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THE CYCLICITY PROBLEM FOR THE IMAGES
OF Q-RATIONAL SERIES

Juha Honkala1

Abstract. We show that it is decidable whether or not a given Q-ra-
tional series in several noncommutative variables has a cyclic image.
By definition, a series r has a cyclic image if there is a rational number
q such that all nonzero coefficients of r are integer powers of q.
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1. Introduction

We study Q-rational power series in noncommutative variables and their images.
By definition, the image Im(r) of a series r is the set of its coefficients. We say
that the image Im(r) of r is cyclic if there is a rational number q such that

Im(r) ⊆ {qα | α ∈ Z} ∪ {0}.

Hence the image of r is cyclic if and only if the set of nonzero coefficients of r is
included in a cyclic subgroup of the multiplicative group of nonzero rationals.

If the image of r is cyclic, then in particular the set of prime factors of r is finite.
Recall that a prime p is called a prime factor of r if there is a nonzero coefficient
of r such that p divides either its numerator or its denominator. Q-rational series
in one variable having finitely many prime factors are characterized by a theorem
of Polya stating that a Q-rational series r in one variable has finitely many prime
factors if and only if r is the sum of a polynomial and of a merge of geometric
series (see [1,2,4]).

In this note we prove that it is decidable whether or not a given Q-rational
series (in several noncommutative variables) has a cyclic image. Our result is
related to the conjecture stating that a noncommutative rational series has only
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finitely many prime factors if and only if it is unambiguously rational (see [1],
p. 76).

For other decidability results concerning the images of Q-rational series we refer
to [1,2]. Below we will use the result of Jacob stating that the finiteness of the
image of a rational series is a decidable property (see [3]).

2. Definitions and results

Let X be a finite nonempty set of variables. The set of formal power series with
noncommutative variables in X and rational coefficients is denoted by Q〈〈X〉〉. If
r ∈ Q〈〈X〉〉, r is a mapping from the free monoid X∗ generated by X into Q. The
image by r of a word w ∈ X∗ is denoted by (r, w) and r is written as

r =
∑

w∈X∗
(r, w)w.

The rational number (r, w) is called the coefficient of w in r. A power series
r ∈ Q〈〈X〉〉 is called proper if (r, ε) = 0. (Here ε is the empty word).

If r ∈ Q〈〈X〉〉, the image Im(r) of r is the set of its coefficients. Hence

Im(r) = {(r, w) | w ∈ X∗}.

We say that r ∈ Q〈〈X〉〉 has a cyclic image if there is a nonzero q ∈ Q such that

Im(r) ⊆ {qα | α ∈ Z} ∪ {0}.

In other words, r has a cyclic image if and only if there is a cyclic subgroup H of
nonzero rationals such that all nonzero coefficients of r belong to H .

Example 2.1. If w ∈ X∗ is a word and x ∈ X is a letter, then |w|x stands for
the number of occurrences of the letter x in w.

Let X = {x, y} be an alphabet with two letters and let

r =
∑

w∈X∗
2|w|x3|w|yw.

Define

L1 = (xy)∗, L2 = xy∗, L3 = {xnyn2 | n ≥ 0}, L4 = {w ∈ X∗ | |w|x = |w|y}.

For i = 1, 2, 3, 4, define

ri =
∑

w∈Li

(r, w)w.

Then r1 and r4 have cyclic images while r2 and r3 do not.
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Next we recall the definitions of Q-recognizable and Q-rational series.
A series r ∈ Q〈〈X〉〉 is called Q-recognizable if there exist an integer n ≥ 1, a

monoid morphism
μ : X∗ → Qn×n

and two matrices λ ∈ Q1×n and γ ∈ Qn×1 such that for all w ∈ X∗,

(r, w) = λμ(w)γ.

Then the triple (λ, μ, γ) is called a linear representation of r and n is its dimension.
To define the family of Q-rational series we first recall what is meant by a

rationally closed subset of Q〈〈X〉〉.
If r ∈ Q〈〈X〉〉 is a proper series, the star r∗ of r is defined by

r∗ =
∞∑

n=0

rn.

A subset A of Q〈〈X〉〉 is called rationally closed if the following conditions hold:
(i) If r, s ∈ A and a ∈ Q, then r + s ∈ A, rs ∈ A and ar ∈ A.
(ii) If r ∈ A is a proper series, then r∗ ∈ A.

Now, a power series r ∈ Q〈〈X〉〉 is called Q-rational if r belongs to the smallest
subset of Q〈〈X〉〉 which contains all polynomials and is rationally closed.

By the theorem of Schützenberger, a power series is Q-recognizable if and only
if it is Q-rational (see [1,2,6]).

In the next section we will prove the following result.

Theorem 2.2. It is decidable whether or not a given Q-rational series has a cyclic
image.

3. Proofs

In this section we will prove Theorem 2.2. We will use Jacob’s theorem stating
that it is decidable whether or not the image of a given rational series is finite
(see [1], Cor. VI.2.7, [3]).

Let r ∈ Q〈〈X〉〉 be a Q-rational series. First, decide whether or not r has a finite
image. If so, the image can be computed effectively and it can be decided whether
or not r has a cyclic image. Assume then that the image of r is infinite and
compute a coefficient q1 of r such that q1 	= 0, q1 	= 1. (To find such a coefficient
we compute initial coefficients of r until we find a coefficient q1 such that q1 	= 0,
q1 	= 1. Because we know that the image of r is infinite this computation will
succeed). Then there are only finitely many rational numbers q such that q1 = qi

for some integer i. Hence to prove Theorem 2.2 it suffices to show that it is
decidable whether or not

Im(r) ⊆ {qα | α ∈ Z} ∪ {0}

holds for a given Q-rational series r and a given rational number q.
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In the rest of this section we assume that q is a fixed rational number with
|q| ≥ 1.

We first prove a technical lemma.
If b0, b1, . . . , bk are rational numbers we say that no partial sum of b0 + b1 +

· · · + bk equals zero if for any s ≥ 1 and i1, . . . , is with 0 ≤ i1 < i2 < · · · < is ≤ k
we have bi1 + · · · + bis 	= 0.

Let a0 ∈ Q − {0} and A = {a1, . . . , ak} ⊆ Q − {0} and define

r(a0, A) = { |a0 + a1q
−α1 + · · · + akq−αk | | αi is a nonnegative integer for

i = 1, . . . , k and no partial sum of a0 + a1q
−α1 + · · · + akq−αk

equals zero}.

Lemma 3.1. One can effectively compute a positive lower bound for the set
r(a0, A).

Proof. Without loss of generality we assume that |q| > 1. (Recall that we have
|q| ≥ 1. If |q| = 1, then the claim is clear because then r(a0, A) is a finite set).
First, compute a positive integer e such that

|a0 + a1q
−β1 + · · · + akq−βk | >

1
2
|a0|

whenever βj ≥ e for j = 1, . . . , k. (In fact, it is enough to choose e such that
|aiq

−e| < 1
2k |a0| for all i = 1, . . . , k). Because r(a0, A) is included in the union of

the sets
{|a0 + a1q

−β1 + · · · + akq−βk | | βj ≥ e for j = 1, . . . , k} (3.1)
and the sets

r(a0 + ajq
−α, A − {aj}) (3.2)

where 1 ≤ j ≤ k, 0 ≤ α < e and a0+ajq
−α 	= 0, a positive lower bound for r(a0, A)

is obtained by computing positive lower bounds for the sets (3.1) and (3.2). Finally,
1
2 |a0| is a lower bound for (3.1) and for sets (3.2) positive lower bounds can be
computed inductively. �

For the rest of this section we assume that r ∈ Q〈〈X〉〉 is a fixed Q-rational
series and that (λ, μ, γ) is a linear representation of r having dimension k.

Let w0 ∈ X∗ be a word of length k. Then there exist words w1, . . . , wk ∈ X∗,
each having length less than k, and rational numbers c1, . . . , ck such that

(r, ww0) = c1(r, ww1) + · · · + ck(r, wwk)

for all w ∈ X∗ (see, e.g., [5], exercise II.3.7).

Lemma 3.2. Let w0 ∈ X∗ be a word of length k. Let w1, . . . , wk and c1, . . . , ck be
as above. One can compute an integer K(w0) which has the following property. If

Im(r) ⊆ {qα | α ∈ Z} ∪ {0} (3.3)
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and w ∈ X∗, then either
(r, ww0) = 0

or there is an integer i ∈ {1, . . . , k} and an integer β such that

(r, ww0) = qβ · (r, wwi) (3.4)

and
|β| ≤ K(w0). (3.5)

Proof. The claim holds if |q| = 1. Indeed, in this case the claim holds if we take
K(w0) = 1. Assume that |q| > 1. (Recall that we have |q| ≥ 1). By Lemma 3.1
we can compute a positive rational number B1 such that

B1 ≤ x

whenever x ∈ r(ci, D) for some i ∈ {1, . . . , k} and D ⊆ {c1, . . . , ck} − {ci}. (Here
we assume that {ci} ∪ D ⊆ Q − {0}.) Define

B2 = |c1| + · · · + |ck|

and compute a nonnegative integer K(w0) such that

B1 ≥ |q|−K(w0) and B2 ≤ |q|K(w0).

Now, suppose (3.3) holds, w ∈ X∗ and (r, ww0) 	= 0. Then there exist an integer
t, integers i1, . . . , it ∈ {1, . . . , k} and integers α1, . . . , αt such that

(r, ww0) = ci1 · qα1 + · · · + cit · qαt (3.6)

and no partial sum of the right side of (3.6) equals zero. Furthermore,

(r, wwij ) = qαj

for j = 1, . . . , t.
Without loss of generality assume that

α1 = max{α1, . . . , αt}.

Then
(r, ww0) = qα1(ci1 + ci2q

α2−α1 + · · · + citq
αt−α1),

where
B1 ≤ |ci1 + ci2q

α2−α1 + · · · + citq
αt−α1 | ≤ B2.

Hence

|q|−K(w0) ≤
∣∣∣∣∣
(r, ww0)
(r, wwi1 )

∣∣∣∣∣ ≤ |q|K(w0).
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Because by assumption (r, ww0) ∈ {qα | α ∈ Z} and (r, wwi1 ) ∈ {qα | α ∈ Z},
it follows that there is an integer i ∈ {1, . . . , k} and an integer β such that (3.4)
and (3.5) hold. �

Let again w0 ∈ X∗ be a word of length k. Let w1, . . . , wk ∈ X∗ and K(w0) be
as in Lemma 3.2. Define the series S(w0) ∈ Q〈〈X〉〉 by

(S(w0), w) = (r, ww0) ·
∏

1≤i≤k,|β|≤K(w0)

((r, ww0) − qβ(r, wwi))

for w ∈ X∗.

Lemma 3.3. The series S(w0) is Q-rational.

Proof. Let 1 ≤ i ≤ k and let β be an integer such that |β| ≤ K(w0). Because

(r, ww0) − qβ(r, wwi) = λμ(ww0)γ − qβλμ(wwi)γ = λμ(w)(μ(w0)γ − qβμ(wi)γ)

for all w ∈ X∗, the series
∑

w∈X∗
((r, ww0) − qβ(r, wwi))w

is Q-rational. The claim follows because the Hadamard product of finitely many
Q-rational series is Q-rational. �

The following lemma explains the connection between the cyclicity of the image
of r and the vanishing of the series S(w0) for all w0 ∈ X∗ with |w0| = k.

Lemma 3.4. We have

Im(r) ⊆ {qα | α ∈ Z} ∪ {0} (3.7)

if and only if

(r, w) ∈ {qα | α ∈ Z} ∪ {0} whenever w ∈ X∗ and |w| < k (3.8)

and
S(w0) = 0 whenever w0 ∈ X∗ and |w0| = k. (3.9)

Proof. Assume first that (3.7) holds. Then trivially (3.8) holds. By Lemma 3.2
and the definition of the series S(w0) also (3.9) holds.

Conversely, assume that (3.8) and (3.9) hold. Suppose there is a word v such
that (r, v) does not belong to {qα | α ∈ Z} ∪ {0}. Choose v such that its length is
as small as possible. By (3.8), the length of v is at least k. Write v = ww0, where
w, w0 ∈ X∗ and |w0| = k. Because S(w0) = 0, there is a word w of length less
than k and an integer β such that

(r, v) = (r, ww0) = qβ · (r, ww).
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Because (r, v) is not an integer power of q, neither is (r, ww). This contradicts the
choice of v because |ww| < |v|. �

Now the decidability of (3.7) follows because we can decide (3.8) and (3.9). To
decide (3.9) we use Lemma 3.3 and the fact that it is decidable whether or not a
given rational series equals zero (see [1], Prop. VI.1.1). This concludes the proof
of Theorem 2.2.
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