qα dq + α

∫ 1

0

|ẑ′|2 qα−2 dq +
∫ 1

0

|ẑ′|2 qα dq = −
∫ 1

0

(ψ̂ − P qh ψ̂) ẑ′′ qα dq − α
∫ 1

0

(ψ̂ − P qh ψ̂) ẑ′ qα−1 dq.
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This formal argument can be made rigorous by replacing qα with (q + δ)α, δ > 0, in the definitions of a(·, ·)
and �(·) above, and passing to the limit δ → 0+; we refer to Section A.2.4 for the details of an analogous, but
rigorous, multidimensional argument. Hence,

‖ẑ′′‖2L2((0,1);qα) + α ‖ẑ′‖2L2((0,1);qα−2) + 2 ‖ẑ′‖2L2((0,1);qα) ≤ (1 + α) ‖ψ̂ − P qh ψ̂‖
2
L2((0,1);qα). (A.8)

Now, by (A.7) with ϕ̂ = ψ̂ − P qh ψ̂, the definition (A.6) of the projector P qh , and the bound (A.5),

‖ψ̂ − P qh ψ̂‖2L2((0,1);qα) = a(ψ̂ − P qh ψ̂, ẑ) = a(ψ̂ − P qh ψ̂, ẑ − P
q
h ẑ)

≤ ‖ψ̂ − P qh ψ̂‖H1((0,1);qα) ‖ẑ − P qh ẑ‖H1((0,1);qα)

≤ ‖ψ̂ − P qh ψ̂‖H1((0,1);qα) ‖ẑ − Iqhẑ‖H1((0,1);qα)

≤ ‖ψ̂ − P qh ψ̂‖H1((0,1);qα)

[
Cα

(
1 +

1
2(α+ 1)

)]1/2
hq ‖ẑ′′‖L2((0,1);qα).

Thus, by (A.8),

‖ψ̂ − P qh ψ̂‖L2((0,1);qα) ≤
[
Cα
(

3
2 + α

)]1/2
hq ‖ψ̂ − P qh ψ̂‖H1((0,1);qα); (A.9)

and, denoting by Qqh the orthogonal projection in the inner product of L2((0, 1); qα) onto X̂q
h, trivially

‖ψ̂ −Qqhψ̂‖L2((0,1);qα) ≤
[
Cα
(

3
2 + α

)]1/2
hq ‖ψ̂ − P qh ψ̂‖H1((0,1);qα). (A.10)

Now,

‖ψ̂′ − (Qqhψ̂)′‖L2((0,1);qα) ≤ ‖ψ̂′ − (P qh ψ̂)′‖L2((0,1);qα) + ‖(P qh ψ̂)′ − (Qqhψ̂)′‖L2((0,1);qα).

Let us, at this point, strengthen the mesh-regularity hypothesis (A.2) by assuming that the partition
0 = q0 < q1 < . . . < qN = 1 is quasiuniform. Then, by the inverse inequality∫ qk

qk−1

|(ϕ̂h)′|2 qα dq ≤ C2
inv h

−2
q

∫ qk

qk−1

|ϕ̂h|2 qα dq ∀ϕ̂h ∈ X̂q
h,

whose proof is identical to that of the first inequality stated in (4.53a), we have that

‖ψ̂′ − (Qqhψ̂)′‖L2((0,1);qα) ≤ ‖ψ̂′ − (P qh ψ̂)′‖L2((0,1);qα) + Cinv h
−1
q ‖P

q
h ψ̂ −Q

q
hψ̂‖L2((0,1);qα)

≤ ‖ψ̂′ − (P qh ψ̂)′‖L2((0,1);qα) + 2Cinv h
−1
q ‖ψ̂ − P

q
h ψ̂‖L2((0,1);qα).

This, together with (A.9) and (A.10) yields

‖ψ̂ −Qqhψ̂‖2H1((0,1);qα) ≤
[
2 + (h2

q + 8C2
inv)Cα

(
3
2 + α

)]
‖ψ̂ − P qh ψ̂‖2H1((0,1);qα), (A.11)

which in turn implies, by the triangle inequality and the fact that ‖P qh ψ̂‖H1((0,1);qα) ≤ ‖ψ̂‖H1((0,1);qα), the
existence of a positive constant C, independent of h, such that

‖Qqhψ̂‖H1((0,1);qα) ≤ C ‖ψ̂‖H1((0,1);qα) ∀ψ̂ ∈ Ĥ1((0, 1); qα).

This is the univariate counterpart of the desired stability result (4.68).
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C’(h,l)

hO(0,0)

k

l

A(h,0)

B’(h,k)B(0,k)

C(0,l)

Figure 1. The nonobtuse open triangle κ = �ABC in the (x, y) := (q1, q2)-plane, with A =
(h, 0), B = (0, k), C = (0, l), in configuration 1-flat, that is with two points, B and C, on the
line x = 0 along which the weight function (x, y) �→ xα vanishes.

Remark A.2. Supposing that ψ̂ ∈ H2((0, 1); qα), we have that

‖ψ̂ − P qh ψ̂‖
2
H1((0,1);qα) ≤ ‖ψ̂ − I

q
hψ̂‖

2
H1((0,1);qα) ≤ Cα

(
1 +

1
2(α+ 1)

)
h2
q

∫ 1

0

|ψ̂′′(q)|2 qα dq.

Thus, (A.11) implies that an analogous bound holds for ψ̂ −Qqhψ̂ in the ‖ · ‖H1((0,1);qα) norm.

A.2. Multiple dimensions

In multiple space dimensions the proof of the stability result (4.68) proceeds in a similar manner as in
the univariate case discussed above, except for two technical complications. The first is that D is ball, and
therefore D has a curved boundary ∂D; the second is that an open (possibly, curved) simplex κq in the partition
of D, whose closure has nonempty intersection with ∂D, may intersect ∂D in d different configurations: with
exactly one curved (d − k)-dimensional face contained in ∂D, k = 1 → d − 1, accounting for d − 1 different
configurations, and with exactly one vertex contained in ∂D, accounting for the dth configuration. Each of the
d possible configurations necessitates a different local definition of the quasi-interpolation operator Iqh, which
we use in the proof of the stability result (4.68). Since the two-dimensional case is sufficiently representative of
the general argument, we shall restrict ourselves to showing (4.68) in the bivariate case. The proof in the case
of d = 3 is identical; in Section A.2.3 we shall indicate the essential alterations that have to be made to the
arguments presented herein to obtain the corresponding bounds in the case of d = 3.

A.2.1. Two dimensions: flat boundary

We begin by assuming that the boundary of D ⊂ R
2 is flat, e.g. that it is the straight line q1 = 0 in the

q
∼

= (q1, q2)-plane. For ease of exposition we shall, intermittently, write x and y instead of q1 and q2, i.e. x := q1
and y := q2.

Two dimensions: configuration 1-flat. Consider a nonobtuse open triangle κ = �ABC, as in Figure 1,
with A = (h, 0), B = (0, k), C = (0, l), contained in the rectangle R(κ) := (0, h) × (l, k) = �B′BCC′, with
B′ = (h, k) and C′ = (h, l), where l ≤ 0 ≤ k, k− l > 0 and h > 0. Here, B and C belong to the line x = 0 along
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which the weight-function (x, y) �→ xα vanishes; α > 0. We define,

Φ̂(0, k) := ϕ̂(h, k)− h α+ 1
hα+1

∫ h

0

ϕ̂x(x, k)xα dx and Φ̂(0, l) := ϕ̂(h, l)− h α+ 1
hα+1

∫ h

0

ϕ̂x(x, l)xα dx.

We then define pϕ̂ as the affine function whose values at the points A, B and C are, respectively, ϕ̂(h, 0),
Φ̂(0, k) and Φ̂(0, l). Thus, pϕ̂ interpolates ϕ̂ at A, while at the points B and C the values of pϕ̂ are based on
extrapolating from the points B′ and C′, respectively, by means of the univariate quasi-interpolant Iqh. Thus,

pϕ̂(x, y) := ϕ̂(h, 0)
x

h
+ Φ̂(0, k)

(
1− x

h
− y

l

) l

l− k + Φ̂(0, l)
(
1− x

h
− y

k

) k

k − l ,

which implies that the partial derivatives of pϕ̂ with respect to x and y are:

(pϕ̂)x(x, y) = ϕ̂(h, 0)
1
h

+ Φ̂(0, k)
(
− 1
h

)
l

l − k + Φ̂(0, l)
(
− 1
h

)
k

k − l ,

and

(pϕ̂)y(x, y) = Φ̂(0, k)
(
−1
l

)
l

l − k + Φ̂(0, l)
(
−1
k

)
k

k − l ·

We define the linear functionals

L1(ϕ̂) := ϕ̂x − (pϕ̂)x and L2(ϕ̂) := ϕ̂y − (pϕ̂)y.

By direct computation, Φ̂(0, k) = ϕ̂(0, k) and Φ̂(0, l) = ϕ̂(0, l) for all ϕ̂ ∈ P1, and hence pϕ̂ ≡ ϕ̂ and Li(ϕ̂) ≡ 0
for all ϕ̂ ∈ P1, i = 1, 2. Further,

|Φ̂(0, k)| ≤ α+ 1
hα+1

∫ h

0

|ϕ̂(h, k)− h ϕ̂x(x, k)|xα dx. (A.12)

Now,

ϕ̂(h, k)hα = ϕ̂(x, k)xα +
∫ h

x

d
dt

(ϕ̂(t, k) tα) dt = ϕ̂(x, k)xα +
∫ h

x

ϕ̂x(t, k) tα dt+ α

∫ h

x

ϕ̂(t, k) tα−1 dt.

Therefore, by integration over the interval x ∈ [0, h], integration by parts in the third integral on the right-hand
side, and applying the Cauchy–Schwarz inequality,

|ϕ̂(h, k)|hα+1 ≤
∫ h

0

|ϕ̂(x, k)|xα dx+
∫ h

0

∫ h

x

|ϕ̂x(t, k)| tα dt dx+ α

∫ h

0

∫ h

x

|ϕ̂(t, k)| tα−1 dt dx

= (α+ 1)
∫ h

0

|ϕ̂(x, k)|xα dx+
∫ h

0

∫ h

x

|ϕ̂x(t, k)| tα dt dx

≤ (α+ 1)
(
hα+1

α+ 1

)1/2
(∫ h

0

|ϕ̂(x, k)|2 xα dx

)1/2

+ h

(
hα+1

α+ 1

)1/2
(∫ h

0

|ϕ̂x(x, k)|2 xα dx

)1/2

.

Thus,

|ϕ̂(h, k)| ≤
(
α+ 1
hα+1

)1/2
(∫ h

0

|ϕ̂(x, k)|2 xα dx

)1/2

+ h−α
(
hα+1

α+ 1

)1/2
(∫ h

0

|ϕ̂x(x, k)|2 xα dx

)1/2

. (A.13)
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To bound the first term on the right-hand side of (A.13), note that, for any y ∈ [l, k],

|ϕ̂(x, k)|2 = |ϕ̂(x, y)|2 + 2
∫ k

y

ϕ̂(x, s) ϕ̂y(x, s) ds,

and hence ∫ h

0

|ϕ̂(x, k)|2 xα dx =
∫ h

0

|ϕ̂(x, y)|2 xα dx+ 2
∫ h

0

(∫ k

y

ϕ̂(x, s)x
α
2 ϕ̂y(x, s)x

α
2 ds

)
dx

≤
∫ h

0

|ϕ̂(x, y)|2 xα dx+ 2
∫ h

0

∫ k

l

|ϕ̂(x, y)|xα
2 |ϕ̂y(x, y)|x

α
2 dxdy.

Thus, on integrating over all y ∈ [l, k] (recall that l ≤ 0 ≤ k, k − l > 0 and h > 0),

(k − l)
∫ h

0

|ϕ̂(x, k)|2xα dx ≤
∫ h

0

∫ k

l

|ϕ̂(x, y)|2 xα dxdy

+ 2(k − l)
(∫ h

0

∫ k

l

|ϕ̂(x, y)|2 xα dxdy

)1/2(∫ h

0

∫ k

l

|ϕ̂y(x, y)|2 xα dxdy

)1/2

,

which then implies that∫ h

0

|ϕ̂(x, k)|2 xα dx ≤ 1
k − l

∫ h

0

∫ k

l

|ϕ̂(x, y)|2 xα dxdy

+ 2

(∫ h

0

∫ k

l

|ϕ̂(x, y)|2 xα dxdy

)1/2(∫ h

0

∫ k

l

|ϕ̂y(x, y)|2 xα dxdy

)1/2

.

Analogously,∫ h

0

|ϕ̂x(x, k)|2 xα dx ≤ 1
k − l

∫ h

0

∫ k

l

|ϕ̂x(x, y)|2 xα dxdy

+ 2

(∫ h

0

∫ k

l

|ϕ̂x(x, y)|2 xα dxdy

)1/2(∫ h

0

∫ k

l

|ϕ̂xy(x, y)|2 xα dxdy

)1/2

. (A.14)

Substituting the last two bounds into (A.13) it follows that

|ϕ̂(h, k)| ≤ C(h, k − l) ‖ϕ̂‖H2((0,h)×(l,k);xα).

Further, (A.14) implies that

∫ h

0

|ϕ̂x(x, k)|xα dx ≤
(
hα+1

α+ 1

)1/2
(∫ h

0

|ϕ̂x(x, k)|2 xα dx

)1/2

≤ C(h, k − l)‖ϕ̂‖H2((0,h)×(l,k);xα).

Substituting the last two bounds into (A.12), we deduce that

|Φ̂(0, k)| ≤ C(h, k − l) ‖ϕ̂‖H2((0,h)×(l,k);xα).
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Analogously,

|ϕ̂(h, l)| ≤ C(h, k − l) ‖ϕ̂‖H2((0,h)×(l,k);xα) and |Φ̂(0, l)| ≤ C(h, k − l) ‖ϕ̂‖H2((0,h)×(l,k);xα),

as well as
|ϕ̂(h, 0)| ≤ C(h, k − l) ‖ϕ̂‖H2((0,h)×(l,k);xα).

These inequalities imply that, for i = 1, 2,

‖Li(ϕ̂)‖L2(κ;xα) ≤ ‖Li(ϕ̂)‖L2((0,h)×(l,k);xα)

≤
[
1 + max

(
3
h
,

2
k − l

)(
hα+1

α+ 1
(k − l)

) 1
2

C(h, k − l)
]
‖ϕ̂‖H2((0,h)×(l,k);xα).

Recall that Li(ϕ̂) ≡ 0 for all ϕ̂ ∈ P1, i = 1, 2.
Let Ã = (1, 0), B̃ = (0, b), C̃ = (0, c) denote the counterparts of A, B and C, respectively, with c < 0 < b, in

the open reference triangle κ̃, obtained by rescaling the open triangle κ = �ABC by h, i.e. b = k/h and c = l/h,
and let ρ := (k − l)/h = b − c (> 0). We define x̃ = x/h and ỹ = y/h, ϕ̃(x̃, ỹ) := ϕ̂(x, y), p̃ϕ̃(x̃, ỹ) := pϕ̂(x, y).
Finally, we define L̃i by

L̃i(ϕ̃)(x̃, ỹ) := hLi(ϕ̂)(x, y), i = 1, 2.
Thus,

L̃1(ϕ̃)(x̃, ỹ) = ϕ̃x̃(x̃, ỹ)− (p̃ϕ̃)x̃(x̃, ỹ), L̃2(ϕ̃)(x̃, ỹ) = ϕ̃ỹ(x̃, ỹ)− (p̃ϕ̃)ỹ(x̃, ỹ).

Then, L̃i(ϕ̃) ≡ 0 for all ϕ̃ ∈ P1. In addition, repeating the bounds above with h, k and l replaced by 1, b and c,
noting that all constants in the bounds depend continuously on ρ = b− c, we deduce the existence of a positive
constant C(ρ), which depends continuously on ρ, such that

‖L̃i(ϕ̃)‖L2(κ̃;x̃α) ≤ ‖L̃i(ϕ̃)‖L2((0,1)×(c,b);x̃α) ≤ C(ρ) ‖ϕ̃‖H2((0,1)×(c,b);x̃α), i = 1, 2.

Note that ρ depends only on the shape of κ; in particular, it is independent of the size of κ.
Let us recall the following generalization of the Bramble–Hilbert Lemma, due to Tartar (cf. Ciarlet [13],

Sect. 3.1, Exercise 3.1.1).

Lemma A.3 (L. Tartar). Let V be a Banach space, and let V1, V2 and W be three normed linear spaces.
Suppose that Ai ∈ L(V ;Vi), i = 1, 2, and that A1 is compact. Suppose, further, that there exists a positive
constant c0 such that

‖v‖V ≤ c0 (‖A1v‖V1 + ‖A2v‖V2) ∀v ∈ V.
Finally, suppose that L ∈ L(V ;W ) is such that

v ∈ kerA2 =⇒ Lv = 0.

Then, the following statements hold.
(i) P := kerA2 is a finite-dimensional linear space.
(ii) There exists a positive constant c1 such that

inf
p∈P

‖v − p‖V ≤ c1 ‖A2v‖V2 ∀v ∈ V.

(iii) There exists a positive constant C such that

‖Lv‖W ≤ C ‖A2v‖V2 ∀v ∈ V.
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We shall apply this result with α ≥ 1, V := H2((0, 1) × (c, b); x̃α), V1 := H1((0, 1) × (c, b); x̃α), V2 :=
[L2((0, 1) × (c, b); x̃α)]4, W := L2((0, 1) × (c, b); x̃α), A2 : ṽ ∈ H2((0, 1) × (c, b); x̃α) �→ (ṽx̃x̃, ṽx̃ỹ, ṽỹx̃, ṽỹỹ),
A1 := Id, and L = L̃i, i = 1, 2, together with the compact embedding

H2((0, 1)× (c, b); x̃α) ↪→ H1((0, 1)× (c, b); x̃α),

which requires the restriction α ≥ 1 (cf. Lem. 5.2 in Antoci [1]).
Thus, we deduce that

‖ϕ̃x̃ − (p̃ϕ̃)x̃‖L2((0,1)×(c,b);x̃α) ≤ C(ρ) |ϕ̃|H2((0,1)×(c,b);x̃α)

and
‖ϕ̃ỹ − (p̃ϕ̃)ỹ‖L2((0,1)×(c,b);x̃α) ≤ C(ρ) |ϕ̃|H2((0,1)×(c,b);x̃α),

where | · |H2((0,1)×(c,b);x̃α) is the semi-norm on H2((0, 1)× (c, b); x̃α).
After returning from the scaled variables x̃ and ỹ to the original variables x = h x̃ and y = h ỹ and combining

the resulting inequalities into a single inequality, we obtain

‖∇∼ (ϕ̂− pϕ̂)‖L2((0,h)×(l,k);xα) ≤ C(ρ)h |ϕ̂|H2((0,h)×(l,k);xα).

In other words,
‖∇∼ (ϕ̂− pϕ̂)‖L2(R(κ);xα) ≤ C(ρ)h |ϕ̂|H2(R(κ);xα), (A.15)

whereupon
‖∇∼ (ϕ̂− pϕ̂)‖L2(κ;xα) ≤ C(ρ)h |ϕ̂|H2(R(κ);xα), (A.16)

where R(κ) := (0, h)× (l, k), ρ := (k − l)/h and α ≥ 1.
Using that, for (x, y) ∈ κ, 0 ≤ x/h ≤ 1 and |y|/(k − l) ≤ 1, one can obtain a similar bound on ϕ̂− pϕ̂ in the

xα-weighted L2 norm on κ. The only difference is that then

L(ϕ̂) := ϕ̂− pϕ̂ and L̃(ϕ̃)(x̃, ỹ) := L(ϕ̂)(x, y),

with the same definitions of pϕ̂, ϕ̃, p̃ϕ̃, x̃ and ỹ as before. We recall that pϕ̂ ≡ ϕ̂ for all ϕ̂ ∈ P1, and hence
L(ϕ̂) ≡ 0 for all ϕ̂ ∈ P1 and therefore L̃(ϕ̃) ≡ 0 for all ϕ̃ ∈ P1. We still have that

‖L̃(ϕ̃)‖L2(κ̃;x̃α) ≤ ‖L̃(ϕ̃)‖L2((0,1)×(c,b);x̃α) ≤ C(ρ) ‖ϕ̃‖H2((0,1)×(c,b);x̃α).

Hence, Lemma A.3, with the same choice of V , V1, V2, W , A1 and A2 as before, and α ≥ 1, implies that

‖ϕ̃− p̃ϕ̃‖L2((0,1)×(c,b);x̃α) ≤ C(ρ) |ϕ̃|H2((0,1)×(c,b);x̃α).

After returning from the scaled variables x̃ = x/h and ỹ = y/h to the original variables x and y, we obtain that

‖ϕ̂− pϕ̂‖L2((0,h)×(l,k);xα) ≤ C(ρ)h2 |ϕ̂|H2((0,h)×(l,k);xα).

In other words,
‖ϕ̂− pϕ̂‖L2(R(κ);xα) ≤ C(ρ)h2 |ϕ̂|H2(R(κ);xα),

whereupon
‖ϕ̂− pϕ̂‖L2(κ;xα) ≤ C(ρ)h2 |ϕ̂|H2(R(κ);xα), (A.17)

with R(κ) := (0, h)× (l, k), ρ := (k − l)/h and α ≥ 1. The constant C(ρ) is a continuous function of ρ in each
of these bounds.
Two dimensions: configuration 2-flat. The alternative configuration of the triangle κ = �ABC is: A =
(0, 0), B = (h, k) and C = (h, l), with only one point, A, on the line x = 0 along which the weight-function
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(x, y) �→ xα vanishes. In this case, we define pϕ̂ as the affine function that interpolates ϕ̂ at B and C, and has
the value

Φ̂(0, 0) = ϕ̂(h, 0)− h α+ 1
hα+1

∫ h

0

ϕ̂x(x, 0)xα dx

at A = (0, 0), extrapolated from (h, 0) using the univariate quasi-interpolation operator. Thus,

pϕ̂(x, y) = Φ̂(0, 0)
(
1− x

h

)
+ ϕ̂(h, k)

(
y − l

h
x

)
1

k − l + ϕ̂(h, l)
(
y − k

h
x

)
1

l − k ,

(pϕ̂)x(x, y) = −Φ̂(0, 0)
1
h

+ ϕ̂(h, k)
(
− l
h

)
1

k − l + ϕ̂(h, l)
(
−k
h

)
1

l − k ,

(pϕ̂)y(x, y) = ϕ̂(h, k)
1

k − l + ϕ̂(h, l)
1

l − k ·

Again, we define
L1(ϕ̂) := ϕ̂x − (pϕ̂)x and L2(ϕ̂) := ϕ̂y − (pϕ̂)y,

and we observe that Φ̂(0, 0) = ϕ̂(0, 0) for all ϕ̂ ∈ P1, and hence pϕ̂ ≡ ϕ̂ and Li(ϕ̂) ≡ 0 for all ϕ̂ ∈ P1, i = 1, 2.
The rest of the argument is the same as in the case of configuration 1-flat, and leads to the same final bound:

‖∇∼ (ϕ̂− pϕ̂)‖L2(κ;xα) ≤ C(ρ)h |ϕ̂|H2(R(κ);xα), (A.18)

where again R(κ) := (0, h)× (l, k), ρ := (k − l)/h and α ≥ 1. Also, as in the case of configuration 1-flat,

‖ϕ̂− pϕ̂‖L2(κ;xα) ≤ C(ρ)h2 |ϕ̂|H2(R(κ);xα), (A.19)

with R(κ) := (0, h)× (l, k), ρ := (k − l)/h and α ≥ 1. The constant C(ρ) is a continuous function of ρ in each
of these bounds.

A.2.2. Two dimensions: curved boundary

Now suppose that D is an open disc in R
2 of radius rD ∈ R>0, centred at the origin. Suppose, further, that

{T qh }h>0 is a quasiuniform family of partitions of D (in the sense of Hypothesis (A1) from Sect. 4, with d = 2,)
into disjoint open nonobtuse triangles κq, with possibly one curved edge on ∂D. We focus our attention on
elements κq that are in contact with ∂D. There are again two possible configurations, which will be considered
separately. We shall assume throughout the section that the potential U and the associated Maxwellian M
satisfy on D the assumptions stated at the start of Section 2.3, including (2.9a), with ζ ≥ 1, and (2.9b).
Two dimensions: configuration 1-curved. We consider a circle C ⊂ D, concentric with ∂D, which is
a distance h away from ∂D; cf. Figure 2. The analogue of configuration 1-flat is an open curved nonobtuse
triangle κq := �ABC, with one curved edge BC ⊂ ∂D and with A ∈ C. Let B′ and C′ be points on C such that
BB′ and CC′ are aligned with the directions of the normal vectors to ∂D at B and C, respectively. We mimic
the construction of the quasi-interpolant pϕ̂ of ϕ̂ described in the previous subsection.

Note that, for ϕ̂ ∈ H2
M (D) and any pair of points Q1 and Q2 in D,

ϕ̂(Q2) = ϕ̂(Q1)−
∫ 1

0

d
dτ

ϕ̂((1 − τ)Q2 + τ Q1) dτ.

Motivated by this identity, for Q1 ∈ D and Q2 ∈ D, we define

Φ̂(Q2) := ϕ̂(Q1)−
∫ 1

0
M((1− τ)Q2 + τ Q1) d

dτ ϕ̂((1 − τ)Q2 + τ Q1) dτ∫ 1

0 M((1− τ)Q2 + τ Q1) dτ
· (A.20)
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D

B’

C’
A

C

B

C

Figure 2. The domain D, the circle C ⊂ D, with dist(∂D, C) = h, and C′, A, B′ ∈ C and the
open curved nonobtuse triangle κq = �ABC in configuration 1-curved.

Remark A.4. In one space dimension, with M(q) = qα, q ∈ [0, h], Q2 = 0, Q1 = h, and performing the change
of variable q = τh, (A.20) yields our univariate extrapolation operator:

Φ̂(0) := ϕ̂(h)− h
∫ h
0 q

α ϕ̂′(q) dq∫ h
0
qα dq

= ϕ̂(h)− h α+ 1
hα+1

∫ h

0

qα ϕ̂′(q) dq.

In multiple space dimensions the formula (A.20), after performing the τ -differentiation under the integral
sign, becomes

Φ̂(Q2) := ϕ̂(Q1)− (Q1 −Q2) ·
∫ 1

0 M((1 − τ)Q2 + τ Q1) (∇∼ q ϕ̂)((1 − τ)Q2 + τ Q1) dτ∫ 1

0
M((1− τ)Q2 + τ Q1) dτ

·

In particular, in the two-dimensional setting considered here, and with reference to Figure 2,

Φ̂(B) := ϕ̂(B′)− (B′ − B) ·
∫ 1

0 M((1− τ) B + τ B′) (∇∼ q ϕ̂)((1 − τ) B + τ B′) dτ∫ 1

0
M((1− τ) B + τ B′) dτ

and

Φ̂(C) := ϕ̂(C′)− (C′ − C) ·
∫ 1

0
M((1 − τ)C + τ C′) (∇∼ q ϕ̂)((1 − τ)C + τ C′) dτ∫ 1

0 M((1 − τ)C + τ C′) dτ
·

We then define the affine function pϕ̂ on κq = �ABC by

pϕ̂(q
∼
) := ϕ̂(A)ψA(q

∼
) + Φ̂(B)ψB(q

∼
) + Φ̂(C)ψC(q

∼
), q

∼
= (q1, q2) ∈ κq, (A.21)

where {ψA, ψB, ψC} is the P
q
1 local (nodal/Lagrange) basis associated with the triangle �ABC.

Let R(κq) denote the curvilinear rectangle B′BCC′ depicted in Figure 2. Our aim is to show that, in analogy
with (A.15),

‖∇∼ q (ϕ̂− pϕ̂)‖L2
M(R(κq)) ≤ C(ρ)h |ϕ̂|H2

M (R(κq)),
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where ρ is a positive constant dependent only on the shape of κq; this will in turn imply that

‖∇∼ q (ϕ̂− pϕ̂)‖L2
M(κq) ≤ C(ρ)h |ϕ̂|H2

M (R(κq)).

Using polar co-ordinates, the curvilinear rectangle R(κq) in the q
∼

:= (q1, q2) domain can be mapped into the
rectangular domain

Rpolar(κq) := {(r, θ) : −rD < r < −rD + h, θB < θ < θC}.
Let us therefore perform the following change of independent variables:

q1 = r cos θ, q2 = r sin θ, r ∈ (−rD,−rD + h), θ ∈ (θB, θC); (A.22)

thus, r = −|q
∼
|. Naturally, 0 < h � 1 < rD, and we can therefore assume without loss of generality that

−rD + h ≤ − 1
2 ; therefore, r = 0 is, uniformly in h, separated from the range (−rD,−rD + h) of r, whereby the

change of variables (A.22) is a smooth bijective diffeomorphism from R(κq) to Rpolar(κq).
By virtue of (2.9a) we may assume without loss of generality that M(q

∼
) = (rD − |q∼|)

α, with α = ζ ≥ 1 and ζ
as in (2.9a), and |q

∼
| ∈ (rD − h, rD). In polar co-ordinates, with |q

∼
| = −r, we therefore define N(r) := (rD + r)α

for r ∈ (−rD,−rD + h), where α = ζ ≥ 1.
Now, on noting that M(q

∼
) = N(r) with r = −|q

∼
| ∈ (−rD,−rD + h), we have that

Φ̂(B) = Φ̂(−rD, θB) = ϕ̂(−rD + h, θB)− h
∫ 1

0
N(−rD + τ h) ϕ̂r(−rD + τ h, θB) dτ∫ 1

0 N(−rD + τ h) dτ
·

Hence,

Φ̂(B) = Φ̂(−rD, θB) = ϕ̂(−rD + h, θB)− h α+ 1
hα+1

∫ h

0

tα ϕ̂r(−rD + t, θB) dt. (A.23)

Analogously,

Φ̂(C) = Φ̂(−rD, θC) = ϕ̂(−rD + h, θC)− h α+ 1
hα+1

∫ h

0

tα ϕ̂r(−rD + t, θC) dt, (A.24)

while
ϕ̂(A) = ϕ̂(−rD + h, θA). (A.25)

It is clear from (A.23) that if the restriction of ϕ̂ to the closed line segment connecting B′ to B is a linear
function, and therefore ϕ̂r is constant along this line segment, then Φ̂(B) = ϕ̂(−rD, θB) = ϕ̂(B). Analo-
gously, (A.24) implies that if the restriction of ϕ̂ to the closed line segment connecting C′ to C is a linear
function, then Φ̂(C) = ϕ̂(−rD, θC) = ϕ̂(C).

Hence, if ϕ̂ ∈ P
q
1, then (A.21) implies that pϕ̂(q

∼
) = ϕ̂(A)ψA(q

∼
) + ϕ̂(B)ψB(q

∼
) + ϕ̂(C)ψC(q

∼
), the standard

linear nodal/Lagrange interpolant of ϕ̂, whereby ∇∼ q(ϕ̂− pϕ̂) ≡ 0. Equivalently, letting

L1(ϕ̂) = (ϕ̂)q1 − (pϕ̂)q1 , L2(ϕ̂) = (ϕ̂)q2 − (pϕ̂)q2 ,

we have that Li(ϕ̂) ≡ 0 for all ϕ̂ ∈ P
q
1, i = 1, 2.

Since the formulae (A.23), (A.24), (A.25) are essentially the same as those corresponding to Φ̂(B) = Φ̂(0, k),
Φ̂(C) = Φ̂(0, l) and ϕ̂(A) = ϕ̂(h, 0) in the case of configuration 1-flat in the previous section, defining ρ :=
(θC − θB)/h, changing variables to the rectangular region Rpolar(κq), rescaling this by 1/h as in the previous
section, applying Lemma A.3, and then rescaling by h to return from Rpolar(κq) to R(κq) yields

‖∇∼ q (ϕ̂− pϕ̂)‖L2
M(R(κq)) ≤ C(ρ)h |ϕ̂|H2

M (R(κq)).

Hence,
‖∇∼ q (ϕ̂− pϕ̂)‖L2

M(κq) ≤ C(ρ)h |ϕ̂|H2
M (R(κq)), (A.26)

with ρ := (θC − θB)/h.
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Next, we prove that
‖ϕ̂− pϕ̂‖L2

M(κq) ≤ C(ρ)h2 |ϕ̂|H2
M (R(κq)). (A.27)

This time, we define L(ϕ̂) := ϕ̂−pϕ̂ where, again, pϕ̂(q
∼
) = ϕ̂(A)ψA(q

∼
)+Φ̂(B)ψB(q

∼
)+Φ̂(C)ψC(q

∼
). Once again,

if ϕ̂ ∈ P
q
1, then pϕ̂ is just the standard linear nodal/Lagrange interpolant of ϕ̂ and therefore L(ϕ̂) ≡ 0. The rest

of the argument is the same as in the case of the error estimate in the M -weighted H1 seminorm above. Thus,
on applying Lemma A.3 and a scaling argument in the same way as before,

‖ϕ̂− pϕ̂‖L2
M(κq) ≤ C(ρ)h2|ϕ̂|H2

M (R(κq)), (A.28)

where, again, ρ := (θC − θB)/h. The constant C(ρ) is a continuous function of ρ in each of these bounds.

Two dimensions: configuration 2-curved. The alternative configuration of the triangle κq = �ABC is
that A∈ ∂D while B,C ∈ C. In this case, we define pϕ̂ as the affine function that interpolates ϕ̂ at B and C,
and has the value

Φ̂(A) := ϕ̂(A′)− (A′ −A) ·
∫ 1

0 M((1− τ)A + τ A′) (∇∼ ϕ̂)((1 − τ) A + τ A′) dτ∫ 1

0
M((1− τ)A + τ A′) dτ

at A. Here A′ is the point on C where the line segment, normal to ∂D, connecting A to the centre of the disc D
intersects C; thus the segment AA′ is orthogonal to ∂D. The value Φ̂(A) is therefore obtained by extrapolating
ϕ̂ from A′. Thus,

pϕ̂(q
∼
) = Φ̂(A)ψA(q

∼
) + ϕ̂(B)ψB(q

∼
) + ϕ̂(C)ψC(q

∼
).

Again, we define,
L1(ϕ̂) := ϕ̂q1 − (pϕ̂)q1 and L2(ϕ̂) := ϕ̂q2 − (pϕ̂)q2 ,

and we observe that Li(ϕ̂) ≡ 0, i = 1, 2, for all ϕ̂ ∈ P
q
1. The rest of the argument is the same as in the case of

configuration 1-curved, and leads to the same final bound:

‖∇∼ q (ϕ̂− pϕ̂)‖L2
M(κq) ≤ C(ρ)h |ϕ̂|H2

M (R(κq)), (A.29)

where now R(κq) is the curvilinear rectangle BB′C′C, whose curved edges B′C′ ⊂ ∂D, BC ⊂ C; here B′ and C′

are the points on ∂D where the line segments passing through the centre of the disc D and the points B and C,
respectively, extended beyond B and C, respectively, intersect ∂D. Clearly, each of the line segments BB′ and
CC′ is orthogonal to ∂D as in the case of configuration 1-curved. The definition of ρ is the same as in the case
of configuration 1-curved, i.e. ρ := (θC − θB)/h.

Arguing in the same way as in the case of the M -weighted L2 norm bound derived above in the case of
configuration 1-curved, we also have that, with ρ := (θC − θB)/h,

‖ϕ̂− pϕ̂‖L2
M(κq) ≤ C(ρ)h2 |ϕ̂|H2

M (R(κq)). (A.30)

The constant C(ρ) is a continuous function of ρ in each of these bounds.

Two dimensions: global interpolation bound. Let hq denote the maximum diameter of any triangle κq
in the quasiuniform and nonobtuse family of partitions {T qh }h>0 of D. Each triangle κq ∈ T qh whose closure
intersects ∂D is either in configuration 1-curved or in configuration 2-curved; on such triangles we define pϕ̂ as
above. Any triangle κq ∈ T qh that is neither in configuration 1-curved nor configuration 2-curved is such that
the closure of κq is contained in the open disc D; on such triangles, referred to as being in configuration 0, we
define pϕ̂ as the standard nodal interpolant of ϕ̂. For ϕ̂ ∈ H2

M (D), we then define the global quasi-interpolant
Iqhϕ̂ := pϕ̂. Note, in particular, that Iqhϕ̂ is a continuous piecewise linear function on D with the following
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properties: suppose that P is a vertex of a triangle κq ∈ T qh ; if P ∈ D, then (Iqhϕ̂)(P) = ϕ̂(P); if, on the other
hand, P ∈ ∂D, then (Iqhϕ̂)(P) = Φ̂(P), the value extrapolated from P′ ∈ D using the formula

Φ̂(P) := ϕ̂(P′)− (P′ − P) ·
∫ 1

0
M((1 − τ) P + τ P′) (∇∼ q ϕ̂)((1 − τ) P + τ P′) dτ∫ 1

0 M((1− τ) P + τ P′) dτ
,

where P′ is the unique point of intersection of the line segment that connects P ∈ ∂D to the centre of D with
the circle C ⊂ D concentric with ∂D and such that dist(∂D, C) = h and 0 < h� rD.

By virtue of (A.26) (on triangles κq ⊂ D in configuration 1-curved), (A.29) (on triangles κq ∈ D in configura-
tion 2-curved), and classical interpolation results on the remaining triangles κq ∈ Th (in configuration 0) whose
closure does not intersect ∂D, together with upper and lower bounds on M on triangles in configuration 0 and
recalling (4.54), to relate the M -weighted L2, H1 and H2 norms to standard (nonweighted) L2, H1 and H2

norms, we deduce that

‖∇∼ q (ψ̂ − Iqhψ̂)‖L2
M(D) ≤ C hq |ψ̂|H2

M (D) and ‖ψ̂ − Iqhψ̂‖L2
M(D) ≤ C h2

q |ψ̂|H2
M (D),

whereby
‖ψ̂ − Iqhψ̂‖H1

M (D) ≤ C hq |ψ̂|H2
M (D). (A.31)

Here we made use of the fact that the parameter ρ appearing in the bounds on the triangles κq ∈ T qh in
configuration 1-curved and configuration 2-curved belongs to a compact subinterval of R>0, independent of hq,
due to our assumption that {T qh }h>0 is a quasiuniform family of nonobtuse partitions; since the constants C(ρ)
featuring in those bounds are continuous functions of ρ, it follows that the constant C in (A.31) depends only
on the shape-regularity parameters of {T qh }h>0, which, in particular, fix the range of ρ.

A.2.3. Three dimensions

We briefly comment on the modifications that need to be made to our arguments above when d = 3.
Consider a family of quasiuniform nonobtuse partitions {T qh }h>0, in the sense of (A1) in Section 4, of the ball
D = B(0∼, rD) ⊂ R

3. Excluding the case of configuration 0, when the closure of a simplex κq ∈ T qh has empty
intersection with ∂D, there are now three different configurations to consider, corresponding to the cases when
the closure of κq has one, two or three vertices on ∂D.

Let us suppose, for example, that the open nonobtuse simplex κq ∈ T qh has three vertices A, B and C on the
sphere ∂D, while the fourth vertex D is in the interior of the domain D, on a sphere C concentric with ∂D, that
is a distance h away from ∂D. We raise the inward normals from A, B, C to ∂D, and consider the points A′,
B′, C′ in the interior of the ball D that are on the respective normals to ∂D at A, B and C, and a distance h
away from A, B and C, respectively; i.e. A′, B′, C′ are on the sphere C. The tetrahedron κq = ABCD is then
contained in the curved triangular prismoid R(κq) := ABCA′B′C′, with curved faces ABC and A′B′C′.

Given a function ϕ̂ ∈ H2
M (D), we then extrapolate ϕ̂ from A′, B′ and C′ using (A.20) to define Φ̂(A), Φ̂(B)

and Φ̂(C), and define pϕ̂ as the affine function of q
∼

on the simplex ABCD whose nodal values are Φ̂(A), Φ̂(B),

Φ̂(C) and ϕ̂(D). We note in particular that if ϕ̂ ∈ P
q
1, then pϕ̂ = ϕ̂. Using spherical polar co-ordinates we

map the curved triangular prismoid R(κq) containing the simplex κq = ABCD into a right triangular prism
Rpolar(κq), and then argue as in the case of d = 2 above, using Lemma A.3, to deduce the analogue of (A.31)
in the case of d = 3.

A.2.4. Stability of the Maxwellian-weighted L2 projector in the Maxwellian-weighted H1 norm

Now we are ready to discuss the question of stability, in the M -weightedH1 norm, of the orthogonal projector
in the M -weighted L2 inner product on D ⊂ R

d, d = 2, 3. We begin by considering the following auxiliary
problem: Let ĝ ∈ L2

M (D); find ẑ ∈ H1
M (D) such that

a(ẑ, ϕ̂) = �(ϕ̂) ∀ϕ̂ ∈ H1
M (D), (A.32)
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where, for ζ̂ , ϕ̂ ∈ H1
M (D),

a(ζ̂ , ϕ̂) :=
∫
D

M
(
∇∼ q ζ̂ · ∇∼ q ϕ̂+ ζ̂ ϕ̂

)
dq

∼
and �(ϕ̂) :=

∫
D

M ĝ ϕ̂ dq
∼
.

The existence of a unique solution ẑ ∈ H1
M (D) to (A.32) follows by the Lax–Milgram theorem. Note that

‖ẑ‖L2
M(D) ≤ ‖ẑ‖H1

M (D) ≤ ‖ĝ‖L2
M(D).

We begin by showing the following elliptic regularity result for (A.32): ẑ ∈ H2
D(M), and the bound stated

in (A.41) below holds. To this end, for δ > 0 we define

Uδ(s) := U

((
rD

rD + δ

)2

s

)
, s ∈

[
0, 1

2r
2
D

)
and Mδ(q∼) := Z−1 exp(−Uδ(1

2 |q∼|
2)), q

∼
∈ D,

where, as in (1.6) (i.e. with no δ-dependence in the definition of Z), Z :=
∫
D exp

(
−U(1

2 |q∼|
2)
)

dq
∼
. Note that

since U ′(s) > 0 for s ∈
[
0, 1

2r
2
D

)
, we have 0 ≤ Uδ(s) ≤ U(s) for all s ∈

[
0, 1

2r
2
D

)
, with strict inequalities for

s �= 0, and M(q
∼
) ≤ Mδ(q∼) for q

∼
∈ D, with strict inequality for q

∼
�= 0∼. The fact that, thereby,

∫
D
Mδ(q∼) dq

∼
is

strictly greater than 1 rather than equal to 1 is of no significance. For ĝ ∈ L2
M (D) and δ > 0, we define

ĝδ(q∼) :=

(
M(q

∼
)

Mδ(q∼)

) 1
2

ĝ(q
∼
), q

∼
∈ D,

and note that ĝδ ∈ L2
Mδ

(D) with ‖ĝδ‖L2
Mδ

(D) = ‖ĝ‖L2
M(D).

We consider the following problem: For ĝ ∈ L2
M (D) and δ > 0, and with Mδ and ĝδ as defined above, find

ẑδ ∈ H1
Mδ

(D) such that
aδ(ẑδ, ϕ̂) = �δ(ϕ̂) ∀ϕ̂ ∈ H1

Mδ
(D), (A.33)

where, for ζ̂ , ϕ̂ ∈ H1
Mδ

(D),

aδ(ζ̂ , ϕ̂) :=
∫
D

Mδ

(
∇∼ q ζ̂ · ∇∼ q ϕ̂+ ζ̂ ϕ̂

)
dq

∼
and �δ(ϕ̂) :=

∫
D

Mδ ĝδ ϕ̂ dq
∼
.

We note that, for δ > 0 and q
∼
∈ D, 0 < Z−1 exp

(
−Uδ(1

2r
2
D)
)
≤ Mδ(q∼) ≤ Z−1, and therefore L2

Mδ
(D) and

H1
Mδ

(D) are homeomorphic to L2(D) and H1(D), respectively, with equivalent respective norms, so they can
be identified with L2(D) and H1(D), respectively.

As in the case of (A.32), the existence of a unique solution ẑδ ∈ H1
Mδ

(D) to (A.33) follows by the Lax–Milgram
theorem, and

‖ẑδ‖L2
Mδ

(D) ≤ ‖ẑδ‖H1
Mδ

(D) ≤ ‖ĝδ‖L2
Mδ

(D) = ‖ĝ‖L2
M(D). (A.34)

Also, by (standard) elliptic regularity theory, ẑδ ∈ H1
Mδ

(D) = H1(D) belongs to H2(D) = H2
Mδ

(D) for all
δ > 0.

Since C∞
0 (D) ⊂ H1

Mδ
(D) for any δ > 0, on choosing ϕ̂ ∈ C∞

0 (D) in (A.33), it follows that

−∇∼ q · (Mδ∇∼ q ẑδ) +Mδ ẑδ = Mδ ĝδ in D′(D), (A.35)

i.e. in the sense of distributions on D. As Mδ ∈ C∞(D), multiplication by Mδ of elements of D′(D) is correctly
defined; thus, by the Leibniz rule for differentiation of the product of a C∞(D) function and an element of D′(D),
(A.35) yields

−Mδ Δq ẑδ −∇∼ qMδ · ∇∼ q ẑδ +Mδ ẑδ = Mδ ĝ in D′(D). (A.36)
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Noting that Mδ and U ′
δ satisfy an identity analogous to (2.5), and that since M−1

δ ∈ C∞(D) multiplication
by M−1

δ in D′(D) is meaningful, multiplying (A.36) by M−1
δ we deduce that

−Δq ẑδ + U ′
δ q∼ · ∇∼ q ẑδ + ẑδ = ĝδ in D′(D). (A.37)

As q
∼
�→ U ′

δ(
1
2 |q∼|

2)q
∼

belongs to [C∞(D)]d, the dot-product in the second term of (A.37) is meaningful as an
operation in [D′(D)]d. Taking the partial derivative in D′(D) of (A.37) with respect to qi, the ith component
of q

∼
, gives

−Δq
∂ẑδ
∂qi

+ qi U
′′
δ q∼ · ∇∼ q ẑδ + U ′

δ

∂ẑδ
∂qi

+ U ′
δ q∼ · ∇∼ q

∂ẑδ
∂qi

+
∂ẑδ
∂qi

=
∂ĝδ
∂qi

in D′(D), i ∈ {1, . . . , d}. (A.38)

For ϕ̂ ∈ C∞
0 (D), we have Mδ

∂ϕ̂
∂qi
∈ C∞

0 (D), and therefore (A.38) implies that〈
−Δq

∂ẑδ
∂qi

,Mδ
∂ϕ̂

∂qi

〉
+
〈
qi U

′′
δ q

∼
· ∇

∼
q ẑδ,Mδ

∂ϕ̂

∂qi

〉
+
〈
U ′
δ

∂ẑδ
∂qi

,Mδ
∂ϕ̂

∂qi

〉
+
〈
U ′
δ q

∼
· ∇

∼
q
∂ẑδ
∂qi

,Mδ
∂ϕ̂

∂qi

〉
+
〈
∂ẑδ
∂qi

,Mδ
∂ϕ̂

∂qi

〉
=
〈
∂ĝδ
∂qi

,Mδ
∂ϕ̂

∂qi

〉
∀ϕ̂ ∈ C∞

0 (D), i ∈ {1, . . . , d}; (A.39)

where 〈·, ·〉 denotes the duality paring on D′(D)×C∞
0 (D). Writing Δq = ∇∼ q · ∇∼ q in the first term on the left-

hand side of (A.39), passing ∇∼ q to the test function in this term, using the Leibniz rule in C∞(D), noting (2.5)
and that U ′

δ ∈ C∞(D), whereby multiplication in D′(D) by U ′
δ is legitimate, and observing that one of the two

terms that result upon the use of the Leibniz rule from the first term on the left-hand side of (A.39) cancels
with the fourth term on the left-hand side of (A.39), gives〈
∇
∼
q
∂ẑδ
∂qi

,Mδ∇
∼
q
∂ϕ̂

∂qi

〉
+
〈
qi U

′′
δ q

∼
· ∇

∼
q ẑδ,Mδ

∂ϕ̂

∂qi

〉
+
〈
U ′
δ

∂ẑδ
∂qi

,Mδ
∂ϕ̂

∂qi

〉
+
〈
∂ẑδ
∂qi

,Mδ
∂ϕ̂

∂qi

〉
=
〈
∂ĝδ
∂qi

,Mδ
∂ϕ̂

∂qi

〉
for all ϕ̂ ∈ C∞

0 (D), i ∈ {1, . . . , d}. Summing over i = 1→ d, we deduce the identity

Aδ(ẑδ, ϕ̂) :=
∫
D

Mδ∇
∼
q∇

∼
q ẑδ : ∇

∼
q∇

∼
q ϕ̂dq

∼
+
∫
D

Mδ U
′′
δ (q

∼
· ∇

∼
q ẑδ) (q

∼
· ∇
∼
q ϕ̂) dq

∼
+
∫
D

Mδ (U ′
δ + 1)∇

∼
q ẑδ · ∇

∼
q ϕ̂dq

∼

= −
∫
D

ĝδ∇
∼
q ·
(
Mδ∇

∼
q ϕ̂
)

dq
∼

= −
∫
D

Mδ ĝδ Δqϕ̂dq
∼

+
∫
D

Mδ ĝδ U
′
δ q

∼
· ∇

∼
q ϕ̂dq

∼
=: Lδ(ϕ̂) ∀ϕ̂ ∈ C∞

0 (D).

Consider the norm ‖ · ‖H2
Mδ

(D) defined by

‖ζ̂‖2H2
Mδ

(D) :=
∫
D

Mδ

[
|∇∼ q∇∼ q ζ̂|2 + U ′′

δ |q∼ · ∇∼ q ζ̂|2 + (U ′
δ + 1) |∇∼ q ζ̂|2 + |ζ̂|2

]
dq

∼
.

We observe that ‖ · ‖H2
Mδ

(D) is an equivalent norm on H2
Mδ

(D) = H2(D) and, in particular, ‖ẑδ‖H2
Mδ

(D) < ∞.
Next, we show that ‖ẑδ‖H2

Mδ
(D) is, in fact, bounded, independent of δ > 0. Recalling (A.34) we have that

‖ẑδ‖2H2
Mδ

(D) = A(ẑδ, ẑδ) + (Mδ ẑδ, ẑδ)D = Lδ(ẑδ) + (Mδ ẑδ, ẑδ)D = Lδ(ẑδ) + ‖ẑδ‖2L2
Mδ

(D)

≤ ‖ĝδ‖L2
Mδ

(D) ‖Δq ẑδ‖L2
Mδ

(D) + ‖ĝδ‖L2
Mδ

(D) ‖U ′
δ q

∼
· ∇

∼
q ẑδ‖L2

Mδ
(D) + ‖ĝδ‖L2

Mδ
(D)‖ẑδ‖L2

Mδ
(D).

Since ‖Δq ẑδ‖L2
Mδ

(D) ≤ d
1
2 ‖∇∼ q∇∼ q ẑδ‖L2

Mδ
(D) and, thanks to (2.9b), [U ′

δ(s)]
2 ≤ c5 U

′′
δ (s), s ∈ [0, 1

2r
2
D), we thus

have that
‖ẑδ‖2H2

Mδ
(D) ≤ (d+ c5 + 1)

1
2 ‖ĝδ‖L2

Mδ
(D) ‖ẑδ‖H2

Mδ
(D),
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which implies that

‖ẑδ‖2H2
Mδ

(D) ≤ ‖ẑδ‖
2
H2

Mδ
(D) ≤ (d+ c5 + 1) ‖ĝδ‖2L2

Mδ
(D) = (d+ c5 + 1) ‖ĝ‖2L2

M(D).

Since M(q
∼
) ≤Mδ(q∼) for all q

∼
∈ D and δ > 0, we deduce that

‖ẑδ‖2H2
M (D) ≤ (d+ c5 + 1) ‖ĝ‖2L2

M(D).

Since {ẑδ}δ>0 is bounded in H2
M (D), there exists ẑ0 ∈ H2

M (D) and a subsequence, still denoted {ẑδ}δ>0,
such that ẑδ → ẑ0 weakly in H2

M (D) as δ → 0+. By the weak lower semicontinuity of the norm function
ζ̂ �→ ‖ζ̂‖H2

M (D),
|ẑ0|2H2

M (D) ≤ ‖ẑ0‖
2
H2

M (D) ≤ (d+ c5 + 1) ‖ĝ‖2L2
M(D). (A.40)

Since for ζ ≥ 1 (cf. (2.9a)) the space H2
M (D) is compactly embedded into H1

M (D) (see Lem. 5.2 in Antoci [1]),
{ẑδ}δ>0 is strongly convergent to ẑ0 in H1

M (D) as δ → 0+. Noting that {Mδ}δ>0 converges to M uniformly
on D as δ → 0+ it follows that, as δ → 0+,

�δ(ϕ̂) =
∫
D

Mδ ĝδ ϕ̂ dq
∼

=
∫
D

M
1
2 ĝ (Mδ)

1
2 ϕ̂ dq

∼
→
∫
D

M
1
2 ĝ M

1
2 ϕ̂ dq

∼
=
∫
D

M ĝ ϕ̂ dq
∼

= �(ϕ̂) ∀ϕ̂ ∈ C∞(D),

and aδ(ẑδ, ϕ̂)→ a(ẑ0, ϕ̂) for all ϕ̂ ∈ C∞(D). Hence, passage to the limit δ → 0+ in (A.33) yields a(ẑ0, ϕ̂) = �(ϕ̂)
for all ϕ̂ ∈ C∞(D). Since C∞(D) is dense in H1

M (D), also a(ẑ0, ϕ̂) = �(ϕ̂) for all ϕ̂ ∈ H1
M (D). However,

ẑ ∈ H1
M (D) is the unique solution to (A.32), and therefore ẑ = ẑ0 ∈ H2

M (D), and then by (A.40),

|ẑ|2H2
M (D) ≤ ‖ẑ‖

2
H2

M (D) ≤ (d+ c5 + 1) ‖ĝ‖2L2
M(D). (A.41)

That completes the proof of the elliptic regularity result that we need in order to proceed with the proof of
stability, in the M -weighted H1 norm, of the orthogonal projector in the M -weighted L2 inner product on D.

Taking g = ψ̂ − P qh ψ̂ in (A.32), where P qh denotes the orthogonal projector in the M -weighted H1 inner
product on D, we have from the symmetry of the bilinear form a(·, ·), the definitions of ẑ and P qh , the Cauchy–
Schwarz inequality and (A.31) that

‖ψ̂ − P qh ψ̂‖2L2
M(D) = a(ψ̂ − P qh ψ̂, ẑ) = a(ψ̂ − P qh ψ̂, ẑ − P

q
h ẑ)

≤ ‖ψ̂ − P qh ψ̂‖H1
M (D) ‖ẑ − P qh ẑ‖H1

M (D)

≤ C hq ‖ψ̂ − P qh ψ̂‖H1
M (D) |ẑ|H2

M (D).

The elliptic regularity result (A.41) with ĝ = ψ̂ − P qh ψ̂ gives

|ẑ|H2
M (D) ≤ (d+ c5 + 1)

1
2 ‖ψ̂ − P qh ψ̂‖L2

M(D).

We thus have that
‖ψ̂ − P qh ψ̂‖L2

M(D) ≤ C hq ‖ψ̂ − P qh ψ̂‖H1
M(D). (A.42)

Now, by the first inverse inequality in the M -weighted H1 norm on D stated in (4.53a), and (A.42),

‖ψ̂ −Qqhψ̂‖H1
M (D) ≤ ‖ψ̂ − P qh ψ̂‖H1

M (D) + ‖P qh ψ̂ −Q
q
hψ̂‖H1

M (D)

≤ ‖ψ̂ − P qh ψ̂‖H1
M (D) + Cinv h

−1
q ‖P

q
h ψ̂ −Q

q
hψ̂‖L2

M(D)

≤ ‖ψ̂ − P qh ψ̂‖H1
M (D) + Cinv h

−1
q ‖ψ̂ − P

q
h ψ̂‖L2

M (D) + Cinv h
−1
q ‖ψ̂ −Q

q
hψ̂‖L2

M(D)

≤ ‖ψ̂ − P qh ψ̂‖H1
M (D) + 2Cinv h

−1
q ‖ψ̂ − P

q
h ψ̂‖L2

M(D) ≤ (1 + C) ‖ψ̂ − P qh ψ̂‖H1
M (D).
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In particular the last inequality implies that

‖ψ̂ −Qqhψ̂‖H1
M (D) ≤ 2(1 + C) ‖ψ̂‖H1

M (D) ∀ψ̂ ∈ H1
M (D)

and therefore also,
‖Qqhψ̂‖H1

M (D) ≤ (3 + 2C) ‖ψ̂‖H1
M (D) ∀ψ̂ ∈ H1

M (D). (A.43)

It remains to prove that the projector QMh = QxhQ
q
h = QqhQ

x
h, where Qxh is the orthogonal projector in L2(Ω)

onto Xx
h and Qqh is the orthogonal projector in L2

M (D) onto Xq
h, is stable in the norm of X̂ := H1(Ω×D;M).

Indeed,

‖QMh ψ̂‖2X̂ = ‖QxhQ
q
hψ̂‖2X̂ =

∫
Ω×D

M
[
|QxhQ

q
hψ̂|2 + |∇

∼
x (QxhQ

q
hψ̂)|2 + |∇

∼
q (QxhQ

q
hψ̂)|2

]
dq

∼
dx

∼

≤
∫
D

M ‖Qxh (Qqhψ̂)(·, q
∼
)‖2H1(Ω) dq

∼
+
∫

Ω

‖Qqh (Qxhψ̂)(x
∼
, ·)‖2H1

M (D) dx
∼

≤ C
[∫

D

M ‖Qqhψ̂(·, q
∼
)‖2H1(Ω) dq

∼
+
∫

Ω

‖Qxhψ̂(x
∼
, ·)‖2H1

M (D) dx
∼

]
≤ C

[∫
D

M ‖ψ̂(·, q
∼
)‖2H1(Ω) dq

∼
+
∫

Ω

‖ψ̂(x
∼
, ·)‖2H1

M (D) dx
∼

]
≤ 2C ‖ψ̂‖2

X̂
,

where in the transition to the third line we used the stability of Qxh in the H1(Ω) norm, and the stability of Qqh
in the H1

M (D) norm stated in (A.43). In the transition to the penultimate line we used Fubini’s theorem to
exchange the order of integration, together with the fact that Qqh is a contraction in the norm of L2

M (D) and
Qxh is a contraction in the norm of L2(Ω).
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[27] D. Knezevic and E. Süli, A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model. ESAIM:

M2AN 43 (2009) 1117–1156.
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[29] S. Korotov and M. Kř́ıžek, Global and local refinement techniques yielding nonobtuse tetrahedral partitions. Comput. Math.

Appl. 50 (2005) 1105–1113.
[30] A. Kufner, Weighted Sobolev Spaces. Teubner, Stuttgart (1980).
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