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ON THE NUMBER OF SQUARES IN PARTIAL WORDS ∗
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Abstract. The theorem of Fraenkel and Simpson states that the max-
imum number of distinct squares that a word w of length n can contain
is less than 2n. This is based on the fact that no more than two squares
can have their last occurrences starting at the same position. In this
paper we show that the maximum number of the last occurrences of
squares per position in a partial word containing one hole is 2k, where
k is the size of the alphabet. Moreover, we prove that the number
of distinct squares in a partial word with one hole and of length n is
less than 4n, regardless of the size of the alphabet. For binary partial
words, this upper bound can be reduced to 3n.
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Introduction

In combinatorics on words, factors of the form ww, i.e., squares can be studied
from two perspectives. On one hand, one may try to avoid squares by constructing
square-free words. A classical example of an infinite square-free word over a 3-
letter alphabet is obtained from the famous Thue-Morse word [1] using a certain
mapping; see [14,15]. On the other hand, one may try to maximize the number
of square factors in a word. The theorem of Fraenkel and Simpson states that a
word of length n contains always less than 2n distinct squares [6]. A very short
proof for this and an improved upper bound 2n−Θ(log n) was given by Ilie in [9]
and [10]. However, the numerical evidence provided by Fraenkel and Simpson [6]
suggests that the upper bound is even below n.
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In this paper we consider squares in partial words, which are words with “do not
know”-symbols � called holes. Here a square is a factor of the form ww′, where w
and w′ are compatible. Compatibility means that words of the same length agree
on each position which does not contain a hole. Partial words were first introduced
by Berstel and Boasson in [2]. The theory of partial words has developed rapidly
in recent years and many classical topics in combinatorics on words have been
revisited for this generalization; see [3]. For example, the present authors proved
in [8] that there exist uncountably many infinite square-free partial words over a
3-letter alphabet containing infinitely many holes. Note that for square-freeness,
we must allow unavoidable squares a� and �a for (some) letters a. For other results
on repetition-freeness in partial words, see [7] and [13].

In this paper our aim is to generalize the theorem of Fraenkel and Simpson
for partial words containing one hole. This problem was already investigated by
Blanchet-Sadri et al. in [4]. They proved that the number of distinct full words u2

compatible with factors in a partial word with h holes and of length n increases
polynomially with respect to k, where k ≥ 2 is the size of the alphabet. Moreover,
they showed that, for partial words with one hole, there may be more than two
squares that have their last compatible occurrences starting at the same position.
They also gave an intricate proof for the statement that in the above described
case the hole must be in the shortest square.

A partial word containing one hole and k + 1 squares whose last compatible
occurrences start at the first position was given in [4]. In Section 2 we improve
this example by constructing a word with 2k last compatible occurrences of squares
starting at position one. We also show that this bound 2k is maximal. In Section 3
we prove that if a position is the starting position for at least three last compatible
occurrences of squares, then the longest square must be twice as long as the shortest
square. As a corollary, we get a short proof for the result of Blanchet-Sadri et al.
stating that the hole must be in the shortest square. In addition, our proof gives
a new proof for the original result of Fraenkel and Simpson. Finally, our result
implies that the maximum number of squares in a word with one hole is at most 4n,
regardless of the size of the alphabet. For binary partial words with one hole, we
can decrease this bound to 3n.

1. Preliminaries

We recall some notions and notation mainly from [2]. A word w = a1a2 . . . an

of length n over an alphabet A is a mapping w : {1, 2, . . . , n} → A such that
w(i) = ai. The elements of A are called letters. The length of a word w is denoted
by |w|, and the length of the empty word ε is zero. The set of all finite words
including the empty word is denoted by A∗. Let also A+ = A∗ \ {ε}. A word v
is a factor of a word w (resp. a prefix, a suffix ), if there exist x and y in A∗ such
that w = xvy (resp. w = vy, w = xv). The prefix (resp. a suffix) of w of length n
is denoted by prefn(w) (resp. sufn(w)). The kth power of a word u �= ε is the
word uk = prefk·|u|(u

ω), where uω denotes the infinite catenation of the word u
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with itself and k is a positive rational number such that k · |u| is an integer. If
k is an integer, then the power is called an integer power. A primitive word is a
word that is not an integer power of any other word. If w = uv, then u−1w = v
is the left quotient of w by u. If u is not a prefix of w, then u−1w is undefined.
Analogously, we define the right quotient wu−1.

A partial word u of length n over the alphabet A is a partial function
u : {1, 2, . . . , n} → A. The domain D(u) is the set of positions i ∈ {1, 2, . . . , n}
such that u(i) is defined. The set H(u) = {1, 2, . . . , n} \ D(u) is called the set of
holes. If H(u) is empty, then u is a full word. As for full words, we denote by
|u| = n the length of a partial word u. Let � be a symbol that does not belong
to A. For a partial word u, we define its companion to be the full word u� over
the augmented alphabet A� = A ∪ {�} such that u�(i) = u(i), if i ∈ D(u), and
u�(i) = �, otherwise. The set A∗

� corresponds to the set of finite partial words.
A partial word u is said to be contained in v (denoted by u ⊂ v) if |u| = |v|,
D(u) ⊆ D(v) and u(i) = v(i) for all i ∈ D(u). Two partial words u and v are
compatible (denoted by u ↑ v) if there exists a (partial) word z such that u ⊂ z and
v ⊂ z. In terms of companion words, u ↑ v if and only if u�(i) = v�(i) whenever
u�(i) �= � and v�(i) �= �.

For partial words v and w, write lastw(v) = i if w = u1v1u2, where |u1| = i−1,
v ↑ v1 and v is not compatible with a factor in v1u2 except the prefix. (If no such
v1 exists, then let lastw(v) be undefined.) If defined, then v1 is the last compatible
occurrence of v in w.

A square in a partial word is a non-empty factor of the form ww′ such that
w ↑ w′. If such a square is a full word, then it is called a full square. The number
of distinct full squares compatible with the factors of a partial word w is denoted
by Sq(w):

Sq(w) = card{u2 ∈ A+ | u2 ↑ v, v is a factor of w}.
For each full square u2 taking part in Sq(w), it suffices to consider the rightmost
occurrence of a factor v that is compatible with u2. Moreover, let

sw(i) = card{u2 ∈ A+ | lastw(u2) = i}.

As an example, consider the partial word w = aba�babaab with one hole, H(w) =
{4}. Here lastw((aba)2) = 1 = lastw((abaab)2). Also, (ab)2 begins at position 1,
but (ab)2 ↑ �bab, and therefore lastw((ab)2) = 4. Hence sw(1) = 2. Continuing
we see that (sw(1), sw(2), . . . , sw(|w|)) = (2, 1, 0, 2, 1, 0, 0, 1, 0, 0) and therefore we
have Sq(w) =

∑|w|
i=1 sw(i) = 7.

Using the above notation we may state the theorem of Fraenkel and Simpson
as follows.

Theorem 1.1 [6]. For any full word w ∈ A∗, we have Sq(w) < 2|w|.
Since Sq(w) =

∑|w|
i=1 sw(i) and no square can start from the last position, i.e.,

sw(|w|) = 0, the theorem is a direct consequence of the following lemma, which
was already proved in a slightly different form in [5]. See also Section 8.1.5 in [12].
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Lemma 1.2. For any word w ∈ A∗, we have sw(i) ≤ 2 for i = 1, 2, . . . , |w|.
We finish this section by stating three lemmata which will be needed later in

this article. We begin with a characterization for two commuting words. For the
proof, see, for example, [11].

Lemma 1.3. If xy = yx for full words x and y, then there exists a word z and
integers s and t such that x = zs and y = zt.

The second lemma, which was proved by Berstel and Boasson in [2], reduces
the considerations of partial words to full words as in Lemma 1.3.

Lemma 1.4 [2]. Let x be a partial word with at most one hole, and let u and v
be two (full) words. If x ⊂ uv and x ⊂ vu, then uv = vu.

Full words u and v are conjugate if there exist words x and y such that u = xy
and v = yx. The third lemma gives a characterization to conjugates using a word
equation. For the proof, see, for example, [11].

Lemma 1.5. Two words u and v are conjugate if and only if there exists a word
z such that uz = zv. Moreover, in this case there exist words x and y such that
u = xy, v = yx and z = (xy)nx for some integer n ≥ 0.

2. Maximum number of last occurrences of squares

Let card(A) = k. In this section we show that, for partial words with one hole,
the maximum number of last occurrences of squares starting at the same position
is 2k. For a partial word w and a letter a ∈ A, we denote by w(a) the full word
where the holes are replaced by a. Most certainly w ⊂ w(a).

Theorem 2.1. Let w be a partial word over a k-letter alphabet A such that w
contains only one hole. Then sw(i) ≤ 2k for i = 1, 2, . . . , |w|.
Proof. Suppose that sw(i) > 2k. Each square factor v with card(H(v)) = 1, say
v ↑ u2, satisfies v(a) = u2 for a unique letter a filling the single hole. By the
pigeon hole principle, there exists a letter a ∈ A such that w(a) contains more
than two last occurrences of squares starting at the position i. This contradicts
with Lemma 1.2. �

Next we construct recursively a partial word w such that sw(1) = 2k. Let
A = {a1, . . . , ak}. Let w0 = �akak−1 . . . a1 and, for j = 1, 2, . . . , k, set

w2j−1 = w2j−2 · w2j−2(aj),

w2j = w2j−1 · (�−1w2j−1)a−1
j ,

where the dots emphasize that the substitution is done only in the suffix part.
For instance, for k = 3, we have w0 = �a3a2a1, w1 = �a3a2a1a1a3a2a1, w2 =
�a3a2a1a1a3a2a1a3a2a1a1a3a2.
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One easily shows by induction that akak−1 . . . aj is a suffix of w2j−1. Also, since
w2j−1 begins with a hole, the recursive rule with quotients for w2j is well-defined.
Notice that

w2j−1(aj) = (w2j−2(aj))2 and w2j(aj) = (w2j−1(aj)a−1
j )2.

It is clear that w = w2k has a prefix compatible with w2j−1(aj) = (w2j−2(aj))2,
and a prefix compatible with w2j(aj) = (w2j−1(aj)a−1

j )2. Therefore we have

Lemma 2.2. Let w = w2k. Then, for each j = 1, 2, . . . , k, the squares w2j−1(aj)
and w2j(aj) are prefixes of w(aj).

The next lemma shows that the above 2k squares do not occur later in w.

Lemma 2.3. Let w = w2k. The full square w2j−1(aj) is not a factor of w for any
j = 1, 2, . . . , k.

Proof. By the definition, we have

w2j = w2j−2(w2j−2(aj))(�−1w2j−2)(w2j−2(aj)a−1
j ).

By induction, the set of letters occurring one position before any occurrence of ak

in w2j or in w2j−1 is {�, a1, a2, . . . , aj}. Hence, ajak does not occur in w2j−2.
Since w2j−1(aj) = ajak . . ., the only possible beginning positions for the factor
w2j−1(aj) in w2j are l + 1, 2l and 3l, where l = |w2j−2|. However, the factor of
length |w2j−1| = 2l at position l+1 begins with w2j−2(aj)ak, which is not a prefix
of w2j−1(aj). Consequently, w2j−2(aj) does not occur anywhere in w2j , since the
positions 2l and 3l are two close to the end of w2j .

Moreover, w2j−1(aj) does not occur in w2j+1 = w2jw2j(aj). Namely, the factor
of length 2l starting at the position 2l begins with w2j−2(aj)(w2j−2(aj)a−1

j )aj+1

and the factor of length 2l starting at the position 3l begins with (w2j−2(aj)a−1
j )

aj+1. Neither of those are prefixes of w2j−1(aj). Again, the other possible positions
are too close to the end of the word.

By the construction, we conclude inductively that every factor of length 2l
in w = w2k beginning with ajak has a prefix of the form w2j−2(aj)ak,
w2j−2(aj)(w2j−2(aj)a−1

j )b or (w2j−2(aj)a−1
j )b, where b ∈ {aj+1, aj+2, . . . ak}. None

of these is a prefix of w2j−1(aj). Hence, w2j−1(aj) cannot be a factor of w. �
Since w2j−1(aj) is a prefix of w2j(aj), we obtain the following corollary.

Corollary 2.4. The full square w2j(aj) is not a factor of w for any j = 1, 2, . . . , k.

Thus, the previous lemma and the corollary together imply the desired result.

Theorem 2.5. For w = w2k, we have sw(1) = 2k.

Note that the above construction for w gives an improvement of the example
in [4] containing k + 1 last compatible occurrences of squares as prefixes. If k = 2,
our construction gives the binary word of length 38:

w = �baababaabbbaababaabbaababaabbbaababaa.
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The full squares compatible with the prefixes of w are

w1(a) = (aba)2,
w2(a) = (abaab)2,
w3(b) = (bbaababaab)2,
w4(b) = (bbaababaabbbaababaa)2.

These squares do not occur later in w. Hence, sw(1) = 4 = 2k. Note that here the
hole is in the first position. In general, by a result in [4], the hole must be in the
shortest last compatible occurrence of a square starting at i whenever sw(i) > 2.
As another example, consider the word of length 46:

w′ = abaab�baabbaabaabbbaabbabaabbbaabbaabaabbbaabb.

Again sw(1) = 4 and the full squares compatible with the prefixes of w′ are (aba)2,
(abaab)2, (abaabbbaabba)2 and (abaabbbaabbaabaabbbaabb)2. Now the hole is in the
last possible position, namely in the end of the shortest last compatible occurrence
of a square starting at position one.

3. Distinct squares in a partial word with one hole

In this section our goal is to estimate how many distinct squares can occur in
a partial word with one hole. We start by proving the following technical lemma.
In the sequel, we denote

w[i, j] = w(i)w(i + 1) . . . w(j)

for a word w and integers i and j with i < j. The integer part of a real number x
is denoted by �x.
Lemma 3.1. Let vv′ be a prefix of ww′, where v ↑ v′, w ↑ w′ such that |w| < 2|v|,
say l = |w| − |v| < |v|. Assume that ww′ contains at most one hole and denote
by V the full word compatible with both v and v′. Then there are words Z and Ẑ
of length l such that

V =

⎧⎪⎨⎪⎩
Zm+1ẐnẐ1 if v(h) = � with 1 ≤ h ≤ l

⌊|v|/l
⌋
,

ZmẐnẐ1 if v′(h) = � with l + 1 ≤ h ≤ |v|,
ẐnẐ1 otherwise,

(3.1)

where m = �(h− 1)/l, n is a non-negative integer, Ẑ1 is a prefix of Ẑ, and there
exists a partial word z containing at most one hole and satisfying z ⊂ Z and z ⊂ Ẑ.

Proof. Let us first consider the case where v(h) = � and 1 ≤ h ≤ l�|v|/l. Consider
a non-negative integer k such that (k + 1)l ≤ |v|. Since v ↑ v′, we have

v[kl + 1, (k + 1)l] ⊂ v′[kl + 1, (k + 1)l]. (3.2)
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Moreover, since l < |v|, the word w′ begins inside v′ at the position l + 1 and,
therefore, w′[kl + 1, (k + 1)l] = v′[(k + 1)l + 1, (k + 2)l], if (k + 2)l ≤ |v′| = |v|.
Since w ↑ w′, we have v[kl + 1, (k + 1)l] = w[kl + 1, (k + 1)l] ⊂ w′[kl + 1, (k + 1)l].
Hence, combining these facts, we obtain

v[kl + 1, (k + 1)l] ⊂ v′[(k + 1)l + 1, (k + 2)l]. (3.3)

If (k + 1)l < |v| < (k + 2)l, it is clear that (3.3) holds for prefixes of length
|v| − (k + 1)l of the considered words. Note that the relation ⊂ occurring in both
equations can be replaced by the identity relation whenever v[kl + 1, (k + 1)l] is
a full word. Hence, applying (3.2) and (3.3) for different values of k, we conclude
that V = v′ = Zm+1ẐnẐ1, where m = �(h − 1)/l, Z = v′[ml + 1, (m + 1)l],
z = v[ml + 1, (m + 1)l] and, we may choose

Ẑ =
{

v′[(m + 1)l + 1, (m + 2)l] if (m + 2)l ≤ |v′|,
(v′[(m + 1)l + 1, |v′|])(v′[|v′| − l + 1, (m + 1)l]) otherwise.

In the case where v′(h) = � and l + 1 ≤ h ≤ |v′|, we notice that instead of (3.2)
and (3.3) the following equations hold:

v′[(k + 1)l + 1, (k + 2)l] ⊂ v[(k + 1)l + 1, (k + 2)l] (3.4)

and
v′[(k + 1)l + 1, (k + 2)l] ⊂ v[kl + 1, (k + 1)l]. (3.5)

Similarly to the first case, we conclude using (3.4) and (3.5) that V = v =
ZmẐnẐ1, where m = �(h − 1)/l ≥ 1, Z = v[(m − 1)l + 1, ml],

z =
{

v′[ml + 1, (m + 1)l] if (m + 1)l ≤ |v′|,
(v′[ml + 1, |v′|])(v′[|v′| − l + 1, ml]) otherwise;

and

Ẑ =
{

v[ml + 1, (m + 1)l] if (m + 1)l ≤ |v|,
(v[ml + 1, |v|])(v[|v| − l + 1, ml]) otherwise.

If the hole occurs in v[l�|v|/l+ 1, |v|], then set Ẑ = v′[1, l] and use (3.2) and (3.3)
with identity relation instead of ⊂ to obtain V = v′ = ẐnẐ1. If the hole occurs in
v′[1, l], then set Ẑ = v[1, l] and apply (3.4) and (3.5). If the word vv′ is full, the
result is obvious. �

Our next result concerns the lengths of squares starting at the same position.
This theorem has a crucial role in the sequel. Namely, if sw(i) > 2 for some
position i in w, then the theorem says that the suffix of w starting at i must
be quite long. Hence, the maximum value of sw(i) is dependent on how far the
position i is from the end of the word w. This restricts the total number of distinct
squares compatible with the factors of a partial word.
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u u′

v v′

w w′

X1 X1

X1

X2 X2

X2

Figure 1. Illustrations of three partial squares uu′, vv′ and ww′

starting at the same position and satisfying |u| = |u′| < |v| =
|v′| < |w| = |w′| < |u2|.

Theorem 3.2. If three distinct full squares have their last compatible occurrences
in a partial word with one hole starting at the same position, then the longest
square is at least twice as long as the shortest square.

Proof. Consider a partial word with one hole. Assume that three partial words
uu′, vv′ and ww′, where u ↑ u′, v ↑ v′, w ↑ w′, and |u| = p < |v| = q < |w| = r,
start at the same position in the word. Denote by U2 (resp. V 2, W 2) the full
word that contains uu′ (resp. vv′, ww′). Assume also that U2 (resp. V 2, W 2) is
not compatible with any factor occurring later in the word. Denote the position
of the hole in ww′ by h.

We present an indirect proof by assuming that r < 2p, i.e., r − p < p. The
proof is divided into three cases:

A. h �∈ [1, r − p], B. h ∈ [1, q − p], C. h ∈ [q − p + 1, r − p].

In each case we end up in a contradiction by showing that uu′ is not the last
compatible occurrence of U2 in ww′.
Case A. Assume that h �∈ [1, r − p]. Since r − p < p < q, there exist words
U [1, r − p], V [1, r − p] and W [1, r − p] and, by the assumption, these words are
equal to u[1, r − p]. Let X = U [1, r − p] = X1X2, where X1 = U [1, q − p]. Since
v′[1, r − p] ⊂ V [1, r − p] = U [1, r − p], we have v′[1, r − p] ⊂ X1X2. Similarly,
we also have u′[1, r − p] ⊂ X1X2 and w′[1, r − p] ⊂ X1X2. Hence, v′[1, r − p]
is contained both in X1X2 and in X2X1; see Figure 1. By Lemma 1.4, we have
X1X2 = X2X1 and, by Lemma 1.3, there exists a full word Y such that both X1

and X2 are integer powers of Y .
Since w′ starts inside v′ at the position |X2| + 1, we may use Lemma 3.1 and

we notice that in all cases of (3.1) the full word V can be written in the form
(X2)m(X̂2)nX̂ ′

2, where m and n are suitably chosen non-negative integers, X̂2 =
X̂ ′

2X̂
′′
2 and there exists a partial word with one hole contained in both X2 and X̂2.

Hence, there is at most one position where X2 and X̂2 may differ. Moreover, since
X2 is an integer power of Y , it follows that X2 = Y k and X̂2 = Y iŶ Y j , where
i+ j +1 = k and there exists a partial word y with one hole compatible with both
Y and Ŷ . Note that X̂2 is defined as above even if n = 0.
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Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

X1 X2

· · · · · ·
z

v v′

· · ·
Y1 Ŷ2 Y1 Y2 Y1 Ŷ2 Y1

V

Figure 2. Illustration of case (a), where X1 = (Y1Y2)3, X2 =
(Y1Y2)2, X̂2 = (Y1Ŷ2)(Y1Y2) and X̂ ′

2 = (Y1Ŷ2)Y1.

Now consider the word z = suf |Y |(v). Let us denote Y = Y1Y2, Ŷ = Ŷ1Ŷ2 and
y = y1y2, where |Y1| = |Ŷ1| = |y1| = q − �q/|Y ||Y |. Since a partial word y with
only one hole satisfies y ⊂ Y1Y2 and y ⊂ Ŷ1Ŷ2, we conclude that either Ŷ1 = Y1

or Ŷ2 = Y2. Hence, by the form of V , we have three possibilities: (a) z ⊂ Ŷ2Y1,
(b) z ⊂ Y2Ŷ1, and (c) z ⊂ Y2Y1. On the other hand, since suf |X1|(v) = u′[1, |X1|]
is contained in X1, which is an integer power of Y , we have z ⊂ Y = Y1Y2.

Suppose first that z is a full word and consider the case (a); see Figure 2. Now
the full word z is equal to Ŷ2Y1 = Y1Y2 and we may use Lemma 1.5 to conclude
that Ŷ2 = Z1Z2, Y1 = (Z1Z2)rZ1 for some integer r, and Y2 = Z2Z1. However,
we know that there exists the word y2 which is contained in both Ŷ2 = Z1Z2 and
Y2 = Z2Z1. By Lemma 1.4, this means that Z1Z2 = Z2Z1 and, by Lemma 1.3,
there exists a word α such that both Z1 and Z2 are integer powers of α. Hence,
it follows that Y1, Y2 = Ŷ2, and consequently, Y = Ŷ are integer powers of α.
Moreover, the words X1 and X2 are integer powers of Y and therefore also integer
powers of α. Since the prefix X̂ ′

2 of X̂2 = X2 must be of the form (Y1Y2)sY1, we
conclude that also V and U = V X−1

1 are integer powers of α. This means that

vv′[1 + |α|, 2p + |α|] ⊂ V V [1, 2p] = U2. (3.6)

Thus, uu′ is not the last compatible occurrence of U2, which is a contradiction.
If z is a full word, case (b) is symmetric to case (a). In case (c), we immediately

have Y1Y2 = Y2Y1 and, by Lemma 1.3, both Y1 and Y2 are powers of the same
word. This gives a contradiction the same way as above.

Suppose next that there is a hole in z, i.e., v(h) = � for some position h. Recall
that V = (X2)m(X̂2)nX̂ ′

2, where X2 = Y k, X̂2 = Y iŶ Y j and X̂ ′
2 is a prefix of X̂2.

Denote l = �q/|X2|. Since |X2| is a multiple of |Y | = |z|, we have either h > l|X2|
or h ∈ [(l − 1)|X2| + 1, l|X2|].

Assume first that h > l|X2|. By Lemma 3.1, we obtain V = X̂n′
2 X̂ ′

2, where
n′ = m+n. Thus, this means that X2 = X̂2, Y = Ŷ and, consequently, z ⊂ Y2Y1.
Since we have also shown above that z ⊂ Y1Y2, we may use Lemma 1.4 and
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Lemma 1.3 to conclude that Y1 and Y2 are integer powers of some word α. As in
case (a), we obtain (3.6), which is a contradiction.

Finally, assume that h ∈ [(l − 1)|X2| + 1, l|X2|] and let vl denote the partial
word v[(l − 1)|X2| + 1, l|X2|]. By Lemma 3.1, we conclude that V = Xm′

2 X̂ ′
2,

where m′ = m + n. Set z = z2z1, where |z1| = |Y1|. Since |X2| is a multiple of
|Y | = |z|, we have |X̂ ′

2| = |Y1| = |z1|. Hence, the hole must occur in z2, which
is a suffix of vl, and z1 is the full word X̂ ′

2. By the compatibility of v and v′,
it follows that z1 ↑ suf |Y1|(v

′) = pref|Y1|(w
′[(l − 1)|X2| + 1, l|X2|]). Since the

words w and w′ are compatible and w[(l − 1)|X2| + 1, l|X2|] = vl, we also have
pref|Y1|(w

′[(l − 1)|X2| + 1, l|X2|]) ↑ pref |Y1|(vl). The length of vl is a multiple
of |Y |. Therefore, the hole occurring in the suffix z2 cannot occur in pref|Y1|(vl).
Hence, the words z1, suf |Y1|(v

′) and pref|Y1|(vl) are full words, which implies that
z1 = pref|Y1|(vl). Since V = Xm′

2 X̂ ′
2, we conclude that vl ⊂ X2 = Y k. Thus, it

follows that z1 = pref|Y1|(vl) = Y1 and z2 = suf|Y2|(vl) ⊂ Y2. In other words, we
have z = z2z1 ⊂ Y2Y1. Since also z ⊂ Y1Y2, we use Lemma 1.4 and Lemma 1.3 to
conclude that Y1, Y2 and, consequently, Y , X2 and X1 are integer powers of some
word α. Since we may write V = Xm′

2 Y1, also the words V and U = V X−1 are
integer powers of α and (3.6) follows. Once again we end up in a contradiction.
Case B. Assume that the hole occurs in u[1, q − p]. Hence, we may denote
U [1, r− p] = X1X2, V [1, r− p] = X̃1X2 and W [1, r− p] = X̂1X2, where u[1, q− p]
is contained in X1, X̃1 and X̂1. Since u′[q+p+1, r−p] = X2 and w′[1, q−p] = X̂1,
it follows that v′[1, r − p] = X̃1X2 = X2X̂1. By Lemma 1.5, there exist Z1 and
Z2 such that X̃1 = Z1Z2, X̂1 = Z2Z1 and X2 = (Z1Z2)rZ1 for some integer
r. Since u[1, q − p] ⊂ X̃1 and u[1, q − p] ⊂ X̂1, it follows that Z1Z2 = Z2Z1 by
Lemma 1.4. Hence, by Lemma 1.3, there exists a word Y such that X̃1 = X̂1 = Y k

and X2 = Y l for some integers k and l. Since there is only one hole in u[1, q − p]
and u[1, q−p] is contained in both X1 and X̃1, we may write X1 = Y iŶ Y j , where
i + j + 1 = k and there is a word y with one hole compatible with both Y and Ŷ .

By Lemma 3.1, we conclude that V = Xm+1
2 X̂n

2 X̂ ′
2, where X2 and X̂2 are com-

patible, m and n are integers, and the hole occurs in v[m|X2|+1, (m+1)|X2|]. Since
the position of the hole in v is at most q − p = |X1|, it follows that m|X2| < |X1|.
Since |X1| = |X̂1| and |X2| = |X̂2|, we have |Xm+1

2 X̂2| < |X2X̂1X2|. Hence, the
word Xm+1

2 X̂2 is a prefix of v′[1, 2r − q − p] = u′[q − p + 1, r − p]w′[1, r − p] =
X2X̂1X2 = Y 2l+k. Since |X2| = |X̂2| = l|Y |, it follows that X2 = X̂2 = Y l and
V = Y n′

Y1, where n′ is an integer and Y = Y1Y2.
As in Case A, consider the (full) word z = suf |Y |(v) and denote Ŷ = Ŷ1Ŷ2

and y = y1y2, where |Y1| = |Ŷ1| = |y1|. Recall that y is a word with one hole
contained in both Y and Ŷ . Hence, we have either Ŷ1 = Y1 or Ŷ2 = Y2. Since
X1 = Y iŶ Y j = u′[1, q − p] is a suffix of V , there are three possibilities: (a) z =
Ŷ1Y2, (b) z = Y1Ŷ2 or (c) z = Y1Y2. On the other hand, the structure of V implies
that z = Y2Y1 and, as in Case A, all the subcases (a)–(c) lead to a contradiction.
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Case C. Assume that the hole occurs in u[q − p + 1, r − p]. Now we have
U [1, r − p] = X1X2, V [1, r−p] = X1X̃2, W [1, r−p] = X1X̂2 and u[q − p + 1, r − p]
is contained in X2, X̃2 and X̂2. Since u′[q+p+1, r−p] = X2 and w′[1, q−p] = X1,
it follows that v′[1, r − p] = X1X̃2 = X2X1. By Lemma 1.5, there exists Z1 and
Z2 such that X2 = Z1Z2, X̃2 = Z2Z1 and X1 = (Z1Z2)rZ1 for some integer r.
Since u[q − p + 1, r − p] is contained in X2 = Z1Z2 and X̃2 = Z2Z1, we conclude
by Lemmas 1.4 and 1.3 that X2 and X1 are integer powers of some full word Y .
We get a contradiction exactly the same way as in Case A. �

As a corollary, we get the following result.

Corollary 3.3 [4]. If three distinct squares have their last compatible occurrences
in a partial word with one hole starting at the same position, then the hole must
be in the shortest square.

Proof. Let z be a partial word with one hole. Assume that uu′, vv′ and ww′, where
u ↑ u′, v ↑ v′ and w ↑ w′, begin at the same position in z. Let these partial words
be the last compatible occurrences of three distinct full squares in z. Assume also
that uu′ is a full word, i.e., u = u′. This implies that |w| < |u2| as otherwise a
word compatible with u2 would appear later in the word. By Theorem 3.2, this is
impossible. Hence, the hole must be in the shortest square. �

Moreover, our proof for Theorem 3.2 gives a new proof for the original theorem
of Fraenkel and Simpson (Thm. 1.1). Note that the proof can be considerably
shortened and simplified if the words do not contain any holes. For the sake of
completeness, we present the proof here.

Proof of Theorem 1.1. Assume that three words u2, v2 and w2, where |u| = p <
|v| = q < |w| = r, are prefixes of some word W and they do not occur later in
the word. We must have r < 2p. Otherwise, the square u2 would occur later as a
prefix of W [r + 1, 2r].

Set X1 = W [1, q − p] and X2 = W [q − p + 1, r − p]. Since p < q < r < 2p and
the three squares start at the same position, we see (as in Fig. 1) that X1X2 =
W [q + 1, q + r − p] = X2X1 and, by Lemma 1.3, there exists a full word Y such
that both X1 and X2 are integer powers of Y .

Since w starts inside the second v at the position |X2|+ 1 and X2 is a prefix of
both v and w, the word v is of the form (X2)mX ′

2, where m is a non-negative integer
and X ′

2 is a prefix of X2. Let us denote Y = Y1Y2, where |Y1| = q − �q/|Y ||Y |.
Since X2 is an integer power of Y , it follows that v = Y nY1, where n is a non-
negative integer. Hence, we have suf |Y |(v) = Y2Y1. On the other hand, X1 is an
integer power of Y and a suffix of v, which implies that suf |Y |(v) = Y1Y2. Thus,
by Lemma 1.3, there exists a word α such that both Y1 and Y2 are integer powers
of α. Moreover, this means that v and u = vX−1

1 are integer powers of α. We
conclude that W [1 + |α|, 2p + |α|] = u2, which is a contradiction. �

Next we use Theorem 3.2 to show that the number of distinct squares in a
partial word with one hole does not depend on the size of the alphabet. This may
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be surprising since the maximum of sw(i) is dependent on the alphabet size as was
shown in the previous section.

Theorem 3.4. For any partial word w with one hole, we have Sq(w) < 4|w|.

Proof. Suppose that w(j) = � and denote n = |w|. If sw(i) = 3, then i < j
and the last compatible occurrence of the shortest square must contain a hole by
Corollary 3.3. Hence, the length of the shortest square is at least j − i + 1. By
Theorem 3.2, the suffix of w beginning after the hole must be at least as long
as the shortest square. Thus, we must have n − j > j − i + 1. If sw(i) = 4,
Theorem 3.2 does not give much information as already the second largest square
is twice as long as the shortest. However, if sw(i) = 5, we may consider only the
three largest squares, where the length of the shortest one is at least 2(j − i + 1).
Hence, the longest square must be twice as long as the shortest and, therefore,
n− j > 3(j − i + 1). By induction, we conclude that n− j > (2k−1 − 1)(j − i + 1)
whenever sw(i) = 2k. In other words, we have an estimate sw(i) ≤ 2k, where

k = 1 + log2

(
n − i + 1
j − i + 1

)
. (3.7)

Note that here we assume that the size of the alphabet is large enough. Hence, (3.7)
gives us an upper bound on the number of distinct squares in w.

Sq(w) ≤ 2
j∑

i=1

(
1 + log2

(
n − i + 1
j − i + 1

))
+ 2(n − j − 1).

Here the last term 2(n − j − 1) corresponds to the positions after the hole. We
have sw(i) ≤ 2 for i = j + 1, j + 2, . . . , n− 1 by Theorem 1.1 and the last position
cannot contain any squares. Using the natural logarithm ln, we may write

Sq(w) ≤ 2
ln 2

(
j∑

i=1

ln(n − i + 1) −
j∑

i=1

ln(j − i + 1)

)
+ 2n − 2.

Since ln(n − i + 1) and ln(j − i + 1) are strictly decreasing in i, we may estimate
that Sq(w) ≤ f(j), where

f(j) =
2

ln 2

(
ln n +

∫ j

1

ln(n − x + 1) dx −
∫ j−1

0

ln(j − x) dx

)
+ 2n − 2.

By integrating, we obtain

f(j) =
2

ln 2
(ln n − (n − j + 1) ln(n − j + 1) + n ln n − j ln j) + 2n − 2.



ON THE NUMBER OF SQUARES IN PARTIAL WORDS 137

The maximum value of f(j) in the interval [1, n − 2] is obtained at the critical
point j = (n + 1)/2, where

f(j) = 4n +
2(1 + n)

ln 2
ln
(

n

1 + n

)
≤ 4n − 2

ln 2
·

Note that if j > n− 2, then Sq(w) ≤ 2n. Hence, we have proved that Sq(w) < 4n
regardless of the size of the alphabet. �

However, by Theorem 2.1, we get better estimates if the size of the alphabet is
restricted. As a final theorem, let us consider binary words.

Theorem 3.5. For any binary partial word w containing one hole, we have
Sq(w) < 3n.

Proof. Suppose that w(j) = �. Since w is a binary partial word, Theorem 2.1
implies that sw(i) ≤ 4 for every position i. On the other hand, Theorem 3.2
restricts the number of position, where sw(i) > 2. If j ≥ n/2, then these positions
are in the interval [2j − n + 1, j]. Hence, (n − j) positions may have sw(j) = 4.
Moreover, we have sw(n) = 0. This gives us

Sq(w) < 4(n − j) + 2j = 4n − 2j ≤ 3n, (3.8)

since j ∈ [n/2, n]. Similarly, if j < n/2, then sw(i) = 4 is possible only for position
i in the interval [1, j]. Thus, for j ∈ [1, n/2), we obtain

Sq(w) < 4j + 2(n − j) = 2n + 2j < 3n. (3.9)

Hence, by inequalities (3.8) and (3.9), the claim follows. �
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