THE CYCLICITY PROBLEM FOR THE IMAGES OF \mathbb{Q}-RATIONAL SERIES

Juha Honkala ${ }^{1}$

Abstract

We show that it is decidable whether or not a given \mathbb{Q}-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.

Mathematics Subject Classification. 11B85, 11U05, 68Q45.

1. Introduction

We study \mathbb{Q}-rational power series in noncommutative variables and their images. By definition, the image $\operatorname{Im}(r)$ of a series r is the set of its coefficients. We say that the image $\operatorname{Im}(r)$ of r is cyclic if there is a rational number q such that

$$
\operatorname{Im}(r) \subseteq\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\} \cup\{0\}
$$

Hence the image of r is cyclic if and only if the set of nonzero coefficients of r is included in a cyclic subgroup of the multiplicative group of nonzero rationals.

If the image of r is cyclic, then in particular the set of prime factors of r is finite. Recall that a prime p is called a prime factor of r if there is a nonzero coefficient of r such that p divides either its numerator or its denominator. \mathbb{Q}-rational series in one variable having finitely many prime factors are characterized by a theorem of Polya stating that a \mathbb{Q}-rational series r in one variable has finitely many prime factors if and only if r is the sum of a polynomial and of a merge of geometric series (see $[1,2,4]$).

In this note we prove that it is decidable whether or not a given \mathbb{Q}-rational series (in several noncommutative variables) has a cyclic image. Our result is related to the conjecture stating that a noncommutative rational series has only

Keywords and phrases. Rational series, images of rational series, decidability.
${ }^{1}$ Department of Mathematics, University of Turku, 20014 Turku, Finland.
juha.honkala@utu.fi
finitely many prime factors if and only if it is unambiguously rational (see [1], p. 76).

For other decidability results concerning the images of \mathbb{Q}-rational series we refer to $[1,2]$. Below we will use the result of Jacob stating that the finiteness of the image of a rational series is a decidable property (see [3]).

2. Definitions And Results

Let X be a finite nonempty set of variables. The set of formal power series with noncommutative variables in X and rational coefficients is denoted by $\mathbb{Q}\langle\langle X\rangle$. If $r \in \mathbb{Q}\left\langle\langle X\rangle, r\right.$ is a mapping from the free monoid X^{*} generated by X into \mathbb{Q}. The image by r of a word $w \in X^{*}$ is denoted by (r, w) and r is written as

$$
r=\sum_{w \in X^{*}}(r, w) w
$$

The rational number (r, w) is called the coefficient of w in r. A power series $r \in \mathbb{Q}\langle\langle X\rangle\rangle$ is called proper if $(r, \varepsilon)=0$. (Here ε is the empty word).

If $r \in \mathbb{Q}\langle\langle X\rangle\rangle$, the image $\operatorname{Im}(r)$ of r is the set of its coefficients. Hence

$$
\operatorname{Im}(r)=\left\{(r, w) \mid w \in X^{*}\right\}
$$

We say that $r \in \mathbb{Q}\langle\langle X\rangle\rangle$ has a cyclic image if there is a nonzero $q \in \mathbb{Q}$ such that

$$
\operatorname{Im}(r) \subseteq\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\} \cup\{0\}
$$

In other words, r has a cyclic image if and only if there is a cyclic subgroup H of nonzero rationals such that all nonzero coefficients of r belong to H.

Example 2.1. If $w \in X^{*}$ is a word and $x \in X$ is a letter, then $|w|_{x}$ stands for the number of occurrences of the letter x in w.

Let $X=\{x, y\}$ be an alphabet with two letters and let

$$
r=\sum_{w \in X^{*}} 2^{|w|_{x}} 3^{|w|_{y}} w
$$

Define

$$
L_{1}=(x y)^{*}, L_{2}=x y^{*}, \quad L_{3}=\left\{x^{n} y^{n^{2}} \mid n \geq 0\right\}, L_{4}=\left\{\left.w \in X^{*}| | w\right|_{x}=|w|_{y}\right\}
$$

For $i=1,2,3,4$, define

$$
r_{i}=\sum_{w \in L_{i}}(r, w) w
$$

Then r_{1} and r_{4} have cyclic images while r_{2} and r_{3} do not.

Next we recall the definitions of \mathbb{Q}-recognizable and \mathbb{Q}-rational series.
A series $r \in \mathbb{Q}\langle\langle X\rangle\rangle$ is called \mathbb{Q}-recognizable if there exist an integer $n \geq 1$, a monoid morphism

$$
\mu: X^{*} \rightarrow \mathbb{Q}^{n \times n}
$$

and two matrices $\lambda \in \mathbb{Q}^{1 \times n}$ and $\gamma \in \mathbb{Q}^{n \times 1}$ such that for all $w \in X^{*}$,

$$
(r, w)=\lambda \mu(w) \gamma
$$

Then the triple (λ, μ, γ) is called a linear representation of r and n is its dimension.
To define the family of \mathbb{Q}-rational series we first recall what is meant by a rationally closed subset of $\mathbb{Q}\langle\langle X\rangle\rangle$.

If $r \in \mathbb{Q}\langle\langle X\rangle\rangle$ is a proper series, the star r^{*} of r is defined by

$$
r^{*}=\sum_{n=0}^{\infty} r^{n}
$$

A subset A of $\mathbb{Q}\langle\langle X\rangle\rangle$ is called rationally closed if the following conditions hold:
(i) If $r, s \in A$ and $a \in \mathbb{Q}$, then $r+s \in A, r s \in A$ and $a r \in A$.
(ii) If $r \in A$ is a proper series, then $r^{*} \in A$.

Now, a power series $r \in \mathbb{Q}\langle\langle X\rangle$ is called \mathbb{Q}-rational if r belongs to the smallest subset of $\mathbb{Q}\langle\langle X\rangle\rangle$ which contains all polynomials and is rationally closed.

By the theorem of Schützenberger, a power series is \mathbb{Q}-recognizable if and only if it is \mathbb{Q}-rational (see $[1,2,6]$).

In the next section we will prove the following result.
Theorem 2.2. It is decidable whether or not a given \mathbb{Q}-rational series has a cyclic image.

3. Proofs

In this section we will prove Theorem 2.2. We will use Jacob's theorem stating that it is decidable whether or not the image of a given rational series is finite (see [1], Cor. VI.2.7, [3]).

Let $r \in \mathbb{Q}\langle\langle X\rangle\rangle$ be a \mathbb{Q}-rational series. First, decide whether or not r has a finite image. If so, the image can be computed effectively and it can be decided whether or not r has a cyclic image. Assume then that the image of r is infinite and compute a coefficient q_{1} of r such that $q_{1} \neq 0, q_{1} \neq 1$. (To find such a coefficient we compute initial coefficients of r until we find a coefficient q_{1} such that $q_{1} \neq 0$, $q_{1} \neq 1$. Because we know that the image of r is infinite this computation will succeed). Then there are only finitely many rational numbers q such that $q_{1}=q^{i}$ for some integer i. Hence to prove Theorem 2.2 it suffices to show that it is decidable whether or not

$$
\operatorname{Im}(r) \subseteq\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\} \cup\{0\}
$$

holds for a given \mathbb{Q}-rational series r and a given rational number q.

In the rest of this section we assume that q is a fixed rational number with $|q| \geq 1$.

We first prove a technical lemma.
If $b_{0}, b_{1}, \ldots, b_{k}$ are rational numbers we say that no partial sum of $b_{0}+b_{1}+$ $\cdots+b_{k}$ equals zero if for any $s \geq 1$ and i_{1}, \ldots, i_{s} with $0 \leq i_{1}<i_{2}<\cdots<i_{s} \leq k$ we have $b_{i_{1}}+\cdots+b_{i_{s}} \neq 0$.

Let $a_{0} \in \mathbb{Q}-\{0\}$ and $A=\left\{a_{1}, \ldots, a_{k}\right\} \subseteq \mathbb{Q}-\{0\}$ and define

$$
\begin{aligned}
r\left(a_{0}, A\right)= & \left\{\left|a_{0}+a_{1} q^{-\alpha_{1}}+\cdots+a_{k} q^{-\alpha_{k}}\right| \mid \alpha_{i}\right. \text { is a nonnegative integer for } \\
& i=1, \ldots, k \text { and no partial sum of } a_{0}+a_{1} q^{-\alpha_{1}}+\cdots+a_{k} q^{-\alpha_{k}} \\
& \text { equals zero }\} .
\end{aligned}
$$

Lemma 3.1. One can effectively compute a positive lower bound for the set $r\left(a_{0}, A\right)$.

Proof. Without loss of generality we assume that $|q|>1$. (Recall that we have $|q| \geq 1$. If $|q|=1$, then the claim is clear because then $r\left(a_{0}, A\right)$ is a finite set). First, compute a positive integer e such that

$$
\left|a_{0}+a_{1} q^{-\beta_{1}}+\cdots+a_{k} q^{-\beta_{k}}\right|>\frac{1}{2}\left|a_{0}\right|
$$

whenever $\beta_{j} \geq e$ for $j=1, \ldots, k$. (In fact, it is enough to choose e such that $\left|a_{i} q^{-e}\right|<\frac{1}{2 k}\left|a_{0}\right|$ for all $\left.i=1, \ldots, k\right)$. Because $r\left(a_{0}, A\right)$ is included in the union of the sets

$$
\begin{equation*}
\left\{\left|a_{0}+a_{1} q^{-\beta_{1}}+\cdots+a_{k} q^{-\beta_{k}}\right| \mid \beta_{j} \geq e \text { for } j=1, \ldots, k\right\} \tag{3.1}
\end{equation*}
$$

and the sets

$$
\begin{equation*}
r\left(a_{0}+a_{j} q^{-\alpha}, A-\left\{a_{j}\right\}\right) \tag{3.2}
\end{equation*}
$$

where $1 \leq j \leq k, 0 \leq \alpha<e$ and $a_{0}+a_{j} q^{-\alpha} \neq 0$, a positive lower bound for $r\left(a_{0}, A\right)$ is obtained by computing positive lower bounds for the sets (3.1) and (3.2). Finally, $\frac{1}{2}\left|a_{0}\right|$ is a lower bound for (3.1) and for sets (3.2) positive lower bounds can be computed inductively.

For the rest of this section we assume that $r \in \mathbb{Q}\langle\langle X\rangle\rangle$ is a fixed \mathbb{Q}-rational series and that (λ, μ, γ) is a linear representation of r having dimension k.

Let $w_{0} \in X^{*}$ be a word of length k. Then there exist words $w_{1}, \ldots, w_{k} \in X^{*}$, each having length less than k, and rational numbers c_{1}, \ldots, c_{k} such that

$$
\left(r, w w_{0}\right)=c_{1}\left(r, w w_{1}\right)+\cdots+c_{k}\left(r, w w_{k}\right)
$$

for all $w \in X^{*}$ (see, e.g., [5], exercise II.3.7).
Lemma 3.2. Let $w_{0} \in X^{*}$ be a word of length k. Let w_{1}, \ldots, w_{k} and c_{1}, \ldots, c_{k} be as above. One can compute an integer $K\left(w_{0}\right)$ which has the following property. If

$$
\begin{equation*}
\operatorname{Im}(r) \subseteq\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\} \cup\{0\} \tag{3.3}
\end{equation*}
$$

and $w \in X^{*}$, then either

$$
\left(r, w w_{0}\right)=0
$$

or there is an integer $i \in\{1, \ldots, k\}$ and an integer β such that

$$
\begin{equation*}
\left(r, w w_{0}\right)=q^{\beta} \cdot\left(r, w w_{i}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
|\beta| \leq K\left(w_{0}\right) . \tag{3.5}
\end{equation*}
$$

Proof. The claim holds if $|q|=1$. Indeed, in this case the claim holds if we take $K\left(w_{0}\right)=1$. Assume that $|q|>1$. (Recall that we have $|q| \geq 1$). By Lemma 3.1 we can compute a positive rational number B_{1} such that

$$
B_{1} \leq x
$$

whenever $x \in r\left(c_{i}, D\right)$ for some $i \in\{1, \ldots, k\}$ and $D \subseteq\left\{c_{1}, \ldots, c_{k}\right\}-\left\{c_{i}\right\}$. (Here we assume that $\left\{c_{i}\right\} \cup D \subseteq \mathbb{Q}-\{0\}$.) Define

$$
B_{2}=\left|c_{1}\right|+\cdots+\left|c_{k}\right|
$$

and compute a nonnegative integer $K\left(w_{0}\right)$ such that

$$
B_{1} \geq|q|^{-K\left(w_{0}\right)} \quad \text { and } \quad B_{2} \leq|q|^{K\left(w_{0}\right)}
$$

Now, suppose (3.3) holds, $w \in X^{*}$ and $\left(r, w w_{0}\right) \neq 0$. Then there exist an integer t, integers $i_{1}, \ldots, i_{t} \in\{1, \ldots, k\}$ and integers $\alpha_{1}, \ldots, \alpha_{t}$ such that

$$
\begin{equation*}
\left(r, w w_{0}\right)=c_{i_{1}} \cdot q^{\alpha_{1}}+\cdots+c_{i_{t}} \cdot q^{\alpha_{t}} \tag{3.6}
\end{equation*}
$$

and no partial sum of the right side of (3.6) equals zero. Furthermore,

$$
\left(r, w w_{i_{j}}\right)=q^{\alpha_{j}}
$$

for $j=1, \ldots, t$.
Without loss of generality assume that

$$
\alpha_{1}=\max \left\{\alpha_{1}, \ldots, \alpha_{t}\right\}
$$

Then

$$
\left(r, w w_{0}\right)=q^{\alpha_{1}}\left(c_{i_{1}}+c_{i_{2}} q^{\alpha_{2}-\alpha_{1}}+\cdots+c_{i_{t}} q^{\alpha_{t}-\alpha_{1}}\right)
$$

where

$$
B_{1} \leq\left|c_{i_{1}}+c_{i_{2}} q^{\alpha_{2}-\alpha_{1}}+\cdots+c_{i_{t}} q^{\alpha_{t}-\alpha_{1}}\right| \leq B_{2}
$$

Hence

$$
|q|^{-K\left(w_{0}\right)} \leq\left|\frac{\left(r, w w_{0}\right)}{\left(r, w w_{i_{1}}\right)}\right| \leq|q|^{K\left(w_{0}\right)} .
$$

Because by assumption $\left(r, w w_{0}\right) \in\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\}$ and $\left(r, w w_{i_{1}}\right) \in\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\}$, it follows that there is an integer $i \in\{1, \ldots, k\}$ and an integer β such that (3.4) and (3.5) hold.

Let again $w_{0} \in X^{*}$ be a word of length k. Let $w_{1}, \ldots, w_{k} \in X^{*}$ and $K\left(w_{0}\right)$ be as in Lemma 3.2. Define the series $S\left(w_{0}\right) \in \mathbb{Q}\langle\langle X\rangle\rangle$ by

$$
\left(S\left(w_{0}\right), w\right)=\left(r, w w_{0}\right) \cdot \prod_{1 \leq i \leq k,|\beta| \leq K\left(w_{0}\right)}\left(\left(r, w w_{0}\right)-q^{\beta}\left(r, w w_{i}\right)\right)
$$

for $w \in X^{*}$.
Lemma 3.3. The series $S\left(w_{0}\right)$ is \mathbb{Q}-rational.
Proof. Let $1 \leq i \leq k$ and let β be an integer such that $|\beta| \leq K\left(w_{0}\right)$. Because

$$
\left(r, w w_{0}\right)-q^{\beta}\left(r, w w_{i}\right)=\lambda \mu\left(w w_{0}\right) \gamma-q^{\beta} \lambda \mu\left(w w_{i}\right) \gamma=\lambda \mu(w)\left(\mu\left(w_{0}\right) \gamma-q^{\beta} \mu\left(w_{i}\right) \gamma\right)
$$

for all $w \in X^{*}$, the series

$$
\sum_{w \in X^{*}}\left(\left(r, w w_{0}\right)-q^{\beta}\left(r, w w_{i}\right)\right) w
$$

is \mathbb{Q}-rational. The claim follows because the Hadamard product of finitely many \mathbb{Q}-rational series is \mathbb{Q}-rational.

The following lemma explains the connection between the cyclicity of the image of r and the vanishing of the series $S\left(w_{0}\right)$ for all $w_{0} \in X^{*}$ with $\left|w_{0}\right|=k$.
Lemma 3.4. We have

$$
\begin{equation*}
\operatorname{Im}(r) \subseteq\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\} \cup\{0\} \tag{3.7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
(r, w) \in\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\} \cup\{0\} \text { whenever } w \in X^{*} \text { and }|w|<k \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(w_{0}\right)=0 \text { whenever } w_{0} \in X^{*} \text { and }\left|w_{0}\right|=k \tag{3.9}
\end{equation*}
$$

Proof. Assume first that (3.7) holds. Then trivially (3.8) holds. By Lemma 3.2 and the definition of the series $S\left(w_{0}\right)$ also (3.9) holds.

Conversely, assume that (3.8) and (3.9) hold. Suppose there is a word v such that (r, v) does not belong to $\left\{q^{\alpha} \mid \alpha \in \mathbb{Z}\right\} \cup\{0\}$. Choose v such that its length is as small as possible. By (3.8), the length of v is at least k. Write $v=w w_{0}$, where $w, w_{0} \in X^{*}$ and $\left|w_{0}\right|=k$. Because $S\left(w_{0}\right)=0$, there is a word \bar{w} of length less than k and an integer β such that

$$
(r, v)=\left(r, w w_{0}\right)=q^{\beta} \cdot(r, w \bar{w})
$$

Because (r, v) is not an integer power of q, neither is $(r, w \bar{w})$. This contradicts the choice of v because $|w \bar{w}|<|v|$.

Now the decidability of (3.7) follows because we can decide (3.8) and (3.9). To decide (3.9) we use Lemma 3.3 and the fact that it is decidable whether or not a given rational series equals zero (see [1], Prop. VI.1.1). This concludes the proof of Theorem 2.2.

Acknowledgements. The useful suggestions of two referees are gratefully acknowleged.

References

[1] J. Berstel and C. Reutenauer, Rational Series and Their Languages. Springer, Berlin (1988).
[2] J. Berstel and C. Reutenauer, Noncommutative Rational Series with Applications. Cambridge University Press, Cambridge (2011).
[3] G. Jacob, La finitude des représentations linéaires des semi-groupes est décidable. J. Algebra 52 (1978) 437-459.
[4] G. Polya, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. J. Reine Angew. Math. 151 (1921) 1-31.
[5] A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series. Springer, Berlin (1978).
[6] M.-P. Schützenberger, On the definition of a family of automata, Inf. Control 4 (1961) 245-270.

Communicated by C. Choffrut.
Received May 31, 2010. Accepted June 27, 2011.

