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WAVELET COMPRESSION OF ANISOTROPIC INTEGRODIFFERENTIAL
OPERATORS ON SPARSE TENSOR PRODUCT SPACES ∗

Nils Reich
1

Abstract. For a class of anisotropic integrodifferential operators B arising as semigroup generators of
Markov processes, we present a sparse tensor product wavelet compression scheme for the Galerkin finite
element discretization of the corresponding integrodifferential equations Bu = f on [0, 1]n with possibly
large n. Under certain conditions on B, the scheme is of essentially optimal and dimension independent
complexity O(h−1| log h|2(n−1)) without corrupting the convergence or smoothness requirements of the
original sparse tensor finite element scheme. If the conditions on B are not satisfied, the complexity
can be bounded by O(h−(1+ε)), where ε � 1 tends to zero with increasing number of the wavelets’
vanishing moments. Here h denotes the width of the corresponding finite element mesh. The operators
under consideration are assumed to be of non-negative (anisotropic) order and admit a non-standard
kernel κ(·, ·) that can be singular on all secondary diagonals. Practical examples of such operators from
Mathematical Finance are given and some numerical results are presented.
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1. Introduction

Sparse tensor product-based wavelet compression for integrodifferential equations (PIDEs) of the form

Bu = f on [0, 1]n, (1.1)

was introduced in [39,46,47] for isotropic integrodifferential operators B with distributional Schwartz kernels
κ(x, y) that are singular only on the diagonal in [0, 1]n × [0, 1]n. For such operators essentially dimension-
independent and asymptotically optimal complexity results have been shown in [46,47].

The assumption that B admits a standard kernel however is not always satisfied in practice. For instance in
Mathematical Finance the pricing of contracts on baskets of assets where the underlying is modeled by jump
processes leads to equations of the form (1.1), where the integrodifferential operator B only admits a kernel
that can be singular on all secondary diagonals of [0, 1]n × [0, 1]n and all singularities are of different order.
In this work we construct a sparse tensor product-based wavelet compression scheme for a wide class of such
anisotropic operators.
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Even though, due to the different singularity structures, the numerical analysis differs significantly (see [47],
Sects. 3 and 5 below), from a numerical point of view the challenges arising for the discretization of anisotropic
operators are essentially the same as for isotropic ones (cf. [47], Sect. 1): Galerkin discretization of integrodiffer-
ential equations in general leads to linear systems with densely populated matrices of substantial size. Even on
tensor product domains, the straightforward application of standard numerical schemes fails due to the “curse
of dimension”: the number of degrees of freedom on a tensor product Finite Element (FE) mesh of width h in
dimension n grows like O(h−n) as h→ 0. The non-locality of the underlying operator thus implies that the FE
stiffness matrix consists of O(h−2n) non-zero entries.

Based on tensor products of univariate wavelet basis functions, in this paper we prove that the complexity of
the stiffness matrix can however be reduced to O(h−(1+ε)) with (for fixed dimension) arbitrarily small 0 < ε� 1
and, under certain conditions, even to O(h−1| log h|2(n−1)) without corrupting the convergence of the original
FE scheme. Our results are applicable not only to classical pseudodifferential operators but to a wide class of
anisotropic integrodifferential operators. To this end, suitable symbol classes are introduced.

The anisotropic discretization technique presented in this work relies on the following two approaches (cf. [47]):
Sparse tensor product spaces as introduced in [7,27,28,44] are used to overcome the “curse of dimension”.

This approach yields essentially dimension independent O(h−1| log h|n−1) degrees of freedom as h→ 0 while at
the same time (essentially) preserving the approximation rate. Discretizing integrodifferential equations on a
sparse tensor product space thus yields matrices containing O(h−2| log h|2(n−1)) entries. As shown in e.g. [28],
these results require greater smoothness of the function to be approximated than the original discretization and
this extra regularity increases with the dimension n.

The non-locality of integral operators can be treated by so-called wavelet compression. This methodology
was introduced by [5] in the very different setting of isotropic (or standard) wavelet representation, i.e. the FE
basis functions consist of tensor products of scaling functions and wavelets only on the same level. It was shown
that wavelet representation yields an almost sparse representation of certain operators. In [14,15,58,61] this
approach was advanced further (on not necessarily tensor product domains) and given a rigorous mathematical
foundation based on the requisite that the compressed system has to preserve the stability and convergence
properties of the unperturbed discretization. In [51] it was shown that wavelet compression techniques may
yield asymptotically optimal complexity (on not necessarily tensor product domains) in the sense that the
number of non-zero entries in the resulting matrices grows linearly with the number of degrees of freedom. In
contrast to sparse tensor product approximation, this methodology does not require additional smoothness of
the approximated function. But, since the number of non-zero matrix entries grows linearly with the degrees of
freedom, there still is exponential growth of the number of non-trivial matrix entries as the dimension n tends
to infinity. The results on isotropic wavelet compression have been unified in a sophisticated way in [17]. Since
it somewhat presents a finalization of the isotropic wavelet compression, we refer to [17] for further details.
Note that, with a slightly different approach but based on analogous principles similar complexity results for
the isotropic setting have been presented in [55]. In summary, substituting h = 2−J , one finds

• Discretization by sparse tensor product spaces yields O(22JJ2(n−1)) non-zero entries in the system
matrix.

• Wavelet compression of general full tensor product spaces yields O(2nJ) non-zero matrix entries.

The following diagram illustrates the connection between the two approaches and our new results:

O(22nJ )

[17] et al. isotropic
operators

��

[7] et al.

isotropic
operators

�� O(22JJ2(n−1))

an-/isotropic
operators

��
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�
�
�

O(2nJ )
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operators

���������� O(2JJ2(n−1))
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We shall use the notion of computational “complexity” exclusively to indicate the number of non-zero entries
in a given system matrix. With an efficient implementation and quadrature as in e.g. [30] it can be shown
that the overall cost of computing and assembling the system matrix is essentially of the same magnitude as its
complexity.

As in [47], the complexity results of this work also imply that, under certain conditions, the stiffness matrices
of the anisotropic non-local operators under consideration are s∗-compressible in the sense of [10,25,52]. This
shows that, in order to solve the corresponding integrodifferential equations one may employ adaptive wavelet
algorithms as in [9,10,26] that converge with the rate of best approximation by an arbitrary linear combination
of N wavelets (so-called best N -term approximation, cf. [22]).

The outline of this work is as follows:
In Section 2 the abstract set-up is presented and notation is fixed.
Section 3 provides the main motivation. We briefly introduce finite element asset pricing methods that lead

to the abstract anisotropic integrodifferential equations under consideration.
Based on the considerations of Section 3, in Section 4 a new class of anisotropic operator symbols is defined

and examples are provided. For the corresponding class of anisotropic operators we then construct the sparse
tensor wavelet compression scheme as follows:

In Section 5 fundamental estimates for the entries in the sparse tensor product-based stiffness matrix are
derived.

Section 6 provides the consistency requirements that need to be satisfied by the compression scheme in order
to preserve the stability and convergence properties of the sparse tensor product setting without compression.

Based on the two previous sections, in Section 7 the actual compression schemes are defined. Consistency
with the sparse tensor product setting without compression is proved.

In Section 8 we provide complexity results for the constructed compression schemes. Based on [46], we
show that under certain conditions the complexity of the sparse tensor product setting can be reduced to
O (2JJ2(n−1)

)
non-zero matrix entries provided that the number of vanishing moments is sufficiently large. If

these conditions are not satisfied, the complexity can be bounded by O (2(1+ε)J
)
, where ε < 1 tends to zero

with increasing number of vanishing moments.
Some numerical experiments are presented in Section 9. They coincide with the analytic predictions.
Finally, in Section 10 we briefly summarize the main results of this work in order to provide a clear under-

standing of the uses and limitations of the presented methods.

2. Galerkin discretization of multidimensional PIDEs

The compression scheme and numerical analysis we present in this work is based on the following generic
set-up (cf. [46,47]): On [0, 1]n =: �, we consider an integrodifferential equation

Bu = f, (2.1)

with an integrodifferential operator
B = AD + A, (2.2)

where AD denotes a (possibly vanishing) differential operator

ADu = −1
2

n∑
i,j=1

Qij
∂2u

∂xi∂xj
, Qij ∈ R, i, j = 1, . . . , n, (2.3)

and A is an integral operator of possibly anisotropic order α ∈ Rn, i.e. A : Hα/2(�) → H−α/2(�) continuously.
Here, the Sobolev spaces Hα/2(�) and its dual H−α/2(�) are defined as follows: for u ∈ C∞

0 (�), define ū to
be the zero extension of u to all of Rn. Then, for s ∈ Rn, the space Hs(�) is given by

Hs(�) := {ū |u ∈ C∞
0 (�)}, (2.4)
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where the closure is taken with respect to the norm of the anisotropic Sobolev space

Hs(Rn) :=
{
f ∈ S′(Rn) :

∥∥∥∥ n∑
i=1

(1 + ξ2i )
si/2f̂

∥∥∥∥
L2(Rn)

<∞
}
,

where f̂ denotes the Fourier transform of f ∈ S′(Rn). We assume that the operator A admits a kernel
representation,

Au(x) =
∫

�
κ(x, y)u(y)dy, (2.5)

with a distributional kernel function κ(·, ·) that is smooth outside the secondary diagonals S ⊂ [0, 1]n × [0, 1]n,
i.e.

S = {(x, y) ∈ [0, 1]n × [0, 1]n : xi = yi, for some i ∈ {1, . . . , n}} ·
The best known example of such integral operators are:

Example 2.1 (isotropic operators). Any classical pseudodifferential operator A : Hq(Rn) → H−q(Rn) of order
2q ∈ R with symbol in the Hörmander class S2q

1,0 in the sense of [35,56] admits a distributional kernel function
κ(·, ·) as in (2.5).

In this case, by the Schwartz kernel theorem (cf. e.g. [54], Sect. VI.7), the function κ(·, ·) is singular only on
the diagonal in [0, 1]n × [0, 1]n and for any σ, σ′ ∈ {0, 1, 2, . . .}n there holds∣∣∣∂σx∂σ′

y κ(x, y)
∣∣∣ ≤ cσ,σ′ |x− y|−(n+2q+|σ|+|σ′|), for all x, y ∈ [0, 1]n, (2.6)

with some constant cσ,σ′ independent of x, y ∈ [0, 1]n. A sparse tensor product-based compression scheme
especially for such, so-called isotropic, operators has been constructed in [47] and [46], Chapter 2. The more
general compression scheme of this work is, of course, also applicable. Throughout, we refer to estimates of the
form (2.6) as Calderón-Zygmund (CZ) estimates.

Denoting by Q = (Qij)1≤i,j≤n the coefficient matrix of the differential operator AD in (2.3) we shall assume
that either Q = 0 or Q > 0. The order multiindex α̃ ∈ Rn of the integrodifferential operator B = AD + A is
then given by

α̃ =

{
(2, . . . , 2), if Q > 0 and max{α1, . . . , αn} ≤ 2,
α, otherwise.

(2.7)

For the numerical solution of (2.1), we employ the Galerkin method with respect to a hierarchy of conforming
trial spaces V̂J ⊂ V̂J+1 ⊂ H α̃/2(�). The variational problem of interest reads: find uJ ∈ V̂J such that,

〈BuJ , vJ〉 = 〈f, vJ 〉 for all vJ ∈ V̂J . (2.8)

The index J represents the meshwidth of order 2−J . We shall make the following assumptions on the operator B
to ensure that the variational problem (2.8) is well posed – for details we refer to e.g. [53], Proposition III.2.3.

(1) B satisfies a G̊arding inequality, i.e. there exist constants γ > 0, C ≥ 0 such that

〈Bu, u〉 ≥ γ‖u‖2
Hα̃/2(�) − C‖u‖2

L2(�), for all u ∈ H α̃/2(�). (2.9)

(2) B : H α̃/2(�) → H−α̃/2(�) is continuous, i.e. there exists a constant C′ > 0 such that for all u, v ∈
H α̃/2(�) there holds

|〈Bu, v〉| ≤ C′‖u‖Hα̃/2(�)‖v‖Hα̃/2(�). (2.10)



WAVELET COMPRESSION OF ANISOTROPIC OPERATORS 37

The nested trial spaces V̂J ⊂ V̂J+1 we employ in (2.8) shall be sparse tensor product spaces based on a wavelet
multiresolution analysis described in the next sections.

To simplify notation, we denote

α := |α|∞ = max{α1, . . . , αn}, for any α ∈ Rn.

We shall frequently write a � b to express that a is bounded by a constant multiple of b, uniformly with respect
to all parameters on which a and b may depend. Then a ∼ b means a � b and b � a. Also, we shall denote
N0 := N ∪ {0} = {0, 1, 2, . . .}.

2.1. Wavelets on the interval

On [0, 1] we shall use the same scaling functions and wavelets as described in [17] based on the construction
of [8,16,43] and the references therein.

The trial spaces Vj are spanned by single-scale bases Φj = {φj,k : k ∈ Δj}, where Δj denote suitable index
sets. The approximation order of the trial spaces we denote by d, i.e.

d = sup
{
s ∈ R : sup

j≥0

{
infvj∈Vj ‖v − vj‖0

2−js‖v‖s

}
<∞ , ∀v ∈ Hs([0, 1])

}
· (2.11)

Using the single-scale bases constructed in [8] based on B-splines adapted to the interval [0, 1] as described
in [16], we assume that for each j ≥ 0, the basis functions φj,k ∈ Φj have compact supports and admit two
important properties: ‖φj,k‖L2([0,1]) = 1 and | supp φj,k| ∼ 2−j.

Associated to these primal bases are dual bases Φ̃j = {φ̃j,k : k ∈ Δj}, i.e. there holds 〈φj,k, φ̃j,k′〉 = δk,k′ .
By d̃ we denote the order of Φ̃j and assume d ≤ d̃ for the remainder of this work. In particular, for B-splines of
order d and duals of order d̃ ≥ d such that d+ d̃ is even the bases Φj , Φ̃j as in [16] have approximation orders d
and d̃.

To these single-scale bases there exist biorthogonal complement or wavelet bases Ψj = {ψj,k : k ∈ ∇j},
Ψ̃j = {ψ̃j,k : k ∈ ∇j}, where ∇j := Δj+1\Δj. Inherited from φj,k, the ψj,k have compact supports and there
holds

| supp ψj,k| ∼ 2−j. (2.12)

The dual pair of wavelet bases Ψ, Ψ̃ is defined by Ψ =
⋃
j≥0 Ψj , Ψ̃ =

⋃
j≥0 Ψ̃j , with Ψ0 := Φ1, Ψ̃0 := Φ̃1. There

holds
‖ψj,k‖L2([0,1]) ∼ 1, for all ψj,k ∈ Ψ.

From the biorthogonality of Ψ and Ψ̃ one infers the so-called cancellation property of Ψ (see e.g. [6]), i.e.

|〈ψj,k, f〉| � 2−j(d̃+1/2)|f |W d̃,∞(suppψj,k), for each ψj,k ∈ Ψ. (2.13)

Here |f |W d̃,∞(Ω) := supx∈Ω |∂d̃f(x)|. The mother wavelet of Ψ we denote by ψ, i.e. for any j and k ∈ ∇j ,

ψj,k(x) = 2j/2ψ(2jx− k), x ∈ [0, 1]. (2.14)

Denoting by Wj , W̃j the span of Ψj , Ψ̃j , there holds

Vj+1 = Wj+1 ⊕ Vj, and Ṽj+1 = W̃j+1 ⊕ Ṽj , for all j ≥ 0, (2.15)

and,
Vj = W0 ⊕ . . .⊕Wj , for all j ≥ 0. (2.16)
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Crucial for the consistency of our compression scheme is the fact that the wavelets on [0, 1] satisfy the following
norm estimates (cf. e.g. [13,16], for the one-sided estimates we refer to [61]):

For an arbitrary u ∈ Ht([0, 1]), 0 ≤ t ≤ d, with wavelet decomposition

u =
∞∑
j=0

∑
k∈∇j

uj,kψj,k =
∞∑
j=0

∑
k∈∇j

〈u, ψ̃j,k〉ψj,k,

there holds the norm equivalence,∑
(j,k)

22tj|uj,k|2 ∼ ‖u‖2
Ht([0,1]) , if 0 ≤ t < d− 1/2, (2.17)

or the one-sided estimate, ∑
(j,k)

22tj|uj,k|2 � ‖u‖2
Ht([0,1]) , if d− 1/2 ≤ t < d. (2.18)

In case t = d there only holds, ∑
(j,k)
j≤J

22tj|uj,k|2 � J ‖u‖2
Ht([0,1]) , if t = d. (2.19)

We conclude this section by an explicit example of wavelets on [0, 1] with approximation order d = 2:

Example 2.2. The wavelets comprise of piecewise linear continuous functions on [0, 1] vanishing at the end-
points. The mesh for level j ≥ 0 is defined by the nodes xj,k := k 2−(j+1) with k ∈ ∇j := {0, . . . , 2j+1}. There
holds Nj := dimVj = 2j+1 − 1 and therefore Mj := dimVj − dimVj−1 = 2j .

On level j = 0 we have N0 = M0 = 1 and ψ0,1 is defined as the piecewise linear function with value c0 > 0
at x0,1 = 1

2 and 0 at the endpoints 0, 1.
For j > 0 we firstly define cj := 2j/2. Then the wavelet ψj,1 is defined as the piecewise linear function such

that ψj,1(xj,1) = 2cj , ψj,1(xj,2) = −cj and ψj,1(xj,s) = 0 for all other s �= 1, 2. Similarly, the wavelet ψj,Mj

takes the values ψj,Mj (xj,Nj ) = 2cj, ψj,Mj (xj,Nj−1) = −cj and zero at all other nodes. For 1 < k < Mj the
wavelet ψj,k is defined by ψj,k(xj,2k−2) = −cj, ψj,k(xj,2k−1) = 2cj, ψj,k(xj,2k) = −cj and ψj,k(xj,s) = 0 for all
other s �= 2k − 2, 2k − 1, 2k.

Remark 2.3. Note that there is a strong link between the order of the operator, the approximation order of
the multiresolution analysis and the number of vanishing moments of the wavelets which already restricts the
possible choice of wavelet bases. In fact, the analysis of the so-called second compression we adapt from [17,51]
refers exclusively to biorthogonal spline wavelets whose singular supports are well defined and not dense in the
wavelets’ supports. We refer to [29] for more specific illustrations.

2.2. Sparse tensor product spaces

For x = (x1, . . . , xn) ∈ [0, 1]n, we denote,

ψj,k(x) := ψj1,k1 ⊗ . . .⊗ ψjn,kn(x1, . . . , xn) = ψj1,k1(x1) . . . ψjn,kn(xn).

Using Fubini’s theorem one infers that the scaling and cancellation properties (2.12), (2.13) of the univariate
wavelets carry forward to their tensor products. In particular,

|supp ψj,k| =
n∏
i=1

|supp ψji,ki | ∼ 2−(j1+...+jn),
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and each ψj,k has d̃ vanishing moments which implies the cancellation property

|〈v, ψj,k〉| � 2−
1
2 |j|12−d̃max{j1,...,jn}|v|W d̃,∞(suppψj,k). (2.20)

On � = [0, 1]n, we define the subspace VJ ⊂ Hα/2(�) as the (full) tensor product of the spaces defined on [0, 1]

VJ :=
n⊗
i=1

VJ , (2.21)

which can be written using (2.16) as

VJ = span {ψj,k : ki ∈ ∇ji , 0 ≤ ji ≤ J, i = 1, . . . , n}

=
J∑

j1,...,jn=0

Wj1 ⊗ . . .⊗Wjn .

We define the regularity γ > |α̃|∞/2 of the trial spaces by

γ = sup {s ∈ R : VJ ⊂ Hs(�)} · (2.22)

It is known that based on the spline wavelets constructed in Example 2.2 the regularity index satisfies γ = d−1/2.
The sparse tensor product spaces V̂J are defined by

V̂J := span {ψj,k : ki ∈ ∇ji , i = 1, . . . , n; 0 ≤ |j|1 ≤ J} =
∑

0≤|j|1≤J
Wj1 ⊗ . . .⊗Wjn . (2.23)

One readily infers that NJ := dim(VJ ) = O(2nJ) whereas N̂J := dim(V̂J ) = O(2JJn−1) as J tends to infinity.
However, both spaces have similar approximation properties in terms of the Finite Element meshwidth h = 2−J ,
provided the function to be approximated is sufficiently smooth. To characterize the necessary extra smoothness
we introduce the spaces Hs([0, 1]n), s ∈ Nn0 , of all measurable functions u : [0, 1]n → R, such that the norm,

‖u‖Hs(�) :=
( ∑

0≤αi≤si,
i=1,...,n

‖∂α1
1 . . . ∂αn

n u‖2
L2(�)

)1/2

,

is finite. That is

Hs([0, 1]n) =
n⊗
i=1

Hsi([0, 1]). (2.24)

For arbitrary s ∈ Rn≥0, we define Hs by interpolation. Because of the underlying tensor product structure (2.24),
one infers from (2.17)–(2.19) that for

u =
∑
(j,k)

uj,kψj,k =
∑
(j,k)

uj,kψj1k1 ⊗ . . .⊗ ψjnkn ,

there holds the norm equivalence∑
(j,k)

22s1j1+...+2snjn |uj,k|2 ∼ ‖u‖2
Hs , if 0 ≤ si < d− 1/2 for all i, (2.25)
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and the one-sided bounds∑
(j,k)

22s1j1+...+2snjn |uj,k|2 � ‖u‖2
Hs , if 0 ≤ si < d for all i, (2.26)

∑
k

22s1j1+...+2snjn |uj,k|2 � ‖u‖2
Hs , if si = d for some i. (2.27)

Note that a slightly refined version of the one-sided bounds (2.26), (2.27) can be found in [48], proof of Theo-
rem. 5.1.

By (2.21), one may decompose any u ∈ L2(�) into

u(x) =
∑
ji≥0

i=1,...,n

∑
ki∈∇ji

uj,kψj,k(x) =
∑
ji≥0

i=1,...,n

∑
ki∈∇ji

uj,kψj1,k1(x1) . . . ψjn,kn(xn).

In this style, the sparse grid projection P̂J : L2(�) → V̂J is defined by truncation of the wavelet expansion:

(P̂Ju)(x) :=
∑

0≤|j|1≤J

∑
k∈∇j

uj,kψj,k(x), (2.28)

where ∇j = ∇(j1,...,jn) := ∇j1 × . . .×∇jn .

2.3. Approximation rates for anisotropic operators on sparse tensor product spaces

For the proof of the following convergence and stability results, we refer to [48] and [28,60], respectively.
By [60], Proposition 3.1, and [48], Theorem 5.1, the sparse tensor product projection P̂J in (2.28) satisfies:

Lemma 2.4. Suppose for each i = 1, . . . , n there holds 0 ≤ αi/2 < γ, with γ given by (2.22), then for
u ∈ Hα/2(�) there holds:

(1) Stability of P̂J :
‖P̂Ju‖Hα/2(�) � ‖u‖Hα/2(�). (2.29)

(2) Approximation property of P̂J : let αi

2 ≤ ti ≤ d, i = 1, . . . , n, with d given by (2.11). For u ∈ Ht(�)
there holds

‖u− P̂Ju‖Hα/2(�) �

⎧⎪⎨⎪⎩
2( α

2 −t)J‖u‖Ht(�) if
{
α �= 0 or
ti �= d for all i,

2( α
2 −t)JJ

n−1
2 ‖u‖Ht(�) otherwise,

(2.30)

where we denote t = (t1, . . . , tn) and (α2 − t) = max{α1
2 − t1, . . . ,

αn

2 − tn}.
Thus, there holds:

Proposition 2.5. Let α̃, as defined in (2.7), denote the order of the integrodifferential operator B in (2.2).
Then the sparse tensor product spaces V̂J in (2.23) based on the wavelets introduced in Section 2.1 satisfy:

(1) The Galerkin discretization of (2.1) based on sparse tensor product spaces V̂J as defined in (2.23) is
stable, i.e. there exist J0 > 0 and c1 > 0, c2 ≥ 0 such that for any J ≥ J0 there holds

| 〈BvJ , vJ 〉| ≥ c1‖vJ‖2
Hα̃/2(�) − c2‖vJ‖2

L2(�), for all vJ ∈ V̂J , (2.31)
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and there exists some c3 > 0 such that for all J ≥ J0,

|〈BvJ , wJ 〉| ≤ c3‖vJ‖Hα̃/2(�)‖wJ‖Hα̃/2(�), for all vJ , wJ ∈ V̂J . (2.32)

In particular, the variational problem (2.8) admits a unique solution.
(2) Let u and uJ denote the solutions of the original equation (2.1) and the variational problem (2.8),

respectively. The best convergence of the sparse tensor product Galerkin scheme is determined by

‖u− uJ‖Hα̃/2(�) � 2−(d−|α̃|∞/2−ν)J‖u‖Hρ(�), (2.33)

provided u ∈ Hρ(�). The anisotropic smoothness parameter ρ ∈ Rn>0 is given by

ρi = d−
( |α̃|∞

2
− α̃i

2

)
, (2.34)

for each i = 1, . . . , n, and furthermore

ν =

⎧⎨⎩
(n− 1)d
nd− 1

, if α̃ = (0, . . . , 0) and hence ρ = (d, . . . , d),

0, otherwise.

Proof. The stability estimates (2.31), (2.32) are obtained exactly as in [47], Proposition 2.1. The convergence
rate (2.33) in the sparse tensor product setting is given by [48], Proposition 5.2. �

Having set up the general numerical basis of our approach, in the next section we briefly describe our main
applications.

3. Motivation: Pricing of financial derivatives in models with jumps

Even though the results of the present work can be applied to a wide range of non-local operators, our main
motivation arises from Mathematical Finance. In this section we illustrate how high-dimensional equations of
the form (2.1) naturally occur in this field.

3.1. Pricing equations

Consider arbitrage-free values u(x, T ) of contingent claims on baskets of s ∈ N assets. The log-returns of the
underlying assets are modeled by a Lévy or, more generally, a Feller process X with state space Rn, s ≤ n, and
X0 = x. For example, the compression techniques constructed in this work can be applied when X is a Lévy
copula process (then n = s ≥ 2, cf. [24]) or the price process of a Barndorff-Nielsen-Shephard (BNS) stochastic
volatility model (then s = 1, n = 2, cf. [3]).

By the fundamental theorem of asset pricing (see e.g. [18]), an arbitrage free price u of an European contingent
claim with payoff g(·) is given by the conditional expectation

u(x, t) = E (g(Xt) | X0 = x),

under an a priori chosen risk-neutral martingale measure equivalent to the historical measure (see e.g. [19,20]
for measure selection criteria).

Deterministic methods to compute u(x, T ) are based on the solution of the corresponding backward Kolmogorov
equation (for the derivation see e.g. [21], [38], Sect. 7.3, as well as [24,41,49])

ut + Bu = 0, u|t=T = g. (3.1)
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Here B denotes the infinitesimal generator of X with domain D(B). For the Galerkin-based Finite Element
implementation, equation (3.1) is converted into variational form as illustrated in Section 2. Formally, the
resulting problem reads: find u such that〈

∂

∂t
u, v

〉
+ 〈Bu, v〉︸ ︷︷ ︸

E(u,v)

= 0 , for all v ∈ D(B). (3.2)

In the classical setting of Black-Scholes, X is a geometric Brownian Motion and B is a diffusion operator so
that a closed form solution of (3.1) and (3.2) for plain vanilla contracts is possible in certain cases. For more
general Lévy or Feller price processes X , B is in general a pseudodifferential operator with symbol ψX , i.e.

(Bu)(x) = (ψX(x,D)u)(x) = −
∫

Rn

ei〈ξ,x〉ψX(x, ξ)û(ξ)dξ. (3.3)

If X is a pure jump process and hence B = A is an integral operator, one obtains the kernel representation (2.5)
of A = ψX(x,D) by writing for any u ∈ S(Rn),

Au(x) = −
∫

Rn

∫
Rn

ei〈x−y,ξ〉ψX(x, ξ)u(y)dydξ.

Thus, the kernel κ(·, ·) in (2.5) can be represented as

κ(x, y) :=
∫

Rn

ei〈x−y,ξ〉ψX(x, ξ)dξ, (3.4)

the inverse Fourier transform (in the sense of oscillatory integrals, see e.g. [36], Eq. (18.1.7)) of ψX at x− y.

Remark 3.1. If X is a pure jump Lévy process with absolutely continuous Lévy measure then the following
relation holds between κ(·, ·) and the density k(·) of the Lévy measure of X :

κ(x, y) =
∫

Rn\{0}

∫
Rn

(
ei〈x−y−z,ξ〉 − ei〈x−y,ξ〉 +

i〈z, ξ〉
1 + |z|2 ei〈x−y,ξ〉

)
k(z)dξdz, (3.5)

in the sense of distributions. By [34], Lemma 2.8, for any ξ ∈ Rn, z ∈ Rn there holds∣∣∣∣e−i〈z,ξ〉 − 1 +
i〈z, ξ〉

1 + |z|2
∣∣∣∣ ≤ 7 · |z|2

1 + |z|2 · (1 + |ξ|2).

Hence, the distributional kernel κ(·, ·) in (3.5) is indeed well defined, since k(·) is a Lévy kernel that satisfies∫
Rn

(|z|2 ∧ 1)k(z)dz <∞.

For an extensive description of Lévy processes we refer to the monographs [4,50].

For the numerical solution of the variational problem (3.2) we employ variational Galerkin methods developed
in [1,2,12,24,31,40–42,46]. We conclude this introductory part by illustrating this approach in case the underlying
process X is a Lévy process (for a more general survey we refer to [32,33]).
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3.2. The Finite Element Method for option pricing in multidimensional Lévy models

The considerations of this section are based on [24,49]. Suppose X is a Lévy process with state space Rn

and characteristic exponent

ψX(ξ) = −i〈γ, ξ〉 +
1
2
〈ξ, Qξ〉 +

∫
Rn\{0}

(
1 − ei〈ξ,y〉 +

i〈ξ, y〉
1 + |y|2

)
ν(dy),

where γ ∈ Rn is the drift vector, Q ∈ Rn×n is the covariance matrix and ν(dy) is the Lévy measure of X .
Assume the risk-neutral dynamics of s = n > 1 assets are given by

Sit = Si0e
rt+Xi

t , i = 1, . . . , n,

under a risk-neutral measure such that eX
i

is a martingale with respect to the canonical filtration F0
t :=

σ(Xs, s ≤ t), t ≥ 0, of the multivariate process X .
Consider an European option with maturity T <∞ and payoff g(S) which is assumed to be Lipschitz. The

value V (t, St) of this option is given by

V (t, S) = E

(
e−r(T−t)g(ST )|St = S

)
, (3.6)

and, sufficient smoothness provided, it can be computed as the solution of a partial integrodifferential equation.

Theorem 3.2. Assume that V (t, S) in (3.6) satisfies

V (t, S) ∈ C1,2 ((0, T )× Rn>0) ∩ C0
(
[0, T ]× Rn≥0

)
.

Then V (t, S) is the solution of the following PIDE:

∂V

∂t
(t, S) +

1
2

n∑
i,j=1

SiSjQij
∂2V

∂Si∂Sj
(t, S) + r

n∑
i=1

Si
∂V

∂Si
(t, S) − rV (t, S) (3.7)

+
∫

Rn

(
V (t, Sez) − V (t, S) −

n∑
i=1

Si (ezi − 1)
∂V

∂Si
(t, S)

)
ν(dz) = 0,

in (0, T )× Rn≥0 where V (t, Sez) := V (t, S1ez1 , . . . , Snezn), and the terminal condition is given by

V (T, S) = g(S) ∀S ∈ Rn≥0. (3.8)

Proof. [49], Theorem 4.2. �
If the marginal Lévy measures νi, i = 1, . . . , n, of ν are absolutely continuous and admit densities νi(dz) =

ki(z)dz with constants Gi > 0, Mi > 0, i = 1, . . . , n, such that

ki(z) �
{

eGiz , for all z < −1,

e−Miz, for all z > 1,
(3.9)

the PIDE (3.7) can be transformed into a simpler form.

Corollary 3.3. Suppose the marginal Lévy measures νi, i = 1, . . . , n, satisfy (3.9) with Mi > 1, Gi > 0,
i = 1, . . . , n. Furthermore, let

u(τ, x) = erτV
(
T − τ, ex1+(γ1−r)τ , . . . , exn+(γn−r)τ

)
,
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where

γi =
Qii

2
+
∫

R

(ezi − 1 − zi) νi(dzi).

Then, u satisfies the PIDE

∂u

∂τ
+ AD[u] + A[u] = 0, (3.10)

in (0, T )× Rn with initial condition u(0, x) := u0. The differential operator is defined for ϕ ∈ C2
0 (Rn) by

AD[ϕ] = −1
2

n∑
i,j=1

Qij
∂2ϕ

∂xi∂xj
, (3.11)

and the integrodifferential operator by

A[ϕ] = −
∫

Rn

(
ϕ(x+ z) − ϕ(x) −

n∑
i=1

zi
∂ϕ

∂xi
(x)

)
ν(dz). (3.12)

The initial condition is given by

u0 = g(ex) := g(ex1 , . . . , exn). (3.13)

Proof. [49], Corollary 4.3. �

For any u, v ∈ C∞
0 (Rn) we associate with the diffusion part AD the bilinear form

ED(u, v) =
1
2

n∑
i,j=1

Qij

∫
Rn

∂u

∂xi

∂v

∂xj
dx.

To the jump part A we associate the so-called canonical bilinear jump form

EJ (u, v) = −
∫

Rn

∫
Rn

(
u(x+ z) − u(x) −

n∑
i=1

zi
∂u

∂xi
(x)

)
v(x)dx ν(dz),

and set

E(u, v) = ED(u, v) + EJ(u, v). (3.14)

Herewith, we can now formulate the formal parabolic problem (3.2) rigorously:

Find u ∈ L2((0, T );D(E)) ∩H1((0, T );D(E)∗) such that〈
∂u

∂τ

〉
vD(E)∗,D(E) + E(u, v) = 0, τ ∈ (0, T ), ∀v ∈ D(E), (3.15)

u(0) = u0.

Here D(E) denotes the domain of the bilinear form E(·, ·) of X . The well-posedness of (3.15) has been analyzed
in [24,49] where it also has been shown that D(E) can explicitly be characterized in terms of anisotropic Sobolev
spaces.
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For implementation, the variational problem (3.15) needs to be localized to a bounded domain, discretized
in space, and a time stepping scheme has to be applied. More precisely, these three steps are accomplished as
follows:

1. Localization. For the localization we find that in Finance truncation of the original x-domain Rn to
ΩR := [−R,R]n, R > 0, corresponds to approximating the solution u of (3.7) by the price uR of a barrier option
on ΩR. In log-price uR is given by

uR(t, x) = E

(
g(eXT )1{T<τΩR,t}|Xt = x

)
, (3.16)

where τΩR,t = inf{s ≥ t|Xs /∈ ΩR} denotes the first exit time of Xt from ΩR after time t. In case of semiheavy
tails (3.9), the solution of the localized problem uR converges pointwise exponentially to the solution u of the
original problem.

Theorem 3.4. Suppose the payoff function g : Rn → R satisfies

g(S) �
n∑
i=1

Si + 1 , ∀S ∈ Rn≥0,

and the marginal measures νi satisfy (3.9) with Mi > 1, Gi > 1, i = 1, . . . , n. Then, there exist constants
α, β > 0 such that

|u(t, x) − uR(t, x)| � e−αR+β‖x‖∞ .

Proof. [49], Theorem 4.15. �
Remark 3.5. Theorem 3.4 yields that as long as the underlying Lévy measure admits semiheavy tails and the
payoff function g is not growing stronger than linearly, the option price u as given (3.7) can be approximated
by the price uR of a corresponding down-and-out barrier option with “active domain” ΩR. The definition of uR
is given in (3.16).

Heuristically speaking, as long as the price of the underlying remains within the active domain ΩR of uR
the values of the two options coincide. Clearly, as one increases the size of ΩR the difference between the two
option values has to decrease. Due to the semiheavy tails of the underlying Lévy measure (i.e. the marginal
densities decay exponentially), this difference decreases exponentially with increasing size of ΩR.

Since uR converges exponentially to the desired solution u of (3.7), from now on we shall assume that R > 0
and hence ΩR is chosen sufficiently large so that it suffices to calculate uR instead of u. Since uR is the price of
a down-and-out barrier option one is left with a Dirichlet problem (cf. e.g. [11], Sect. 12.1.2): more precisely,
for any function u with support in ΩR we denote by u its extension by zero to the whole of Rn and define

ER(u, v) = E(u, v),

with
D(ER) = {u | u ∈ C∞

0 (ΩR)},
where the closure is taken with respect to the natural norm ‖ · ‖E of D(E), i.e. ‖u‖2

E = E(u, u) + ‖u‖2
L2. Thus,

we can restate the variational form (3.15) on the bounded domain and the existence and uniqueness results
for (3.15) remain valid.

Find uR ∈ L2((0, T );D(ER)) ∩H1((0, T );D(ER)∗) such that〈
∂uR
∂τ

, v

〉
+ ER(uR, v) = 0 , ∀τ ∈ (0, T ), ∀v ∈ D(ER) , (3.17)

uR(0) = u0|ΩR .



46 N. REICH

2. Space discretization. For the discretization of D(ER) we choose the sparse tensor product spaces V̂J ,
J > 0, defined in Section 2.2 – assuming that V̂J ⊂ D(ER), which for instance is shown in [24] for Lévy copula
processes. The corresponding semidiscrete problem reads:

First choose an approximation u0,J ∈ V̂J for the initial data u0|ΩR .

Then find uJ ∈ H1((0, T ); V̂J) such that〈
∂uJ
∂τ

, vJ

〉
+ ER(uJ , vJ ) = 0 , ∀τ ∈ (0, T ), ∀vJ ∈ V̂J ,

uJ(0) = u0,J .

(3.18)

The approximation of the initial data could be chosen as u0,J = P̂J(u0|ΩR) or as an interpolant of u0|ΩR . Note
however that as to my knowledge currently there is no universal method for approximating the initial data u0,J

based on a general payoff function g as in (3.13). In practice, an interpolant of u0|ΩR often has to be chosen
carefully and specifically for the given function g.

The semidiscrete problem (3.18) is an initial value problem for N̂J = dim V̂J ordinary differential equations

KJ
∂

∂τ
u+ AJu = 0, u(0) = u0, (3.19)

where u(t) denotes the coefficient vector of uJ(t) with respect to the wavelet basis of V̂J . Likewise u0 denotes
the coefficient vector of u0,J , and KJ , AJ denote the mass- and stiffness matrix, respectively, with respect to
the basis of V̂J .

3. Time discretization using the θ-scheme. Let 0 ≤ θ ≤ 1. For T <∞ and I ∈ N, define the time step

k =
T

I
,

and ti = ik, i = 0, . . . , I. The fully discrete θ-scheme reads:

First find u0
J ∈ V̂J satisfying u0

J = u0,J .

Then for i = 0, 1, . . . , I − 1, find ui+1
J ∈ V̂J such that〈

ui+1
J − uiJ
k

, vJ

〉
+ ER(ui+θJ , vJ ) = 0, ∀vJ ∈ V̂J .

(3.20)

Here ui+θJ := θui+1
J + (1 − θ)uiJ . In matrix form, the fully discrete problem (3.20) reads

(k−1KJ + θAJ )ui+1 = k−1KJu
i − (1 − θ)AJui, i = 0, 1, . . . , I − 1. (3.21)

Standard analysis of the θ-scheme (3.20) assumes that the bilinear form ER(·, ·) can be evaluated exactly, i.e. that
the corresponding stiffness matrix AJ is available. In practice this is unrealistic, since most often one only
obtains approximations of AJ . Since in this work we are interested in wavelet compression of AJ resulting in a
compressed matrix A

compr
J , we conclude this section by illustrating how the impact of the resulting consistency

error can be analyzed. To this end, we follow [59]: With the compressed matrix A
compr
J we associate the

perturbed bilinear form ẼR. From (3.20) we herewith obtain the perturbed θ-scheme

ũ0
J = u0,J , (3.22)〈
ũi+1
J − ũiJ
k

, vJ

〉
+ ẼR(ũi+θJ , vJ ) = 0, (3.23)
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for i = 0, 1, . . . , I − 1 and every vJ ∈ V̂J , where ũi+θJ := θũi+1
J + (1 − θ)ũiJ . In matrix form, (3.23) reads

(k−1KJ + θAcompr
J )ũi+1 = k−1KJ ũ

i − (1 − θ)Acompr
J ũi,

for i = 0, 1, . . . , I−1. In order to define consistency conditions for the perturbed θ-scheme, as in (2.7) we denote
by α̃ ∈ (0, 2]n the order of the integrodifferential operator B = AD + A corresponding to E(·, ·), i.e.

α̃ =

{
α, if X is a pure jump process, i.e. AD ≡ 0 ,

(2, . . . , 2), otherwise,

where α ∈ (0, 2)n denotes the order of A. Then the perturbed form ẼR needs to satisfy the following consistency
conditions, cf. [59], Section 3.3:

(1) There is δ < 1 independent of J ≥ 0 such that∣∣∣ER(uJ , vJ ) − ẼR(uJ , vJ )
∣∣∣ ≤ δ‖uJ‖Hα̃/2‖vJ‖Hα̃/2 , ∀uJ , vJ ∈ V̂J . (3.24)

(2) There exists a constant C > 0 independent of J ≥ 0 such that∣∣∣ER(P̂Ju, vJ) − ẼR(P̂Ju, vJ)
∣∣∣ ≤ C2J(|α̃|∞/2−d)Jν‖u‖H(d,...,d)‖vJ‖Hα̃/2 , (3.25)

for all u ∈ H(d,...,d)(ΩR), vJ ∈ V̂J with some ν ≥ 0. Here, as in Section 2, d denotes the approximation
order (2.11) of V̂J .

If ẼR(·, ·) satisfies (3.24), the stability of the perturbed θ-scheme (3.22), (3.23) can be obtained from [59],
Proposition 4.3. Note that, by [59], Remark 4.4, for θ < 1/2 there exists a positive constant C∗ independent of
the FE meshwidth h = 2−J and θ such that the time-step restriction

k ≤ C∗
h|α̃|∞

1 − 2θ
, (3.26)

is sufficient for stability. For θ ≥ 1/2 the scheme is unconditionally stable.
Assuming (3.24) and (3.25), the convergence of the perturbed θ-scheme is determined by [59], Theorem 5.4.

Since we give an explicit version of this result for anisotropic operators in Section 6.2, Theorem 6.6, we do not
repeat the statement here.

Finally, note that in order to obtain the semidiscrete problem (3.18), (3.19), we need to solve a variational
problem of the form (2.8) with B = AD + A with non-local operator A as abstractly described in Section 2.

Based on the semidiscrete formulations (3.18), (3.19), in the following sections we will only consider elliptic
integrodifferential equations in space with the understanding that the developed methods can also be applied
in the context of parabolic problems such as (3.15).

4. Anisotropic operators and symbols

We return to the generic set-up of Section 2. As before, we are interested in the efficient discretization of the
integrodifferential equation (2.1) of the form

Bu = f,

with an integrodifferential operator
B = AD + A, (4.1)

given by (2.2). The sparse tensor product stiffness matrix of the differential operator AD in wavelet coordinates
is of essentially optimal complexity O(2JJ (n−1)), since AD is local. Hence, the goal of this section is to reduce
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the complexity of the stiffness matrix of the integral operator A. More precisely, we provide a generic compres-
sion scheme for continuous operators

A : Hα+s(Rn) → Hs(Rn), s ∈ Rn,

for any multiindex α ∈ Rn≥0. To specify such operators we introduce a suitable class of anisotropic symbols.
Even though the compression scheme constructed in this section is also applicable to isotropic operators of

Hörmander-type as in Example 2.1, it is not an extension of the compression scheme defined [47] which was
constructed especially for such operators. Since the anisotropic operators that we consider here are allowed
a more complex singularity structure than isotropic operators, the matrix entry estimates that we derive in
Section 5 below differ significantly from those of [47]. For isotropic operators the specialized compression
scheme of [47] is more efficient, i.e. optimal complexity can be proved under weaker assumptions on the number
of vanishing moments (see also [46], Chap. 2). For anisotropic operators however only the compression scheme
that we define in the following is applicable.

Recall that for any symbol p : Rn → R, the corresponding operator p(D) is defined by

p(D)u(x) = −
∫

Rn

ei〈x,ξ〉p(ξ)û(ξ)dξ, u ∈ S(Rn). (4.2)

Furthermore, denote the axes in Rn by Λ := {x ∈ Rn : xi = 0 for some i ∈ {1, . . . , n}}. Herewith we can define
a suitable class of anisotropic symbols and corresponding operators.

Definition 4.1. A function p : Rn → R is called a symbol in class Γα(Rn), α ∈ Rn, if p ∈ C∞(Rn\Λ)∩C(Rn)
such that for any τ ∈ Nn0 there holds∣∣∣∂τξ p(ξ)∣∣∣ �

∏
i∈Iτ

|ξi|αi−τi ·
∏
k/∈Iτ

(1 + |ξk|2)
αk
2 , for all ξ ∈ Rn, (4.3)

where we set Iτ := {i : τi > 0}. The multiindex α is called the (anisotropic) order of the symbol p and the
operator A = p(D).

Note that similar classes have already been presented in the context of Lévy processes in [45,48]. Some
possible realizations of operators A with symbols p ∈ Γα(Rn) are:

Example 4.2. If for any τ ∈ Nn0 the function p ∈ C∞(Rn\Λ) ∩ C(Rn) satisfies∣∣∣∂τξ p(ξ)∣∣∣ �
n∏
i=1

(1 + |ξi|2)
αi−τi

2 , for all ξ ∈ Rn,

then p ∈ Γα(Rn) and A = p(D) is admissible in this setting.

Example 4.3. By [48], Theorem 4.7, the infinitesimal generator A of a pure jump Lévy copula process X with
tempered stable margins admits a symbol ψX ∈ Γα(Rn) and is hence admissible. In this case αi, i = 1, . . . , n,
are determined by the jump intensities of the marginal Lévy measures of X .

Example 4.4. Consider any isotropic symbol p ∈ C∞(Rn) of Hörmander-type with non-negative order, i.e.
there exists some α ∈ R≥0 such that for all τ ∈ Nn0 there holds∣∣∣∂τξ p(ξ)∣∣∣ � (1 + |ξ|2)α−|τ|

2 , for all ξ ∈ Rn. (4.4)

Then p ∈ Γα(Rn) with α1 = . . . = αn = α. To see this, one may use that for τ ∈ Nn0 there holds

n∏
i=1

(
1 + |ξi|2

) τi
2 ≤

n∏
i=1

(
1 +

n∑
j=1

|ξj |2
) τi

2

=
(
1 + |ξ|2) |τ|

2 ,
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and thus (
1 + |ξ|2)− |τ|

2 ≤
n∏
i=1

(
1 + |ξi|2

)− τi
2 . (4.5)

Furthermore, (
1 + |ξ|2)α

2 ≤
( n∏
i=1

(
1 + |ξi|2

))α
2

=
n∏
i=1

(
1 + |ξi|2

)α
2 , (4.6)

since α ≥ 0. Clearly, (4.5) and (4.6) imply that (4.3) holds for any symbol p ∈ C∞(Rn) that satisfies (4.4).
Note that this statement does not remain true if α < 0 in (4.4).

5. Fundamental anisotropic matrix estimates

Throughout this section, we consider an arbitrary but fixed pair of two n-dimensional tensor product wavelets
ψj,k = ψj1,k1 ⊗ . . .⊗ ψjn,kn , ψj′,k′ = ψj′1,k′1 ⊗ . . .⊗ ψj′n,k′n . For any coordinate direction s = 1, . . . , n, we denote

δxs := dist
(
supp{ψjs,ks}, supp{ψj′s,k′s}

)
,

and

σxs :=

{
dist

(
singsupp{ψjs,ks}, supp{ψj′s,k′s}

)
, if js ≤ j′s,

dist
(
supp{ψjs,ks}, singsupp{ψj′s,k′s}

)
, if j′s ≤ js.

In the following section we collect a number of auxiliary estimates which might be interesting in their own right,
but more importantly enable us to prove Theorem 5.5 in Section 5.2.

5.1. Auxiliary results

For a given symbol p : Rn → R, n ∈ N, and fixed (ξ2, . . . , ξn) ∈ Rn−1, we define the partial symbol p
 : R → R

by
p
(·) := p(·, ξ2, . . . , ξn). (5.1)

For sake of notational simplicity we do not emphasize the dependence of p
 on (ξ2, . . . , ξn) explicitly. The
corresponding operator is given by

p
(D)u(x) := p(D, ξ2, . . . , ξn)u(x) =
∫

R

eixξ1p(ξ1, ξ2, . . . , ξn)û(ξ1)dξ1. (5.2)

To prove fundamental matrix entry estimates in Section 5.2 below, we need to collect some auxiliary results on
symbols p : Rn → R that satisfy

|p(ξ1, . . . , ξn)| � c(j, j′, ξ2, . . . , ξn) · (1 + |ξ1|2)m
2 , for all ξ1 ∈ R, (5.3)

with suitable m ∈ R and where c(j, j′, ξ2, . . . , ξn) denotes some given function that may depend on j, j
′ and

(ξ2, . . . , ξn) but is independent of ξ1 ∈ R.

Remark 5.1. The (j, j′)-dependence of c(j, j′, ξ2, . . . , ξn) implies that the symbol p : Rn → R itself may depend
on the level indices j, j

′ of the wavelets that were fixed in the beginning. Inequality (5.3) implies that this de-
pendence can be characterized by the given function c(j, j′, ξ2, . . . , ξn). For example, in the proof of Theorem 5.5
below, we will encounter c(j, j′, ξ2, . . . , ξn) of the form

c(j, j′, ξ2, . . . , ξn) =
∏

2≤t≤n
|ξt|αt−τt · 2−α1 min{j1,j′1},

which is independent of ξ1 ∈ R.
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Lemma 5.2. If p : Rn → R satisfies (5.3) then for u ∈ Hs+m(R) there holds

‖p
(D)u‖Hs(R) � c(j, j′, ξ2, . . . , ξn) · ‖u‖Hs+m(R). (5.4)

Proof. At first assume s = 0 and m = 0 in (5.3). Then, p
(·) ∈ L∞(R). Using Plancherel’s theorem, one thus
obtains for u ∈ L2(R),

‖p
(D)u‖L2(R) = ‖(p
 · û)∨‖L2(R) = ‖(p
 · û)‖L2(R) ≤ ‖p
‖L∞(R) · ‖û‖L2(R).

By (5.3) there holds ‖p
‖L∞(R) � c(j, j′, ξ2, . . . , ξn) and thus we have

‖p
(D)u‖L2(R) � c(j, j′, ξ2, . . . , ξn) · ‖u‖L2(R). (5.5)

Now we lift this result to arbitrary m, s ∈ R using the classical lifting procedure, cf. e.g. [56], Section II.6,
or [37], Theorem 2.5.4. Let s = 0 and m ∈ R arbitrary and write

p
(D)u(x) =
∫

R

eixξ1p(ξ)(1 + |ξ1|2)−m
2 (1 + |ξ1|2)m

2 û(ξ1)dξ1,

where ξ = (ξ1, ξ2, . . . , ξn) with ξ2, . . . , ξn as in (5.3). With this representation and the above arguments one
obtains

‖p
(D)u‖L2(R) ≤ ‖p
 · (1 + | · |2)−m
2 ‖L∞(R) · ‖(1 + |D|2)m

2 u‖L2(R) � c(j, j′, ξ2, . . . , ξn) · ‖u‖Hm(R).

For arbitrary s ∈ R, note that by e.g. [37], Corollary 2.4.19, the symbol of (1 + |D|2) s
2 ◦ p
(D) satisfies (5.3)

with s+m instead of m. Thus,

‖p
(D)u‖Hs(R) = ‖(1 + |D|2) s
2 ◦ p
(D)u‖L2(R) � c(j, j′, ξ2, . . . , ξn) · ‖u‖Hs+m(R). �

Lemma 5.3. Suppose, in addition to (5.3), the symbol p : Rn → R satisfies for any σ ∈ N0,∣∣∂σξ1p(ξ1, . . . , ξn)∣∣ � c(j, j′, ξ2, . . . , ξn) · |ξ1|m−σ, for ξ1 ∈ R\{0}, (5.6)

with the same function c(j, j′, ξ2, . . . , ξn) as in (5.3). Then the associated distributional kernel

κ
(x1, x
′
1) =

∫
ei(x1−x′

1)ξ1p
(ξ1)dξ1,

satisfies for any τ, τ ′ ∈ N0,∣∣∣∂τx1
∂τ

′
x′
1
κ
(x1, x

′
1)
∣∣∣ � cτ,τ ′ · c(j, j′, ξ2, . . . , ξn) · |x1 − x′1|−(1+m+τ+τ ′), (5.7)

where cτ,τ ′ > 0 is some constant depending on τ, τ ′ but not on j, j
′ or (ξ2, . . . , ξn).

Proof. The result follows directly from the proof of the classical Calderón-Zygmund estimates, cf. [51],
Lemma 3.0.2, or [46], Lemma 3.4.1, since the constant factor c(j, j′, ξ2, . . . , ξn) can simply be taken out of
the integral defining κ
(·, ·). �
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5.2. Matrix entry estimates

In this section we prove estimates for the matrix entries [AJ ](j,k)(j′,k′) = 〈Aψj,k, ψj′,k′〉. From now on suppose
A = p(D) denotes an operator with symbol p ∈ Γα(Rn). To simplify notation, for s = 1, . . . , n, and m ∈ R we
introduce

ω(s,m) :=

{
2−

1
2 (js+j′s)2−d̃(js+j′s)δ−(1+m+2d̃)

xs
, if δxs > 2−min{js,j′s},

2m·min{js,j′s}, if δxs ≤ 2−min{js,j′s},
(5.8)

and

ω̃(s,m) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2−

1
2 (js+j′s)2−d̃(js+j′s)δ−(1+m+2d̃)

xs
, if δxs > 2−min{js,j′s},

2m·min{js,j′s}, if σxs ≤ 2−max{js,j′s},

2
min{js,j′s}−max{js,j′s}

2 2−d̃max{js,j′s}σ−(m+d̃)
xs

, otherwise.

(5.9)

Note that ω̃(s,m) is indeed well-defined since δxs ≤ σxs . Clearly there holds ω̃(s,m) ≤ ω(s,m) for all s =
1, . . . , n. The definition of ω̃(s,m) is motivated by the following profound result.

Proposition 5.4. Let m ∈ R and suppose there holds ψj1,k1 , ψj′1,k′1 ∈ Hm(R). If a symbol p : Rn → R

satisfies (5.3) and (5.6) then the one-dimensional operator

p
(D) : Hm(R) → L2(R),

defined in (5.2) satisfies∣∣〈p
(D)ψj1,k1 , ψj′1,k′1
〉∣∣ , ∣∣〈p
(D)ψj′1,k′1 , ψj1,k1

〉∣∣ � c(j, j′, ξ2, . . . , ξn) · ω̃(i,m),

with ξ2, . . . , ξn fixed as in (5.2).

Proof. Case 1. If δx1 > 2−min{j1,j′1} the result follows from the classical compression estimate [17], Theorem 6.1,
using the Calderón-Zygmund estimate (5.7) of κ
(·, ·), i.e. Lemma 5.3.
Case 2. If δx1 ≤ 2−min{j1,j′1} and σx1 > 2−max{j1,j′1} the continuity result, Lemma 5.2, implies that [17],
Theorem 6.3, can be applied. This yields the required estimate.
Case 3. If σx1 ≤ 2−max{j1,j′1} we assume without loss of generality j1 ≤ j′1. With Schwarz’ inequality and
Lemma 5.2 one obtains∣∣〈p
(D)ψj1,k1 , ψj′1,k′1

〉∣∣ ≤ ‖p
(D)ψj1,k1‖L2(R) · ‖ψj′1,k′1‖L2(R)

� c(j, j′, ξ2, . . . , ξn) · ‖ψj1,k1‖Hm(R) � c(j, j′, ξ2, . . . , ξn) · 2j1m,

where the last inequality follows from the wavelet norm equivalence (2.17). Since the same arguments apply to
the adjoint integral operator p
(D)�, the result follows. �

From (2.22), recall the notion of the wavelets’ regularity parameter

γ = sup {s ∈ R : VJ ⊂ Hs(�)} ·

Using Proposition 5.4, one obtains the main matrix entry estimate.

Theorem 5.5. Suppose α ≤ γ and let A = p(D) be an operator with symbol p ∈ Γα(Rn). There holds

∣∣〈Aψj,k, ψj′,k′〉
∣∣ , ∣∣〈Aψj′,k′ , ψj,k〉

∣∣ �
n∏
i=1

ω̃(i, αi). (5.10)
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Proof. The proof is based on an iterative argument reducing the dimensionality of the symbol p : Rn → R. For
this, we introduce some notation: to emphasize that p depends on the variables ξ1, . . . , ξn we denote p1..n := p.
There holds

〈Aψj,k, ψj′,k′
〉

=
∫

Rn

p1..n(ξ1, . . . , ξn)
n∏
s=1

ψ̂js,ks(ξs)ψ̂j′s,k′s(ξs)dξ1 . . . dξn.

Since with the above definition of p
1..n = p
 one has∫
R

p1..n(ξ1, . . . , ξn)ψ̂j1,k1(ξ1)ψ̂j′1,k′1(ξ1)dξ1 =
〈
p
1..n(D)ψj1,k1 , ψj′1,k′1

〉
,

Fubini’s theorem implies

〈Aψj,k, ψj′,k′
〉

=
∫

Rn−1

〈
p
1..n(D)ψj1,k1 , ψj′1,k′1

〉
·
n∏
s=2

ψ̂js,ks(ξs)ψ̂j′s,k′s(ξs)dξ2 . . . dξn,

where 〈·, ·〉 denotes the L2(R) scalar product. Defining

p2..n(ξ2, . . . , ξn) :=
〈
p
1..n(D)ψj1,k1 , ψj′1,k′1

〉
, (5.11)

one obtains

〈Aψj,k, ψj′,k′〉 =
∫

Rn−1
p2..n(ξ2, . . . , ξn)

n∏
s=2

ψ̂js,ks(ξs)ψ̂j′s,k′s(ξs)dξ2 . . .dξn,

and we have reduced the dimension of the integral by one. In the following we shall now iterate this procedure
in order to obtain a one-dimensional integral satisfying the desired estimate.

For any τs ∈ N0, s = 2, . . . , n, consider the symbol qτ := ∂τ2ξ2 . . . ∂
τn

ξn
p1..n. Using (4.3) with τ = (0, τ2, . . . , τn)

for fixed (ξ2, . . . , ξn) as in (5.1) one obtains∣∣∣q
τ (ξ1)∣∣∣ � c1(j, j′, ξ2, . . . , ξn) · (1 + |ξ1|2)
α1
2 , (5.12)

where now (4.3) implies

c1(j, j′, ξ2, . . . , ξn) =
∏

2≤t≤n
τt>0

|ξt|αt−τt ·
∏

2≤k≤n
τk=0

(1 + |ξk|2)
αk
2 . (5.13)

Hence, instead of the function p in (5.3), the symbol qτ satisfies (5.3) with m = α1 and constant c = c1 as
in (5.13). Analogously, using (4.3) with τ = (σ, τ2, . . . , τn) one infers that for any σ ∈ N0 there holds∣∣∣∂σξ1q
τ (ξ1)∣∣∣ � c1(j, j′, ξ2, . . . , ξn) · |ξ1|α1−σ, (5.14)

again with c1(j, j′, ξ2, . . . , ξn) as in (5.13). Thus, for any choice of τs ∈ N0, s = 2, . . . , n, the symbol qτ
satisfies (5.3) and (5.6) with m = α1 and constant as in (5.13). Hence, with the representation (5.11) of
p2..n : Rn−1 → R, Proposition 5.4 implies∣∣∣∂τ2ξ2 . . . ∂τn

ξn
p2..n(ξ2, . . . , ξn)

∣∣∣ =
∣∣∣〈q
τ (D)ψj1,k1 , ψj′1,k′1

〉∣∣∣
�

∏
2≤t≤n
τt>0

|ξt|αt−τt ·
∏

2≤k≤n
τk=0

(1 + |ξk|2)
αk
2 · ω̃(1, α1).
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Repeating the arguments (5.12) and (5.14) for the “dimensionally reduced” symbol p2..n instead of p1..n, one
herewith obtains that for all τt ∈ N0, t = 3, . . . , n, the symbol ∂τ3ξ3 . . . ∂

τn

ξn
p2..n : Rn−1 → R satisfies (5.3) and (5.6)

with m = α2 and constant

c2(j, j′, ξ3, . . . , ξn) =
∏

3≤t≤n
τt>0

|ξt|αt−τt ·
∏

3≤k≤n
τk=0

(1 + |ξk|2)
αk
2 · ω̃(1, α1).

Analogously to the definition of p2..n, let p3..n(ξ3, . . . , ξn) :=
〈
p
2..n(D)ψj2,k2 , ψj′2,k′2

〉
. The reapplication of

Proposition 5.4 now gives∣∣∣∂τ3ξ3 . . . ∂τn

ξn
p3..n(ξ3, . . . , ξn)

∣∣∣ =
∣∣∣〈∂τ3ξ3 . . . ∂τn

ξn
p
2..n(D)ψj2,k2 , ψj′2,k′2

〉∣∣∣
�

∏
3≤t≤n
τt>0

|ξt|αt−τt ·
∏

3≤k≤n
τk=0

(1 + |ξk|2)
αk
2 · ω̃(2, α2) · ω̃(1, α1),

for all τt ∈ N0, t = 3, . . . , n. Consequently, ∂τ4ξ4 . . . ∂
τn

ξn
p3..n : Rn−2 → R is again a symbol satisfying (5.3)

and (5.6) with m = α3 and constant

c3(j, j′, ξ̃(1)) =
∏

4≤t≤n
τt>0

|ξt|αt−τt ·
∏

4≤k≤n
τk=0

(1 + |ξk|2)
αk
2 · ω̃(2, α2) · ω̃(1, α1).

Iterating this procedure yields

∣∣〈Aψj,k, ψj′,k′〉∣∣ =

∣∣∣∣∣
∫

Rn−1
p2..n(ξ2, . . . , ξn)

n∏
s=2

ψ̂js,ks(ξs)ψ̂j′s,k′s(ξs)dξ2 . . .dξn

∣∣∣∣∣
=

∣∣∣∣∣
∫

Rn−2

〈
p
2..n(D)ψj2,k2 , ψj′2,k′2

〉 n∏
s=3

ψ̂js,ks(ξs)ψ̂j′s,k′s(ξs)dξ3 . . . dξn

∣∣∣∣∣
=

∣∣∣∣∣
∫

Rn−2
p3..n(ξ3, . . . , ξn)

n∏
s=3

ψ̂js,ks(ξs)ψ̂j′s,k′s(ξs)dξ3 . . .dξn

∣∣∣∣∣
= . . .

=
∣∣∣∣∫

R

〈
p
n−1..n(D)ψjn−1,kn−1 , ψj′n−1,k

′
n−1

〉
ψ̂jn,kn(ξn)ψ̂j′n,k′n(ξn)dξn

∣∣∣∣
=

∣∣∣∣∫
R

pn..n(ξn)ψ̂jn,kn(ξn)ψ̂j′n,k′n(ξn)dξn

∣∣∣∣ ,
with pn..n : R → R satisfying (5.3) and (5.6) with m = αn and constant

cn(j, j′, ∅) = ω̃(n− 1, αn−1) · . . . · ω̃(1, α1),

independent of ξ1, . . . , ξn since pn..n is univariate. Finally, since∫
R

pn..n(ξn)ψ̂jn,kn(ξn)ψ̂j′n,k′n(ξn)dξn =
〈
p
n..n(D)ψjn,kn , ψj′n,k′n

〉
,

Proposition 5.4 implies ∣∣〈Aψj,k, ψj′,k′〉∣∣ � ω̃(n, αn) · . . . · ω̃(1, α1). �
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6. Anisotropic consistency framework

In this section we define the consistency requirements for the compression of anisotropic operators A = p(D),
p ∈ Γα(R). We extend the results of [47], Section 4, that have been obtained for the compression of isotropic
operators.

6.1. Fundamental consistency estimates

To characterize the consistency requirements that need to be satisfied by a compression scheme for A, we
introduce the scale of interpolation spaces

Xθ,α/2,ρ := (Hα/2(�), Hρ(�))θ,2, 0 ≤ θ ≤ 1, (6.1)

using the K-method of interpolation (cf. e.g. [57], Sect. 1.3). Here ρ denotes the smoothness multiindex defined
by (2.34) depending on α. For the wavelet norm estimated for Hα/2 and Hρ one infers the following estimate
for the norm of Xθ,α/2,ρ:

Proposition 6.1. Let 0 ≤ θ ≤ 1 and j ∈ Nn0 be a fixed level index. For any u ∈ Xθ,α/2,ρ with wavelet
representation u =

∑
j′
∑

k′∈∇j′
uj′,k′ψj′,k′ there holds

∑
k∈∇j

2(1−θ)|α·j|∞22θ
∑n

i=1 ρiji |uj,k|2 � ‖u‖2
Xθ,α/2,ρ

. (6.2)

Proof. Recall that the norm equivalences and estimates (2.17)–(2.19) of the univariate wavelets imply that∑
j′∈N

n
0

k′∈∇j′

(2α1j1 + . . .+ 2αnjn)|vj′,k′ |2 ∼ ‖v‖2
Hα/2(�), (6.3)

∑
k∈∇j

22
∑n

i=1 ρiji |vj,k|2 � ‖v‖Hρ(�), (6.4)

for any sufficiently smooth function v with wavelet coefficients vj,k (see e.g. [46], Thm. 3.2.2).
Herewith we may now proceed as in the proof of [47], Proposition 4.1: by [57], Theorem 1.3.3(c), there exists

a positive constant c > 0 only depending on θ such that for all t ∈ R>0 there holds

t−θK(t, u) ≤ c‖u‖Xθ,α/2,ρ
, (6.5)

where K(t, u) = infg∈Hρ

{‖u− g‖Hα/2(�) + t‖g‖Hρ

}
denotes the K-functional. Furthermore, using the wavelet

norm estimates (6.3)–(6.4), one obtains that

T (j, t, u) := inf
g∈H(d,d)

g=
∑

k∈∇j
gj,kψj,k

{( ∑
k∈∇j

(
1 +

n∑
i=1

2αiji

)
|uj,k − gj,k|2

) 1
2

+ t

( ∑
k∈∇j

22
∑n

i=1 ρiji |gj,k|2
) 1

2
}
,

satisfies T (j, t, u) � K(t, u) uniformly for all t ∈ R>0 and all u ∈ Xθ,α/2,ρ. Thus, by (6.5), it suffices to show
that there exists some t ∈ R>0 such that∑

k∈∇j

2(1−θ)|α·j|∞22θ
∑n

i=1 ρiji |uj,k|2 � t−2θT (j, t, u)2. (6.6)
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Choosing

t =

(
1 +

∑n
i=1 2αiji

) 1
2

2
∑

n
i=1 ρiji

,

the validity of (6.6) can be verified easily, exactly as in the proof of [47], Proposition 4.1. �

To analyze the impact of a compression scheme for A on the discretization of the original problem

Bu = ADu+ Au = f,

recall that by (2.7), the order of B is given by

α̃ =

{
(2, . . . , 2), if Q > 0 and α ≤ 2,
α, otherwise,

(6.7)

where Q ∈ Rn×n denotes the coefficient matrix of AD.
For any α̃ ∈ Rn≥0, Proposition 2.5 implies that the convergence rate of the sparse tensor product approximation

without compression is determined entirely by the maximum |α̃|∞ = max{α̃1, . . . , α̃n}. Thus, in order to be
consistent with the sparse tensor product Galerkin discretization, the compressed scheme has to satisfy:

Requirement 6.1. The operator Acompr
J corresponding to a compressed matrix A

compr
J must fulfill∣∣∣〈(A−Acompr

J ) P̂Ju, P̂Jv
〉∣∣∣ � ε · 2 1

nJ
∑n

i=1

[
α̃i−(1−θ1) α̃i

2 −θ1ρi−(1−θ2) α̃i
2 −θ2ρi

]
‖u‖Xθ1,α̃/2,ρ

‖v‖Xθ2,α̃/2,ρ
, (6.8)

for any 0 ≤ θ1, θ2 ≤ 1 and some suitable constant ε > 0 uniformly with respect to J ≥ 0. Here ρ ∈ Rn≥0 is as
defined in (2.34) depending on α̃ via

ρi = d− |α̃|∞ − α̃i
2

, i = 1, . . . , n.

Remark 6.2. In the isotropic setting α1 = . . . = αn, Requirement 6.1 coincides with [47], Requirement 4.1,
because all the summands on the right hand side of (6.8) are equal.

To see that Requirement 6.1 ensures the stability and convergence results of the sparse tensor product scheme
without compression (see e.g. [24]), one may proceed as follows: setting θ1 = θ2 = 0 in (6.8) implies∣∣∣〈(A−Acompr

J ) P̂Ju, P̂Jv
〉∣∣∣ � ε · ‖u‖Hα̃/2 ‖v‖Hα̃/2 , for all u, v ∈ H α̃/2. (6.9)

By definition (2.34) of ρ, setting θ1 = 1, θ2 = 0 implies∣∣∣〈(A−Acompr
J ) P̂Ju, P̂Jv

〉∣∣∣ � ε · 2−J(d−α
2 ) ‖u‖Hρ ‖v‖Hα̃/2 , (6.10)

for all u ∈ Hρ, v ∈ H α̃/2. Herewith, one obtains:

Theorem 6.3. Suppose the solution u of (2.1) satisfies u ∈ Hρ and Acompr
J satisfies Requirement 6.1. Then

for sufficiently small ε > 0 the compressed Galerkin scheme is stable, i.e. there exist J0 > 0 and c′1 > 0, c2 ≥ 0
such that for any J ≥ J0 there holds

〈Bcompr
J uJ , uJ〉 ≥ c′1‖uJ‖2

Hα̃/2 − c2‖uJ‖2
L2 , for all uJ ∈ V̂J , (6.11)
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and there exists some c′3 > 0 such that for all J ≥ J0,

|〈Bcompr
J uJ , vJ 〉| ≤ c′3‖uJ‖Hα̃/2‖vJ‖Hα̃/2 , for all uJ , vJ ∈ V̂J . (6.12)

Furthermore, the convergence rate (2.33) of the Galerkin scheme without compression is preserved (cf. Prop. 2.5).

Proof. Note that since B = AD +A there holds B−Bcompr
J = A−Acompr

J for all J > 0. Thus, inequality (6.11)
may be verified by inserting (6.9) into (2.31). This yields,

〈Bcompr
J uJ , uJ〉 ≥ c1‖uJ‖2

Hα̃/2 − c2‖uJ‖2
L2 − 2ε‖uJ‖2

Hα̃/2 = (c1 − 2ε) ‖uJ‖2
Hα̃/2 − c2‖uJ‖2

L2 ,

and c′1 := c1 − 2ε > 0 for sufficiently small ε > 0 from Requirement 6.1. The constants c1, c2 are obtained from
(2.31). For the continuity inequality (6.12) one obtains from (2.32) and Requirement 6.1 with θ1 = θ2 = 0,

|〈Bcompr
J uJ , vJ 〉| ≤ |〈BuJ , vJ〉| + |〈(Bcompr

J − B)uJ , vJ 〉| ≤ c3‖uJ‖Hα̃/2‖vJ‖Hα̃/2 + ε‖uJ‖Hα̃/2‖vJ‖Hα̃/2 ,

with c3 from (2.32). Setting c′3 = c3 + ε one obtains (6.12).
Finally, noting that α̃/2 < γ (with γ as in (2.22)), the convergence result follows from (6.10) in conjunction

with Strang’s first lemma (see e.g. [23], Lem. 2.27). �

The following theorem provides (lower) bounds for the cut-off parameters and hence will enable us to define
the compression scheme.

Theorem 6.4. The compressed matrix A
compr
J fulfills Requirement 6.1 if its block matrices A

compr
j, j′ satisfy

∥∥∥Aj, j′ − A
compr
j, j′

∥∥∥
2

� ε 2−σj,j′ ,

with

σj,j′ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

[
2
n
J

(
ρi − α̃i

2

)
− ρi(ji + j′i)

]
, if

{
L(j′, ρ) ≥ R(j′, α̃),

L(j, ρ) ≥ R(j, α̃),

− 1
2

(|α̃ · j
′|∞ + |α̃ · j|∞) , if

{
L(j′, ρ) < R(j′, α̃),

L(j, ρ) < R(j, α̃),
n∑
i=1

[
1
n
J

(
ρi − α̃i

2

)
− ρiji

]
− 1

2
|α̃ · j′|∞, if

{
L(j′, ρ) < R(j′, α̃),

L(j, ρ) ≥ R(j, α̃),
n∑
i=1

[
1
n
J

(
ρi − α̃i

2

)
− ρij

′
i

]
− 1

2
|α̃ · j|∞, if

{
L(j′, ρ) ≥ R(j′, α̃),

L(j, ρ) < R(j, α̃),

(6.13)

where

L(j, ρ) :=
n∑
i=1

ρi

(
1
n
J − ji

)
,

R(j, α̃) :=
1
n

n∑
i=1

J
α̃i
2

− 1
2
|α̃ · j|∞.
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Proof. The proof follows the lines of [47], Theorem 4.2. Let 0 ≤ θ1, θ2 ≤ 1 be as in Requirement 6.1. Using
Proposition 6.1 one obtains,

∣∣∣〈(A−Acompr
J ) P̂Ju, P̂Jv

〉∣∣∣ �
∑

0≤|j|1≤J
0≤|j′|1≤J

∣∣∣∣ ∑
k∈∇j
k′∈∇j′

uj,kvj′,k′ | 〈(A−Acompr
J )ψj,k, ψj′,k′

〉 ∣∣∣∣
�

∑
0≤|j|1≤J
0≤|j′|1≤J

(∥∥ [uj,k]k∈∇j

∥∥
2

∥∥ [vj′,k′
]
k′∈∇j′

∥∥
2

∥∥∥Aj,j′ − A
compr
j, j′

∥∥∥
2

)

� ‖u‖Xθ1,α/2,ρ
‖v‖Xθ2,α/2,ρ

·
∑

0≤j1+j2≤J
0≤j′1+j′2≤J

∥∥∥2− 1
2 (1−θ1)|α·j|∞2−θ1

∑n
i=1 ρiji

× 2−
1
2 (1−θ2)|α·j|∞2−θ2

∑n
i=1 ρiji

(
Aj,j′ − A

compr
j, j′

)∥∥∥
2
.

Thus, Requirement 6.1 is satisfied if∥∥∥2− 1
2 (1−θ1)|α·j|∞−θ1

∑n
i=1 ρiji− 1

2 (1−θ2)|α·j|∞−θ2
∑n

i=1 ρiji
(
Aj,j′ − A

compr
j, j′

)∥∥∥
2
≤ ε.

One therefore needs to impose ∥∥∥Aj, j′ − A
compr
j, j′

∥∥∥
2

� ε 2−σ,

with some σ such that for all 0 ≤ θ1, θ2 ≤ 1 there holds,

σ ≥− 1
n
J

n∑
i=1

[
αi − (1 − θ1)

αi
2

− θ1ρi − (1 − θ2)
αi
2

− θ2ρi

]
− 1

2
(1 − θ1)|α · j|∞ − θ1

n∑
i=1

ρiji − 1
2
(1 − θ2)|α · j|∞ − θ2

n∑
i=1

ρiji.

(6.14)

Differentiation of the right hand side of (6.14) with respect to θ1 and θ2, resp., shows its monotonicity with
respect to these parameters. Herewith one obtains that for any j, j′ ∈ Nn0 the parameter σj,j′ defined by (6.13)
satisfies (6.14). �

As already indicated in [47], in case one is only interested in sparse tensor product based wavelet compression
for the fast evaluation of integral expressions as in e.g. [39], then Requirement 6.1 can be relaxed to:

Requirement 6.2. The operator Acompr
J corresponding to a compressed matrix A

compr
J has to satisfy

∣∣∣〈(A−Acompr
J ) P̂Ju, P̂Jv

〉∣∣∣ � ε2Jα2−J(t+t′) ‖u‖Ht′ ‖v‖Ht , (6.15)

for any multiindices t, t′ ∈ [α2 , d]
n and some suitable constant ε > 0 uniformly with respect to J . Here (t+ t′) =

max{ti + t′i : i = 1, . . . , n}.
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In this case, Theorem 6.4 can be simplified to:

Corollary 6.5. The compressed matrix A
compr
J fulfills Requirement 6.2 if its block matrices A

compr
j, j′ satisfy∥∥∥Aj, j′ − A

compr
j, j′

∥∥∥
2

� ε 2−σ
′
j,j′ ,

with

σ′
j,j′ := 2J

(
d′ − α

2

)
− d′(|j|1 + |j′|1), (6.16)

for given d ≤ d′ < d̃+ α.

6.2. Consistency of the perturbed θ-scheme

As outlined in Section 3.2, in Financial Mathematics one often encounters parabolic equations of the form (3.15)
arising from a given Lévy process X . Using the sparse tensor product spaces V̂J to discretize in space and the
θ-scheme described in Section 3.2 to discretize in time, one obtains a fully discrete problem of the form (3.20).
Applying a compression scheme to the stiffness matrix AJ of the infinitesimal generator A of X then yields a
perturbed θ-scheme as described in (3.22)–(3.23). From (6.9) and (6.10) one directly infers the validity of (3.24)
and (3.25).

Thus, suppose the compression scheme satisfies Requirement 6.1. Then [59], Theorem 5.4 yields the following
convergence result of the perturbed θ-scheme (3.22)–(3.23) for anisotropic operators. For sake of brevity, we
employ the notation of Section 3.2:

Theorem 6.6. Suppose the operator Acompr
J corresponding to the compressed matrix A

compr
J satisfies Require-

ment 6.1. For θ ∈ [0, 1
2 ) assume that the time step k satisfies (3.26). Assume further that the approximation

u0,J ∈ V̂J of the initial data u0 is quasi-optimal in L2(�).
Then the following error estimates hold for the perturbed θ-scheme (3.22)–(3.23) with θ ∈ [0, 1]:

‖uI − ũIJ‖2
L2 + k

I−1∑
i=0

‖ui+θ − ũi+θJ ‖2
Hα/2 � 2−2J(d−α

2 ) max
0≤t≤T

‖u(t)‖2
Hρ

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k2

∫ T

0

‖ü(s)‖2
∗ds, for all θ ∈ [0, 1]

k4

∫ T

0

‖...u (s)‖2
∗ds, for θ =

1
2
,

+ 2−2J(d−α
2 )

∫ T

0

‖u̇(s)‖2
Hρds,

where ‖u‖∗ := supvJ∈V̂J

〈u,vJ〉
‖vJ‖

Hα/2
.

7. Anisotropic compression scheme

Based on the estimate (5.10) of Theorem 5.5, in this section we define two compression schemes and show
that the resulting compressed matrices A

compr
J satisfy Requirement 6.1 and Requirement 6.2, respectively. The

schemes are split into two parts based on the distinction of first and second compression as defined in [17,51]:
In the first compression the cut-off criteria are based on the distance of the wavelets’ supports. The second

compression employs cut-off criteria based on the distance of the support of smaller wavelets to the singular
support of larger ones, i.e. it is based on σxs defined above. Note that here matrix entries can be dropped even
if the supports of their wavelets intersect.

Due to Theorem 5.5, from now on we suppose α ≤ γ.
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To simplify notation, for any fixed pair of tensor product wavelets ψj,k = ψj1,k1 ⊗ . . . ⊗ ψjn,kn , ψj′,k′ =
ψj′1,k′1 ⊗ . . .⊗ ψj′n,k′n and each i = 1, . . . , n, we denote

mi := max{ji, j′i} − min{ji, j′i} = ji + j′i − 2 min{ji, j′i} ≥ 0,

and

si :=
∑
s
=i

αs min{js, j′s}· (7.1)

Furthermore, denote by σ̃j,j′ some parameter depending on j, j′ which can be chosen to be either σj,j′ or σ′
j,j′ as

defined in (6.13) and (6.16).
For each coordinate direction i = 1, . . . , n and any index set I ⊂ {1, . . . , n}, the corresponding cut-off

parameter of the first compression is defined by

Ci,I
j,j′ := cimax

{
2−min{ji,j′i}, 2

σ̃
j,j′−d̃(ji+j′i)+si+

1
2
∑

t∈I mt−d̃
∑

l/∈I∪{i} ml

2d̃+αi

}
,

with ci > 0. In addition, to each pair of wavelets ψj,k, ψj′,k′ corresponding to one matrix entry, we associate
the index subset

I(j, k, j′, k′) :=
{
s ∈ {1, . . . , n} : δxs ≤ 2−min{js,j′s}

}
·

Herewith, for α/2 ≤ d ≤ d̃, the first compression scheme is defined by

[
A

cpr−1
J

]
(j,k)(j′,k′)

:=

⎧⎪⎪⎨⎪⎪⎩
0, if

{ ∃ i ∈ {1, . . . , n}, s.t.

δxi > C
i,I(j,k,j′,k′)
j,j′ ,

[AJ ](j,k)(j′,k′) , otherwise.

Analogously, for each i = 1, . . . , n and any index set I ⊂ {1, . . . , n}, the cut-off parameters of the second
compression are defined by

Ei,Ij,j′ := eimax

{
2−max{ji,j′i}, 2

σ̃
j,j′−d̃ max{ji,j′i}+si+

1
2
∑

t∈I\{i} mt−d̃
∑

l/∈I ml

d̃+αi

}
,

with ei > 0. The second compression scheme is thus defined by

[
A

cpr−2
J

]
(j,k)(j′,k′)

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if

⎧⎪⎪⎨⎪⎪⎩
∃ i ∈ {1, . . . , n}, s.t.

i ∈ I(j, k, j′, k′),

σxi > E
i,I(j,k,j′,k′)
j,j′ ,

[AJ ](j,k)(j′,k′) , otherwise.
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Finally, the fully compressed matrix A
compr
J is defined by

[Acompr
J ](j,k)(j′,k′) :=

{
0, if

[
A

cpr−m
J

]
(j,k)(j′,k′) = 0 for some m ∈ {1, 2} ,

[AJ ](j,k)(j′,k′) , otherwise.

There holds:

Theorem 7.1. If σ̃j,j′ = σj,j′ as defined in (6.13) then the compressed matrix A
compr
J satisfies Requirement 6.1

and is thus consistent with the sparse tensor product discretization of Section 2. Furthermore, in (6.8) there
holds

ε = max
i=1,...,n

{
c
−(2d̃+αi)
i , e

−(d̃+αi)
i

}
·

If σ̃j,j′ = σ′
j,j′ as defined in (6.16) then the compressed matrix A

compr
J satisfies Requirement 6.2.

Proof. For sake of brevity, we only prove the result in case σ̃j,j′ = σj,j′ . For σ̃j,j′ = σ′
j,j′ the result follows

analogously by replacing Theorem 6.4 with Corollary 6.5 in the analysis below.
Throughout this proof, we assume without loss of generality that j′s ≤ js, s = 1, . . . , n. For all other index

combinations, the result follows in the same fashion.
To analyze A

cpr−1
J it is sufficient to show that, for arbitrary but fixed i ∈ {1, . . . , n} and I ⊂ {1, . . . , n}, the

perturbation matrix Ti,I with blocks T
i,I
j,j′ defined by

[
T
i,I
j,j′

]
(k,k′)

:=

⎧⎪⎪⎨⎪⎪⎩
[AJ ](j,k)(j′,k′) , if

{
δxi > Ci,I

j,j′ ,

δxk
> 2−min(jk,j

′
k) ∀k /∈ I,

0, otherwise

satisfies the requirements of Theorem 6.4. To simplify notation, we introduce the index set

Dj,j′ := {k ∈ ∇j : δxi > Ci,Ij,j′ , δxl
> 2−min(jl,j

′
l) ∀l /∈ I}·

By Theorem 5.5, each matrix entry can be estimated by
∏n
i=1 ω̃(i, αi) with ω̃(i, αi) defined by (5.9) corresponding

to the wavelets of the matrix entry. Since ω̃(i, αi) ≤ ω(i, αi), i = 1, . . . , n, with ω(i, αi) defined in (5.8), one
may thus estimate the column sums of each T

i,I
j,j′ by∑

k∈∇j

∣∣tx(j,k)(j′,k′)

∣∣ �
∑

k∈Dj,j′

2−
1
2 (ji+j

′
i)2−d̃(ji+j

′
i)δ−(1+αi+2d̃)

xi

∏
s∈I

2αsj
′
s

∏
l/∈I

2−( 1
2+d̃)(jl+j

′
l)δ−(1+αl+2d̃)

xl

� 2−
1
2 (ji+j

′
i)2−d̃(ji+j

′
i)

∫
|xi|>Ci,I

j,j′
|xi|−(1+αi+2d̃)dxi

×
∏
l/∈I

[
2−( 1

2+d̃)(jl+j
′
l)

∫
|xl|>2−j′

l

δ−(1+αl+2d̃)
xl

dxl

]
·
∑

ks: s∈I,
k∈Dj,j′

(∏
s∈I

2αsj
′
s

)
,

where we have used the fact that the sum over the indices ki and kl, l /∈ I, is taken only over those matrix
entries that satisfy δxl

> max{2−jl , 2−j′l} and can therefore be estimated by the product of the integrals. Since
for each s ∈ I there are O(2js−j

′
s) non-zero column entries, one finally obtains∑

k∈∇j

∣∣tx(j,k)(j′,k′)

∣∣ � 2
1
2 (|j|1−|j′|1)2−d̃(ji+j

′
i)(Ci,Ij,j′)

−(αi+2d̃)
∏
l/∈I

2−d̃(jl+j
′
l)2(αl+2d̃)j′l

∏
s∈I

2αsj
′
s

� c
−(αi+2d̃)
i 2

1
2 (|j|1−|j′|1)2−σj,j′ .
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In the same way one obtains for the row sums∑
k′∈∇j′

∣∣tx(j,k)(j′,k′)

∣∣ � c
−(αi+2d̃)
i 2

1
2 (|j′|1−|j|1)2−σj,j′ .

Hence, by Schur’s lemma with weights 2
1
2 (|j|1−|j′|1), 2

1
2 (|j′|1−|j|1) one obtains that Ti,I satisfies the requirements

of Theorem 6.4 with ε = c
−(αi+2d̃)
i . The consistency of A

cpr−1
J follows.

To analyze A
cpr−2
J , for any i ∈ {1, . . . , n} and I ⊂ {1, . . . , n}, define the perturbation matrix Si,I by its

blocks

[
S
i,I
j,j′

]
(k,k′)

:=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[AJ ](j,k)(j′,k′) , if

⎧⎪⎪⎨⎪⎪⎩
σxi > Ei,I

j,j′ ,

δxi ≤ 2−min{ji,j′i},

δxk
> 2−min(jk,j

′
k) ∀k /∈ I,

0, otherwise.

By Theorem 5.5, one finds for the entries of Si,I :∣∣sx(j,k)(j′,k′)

∣∣ � 2
1
2 (j′i−ji)2d̃jiσ−(αi+d̃)

x

∏
s∈I,
s
=i

2αsj
′
s

∏
l/∈I

2−( 1
2+d̃)(jl+j

′
l)δ−(1+αl+2d̃)

xl

� 2
1
2 (j′i−ji)2d̃ji(Ei,Ij,j′)

−(αi+d̃)
∏
s∈I,
s
=i

2αsj
′
s

∏
l/∈I

2−( 1
2+d̃)(jl+j

′
l)δ−(1+αl+2d̃)

xl

� e−(αi+d̃)
i 2

1
2 (|j|1−|j′|1)2−σj,j′

∏
l/∈I

δ−(1+αl+2d̃)
xl

· 2−(αl+2d̃)j′l 2−jl .

Thus, using the same arguments as above, the weighted column sums of Si,I may be estimated by∑
k′∈∇j′

2
1
2 (|j|1−|j′|1)∣∣sx(j,k)(j′,k′)

∣∣ � e−(αi+d̃)
i 2−σj,j′

∏
l/∈I

2−(αl+2d̃)j′l

∫
|xl|>2−j′

l

|xl|−(1+αl+2d̃)dxl

� e−(αi+d̃)
i 2−σj,j′ ,

and analogously ∑
k∈∇j

2
1
2 (|j′|1−|j|1)

∣∣sx(j,k)(j′,k′)

∣∣ � e−(αi+d̃)
i 2−σj,j′ .

Thus, Schur’s lemma yields that Si,I fulfills the requirements of Theorem 6.4 for any i ∈ {1, . . . , n} and

I ⊂ {1, . . . , n} with ε = e−(αi+d̃)
i . As above, this ensures the consistency of A

cpr−2
J . �

8. Complexity estimates

In this section, we turn to the complexity analysis of the compression scheme of Section 7. We split the
analysis subject to the choice of σ̃j,j′ .

8.1. Complexity of the compression scheme with σ̃j,j′ = σ′
j,j′

In short, for arbitrary n ≥ 2, α ∈ Rn≥0 and d ∈ N, the main results of this section reads:
There exists d̃ ∈ N such that for any operator A of order α the compression scheme of Section 7 with σ̃j,j′ = σ′

j,j′

as defined in (6.16) yields essentially optimal complexity O(2JJ2(n−1)).
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More precisely, we prove

Theorem 8.1. Let α ∈ Rn≥0 and 0 < α ≤ 2d ≤ 2d′. Suppose further

2nd′ < d̃+ (n+ 1)α. (8.1)

Then for any operator A = p(D) with p ∈ Γα(Rn) the number of non-zero entries in the matrix A
compr
J defined

by the compression scheme in Section 7 with σ̃j,j′ = σ′
j,j′ is O (2JJ2(n−1)

)
.

Proof. Without loss of generality we assume the worst but admissible case α1 = . . . = αn = α > 0. Fix any
I ⊂ {1, . . . , n}. Since I is arbitrary, it suffices to show that there are O (2JJ2(n−1)

)
entries 〈Aψj,k, ψj′,k′〉 of

A
compr
J with

δxi ≤ 2−min{ji,j′i}, for all i ∈ I, and δxi ≥ 2−min{ji,j′i}, for all i /∈ I. (8.2)

Based on the compression scheme of Section 7, in each matrix block Aj,j′ of A
compr
J we divide the coordinate

directions into four groups. Let

D1 :=
{
r ∈ I : 2−min{jr ,j′r} ≤ Er,Ij,j′

}
, (8.3)

D2 :=
{
s ∈ I : Es,Ij,j′ ≤ 2−min{js,j′s} and 2−max{js,j′s} = Es,Ij,j′

}
, (8.4)

D3 :=
{
t ∈ I : Et,I

j,j′ ≤ 2−min{jt,j′t} and 2−max{jt,j′t} < Et,I
j,j′

}
, (8.5)

D4 :=
{
i ∈ {1, . . . , n}\I

}
· (8.6)

Obviously D1 ∪ D2 ∪ D3 ∪ D4 = {1, . . . , n}. By definition of the compression scheme, the number #Aj,j′ of
non-zero entries in each matrix block Aj,j′ can be bounded by

#Aj,j′ = O
( ∏
r∈D1

2jr+j′r2−min{jr ,j′r} ·
∏
s∈D2

2js+j′sEs,Ij,j′ ·
∏
t∈D3

2jt+j
′
tEt,Ij,j′ ·

∏
i∈D4

2ji+j
′
iCi,Ij,j′

)

= O
( ∏
r∈D1

2max{jr ,j′r} ·
∏
s∈D2

2min{js,j′s}

×
∏
t∈D3

2jt+j
′
t2

2J(d′− α
2 )−d′(|j|1+|j′|1)−d̃ max{jt,j′t}+st+

1
2
∑

l∈I\{t} ml−d̃
∑

l/∈I ml

d̃+α

×
∏
i∈D4

2ji+j
′
i2

2J(d′− α
2 )−d′(|j|1+|j′|1)−d̃(ji+j′i)+si+

1
2
∑

l∈I ml−d̃
∑

l/∈I∪{i} ml

2d̃+α

)
,

(8.7)

with sl, ml, l = 1, . . . , n, as in Section 7. To simplify this notation, from now on we assume without loss of
generality that j′l ≤ jl for all l = 1, . . . , n. The result for all other index combinations follows analogously.

Regrouping the single factors in (8.7) corresponding to their level index yields

#Aj,j′ = O
(
C0 ·

∏
r∈D1

Rr ·
∏
s∈D2

Ss ·
∏
t∈D3

Tt ·
∏
i∈D4

Ii

)
, (8.8)
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where, with N := #D3

d̃+α
+ #D4

2d̃+α
, we have set

C0 = 2N(2J(d′−α
2 )),

Rm = 2jm2−N(d′(jm+j′m)−αj′m− 1
2 (jm−j′m)),

Sm = 2j
′
m2−N(d′(jm+j′m)−αj′m− 1

2 (jm−j′m)),

Tm = 2jm+j′m2−
d̃

d̃+α
jm2−N(d′(jm+j′m)−αj′m− 1

2 (jm−j′m))2−
1

d̃+α
(αj′m+ 1

2 (jm−j′m)),

Im = 2jm+j′m2−
d̃

2d̃+α
(jm+j′m)2−N(d′(jm+j′m)−αj′m+d̃(jm−j′m)) · 2− 1

2d̃+α
(αj′m−d̃(jm−j′m)),

(8.9)

for m = 1, . . . , n. Here, each factor (except for C0) depends on exactly one coordinate direction.
By definition of D1, D3, there holds Rr ≤ Tr for all r ∈ D1. In order to keep notation feasible (see [46],

Rem. 4.6.2, for a more detailed approach) we estimate

#Aj,j′ = O
(
C0 ·

∏
s∈D2

Ss ·
∏

t∈D1∪D3

Tt ·
∏
i∈D4

Ii

)
. (8.10)

Denote j̃m := (jm + j′m)/2, m = 1, . . . , n. By (8.1) there holds

(1 − α)N ≤ (1 − α)
n

d̃+ α
≤ 1,

which implies N/2 ≤ 1 −N (1/2 − α) . For each s ∈ D2 one thus obtains

Ss = 2(1−N( 1
2−α))j′s2

1
2Njs2−Nd

′(j2+j′2)

= 2(1−N( 1
2−α))j′s2

1
2Njs2−2Nd′j̃s

≤ 2j̃s2−N(2d′−α)j̃s

=: S̃s.

Analogously, one infers from (8.1) that n ≤ d̃+ (n− 1)α+ 1 which implies for any t ∈ D1 ∪D3,

Tt = 2
(
1− d̃

d̃+α
+ 1

2N− 1
2d̃+2α

)
jt2

(
1+N(α− 1

2 )−α−1/2
d̃+α

)
j′t2−Nd

′(jt+j′t)

≤ 22j̃t2−
d̃

d̃+α
j̃t2Nαj̃t2−

α

d̃+α
j̃t2−N2d′j̃t

=: T̃t.

In the same way, one immediately obtains for i ∈ D4 that Ii ≤ 2j̃i2−N(2d′−α)j̃i =: Ĩi. But, there holds S̃m =
T̃m = Ĩm for m = 1, . . . , n and from (8.10) one infers

#Aj,j′ = O
(
C0 ·

∏
s∈D2

S̃s ·
∏

t∈D1∪D3

T̃t ·
∏
i∈D4

Ĩi

)

= O
(

2N(2J(d′−α
2 )) ·

n∏
m=1

2j̃m2−N(2d′−α)j̃m
)

= O
(
2N(2d′−α)(J−|̃j|1)2|̃j|1

)
,

where |̃j|1 = j̃1 + . . .+ j̃n. Using N ≤ n

d̃+α
one finally obtains

#Aj,j′ = O
(

2J · 2
(

n(2d′−α)
d̃+α

−1
)
(J−|̃j|1)

)
. (8.11)
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Since (8.1) implies n(2d′−α)

d̃+α
< 1, summing over all matrix blocks yields that there are O (2JJ2(n−1)

)
entries

satisfying (8.2). �

Remark 8.2. Clearly, for any d′ and α, requirement (8.1) is satisfied for some sufficiently large d̃. Since
in (8.10) we have introduced some sub-optimality, this parameter restriction is sufficient but not necessary,
see [46], Remark 4.6.2.

8.2. Complexity of the compression scheme with σ̃j,j′ = σj,j′

Based on the methodology for a detailed complexity analysis of the previous section, we now turn to the
complexity estimates for the compression scheme of Section 7 with σ̃j,j′ = σj,j′ , where σj,j′ is given by (6.13).
In short, with arbitrary n ≥ 2, α̃ ≥ α ∈ Rn≥0 and d ∈ N, one finds:
For any ε > 0 there exists d̃ ∈ N such that for any operator A of order α the compression scheme of Section 7
with σ̃j,j′ = σj,j′ as defined in (6.13) yields complexity O(2(1+ε)J ).
Furthermore, the compression scheme with σ̃j,j′ = σj,j′ yields optimal complexity O(2JJ2(n−1)) if the integro-
differential operator B = AD + A admits a non-vanishing differential part AD and the order α of the integral
part A is sufficiently small, see Theorem 8.3.

At first, we extend the rather conservative estimates and methodology of Section 8.1 to the case σ̃j,j′ = σj,j′ .
For sake of simplicity, for now assume that the differential operator AD in (4.1) does not vanish or, more
precisely, that the order α of the integral operator A is less than the order α̃ of the integrodifferential operator
B = AD + A, i.e.

α < α̃ = (2, . . . , 2) ∈ Rn, (8.12)
as defined in (6.7). The case α = α̃ is discussed afterwards.

Theorem 8.3. Suppose that (8.12) holds. Let A
compr
J be the matrix defined by the compression scheme of

Section 7 with σ̃j,j′ = σj,j′ as defined in (6.13).
If (8.1) holds, the number of non-zero matrix entries in each block Aj,j′ of A

compr
J can be bounded by

#Aj,j′ � 2J2−
2−nα

2d̃+α
J
. (8.13)

In particular, the complexity of A
compr
J is O(2JJ2(n−1)) if α ≤ 2/n.

Remark 8.4. The complexity bound (8.13) is only valid under (8.1) – which implies that the number of van-
ishing moments d̃ has to be increased with the dimension. In particular, the rather conservative estimate (8.13)
does not imply the “curse of dimension” even though the dimension n occurs in the exponent on the right hand
side. With sufficiently large d̃ the right hand side of (8.13) can be chosen arbitrarily close to the optimality
estimate #Aj,j′ � 2J regardless of the choice of α, cf. [46], Section 4.6.2.

Proof. By Theorem 8.1, it suffices to prove the result only for those matrix blocks that satisfy σj,j′ �= σ′
j,j′ .

Hence, from the definition (6.13) of σj,j′ one obtains that there are essentially two cases: either

σj,j′ = −1
2

(|α̃ · j
′|∞ + |α̃ · j|∞) , (8.14)

or

σj,j′ =
n∑
i=1

[
1
n
J

(
ρi − α̃i

2

)
− ρij

′
i

]
− 1

2
|α̃ · j|∞. (8.15)

The remaining possible case σj,j′ =
∑n
i=1[

1
nJ (ρi − α̃i/2)− ρiji]− 1

2 |α̃ · j′|∞ in (6.13) follows analogously to the
case (8.15).

At first, suppose (8.14) holds. By (8.12), this simplifies to σj,j′ = −(|j|∞ + |j′|∞). As above, assume without
loss of generality that j′i ≤ j′1, i = 1, . . . , n. The proof for all other index constellations follows analogously.
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Let D1, . . . , D4 be as in (8.3)–(8.6). Using exactly the same arguments as in the proof of Theorem 8.1, analo-
gously to (8.8) one obtains that the number of non-zero entries in each matrix block Aj,j′ satisfies

#Aj,j′ = O
(
C0 ·

∏
r∈D1

Rr ·
∏
s∈D2

Ss ·
∏
t∈D3

Tt ·
∏
i∈D4

Ii

)
, (8.16)

where, with N = #D3

d̃+α
+ #D4

2d̃+α
, according to the definition of the cut-off parameters Ei,Ij,j′ , C

i,I
j,j′ we now have

C0 = 2−N(|j|∞+|j′|∞),

Rm = 2jm2N(αj′m+ 1
2 (jm−j′m)),

Sm = 2j
′
m2N(αj′m+ 1

2 (jm−j′m)),

Tm = 2jm+j′m2−
d̃

d̃+α
jm2N(αj′m+ 1

2 (jm−j′m))2−
1

d̃+α
(αj′m+ 1

2 (jm−j′m)),

Im = 2jm+j′m2−
d̃

2d̃+α
(jm+j′m)2N(αj′m−d̃(jm−j′m))2−

1
2d̃+α

(αj′m−d̃(jm−j′m)),

for m = 1, . . . , n. By definition of D1, D3, there holds Rr ≤ Tr for all r ∈ D1. Thus, one may estimate

#Aj,j′ = O
(
C0 ·

∏
s∈D2

Ss ·
∏

t∈D1∪D3

Tt ·
∏
i∈D4

Ii

)
. (8.17)

Denoting

j̃m :=
jm + j′m

2
, m = 1, . . . , n (8.18)

for each s ∈ D2 one obtains

Ss = 2(1−N( 1
2−α))j′s2

1
2Njs ≤ 2j̃s2Nαj̃s =: S̃s.

Analogously one finds Tt ≤ S̃t for each t ∈ D1 ∪D3 and Ii ≤ S̃i for each i ∈ D4. Note that equality holds in
these estimates if and only if jm = j′m, i.e. the “worst case” is obtained when jm = j′m for all m = 1, . . . , n.
From (8.17), one obtains

#Aj,j′ � C0 ·
∏
s∈D2

S̃s ·
∏

t∈D1∪D3

S̃t ·
∏
i∈D4

S̃i � 2−N(|j|∞+|j′|∞) ·
n∏

m=1

2j̃m2Nαj̃m . (8.19)

The right hand side of (8.19) reaches its maximum when |̃j|1 = J . By (8.18), this implies |j|∞ = |j′|∞ = J/n
and one obtains

#Aj,j′ � 2J2N(α− 2
n )J . (8.20)

Recall that this maximal complexity can only be obtained when |̃j|1 = J and correspondingly jm = j′m = J/n,
m = 1, . . . , n. In this case D3 = ∅ and hence

N =
#D4

2d̃+ α
≤ n

2d̃+ α
·

Thus, in case (8.14) holds, one finds the desired estimate

#Aj,j′ � 2J2
nα−2
2d̃+α

J
.
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Finally, suppose (8.15) holds. By (8.12), this simplifies to σj,j′ = J(d − 1) − d|j′|1 − |j|∞. Clearly, σj,j′ be-
comes maximal, when j′i ≤ ji, i = 1, . . . , n. With this choice of j, j

′ and σj,j′ one may proceed as above to
re-derive (8.17), where now

C0 = 2N(J(d−1)−|j|∞),

Sm = 2j
′
m2N(αj′m+ 1

2 (jm−j′m)−dj′m),

Tm = 2jm+j′m2−
d̃

d̃+α
jm2N(αj′m+ 1

2 (jm−j′m)−dj′m)2−
1

d̃+α
(αj′m+ 1

2 (jm−j′m)),

Im = 2jm+j′m2−
d̃

2d̃+α
(jm+j′m)2N(αj′m−d̃(jm−j′m)−dj′m)2−

1
2d̃+α

(αj′m−d̃(jm−j′m)),

for m = 1, . . . , n. Now with S̃m := 2j̃m2−N(d−α)j̃m and j̃m as in (8.18), m = 1, . . . , n, one finds Ss ≤ S̃s for each
s ∈ D2, Tt ≤ S̃t for each t ∈ D1 ∪D3 and Ii ≤ S̃i for each i ∈ D4. Thus, there holds

#Aj,j′ � 2N(J(d−1)−|j|∞) ·
n∏

m=1

2j̃m2−N(d−α)j̃m ∼ 2N(d−1)J2(1−N(d−α))|j̃|12−N |j|∞ . (8.21)

Since by definition N ≤ n

d̃+α
, condition (8.1) implies N/n ≤ 1−N(d−α), and hence (8.21) reaches its maximum

when |̃j|1 = J and hence |j|∞ = J/n. This yields

#Aj,j′ � 2J2N(α−1− 1
n )J , (8.22)

and the result follows, since the right hand side of (8.22) can be bounded by the right hand side of (8.20). �

Now, consider the case α = α̃, i.e. AD = 0 and hence B = A in (4.1) has no differential component. We
assume without loss of generality that in each direction we have the same (strongest) marginal singularity, i.e.

α1 = . . . = αn = α. (8.23)

The structure of the cut-off parameters defined in Section 7 implies that assumption (8.23) provides a “worst”
but admissible case. Using the arguments of Theorem 8.3 one infers that the matrix block with the greatest
asymptotic complexity in A

compr
J is given when j = j

′ = J/n, i.e.

j1 = . . . = jn = j′1 = . . . = j′n =
1
n
J. (8.24)

For this index combination one obtains

L(j, d) = d(J − |j|1) = 0 <
(

1 − 1
n

)
α

2
J =

α

2
J − α

2
|j|∞ = R(j, α̃),

and analogously L(j′, d) < R(j′, α̃), with R(·, ·) and L(·, ·) as in Theorem 6.4. Thus, by (6.13) there holds

σJ/n,J/n = − 1
n
αJ.

Herewith, one obtains that for any coordinate direction i = 1, . . . , n, there holds

2−min{ji,j′i} = 2−
1
nJ ≤ Ei,I

j,j′
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and hence, using (8.3)–(8.6), one finds D2 = D3 = ∅ and D1 = I, D4 = {1, . . . , n}\D1. Thus, in this one matrix
block, the number #AJ/n,J/n of all non-zero entries that satisfy δxi < 2−min{ji,j′i} for all i ∈ I, is given by

#AJ/n,J/n = O
( ∏
r∈D1

2max{jr ,j′r} ·
∏
i∈D4

2j1+j′1Ci,Ij,j′

)
= O

( ∏
r∈D1

2
1
nJ ·

∏
i∈D4

[
2

2
nJ2−

α+2d̃

n(2d̃+α)
J2

si
2d̃+α

])
,

with si = n−1
n αJ as defined in (7.1). Clearly (8.25) reaches its maximum when D4 = {1, . . . , n}, i.e. I = ∅ and

hence one considers all matrix entries that satisfy δxi > 2−min{ji,j′i} in all coordinate directions i = 1, . . . , n.
The number of non-zero entries of such wavelets in AJ/n,J/n hence satisfies

#AJ/n,J/n �
n∏
i=1

[
2

2
nJ2−

α−2d̃

n(2d̃+α)
J2

si
2d̃+α

]
∼ 2J2

1
2d̃+α

∑n
i=1 si ∼ 2J2

(n−1)α
2d̃+α

J
. (8.25)

Thus, due to the existence of the correction terms si in the cut-off parameters in Section 7 the anisotropic com-
pression scheme does in general not yield optimal complexity when B = A is an integral operator. Nonetheless,
by choosing a wavelet basis with a sufficiently large number of vanishing moments the scheme yields complexity
O(2(1+ε)J ) for any given ε > 0.

9. Numerical results

In this final section, we provide some basic numerical illustrations regarding the accuracy of the presented
matrix entry estimates as well as the complexity of the compressed sparse tensor product stiffness matrix. For
further illustrations e.g. on the impact of the first and the second compression techniques we refer to [46],
Chapter 6.

In short, the numerical results show that the compression scheme of Section 7 provides a very accurate
prediction of the structure of the stiffness matrix of anisotropic operators. Hence, one may conclude that the
consistency analysis and the matrix entry estimates of the previous sections are accurate. The numerical results
also confirm that the complexity of the compressed sparse tensor product stiffness matrix is (asymptotically) of
the magnitude that was proved in Section 8.

The numerical results have been obtained using tensor products of the piecewise linear biorthogonal spline
wavelets ψj,k constructed in Example 2.2. Recall that with this choice of basis one has d = d̃ = 2 and
| suppψj,k| = 2 · 2−j for all ψj,k ∈ Ψ.

Remark 9.1. Note that the absolute complexity values presented in the following are only valid for the wavelets
of Example 2.2. While the asymptotic behavior of the matrix complexity is independent of the particular choice
of basis, the complexity constants naturally depend on this choice. For example, reducing the size of the
wavelets’ supports may decrease this constant significantly. Similar observations have already been made in the
context of isotropic wavelet compression, cf. e.g. [29].

9.1. Accuracy

To analyze the accuracy of our compression predictions and the fundamental estimates given in Section 5,
we consider the following model problem:

Find the numerical solution of the integrodifferential equation

Au = 0, on [0, 1]2,

where A denotes the infinitesimal generator of a bivariate Lévy copula process with tempered stable margins and
Clayton-type Lévy copula F as defined in [24,49]. The parameters for the marginal Lévy measures are chosen
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Figure 1. Left: Contour plot of the density of the infinitesimal generator A. Right: Stiffness
matrix of the Galerkin discretization of A in the full tensor product space VJ as in (2.21)
with wavelet basis. Level J = 5, 40962 entries, color coded according to log10 |〈Aψj,k, ψj′,k′〉|.
(Figure in color available online at http://www.esaim-m2an.org/.)

as follows: c1 = c2 = 1, β1 = β2 = 8 and α1 = α2 = 1. The parameters of the Lévy copula of Clayton-type are
θ = 10, η = 0.5. More precisely, the integrodifferential operator A is given by

Au(x) = −
∫

R2

(
u(x+ z) − u(x) −

n∑
i=1

zi
∂u

∂xi
(x)

)
k(z)dz, (9.1)

with Lévy density

k(z1, z2) =
1 + θ

2
· |U1(z1)|−θ−1 |U2(z2)|−θ−1 ·

(
|U1(z1)|−θ + |U2(z2)|−θ

)− 1
θ −2

· k1(z1)k2(z2),

where

ki(zi) =
e−βi|zi|

|zi|1+αi
, Ui(zi) = sgn(zi)

∫ ∞

|zi|
ki(y)dy, i = 1, 2. (9.2)

The structure of the stiffness matrix of A in the full tensor product space VJ of (2.21) is illustrated in Figure 1,
right. Naturally, this matrix is never computed in practice.

On level J = 5, the structure of stiffness matrix of A in the sparse tensor product space V̂J of (2.23) (without
any compression) is shown in Figure 2. On the right hand side the prediction of the compression scheme of
Section 7 with σ̃j,j′ = σj,j′ is given. In practice, only the black entries on the right hand side of Figure 2 need
to be computed.

The full and sparse tensor product stiffness matrices without compression in Figures 1 and 2 were taken
from [62]. We also refer to this source for further numerical results.

9.2. Complexity

In Figure 3, the number of non-zero matrix entries of the non-compressed and the compressed sparse tensor
product matrix are compared. Hereto, we set n = 2 and choose all constants ci, ei, i = 1, 2, in the compression
scheme of Section 7 to be ci = ei = 1, i = 1, 2.

On the left hand side of Figure 3, the absolute number of non-zero entries is plotted per level J = 3, . . . , 12.
Here the red line represents the matrix complexity based on the wavelets of Example 2.2 after compression by
the scheme of Section 7 with σ̃j,j′ = σ′

j,j′ . The cyan line represents the scheme with σ̃j,j′ = σj,j′ , where we have
assumed (8.12). On the right hand side, the percentage of matrix entries of the sparse tensor product matrix
that remain in the compressed matrix (with σ̃j,j′ = σ′

j,j′) is given.



WAVELET COMPRESSION OF ANISOTROPIC OPERATORS 69

50 100 150 200 250 300

50

100

150

200

250

300

50 100 150 200 250 300

50

100

150

200

250

300

Figure 2. Accurate sparsity pattern prediction by the compression scheme. Left: Actual
stiffness matrix of A in the sparse tensor product space V̂J of (2.23), 3202 non-zero entries,
color coded according to log10 |〈Aψj,k, ψj′,k′〉|. Right: A priori sparsity pattern prediction
by the compression scheme of Section 7. (Figure in color available online at
http://www.esaim-m2an.org/.)
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Figure 3. Left: Number of non-zero matrix entries of the different stiffness matrices of A
per level J = 3, . . . , 12. Right: Percentage of the remaining complexity of the sparse tensor
product matrix after compression on levels J = 3, . . . , 12. (Figure in color available online at
http://www.esaim-m2an.org/.)

In Figure 4, the complexity growth of the compressed sparse tensor product matrix is compared with the
results predicted by Theorem 8.1. The increasing sparsity of the compressed matrices is illustrated in Figure 5.
Here we have discretized the generator A of a Lévy copula process as defined in (9.1)–(9.2) with α1 = 0.5,
α2 = 1.5, using the wavelets of Example 2.2.

10. Conclusions

In the previous sections a wavelet compression method has been presented that enables us to solve rather
general multidimensional anisotropic integrodifferential equations at an asymptotic complexity of a classical
one-dimensional differential equation. Analytically, we have proved that the convergence of the spare tensor
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Figure 4. Comparison of the number of non-zero entries in the compressed sparse tensor
product stiffness matrix and the predicted rate O(2JJ2) of Theorem 8.1. Left: On levels
J = 2, . . . , 12. Right: On levels J = 8, . . . , 12.

Figure 5. Sparsity pattern of the compressed matrices. Left: Level J = 7. Right: Level J = 10.

product scheme without compression is not perturbed (Thm. 6.3) and that the new scheme is asymptotically
either of optimal or of nearly optimal complexity (Thm. 8.3) depending on the choice of operator and wavelet
basis.

There is however a number of parameter restrictions that shall be addressed in future:

– By Theorem 8.3, for a general integrodifferential operator with non-vanishing differential part, the
essentially optimal complexity O(2JJ2(n−1)) can be proven for operators with α ≤ 2/n – which obviously
is a rather restrictive condition in higher dimensions.

– Furthermore, in Theorem 8.3 it is shown that for any integrodifferential operator with non-vanishing
differential part and symbol in Γα(Rn), α ∈ (0, 2)n, one can obtain complexity O(2(1+ε)J ) with
ε < (nα − 2)/(2d̃ + α). Clearly, by an appropriate choice of wavelet basis with sufficiently large d̃
one obtains ε arbitrarily close to 0. For any fixed choice of wavelet basis however the complexity bound
still increases with the space dimension. To illustrate the dependence of ε on the different parameters,
in Table 1 we show the bounds for ε under some exemplary choices for n, α and d̃.
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Table 1. Bounds for the parameter ε ≥ 0 in the complexity estimate O(2(1+ε)J ) for each
block of the stiffness matrix as implied by Theorem 8.3 for an integrodifferential operator with
non-vanishing differential part.

n α d̃ Upper bound for ε
2 0.5 2 0
2 1 2 0
2 1 3 0
3 0.5 2 0
3 1 2 1/5
3 1 3 1/7
3 1.5 3 1/3

n α d̃ Upper bound for ε
4 0.5 2 0
4 1 2 2/5
4 1 3 2/7
5 0.5 2 5/9
5 0.5 3 5/13
5 1 3 3/7
5 1 5 3/11

– Similarly, in the most demanding case, i.e. a purely integral operator (with no differential part),
by (8.25), the scheme of Section 7 is of complexity O(2(1+ε)J) where for fixed space dimension n there
holds the upper bound ε < ((n− 1)α)/(2d̃+ α).

As already indicated in Section 9, for the efficient implementation of the proposed compression scheme a suitable
choice of the wavelet basis is essential. For construction techniques of wavelets with an arbitrarily large number
of vanishing moments we refer to [16] and the references therein. A complete computational scheme has been
implemented in [62] and we refer to this source for further details on quadrature rules, data structures and
holistic numerical results.
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[24] W. Farkas, N. Reich and C. Schwab, Anisotropic stable Lévy copula processes – analytical and numerical aspects. Math.

Models Methods Appl. Sci. 17 (2007) 1405–1443.
[25] T. Gantumur and R. Stevenson, Computation of differential operators in wavelet coordinates. Math. Comp. 75 (2006) 697–709

(electronic).
[26] T. Gantumur, H. Harbrecht and R. Stevenson, An optimal adaptive wavelet method without coarsening of the iterands. Math.

Comp. 76 (2007) 615–629 (electronic).
[27] M. Griebel and S. Knapek, Optimized general sparse grid approximation spaces for operator equations. Math. Comp.

(to appear).
[28] M. Griebel, P. Oswald and T. Schiekofer, Sparse grids for boundary integral equations. Numer. Math. 83 (1999) 279–312.
[29] H. Harbrecht and R. Schneider, Biorthogonal wavelet bases for the boundary element method. Math. Nachr. 269/270 (2004)

167–188.
[30] H. Harbrecht and R. Schneider, Wavelet Galerkin schemes for boundary integral equations – implementation and quadrature.

SIAM J. Sci. Comput. 27 (2006) 1347–1370 (electronic).
[31] N. Hilber, A.-M. Matache and C. Schwab, Sparse wavelet methods for option pricing under stochastic volatility. J. Comput.

Finance 8 (2005) 1–42.
[32] N. Hilber, N. Reich, C. Schwab and C. Winter, Numerical methods for Lévy processes. Finance Stoch. 13 (2009) 471–500.
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