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STABILITY RATES FOR PATCHY VECTOR FIELDS
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Abstract. This paper is concerned with the stability of the set of trajectories of a patchy vector
field, in the presence of impulsive perturbations. Patchy vector fields are discontinuous, piecewise
smooth vector fields that were introduced in Ancona and Bressan (1999) to study feedback stabilization
problems. For patchy vector fields in the plane, with polygonal patches in generic position, we show
that the distance between a perturbed trajectory and an unperturbed one is of the same order of
magnitude as the impulsive forcing term.
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1. Introduction

Let g be a bounded vector field, and consider the Cauchy problem with impulsive perturbations

ẏ = g(y) + ẇ. (1.1)

Here w = w(t) is a left continuous function with bounded variation. By a solution of (1.1) with initial condition

y(t0) = y0, (1.2)

we mean a measurable function t �→ y(t) such that

y(t) = y0 +
∫ t

t0

g
(
y(s)

)
ds +

[
w(t) − w(t0)

]
. (1.3)

If w(·) is discontinuous, the forcing term in (1.1) will have impulsive behavior, and the solution y(·) will be
discontinuous as well. We choose to work with (1.1) because it provides a simple and general framework to
study stability properties. Indeed, consider a system with both inner and outer perturbations, of the form

ẋ = g
(
x + e1(t)

)
+ e2(t). (1.4)
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Then, the map y = y(t) .= x(t) + e1(t) satisfies the impulsive equation

ẏ = g(y) + e2(t) + ė1(t) = g(y) + ẇ,

where

w(t) = e1(t) +
∫ t

t0

e2(s) ds.

Therefore, from the stability of solutions of (1.1) under small BV perturbations w, one can immediately deduce
a result on the stability of solutions of (1.4), when Tot.Var.{e1} and ‖e2‖L1 are suitably small.

Our main concern is how much a trajectory is affected by the presence of the impulsive perturbation. More
precisely, we wish to estimate the distance, in the L∞ norm, between solutions of the two Cauchy problems{

ẋ = g(x),
x(0) = x0,

{
ẏ = g(y) + ẇ,
y(0) = x0.

(1.5)

Consider first the special case where g is a continuous vector field with Lipschitz constant L. It is then well
known that the Cauchy problems (1.5) have unique solutions, obtained by a fixed point argument (see [3]).
Their distance can be estimated as

∣∣y(t) − x(t)
∣∣ ≤ ∫ t

0

eL(t−s)
∣∣dw(s)

∣∣ ≤ eLt · Tot.Var.{w}· (1.6)

In other words, on a fixed time interval, this distance grows linearly with Tot.Var.{w}·
In this paper, we will prove a similar estimate in the case where g is a discontinuous, patchy vector field.

These vector fields were introduced in [1] in order to study feedback stabilization problems. We recall the main
definitions:

Definition 1.1. By a patch we mean a pair
(
Ω, g

)
where Ω ⊂ R

n is an open domain with smooth boundary ∂Ω,

and g is a smooth vector field defined on a neighborhood of the closure Ω, which points strictly inward at each
boundary point x ∈ ∂Ω.

Calling n(x) the outer normal at the boundary point x, we thus require〈
g(x), n(x)

〉
< 0 for all x ∈ ∂Ω. (1.7)

Definition 1.2. We say that g : Ω �→ R
n is a patchy vector field on the open domain Ω if there exists a family

of patches
{
(Ωα, gα); α ∈ A

}
such that

– A is a totally ordered set of indices;
– the open sets Ωα form a locally finite covering of Ω, i.e. Ω = ∪α∈AΩα and every compact set K ⊂ R

n intersect
only a finite number of domains Ωα, α ∈ A;
– the vector field g can be written in the form

g(x) = gα(x) if x ∈ Ωα \
⋃

β>α

Ωβ . (1.8)

By setting
α∗(x) .= max

{
α ∈ A ; x ∈ Ωα

}
, (1.9)

we can write (1.8) in the equivalent form

g(x) = g
α∗(x)(x) for all x ∈ Ω. (1.10)
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Figure 1.

We shall occasionally adopt the longer notation
(
Ω, g, (Ωα, gα)

α∈A
)

to indicate a patchy vector field, specifying
both the domain and the single patches. If g is a patchy vector field, the differential equation

ẋ = g(x) (1.11)

has many interesting properties. In particular, in [1] it was proved that the set of Carathéodory solutions
of (1.11) is closed (in the topology of uniform convergence) but possibly not connected. Moreover, given an
initial condition x(t0) = x0, the corresponding Cauchy problem has at least one forward solution, and at most
one backward solution, in the Carathéodory sense. For every Carathéodory solution x(·) of (1.11), the map
t �→ α∗(x(t)) is left continuous and non-decreasing.

Since the Cauchy problem for (1.11) does not have forward uniqueness and continuous dependence, one
clearly cannot expect that a single solution can be stable under small perturbations. Instead, one can establish
the following stability property referring to the whole set of solutions.

Proposition 1.3. ([2], Cor. 1.1) Let g be a patchy vector field on an open domain Ω ⊂ R
n. Given any compact

set K ⊂ Ω, and any ε > 0, there exists δ > 0 such that the following holds. If y : [0, T ] �→ K is a solution of
the perturbed system (1.1) with Tot.Var.(w) < δ, then there exists a solution x : [0, T ] �→ Ω of the unperturbed
equation (1.11) such that ∥∥x − y

∥∥
L∞([0,T ])

< ε. (1.12)

The relevance of this result for the robustness of discontinuous feedback controls is discussed in [2].
In connection with Proposition 1.3, it is interesting to study how the distance ‖y − x‖L∞ can depend on the

perturbation w. For a general BV function w, the derivative ẇ is a Radon measure whose total mass coincides
with the total variation of w. It is thus natural to use the BV norm ‖w‖BV as a measure of the strength of
the perturbation. In the case of a Lipschitz continuous field g, we have seen in (1.6) that this distance grows
linearly with ‖w‖BV . In the case of patchy vector fields, one cannot expect a linear dependence, in general.

Example 1.4. Consider a patchy vector field on R
2, as in Figure 1. Assume g = (1, 0) below the curve γ1

and to the right of the curve γ2, while g = (0, 1) above the curve γ1. Observe that there exists a Carathéodory
solution x(·) of (1.11) going through the points A and B. Next, consider a perturbed solution xε, following
the vector field horizontally up to P , jumping from P to P ′, then moving vertically to Q and horizontally
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afterwards. To fix the ideas, assume that

A = (0, 0), B = (0, 1), P = (ε,−εα), P ′ = (ε, εα),

γ1 =
{
x2 = |x1|α

}
, γ2 =

{
x1 = |x2 − 1|β

}
·

In this case the trajectory xε is a solution of a perturbed system where ẇ is a single Dirac mass of strength
|P ′ − P | = 2|ε|α. On the other hand, after both trajectories have switched to the right of the curve γ2 their
distance is ‖xε − x‖ = ε1/β . In this example, the distance between solutions grows much worse than linearly
w.r.t. the strength of the perturbation, Indeed, the only estimate available is∥∥y − x

∥∥
L∞ = O(1) ·

(
Tot.Var.{w}

)1/αβ
. (1.13)

One conjectures that the situation is better when the patches are in “generic” position. Observe that in (1.13)
the numbers α and β are determined by the order of tangency of the curves γ1, γ2 with the vector field g. By
an arbitrarily small displacement of the curves γ1, γ2 we can arrange so that there is no trajectory connecting
the two point of tangency A and B (Fig. 2). Moreover, we can assume that the tangency is only of first order.
For generic patchy vector fields on R

2, in Corollary 1.1 one thus expects an estimate of the form∥∥y − x
∥∥
L∞ = O(1) ·

(
Tot.Var.{w}

)1/2
.

Here the exponent 1/2 is due to the fact that first order tangencies are not removable by small perturbations.
In higher space dimensions, an even lower exponent is expected. To obtain an error estimate which is linear
w.r.t. the strength of the perturbation, one thus needs to remove all these tangencies. This cannot be achieved
if the patches have smooth boundary, but is quite possible if we allow “polyhedral” patches (Fig. 3).

Throughout the following, we write d(x, A) = inf
{
|x − y| : y ∈ A

}
for the distance of a point x from the

set A ⊂ R
n, and denote by

◦
A the interior of A.

Definition 1.5. Let Ω ⊂ R
n be an open domain whose boundary is contained in a finite set of hyperplanes.

Call TΩ(x) the tangent cone to Ω at the point x, defined by

TΩ(x) .=
{

v ∈ R
n : lim

t→0

d
(
x + tv, Ω

)
t

= 0
}
· (1.14)
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We say that a smooth vector field g defined on a neighborhood of Ω is an inward-pointing vector field on Ω if,

g(x) ∈
◦
TΩ(x) for all x ∈ ∂Ω. (1.15)

The pair
(
Ω, g

)
will be called a polyhedral patch.

Clearly, at any regular point x ∈ ∂Ω, the interior of the tangent cone TΩ(x) is precisely the set of all vectors
v ∈ R

n that satisfy 〈
v, n(x)

〉
< 0

and hence (1.15) coincides with the inward-pointing Condition (1.7).

Replacing “patches” with “polyhedral patches” in Definition 1.2 we obtain the notion of polyhedral patchy
vector field. For such fields, it is expected that impulsive perturbations of the form (1.1) should generically
produce a perturbation on the set of trajectories which is of exactly the same order of magnitude as the
strength of the impulse on the right hand side.

To avoid lengthy technicalities, we shall consider here only the planar case, i.e. polygonal patchy vector fields.
We conjecture that the same result holds true for generic polyhedral patchy vector fields on R

n.

Theorem 1. For a generic polygonal patchy vector field g on R
2, whose values are bounded away from zero,

one has the the following stability property.
Given any compact set K ⊂ R

2, there exist constants C, δ > 0, such that the following holds. For every
solution y : [0, T ] �→ K, of (1.1) with Tot.Var.{w} < δ, there exists a solution x : [0, T ] �→ R

2 of (1.11) such that∥∥x − y
∥∥
L∞([0,T ])

≤ C · Tot.Var.{w}· (1.16)

A precise description of the generic conditions which guarantee the estimate (1.16) will be given in Section 2.
Roughly speaking, one requires that the boundary of every patch Ωα be transversal to all fields gβ, with β ≤ α.

Throughout the paper, by B(x, r) we denote the closed ball centered at x with radius r. The closure, the

interior and the boundary of a set Ω are written as Ω,
◦
Ω and ∂Ω, respectively.

The paper is organized as follows. In Section 2 we introduce a class of polygonal patchy vector fields for
which we will establish the stability property stated in Theorem 1, and we show that we can always replace a
solution of the perturbed system (1.1) with a piecewise smooth concatenation of solutions of the unperturbed
system (1.11), so that their distance is of the same order of magnitude as the impulsive term ẇ. To establish this
result contained in Proposition 2.4, we rely on two technical lemmas (Lems. 2.2 and 2.3) whose rather lengthy
proofs are postponed to Section 4 (Appendix). In Section 3 we first show in Proposition 3.1 that, for every
function y(·) that is a concatenation of two solutions of (1.11) (and thus admits a single jump discontinuity),
there exists a solution x(·) of (1.11) for which the linear estimate (1.16) holds, and then we complete the proof
of Theorem 1 establishing Lemma 3.2.

2. Preliminary stability estimates

Let PPVF denote the set of all bounded, polygonal patchy vector fields
(
g, (Ωα, gα)α∈A

)
on R

2, that
are uniformly bounded away from zero. A condition P for a patchy vector field

(
g, (Ωα, gα)α∈A

)
∈ PPVF is

a logic proposition that can be expressed in terms of the fields gα and (or) the domains Ωα. We write P (g) if(
g, (Ωα, gα)α∈A

)
satisfies P, and we say that P is generic if {g ∈ PPVF : P (g)} is a generic subset of PPVF

in the sense that {g ∈ PPVF : P(})} is an open and dense subset of PPVF with respect to the L∞ topology.
We state now a generic condition that yields the linear estimate (1.16) of the effect of impulsive perturbations

on the solutions of the unperturbed system (1.11).

C) For any given domain Ωα, and for any line rγ containing an edge of the boundary ∂Ωγ of some Ωγ , γ > α,

the field gα(x) is transversal to rγ at every point x ∈ rγ ∩
(
Ωα \

⋃
β>α Ωβ

)
.
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In this section we will show that, given a polygonal patchy vector field g satisfying condition (C), in order to
establish the stability estimate (1.16) for an arbitrary solution t �→ y(t) of (1.1) we can always replace y(·) with
a piecewise smooth map t �→ y♦(t) that is a concatenation of solutions of the unperturbed system (1.11). This
result is contained in Proposition 2.4 and is based on two technical Lemmas (Lems. 2.2–2.3) whose proof is
postponed to Section 4. Since we shall always consider throughout the paper solutions of (1.11) or of (1.1) that
are contained in some fixed compact set K, we will assume without loss of generality that every domain Ωα is
bounded since, otherwise, one can replace Ωα with its intersection Ωα ∩ Ω′ with a polygonal domain Ω′ that
contains K, preserving the inward-pointing condition (1.15) and the transversality condition (C).

By the basic properties of a patchy vector field, for every solution t �→ x(t) of (1.11) the corresponding map
t �→ α∗(x(t)

)
in (1.9) is non-decreasing. Roughly speaking, a trajectory can move from a patch Ωα to another

patch Ωβ only if α < β. This property no longer holds in the presence of an impulsive perturbation. However, it
was shown in [2] that, for a solution t �→ y(t) of (1.1), one can slightly modify the impulsive perturbation w, say
replacing it by another perturbation w♦, so that the map t �→ α∗(y♦(t)

)
is monotone along the corresponding

trajectory t �→ y♦(t). Namely, the following holds.

Proposition 2.1. ([2], Prop. 2.2) Let g be a patchy vector field on an open domain Ω ⊂ R
n. Then, given any

compact set K ⊂ Ω, there exist constants C′ = C′(K) > 0, δ′ = δ′(K) > 0, such that the following holds.
For every BV function w = w(t) with Tot.Var.{w} < δ′, and for every solution y : [0, T ] �→ K, of the Cauchy

problem (1.1)–(1.2), there is a BV function w♦ = w♦(t) and a left continuous solution y♦ : [0, T ] �→ Ω of

ẏ♦ = g(y♦) + ẇ♦, (2.1)

so that the map t �→ α∗(y♦(t)) is non-decreasing, and there holds

Tot.Var.{w♦} ≤ C′ · Tot.Var.{w},∥∥y♦ − y
∥∥
L∞([0,T ])

≤ C′ · Tot.Var.{w}· (2.2)

The next Lemma shows that we can replace the solution t �→ y♦(t) of (2.1) with a piecewise smooth function
t �→ y�(t) so that the map t �→ α∗(y�(t)

)
is still non-decreasing and, for every interval

Iα
.=
{
t ∈ [0, T ]; α∗(y�(t)) = α

}
, α ∈ Im

(
α∗ ◦ y�

)
,

y� �Iα is a concatenation of trajectories of (1.11) whose endpoints lie on the edges of the domain

Dα
.= Ωα \

⋃
β>α

Ωβ . (2.3)

Lemma 2.2. Let g be a uniformly bounded away from zero polygonal patchy vector field on R
2, associated to

a family of polygonal patches
{
(Ωα, gα); α ∈ A

}
, and assume that condition (C) is satisfied. Then, given

any compact set K ⊂ R
2, there exist constants C′′ = C′′(K), δ′′ = δ′′(K) > 0, so that, for every BV function

w = w(t) with Tot.Var.{w} < δ′′, and for every solution y : [0, T ] �→ K, of (1.1), there exists a left continuous,
piecewise smooth function y� : [0, τ ] �→ R

2 enjoing the properties:

a′) the map t �→ α∗(y�(t)
)

is non-decreasing;
b′) if we let {

αi′1 , . . . , αi′
m�

}
= Im

(
α∗ ◦ y�

)
, (2.4)

with

αi′1 < · · · < αi′
m�

, (2.5)
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and denote Dαi′
k

a polygonal domain defined as in (2.3), then, for every interval

]τ ′
k, τ ′

k+1]
.=
{
t ∈ [0, T ] : y�(t) ∈ Dαi′

k

}
,

there exists a partition τ ′
k = tk,1 < tk,2 < · · · < tk,qk

= τ ′
k+1, with qk less or equal to the number of edges

of the domain Dαi′
k

in (2.3), so that, on each ]tk,�−1, tk,� [, the function y�(·) is a classical solution of

ẏ = gαi′
k

(y). (2.6)k

and the points y�(tk,�), y�(t +
k,� ), tk,� 
= 0, T, lie on different edges of the domain Dαi′

k

;
c′) ∑

1≤k≤m�

1≤�<qk

∣∣y�(t +
k,� ) − y�(tk,�)

∣∣ ≤ C′′ · Tot.Var.{w}, (2.7)

∥∥y� − y
∥∥
L∞([0,T ])

≤ C′′ · Tot.Var.{w}· (2.8)

A proof of the above lemma is worked out in Section 4. The next lemma shows that for every piecewise smooth
function y�(·) which is a concatenation of trajectories of (1.11) and takes values in a domain Dα as (2.3), there
is a solution x(·) of (1.11) whose L∞ distance from y�(·) grows linearly with the total amount of jumps in y�.

Lemma 2.3. Given any polygonal domain Dαo defined as in (2.3), there exist constants C = C(Dαo), δ =
δ(Dαo) > 0, so that the following hold.

Let y� : ]τ0, τ1] �→ R
2 be any left-continuous, piecewise smooth function having the properties:

a′′) the function y�(·) is a solution of ẏ = gαo(y) on every interval ]t′�−1, t′� [ of a partition t′1 = τ0 < t′2 <
· · · < t′qo

= τ1 of [τ0, τ1], and one has

y�(t) ∈ Dαo ∀ t ∈ ]t′�−1, t′� [ ∀ �. (2.9)

Moreover, the points y�(t′�), y�(t′�
+), 1 < � < qo, lie on different edges of the domain Dαo ;

b′′)

∆(y�) .=
qo−1∑
�=2

∣∣y�(t′�
+) − y�(t′�)

∣∣ < δ. (2.10)

Then, there exist a point Qαo = Qαo(y�) ∈ Dαo , and a time σαo = σαo(y�) > 0, so that:
c′′)

xαo
(
t; τ0, Qαo

)
∈ Dαo ∀ t ∈ ] τ0, σαo [; (2.11)

d′′) if Case a′′-1) occurs then Qαo , xαo
(
σαo ; τ0, Qαo

)
∈ ∂Dαo , if Case a′′-2) occurs then Qαo ∈ ∂Dαo , if

Case a′′-3) occurs then xαo
(
σαo ; τ0, Qαo

)
∈ ∂Dαo ;

e′′) ∣∣σαo − τ1

∣∣ ≤ C · ∆(y�), (2.12)∣∣xαo
(
t; τ0, Qαo

)
− y�(t)

∣∣ ≤ C · ∆(y�) ∀ t ∈ ] τ0, min{τ1, σαo}]. (2.13)

Also the proof of the above Lemma is produced in Section 4. Relying on Lemmas 2.2–2.3 we are now in the
position to show that, for every solution t �→ y(t) of the perturbed system (1.1), we can find a piecewise smooth
map t �→ y♦(t) that is a concatenation of solutions of the unperturbed system (1.11) and whose L∞ distance
from y(·) is of the same order of magnitude as the impulsive term ẇ.
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Proposition 2.4. In the same setting of Lemma 2.2, given any compact set K ⊂ R
2, there exist constants

C′′′ = C′′′(K), δ′′′ = δ′′′(K) > 0, so that, for every BV function w = w(t) with Tot.Var.{w} < δ′′′, and for
every solution y : [0, T ] �→ K, of (1.1), there exists a left continuous, piecewise smooth function y♦ : [0, T ] �→ R

2

with the following properties:
a′′′) the map t �→ α∗(y♦(t)

)
is non-decreasing, and one has y♦(0) = y♦(0+);

b′′′) if we let αi′1 < · · · < αi′
m♦ denote the indices defined for y♦(·) in the same way as for y�(·) in (2.4)–(2.5),

and let Dαi′
k

denote a polygonal domain defined as in (2.3), then, on every interval

]τ ′
k, τ ′

k+1]
.=
{

t ∈ [0, T ] : y♦(t) ∈ Dαi′
k

}
, (2.14)

the function y♦(·) is a classical solution of

ẏ = gαi′
k

(y). (2.15)k

Moreover, one has

y♦(τ ′
k) ∈ ∂Dαi′

k−1
, y♦(τ ′

k
+) ∈ ∂Dαi′

k

∀ 1 < k ≤ m♦; (2.16)

c′′′)

m♦∑
k=1

∣∣y♦(τ ′
k

+) − y♦(τ ′
k)
∣∣ ≤ C′′′ · Tot.Var.{w}, (2.17)∥∥y♦ − y

∥∥
L∞([0,T ])

≤ C′′′ · Tot.Var.{w}· (2.18)

Proof. Fix a compact set K and, letting C′′ = C′′(K), δ′′ = δ′′(K) be the constants provided by Lemma 2.2,
set K ′′ .= B(K, C′′ · δ′′). Observe that, thanks to Lemma 2.2, in order to establish Proposition 2.4 it will be
sufficient to show that there exist constants C′′′ = C′′′(K ′′), δ′′′ = δ′′′(K ′′) > 0 so that the following holds.
Given any piecewise smooth function y� : [0, T ] �→ K ′′ , enjoing properties a′), b′), c′) stated in Lemma 2.2, and
satisfying the condition

∆(y�) .=
∑

substack

1 ≤ k ≤ m�1 ≤ � < qk

∣∣y�(t +
k,� ) − y�(tk,�)

∣∣ < δ′′′, (2.19)

there exists a piecewise smooth function y♦ : [0, T ] �→ R
2 having the properties a′′′), b′′′), and satisfying the

estimate ∥∥y♦ − y�
∥∥
L∞([0,T ])

≤ C′′′ · ∆(y�). (2.20)

To this purpose, let
{
Ωαi : i = 1, . . . , N

}
be the collection of polygonal domains that intersect K ′′, set

M
.= sup

{
|gαi(y)| : y ∈ Ωαi , i = 1, . . . , N

}
, (2.21)

and choose constants C, δ > 0 so that the conclusions of Lemma 2.3 hold for any piecewise smooth function y�

enjoing properties a′′), b′′), that takes values in a domain Dαi , i = 1, . . . , N . Now, consider a piecewise smooth
function y� : [0, T ] �→ K ′′, having the properties a′), b′), c′) stated in Lemma 2.2, and satisfying (2.19) with

δ′′′ = δ. (2.22)
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Let 0 = τ ′
1 < τ ′

2 < · · · < τ ′
m�+1 = T, m� ≤ N, be the partition of [0, T ] induced by y�(·) according with

property b′), and observe that every restriction map y��
]τ′

k
, τ′

k+1]
, 1 ≤ k ≤ m�, is a piecewise smooth function

that enjoys the properties a′′), b′′) stated in Lemma 2.3. Let

σαi′
k

.= σαi′
k

(
y��

]τ′
k

, τ′
k+1]

)
, Qαi′

k

.= Qαi′
k

(
y��

]τ′
k

, τ′
k+1]

)
, 1 ≤ k ≤ m�,

be the points and times having the properties c′′), d′′), e′′) given by Lemma 2.3. Then, consider the sequence
of points τ ′′

1
.= 0 < τ ′′

2 < · · · < τ ′′
m′′+1 ≤ T, m′′ ≤ m�, recursively defined by setting

τ ′′
k+1

.= τ ′′
k − τ ′

k + σαi′
k

, (2.23)

for all 1 ≤ k ≤ m� such that τ ′′
k − τ ′

k + σαi′
k

< T, and then letting

m′′ .= max
{
1 < k ≤ m� : τ ′′

k − τ ′
k + σαi′

k

< T
}
,

τ ′′
m′′+1

.= min
{
T, τ ′′

m′′ − τ ′
m′′ + σαi′

m′′

}
· (2.24)

Next, letting xg
(
t; t0, x0) denote a solution of (1.11) starting from x0 at time t0, define the map y♦ : [0, T ] �→ R

2

as follows: y♦(0) .= Qαi′1
, and

y♦(t) .=

{
x

αi′
k

(
t + τ ′

k − τ ′′
k ; τ ′

k, Qαi′
k

)
∀ t ∈ ]τ ′′

k , τ ′′
k+1], 1 ≤ k ≤ m′′,

xg
(
t; τ ′′

m′′+1, y♦(τ ′′
m′′+1)

)
∀ t ∈ ]τ ′′

m′′+1, T ].
(2.25)

By construction, the properties c′′), d′′) of σαi′
k

, Qαi′
k

given by Lemma 2.3, together with the general prop-

erties of the solutions of a patchy system (recalled in Sect. 1), guarantee that the map t �→ y♦(t) enjoys the
properties a′′′), b′′′) stated in Proposition 2.4. Moreover, observe that by property e′′) of Lemma 2.3 one has

∣∣σαi′
k

− τ ′
k+1

∣∣ ≤ C · ∆(y�),∣∣xαi′
k

(
t; τ ′

k, Qαi′
k

)
− y�(t)

∣∣ ≤ C · ∆(y�) ∀ t ∈ ] τ ′
k, min{τ ′

k+1, σαi′
k

}],
∀ 1 ≤ k ≤ m�. (2.26)

Thanks to (2.26), and since by definition (2.23)–(2.24) one has

∣∣τ ′′
k+1 − τ ′

k+1

∣∣ ≤ ∣∣τ ′′
k − τ ′

k

∣∣+
∣∣σαi′

k

− τ ′
k+1

∣∣ ∀ 1 ≤ k < m′′,

proceeding by induction on k ≥ 1, we derive

∣∣τ ′′
k+1 − τ ′

k+1

∣∣ ≤ k · C · ∆(y�) ∀ 1 ≤ k < m′′. (2.27)
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On the other hand, using (2.22) and (2.26), and relying on property b′) of y�(·), we obtain∣∣y♦(τ ′′
k+1

+)− y♦(τ ′′
k+1)

∣∣ =
∣∣Qαi′

k+1
− x

αi′
k

(
σαi′

k

; τ ′
k, Qαi′

k

)∣∣
≤
∣∣Qαi′

k+1
− y�

(
τ ′
k+1

+)∣∣+
∣∣y�

(
τ ′
k+1

+)− y�(τ ′
k+1)

∣∣+
+
∣∣y�(τ ′

k+1) − y�
(
min{τ ′

k+1, σαi′
k

}
)∣∣+

+
∣∣y�

(
min{τ ′

k+1, σαi′
k

}
)
− x

αi′
k

(
min{τ ′

k+1, σαi′
k

}; τ ′
k, Qαi′

k

)∣∣+
+
∣∣xαi′

k

(
min{τ ′

k+1, σαi′
k

}; τ ′
k, Qαi′

k

)
− x

αi′
k

(
σαi′

k

; τ ′
k, Qαi′

k

)∣∣
≤ C · ∆(y�) + ∆(y�) + M ·

∣∣σαi′
k

− τ ′
k+1

∣∣+ C · ∆(y�) + M ·
∣∣σαi′

k

− τ ′
k+1

∣∣
≤
(
1 + 2C(1 + M)

)
· ∆(y�),

∀ 1 ≤ k < m′′. (2.28)

Hence, thanks to (2.22), (2.26)–(2.28), and by definition (2.25) of y♦(·), we derive∣∣y♦(t) − y�(t)
∣∣ ≤ ∣∣y♦(t) − y♦(t − τ ′

k + τ ′′
k

)∣∣+
∣∣y♦(t − τ ′

k + τ ′′
k

)
− y�(t)

∣∣
≤

m′′∑
k=2

∣∣y♦(τ ′′
k

+)− y♦(τ ′′
k )
∣∣ + M ·

∣∣τ ′′
k − τ ′

k

∣∣+
∣∣xαi′

k

(
t; τ ′

k, Qαi′
k

)
− y�(t)

∣∣
≤ N ·

(
1 + 3C(1 + M)

)
· ∆(y�),

∀ t ∈ ] τ ′
k, min{τ ′

k+1, σαi′
k

}], 1 ≤ k ≤ m′′, (2.29)

while, in the case σαi′
k

< τ ′
k+1, we get

∣∣y♦(t) − y�(t)
∣∣ ≤ ∣∣y♦(t) − y♦(σαi′

k

)∣∣+
∣∣y♦(σαi′

k

)
− y�

(
σαi′

k

)∣∣+
∣∣y�(t) − y�

(
σαi′

k

)∣∣
≤

m′′∑
k=2

∣∣y♦(τ ′′
k

+)− y♦(τ ′′
k )
∣∣ + M ·

∣∣σαi′
k

− τ ′
k+1

∣∣+
∣∣y♦(σαi′

k

)
− y�

(
σαi′

k

)∣∣+
+ ∆(y�) + M ·

∣∣σαi′
k

− τ ′
k+1

∣∣
≤ 3N ·

(
1 + 3C(1 + M)

)
· ∆(y�),

∀ t ∈ ] σαi′
k

, τ ′
k+1], 1 ≤ k ≤ m′′. (2.30)

Thus, (2.29)–(2.30) together, yield∣∣y♦(t) − y�(t)
∣∣ ≤ 3N ·

(
1 + 3C(1 + M)

)
· ∆(y�) ∀ t ∈ [ 0, τ ′

m′′+1]. (2.31)

On the other hand, in the case τ ′
m′′+1 < T, by definition (2.24) one has m′′ = m�, T < τ ′′

m′′ − τ ′
m′′ + σαi′

m′′
, and

hence, using (2.26)–(2.27), we get∣∣T − τ ′
m′′+1

∣∣ ≤ ∣∣τ ′′
m′′ − τ ′

m′′ + σαi′
m′′

− τ ′
m′′+1

∣∣
≤
∣∣τ ′′

m′′ − τ ′
m′′

∣∣+
∣∣σαi′

m′′
− τ ′

m′′+1

∣∣
≤ (N + 1) · C · ∆(y�). (2.32)
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Therefore, from (2.28), (2.31)–(2.32) we derive∣∣y♦(t) − y�(t)
∣∣ ≤ ∣∣y♦(t) − y♦(τ ′

m′′+1)
∣∣+

∣∣y♦(τ ′
m′′+1) − y�(τ ′

m′′+1)
∣∣+

∣∣y�(t) − y�(τ ′
m′′+1)

∣∣
≤

m′′∑
k=2

∣∣y♦(τ ′′
k

+)− y♦(τ ′′
k )
∣∣ + M ·

∣∣T − τ ′
m′′+1

∣∣+
+
∣∣y♦(τ ′

m′′+1) − y�(τ ′
m′′+1)

∣∣+ ∆(y�) + M ·
∣∣T − τ ′

m′′+1

∣∣
≤ 4N ·

(
1 + 4C(1 + M)

)
· ∆(y�)

∀ t ∈ [τ ′
m′′+1, T ]. (2.33)

Hence, (2.32)–(2.33) together show that y♦(·) satisfies the estimates (2.20) choosing

C′′′ > 4N ·
(
1 + 4C(1 + M)

)
, (2.34)

which completes the proof of Proposition 2.4. �

3. Proof of Theorem 1

In view of Proposition 2.4, it is useful to introduce the following

Definition 3.1. A left-continuous, piecewise smooth function y♦ : [0, T ] �→ R
2 that enjoys the proper-

ties a′′′)–b′′′) stated in Proposition 2.4, is called a concatenation of classical solutions (CCS) of (1.11).

Notice that, in particular, any Carathéodory solution of (1.11) is always a CCS. In connection with any CCS
y : [0, T ] �→ R

2, letting 0 = τ1 < τ2 < · · · < τm+1 = T be the partition of [0, T ] defined as in (2.4)–(2.5), we will
denote the total amount of jumps in y(·) by

∆(y) .=
m∑

k=2

∣∣y(τ +
k ) − y(τk)

∣∣. (3.1)

Throughout this section, we shall work with CCS of (1.11) y : [t0, t1] �→ R
2 that take values in some

neighborhood
K0

.= B(K, δ0), δ0 > 0, (3.2)

of a fixed compact set K ⊂ R
2, and we shall adopt the following further notations. Consider the set of indices

AK0

.=
{
α ∈ A; Ωα ∩ K0 
= ∅

}
· (3.3)

Let N = |AK0 | be the number of elements in AK0 , and set

M
.= sup

{
|gα(y)| : y ∈ Ωα, α ∈ AK0

}
· (3.4)

Before giving the complete proof of Theorem 1 we will first show that, for every given CCS of (1.11) y(·)
admitting a single jump discontinuity, there exists a (Carathéodory) solution x(·) of (1.11) for which the linear
estimate (1.16) holds. Namely, we shall prove

Proposition 3.1. Let g be a uniformly bounded away from zero polygonal patchy vector field on R
2, associated

to a family of polygonal patches
{
(Ωα, gα); α ∈ A

}
, and assume that condition (C) is satisfied. Then, given

any compact set K ⊂ R
2, there exist constants C ıv = C ıv(K), δıv = δıv(K) > 0 so that the following hold.
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Let y� : [ τ0, τ1] �→ K, y� : ] τ1, τ2] �→ K, be two continuous maps having the properties:

i) the function y�(·) is a Carathéodory solution of (1.11) and, letting

α1
.= max

{
α ; α ∈ Im(α∗ ◦ y�)

}
,

one has
y�(τ1) ∈ ∂Dα1 (3.5)

(where Dα1 denotes a polygonal domain defined as in (2.3));
ii) the function y�(·) is a solution of ẏ = gα2(y), for some α2 > α1, and one has

y�(t) ∈ Dα2 ∀ t ∈ ]τ1, τ2],

y�(τ +
1 ) ∈ ∂Dα2 ; (3.6)

iii) ∣∣y�(τ1) − y�(τ +
1 )

∣∣ < δıv. (3.7)

Then, there exists a Carathéodory solution of (1.11) Φ
�,�

.= Φ
[
y�, y�

]
: [ τ0, σ

�,�
] �−→ R

2, such that∣∣y�(t) − Φ
�,�

(t)
∣∣ ≤ Cıv ·

∣∣y�(τ1) − y�(τ +
1 )

∣∣ ∀ t ∈ [ τ0, min{τ1, σ
�,�
}], (3.8)∣∣y�(t) − Φ

�,�
(t)

∣∣ ≤ Cıv ·
∣∣y�(τ1) − y�(τ +

1 )
∣∣ ∀ t ∈ ] τ1, min{τ2, σ

�,�
}], if σ

�,�
> τ1. (3.9)

Moreover, one has

α∗(Φ
�,�

(t)
)
≤ α2 ∀ t ∈ [ τ0, σ

�,�
],

y�(τ2) ∈ ∂Dα2 =⇒ Φ
�,�

(σ
�,�

) ∈ ∂Dα2 , (3.10)

and there holds ∣∣σ
�,�

− τ2

∣∣ ≤ Cıv ·
∣∣y�(τ1) − y�(τ +

1 )
∣∣. (3.11)

Proof.
1. Fix a compact set K ⊂ R

2, let K0 be the neighborhood of K in (3.2), and denote with AK , AK0 the sets of
indices defined as in (3.3) in connection with K and K0. For each α ∈ AK0 denote by Vα the set of vertices of the
polygonal domain Dα. Notice that, since g is a patchy vector field satisfying condition (C), the Cauchy problem
(1.11)–(1.2) has a unique local forward (Caratéodory) solution in the case y0 ∈

(⋃
α∈AK

Ωα

)
\
(⋃

α∈AK
Vα

)
,

and at most N local forward solutions if y0 ∈
⋃

α∈AK
Vα. On the other hand, by the properties of the solutions

of a patchy system recalled in Section 1, the Cauchy problem for (1.11) has always backward uniqueness.
Therefore, the set Tα of all graphs of maximal (Caratéodory) trajectories of (1.11) that go through some vertex
in ∪α∈AK Vα, and are contained in ∪α∈AK0

Ωα, is finite. For convenience, with a slight abuse of notation, we
will often write γ ∈ Tα to mean Im(γ) ∈ Tα. The unique backward solution of the Cauchy problem (1.11)–(1.2),
whenever does exist, will be denoted by t �→ xg(t; t0, y0), t ≤ t0. We assume that every vector field gα is defined
on a neighborhood of Ωα and we denote, as usual, by t �→ xα

(
t; t0, x0

)
the solution of the Cauchy problem

ẋ = gα(x), x(t0) = x0 ∈ Ωα. (3.12)

By well-posedness of (3.12), there will be some constant c0 > 1 so that∣∣xα(t; t0, x0) − xα(t′; t1, x1)
∣∣ ≤ c0

{
|t − t′| + |t0 − t1| + |x0 − x1|

}
∀ x0, x1 ∈ Ωα. (3.13)
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For every x0 ∈ ∂Dα, we let t+α (x0), t−α (x0) denote the time that is necessary to reach the set Ωα \ Dα starting
from x0 and following, respectively, the forward and backward flow of the vector field gα, i.e.

t+α (x0)
.= inf

{
t > 0 ; xα(t; 0, x0) ∈ Ωα \ Dα

}
,

t−α (x0)
.= sup

{
t < 0 ; xα(t; 0, x0) ∈ Ωα \ Dα

}
· (3.14)

Using the quantities in (3.14) we define the sets of incoming and outgoing boundary points

∂IDα
.=
{
x ∈ ∂Dα ; t+α (x) > 0

}
,

∂ODα
.=
{
x ∈ ∂Dα ; t−α (x) < 0

}
, (3.15)

that clearly consist of all the points in the boundary ∂Dα where the field gα is pointing, respectively, towards
the interior and towards the exterior of Dα. Moreover, for any pair of indices α, β ∈ AK , α < β, define the set

Gα, β
.= ∂ODα ∩ ∂IDβ ∩

(
Vα ∪ Vβ ∪

⋃
γ∈Tβ

Im(γ)
)
. (3.16)

Since gα are smooth, uniformly bounded away from zero vector fields that satisfy the inward-pointing condi-
tion (1.17) and the transversality condition (C), and by the properties of the solutions of a patchy system
recalled in Section 1, one can easily verify that the following properties hold.

P1) There exist constants c1, δ1 > 0 (depending only on K) so that, given any domain Dα, α ∈ AK , one
has:
a) for any x, y ∈ ∂IDα belonging to the same connected component of ∂Dα \

⋃
γ∈Tα

Im(γ), there holds

|x − y| < δ1 =⇒
∣∣t+α (x) − t+α (y)

∣∣ < c1 · |x − y|; (3.17)

b) given any x0 ∈ ∂IDα ∩
⋃

γ∈Tα
Im(γ), and any x ∈ ∂IDα ∩ B(x0, δ1), x 
= x0, there exists τ̂α

x0,x ∈
[0, t+α (x0)] such that

xα
(
τ̂α
x0,x; 0, x0

)
∈ ∂Dα,

∣∣t+α (x) − τ̂α
x0,x

∣∣ < c1 · |x − x0|. (3.18)

P2) There exist constants c2, δ2 > 0 (depending only on K0) so that, given any pair of domains Dα, Dβ ,
α < β, α, β ∈ AK , with ∂ODα ∩ ∂IDβ 
= ∅, the following holds. For every x0 ∈ Gα, β, and for
any backward (Caratéodory) trajectory t �→ xg(t; 0, x), t ∈ [−τ̂x, 0] of (1.11) arriving in some point
x ∈ ∂ODα ∩ B(x0, δ2), starting from xg(−τ̂x; 0, x) ∈

⋃
γ≤α ∂Dγ , and contained in K, there is another

backward trajectory t �→ xg(t; 0, x0), t ∈ [−τ̂g
x0,x, 0] of (1.5) arriving in x0, contained in K0, and

such that

xg
(
− τ̂g

x0,x; 0, x0

)
∈

⋃
γ≤α

∂Dγ , (3.19)∣∣τ̂g
x0,x − τ̂x

∣∣ < c2 · |x − x0|, (3.20)∣∣xg
(
t − τ̂g

x0,x; 0, x0

)
− xg

(
t − τ̂x; 0, x

)∣∣ < c2 · |x − x0| ∀ t ∈ [0, min{τ̂g
x0,x, τ̂x}]. (3.21)

Next, choose λ > 0 so that, for any pair of indices α, β ∈ AK , α < β, one has

B(x0, λ ) ∩ B(y0, λ ) = ∅ ∀ x0, y0 ∈ Gα,β , x0 
= y0. (3.22)

Then, for any 0 ≤ λ ≤ λ, let R1
α,β(λ), . . . , R

r
α,β

α,β (λ) denote the connected components of(
∂Dα ∪ ∂Dβ

)
\

⋃
P∈Gα, β

B(P, λ),
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and set

ρα,β(λ) .=

{
min

{
d
(
Rs

α,β(λ), R�
α,β(λ)

)
; 1 ≤ s, � ≤ rα,β , s 
= �

}
if ∂ODα ∩ ∂IDβ 
= ∅,

d
(
∂ODα, ∂IDβ

)
otherwise.

(3.23)

Since by construction one has

inf
{

ρα,β(λ)
λ

: 0 < λ ≤ λ

}
> 0 ∀ α, β ∈ AK , α < β, s.t. ∂ODα ∩ ∂IDβ 
= ∅, (3.24)

there will be constants c3 > 1, 0 < δ3 < λ/(2c3), so that

ρα,β(c3 · δ) > 2δ ∀ 0 < δ ≤ δ3, ∀ α, β ∈ AK , α < β. (3.25)

2. Consider now two continuous maps y� : ]τ0, τ1] �→ K, y� : ]τ1, τ2] �→ K, having the properties i)–iii) with

δıv ≤ min
{

δ1

2c3
,

δ2

2c3
, δ3

}
· (3.26)

To fix the ideas, we shall assume also that

y�(τ +
0 ) ∈

⋃
γ≤α1

∂Dγ , y�(τ2) ∈ ∂Dα2 . (3.27)

The cases where y�(τ +
0 ) ∈

⋃
γ≤α1

◦
Dγ , or y�(τ2) ∈

◦
Dα2 , can be treated in entirely similar manner. Set

x� .= y�(τ1), x� .= y�(τ +
1 ), ∆ .=

∣∣x� − x�
∣∣, (3.28)

and observe that, since the properties i)-ii) of y�(·), y�(·) imply

x� ∈ ∂ODα1 , x� ∈ ∂IDα2 ,

by the definition (3.23) of ρα1,α2 and because of (3.7), (3.25) and (3.26), we deduce that, if ∂ODα1 ∩∂IDα2 = ∅,
then

∆ ≥ d
(
∂ODα1 , ∂IDα2

)
= ρα1,α2(c3 · ∆)

> 2∆

which yields a contradiction. Therefore, it must be ∂ODα1 ∩ ∂IDα2 
= ∅ which, in turn, by definition (3.16)
implies G

α1,α2

= ∅. In order to construct the Carathéodory solution of (1.11) Φ

�,�
satisfying (3.8)–(3.11), we will

handle separately the case in which the endpoints x�, x� lie on the same connected component of

(
∂Dα1 ∪ ∂Dα2

)
\

⋃
x0∈Gα1,α2

B(x0, c3 · ∆), (3.29)

and the case where x�, x� belong to the ball B(x0, c3 · ∆) centered at some point x0 ∈ Gα1,α2 .
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3. Case 1. Assume that

x� ∈ ∂Dα1 \
⋃

x0∈Gα1,α2

B(x0, c3 · ∆),

x� ∈ ∂Dα2 \
⋃

x0∈Gα1,α2

B(x0, c3 · ∆), (3.30)

and let Rs
α1,α2

(c3 ·∆), R�
α1,α2

(c3 ·∆) be the connected components of the set in (3.29) that contain, respectively,
x� and x�. Observe that, if s 
= �, then, by the definition (3.23) of ρα1,α2 and because of (3.7), (3.25) and (3.26),
we deduce

∆ ≥ d
(
Rs

α1,α2
(c3 · ∆), R�

α1,α2
(c3 · ∆)

)
≥ ρα1,α2(c3 · ∆)
> 2∆

which yields a contradiction. Therefore it must be s = �, i.e. x�, x� lie on the same connected component of
the set in (3.29) and hence one has

x�, x� ∈ Rs
α1,α2

(c3 · ∆) ⊂ ∂ODα1 ∩ ∂IDα2 .

But then, since (3.7) and (3.26) together imply ∆ < δ1, applying property P1-a) we derive∣∣t+α2

(
x�
)
− t+α2

(
x�
)∣∣ < c1 · ∆. (3.31)

On the other hand, since y�(·) satisfies property ii), and because (3.30) implies

x� ∈ ∂IDα2 \
⋃

γ∈Tα∈

Im(γ), (3.32)

using also (3.27)2 we deduce

t+α2

(
x�
)

= τ2 − τ1, (3.33)

y�(t) = xα2
(
t; τ1, x�

)
∀ t ∈ ]τ1, τ2]. (3.34)

Thus, setting
σ

�,�

.= τ1 + t+α2

(
x�
)
, (3.35)

from (3.31), (3.33) we derive

xα2
(
σ

�,�
; τ1, x�

)
∈ ∂Dα2 ,∣∣σ

�,�
− τ2

∣∣ < c1 · ∆, (3.36)

and, thanks to (3.13), we obtain∣∣y�(t) − xα2
(
t; τ1, x�

)∣∣ < c0 · ∆ ∀ t ∈ ]τ1, min{τ2, σ�,�
}]. (3.37)

Then, define the map

Φ
�,�

(t) .=

{
y�(t) ∀ t ∈ [ τ0, τ1],

xα2
(
t; τ1, x�

)
∀ t ∈ ] τ1, σ�,�

],
(3.38)
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and observe that, by construction, Φ
�,�

(·) is a solution of (1.11) verifying (3.10). Moreover, (3.8) trivially holds,
while from (3.36)–(3.37) we recover the estimates (3.9) and (3.11) taking the constant Cıv > max{c0, c1}.
Thus, (3.38) provides the desired map whenever (3.30) is verified.

4. Case 2. Assume that

x� ∈ ∂Dα1 ∩ B(x0, c3 · ∆) or x� ∈ ∂Dα2 ∩ B(x0, c3 · ∆), (3.39)

for some
x0 ∈ Gα1,α2

∩
⋃

γ∈Tα2

Im(γ). (3.40)

Then, by (3.7), (3.26) and (3.39), one has∣∣x� − x0

∣∣ < (1 + c3) · ∆ < δ2, (3.41)∣∣x� − x0

∣∣ < (1 + c3) · ∆ < min{δ1, λ }· (3.42)

Thus, observing that by property i) one has

y�(t) = xg(t − τ1; 0, x�) ∀ t ∈ [ τ0, τ1], (3.43)

and because of (3.27)1, (3.41), applying property P2 we deduce that there is another backward trajectory
t �→ xg(t; 0, x0), t ∈ [−τ̂g

x0,x� , 0], of (1.11) arriving in x0, such that∣∣τ̂g
x0,x� − τ1 + τ0

∣∣ < c2(1 + c3) · ∆, (3.44)∣∣y�(t) − xg
(
t − τ0 − τ̂g

x0,x� ; 0, x0

)∣∣ < c2(1 + c3) · ∆ ∀ t ∈ [ τ0, min{τ0 + τ̂g
x0,x� , τ1}]. (3.45)

To fix the ideas assume that
τ1 − τ0 < τ̂g

x0,x� < τ2 − τ0. (3.46)

Then, observing that by property ii) there holds (3.34), using (3.4), (3.44)–(3.45), we obtain∣∣y�(t) − xg
(
t − τ0 − τ̂g

x0,x� ; 0, x0

)∣∣ ≤ ∣∣y�(t) − x�
∣∣ +

∣∣x� − x�
∣∣+

∣∣x� − xg(τ1 − τ0 − τ̂g
x0,x� ; 0, x0)

∣∣+
+
∣∣xg(τ1 − τ0 − τ̂g

x0,x� ; 0, x0) − xg(t − τ0 − τ̂g

x0,x� ; 0, x0)
∣∣

≤ 2M · |t − τ1| + ∆ + c2(1 + c3) · ∆
< 2(M + 1)c2(1 + c3) · ∆

∀ t ∈ ]τ1, τ0 + τ̂g

x0,x� ]. (3.47)

On the other hand, if x� 
= x0, since (3.42) together with (3.22), imply (3.32), using (3.27)2 we deduce as in Case 1
that (3.33) holds. Hence, thanks to (3.42), by property P1-b) it follows that there exists τ̂α2

x0,x� ∈ [0, t+α2
(x0)]

such that

xα2
(
τ̂α2
x0,x� ; 0, x0

)
∈ ∂Dα2 , (3.48)∣∣τ2 − τ1 − τ̂α2

x0,x�

∣∣ < c1(1 + c3) · ∆. (3.49)

Then, setting
σ

�,�

.= τ0 + τ̂g

x0,x� + τ̂α2
x0,x� , (3.50)
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and relying on (3.44) and (3.49), we derive∣∣σ
�,�

− τ2

∣∣ ≤ ∣∣τ0 + τ̂g

x0,x� − τ1

∣∣+
∣∣τ1 − τ2 + τ̂α2

x0,x�

∣∣ < (c1 + c2)(1 + c3) · ∆, (3.51)

while, using (3.13), (3.42) and (3.44), and because of (3.34), we get∣∣y�(t) − xα2
(
t; τ0 + τ̂g

x0,x� , x0

)∣∣ ≤ c0 ·
(∣∣x� − x0

∣∣+
∣∣τ1 − τ0 − τ̂g

x0,x�

∣∣)
≤ c0 · (1 + c2)(1 + c3) · ∆

∀ t ∈ ]τ0 + τ̂g
x0,x� , min{τ2, σ

�,�
}]. (3.52)

Thus, define

Φ
�,�

(t) .=

{
xg
(
t − τ0 − τ̂g

x0,x� ; 0, x0

)
∀ t ∈ [ τ0, τ0 + τ̂g

x0,x� ],

xα2
(
t; τ0 + τ̂g

x0,x� , x0

)
∀ t ∈ ]τ0 + τ̂g

x0,x� , σ
�,�

],
(3.53)

and observe that, by construction and because of (3.48), Φ
�,�

(·) is a solution of (1.11) verifying (3.10). Moreover,
from (3.45), (3.47), (3.49) and (3.52), it follows that Φ

�,�
(·) satisfies the estimates (3.8), (3.9) and (3.11) with

the constant C ıv > 2(M + c0)(1+ c2)(1+ c3), which shows that (3.53) provides the desired map whenever (3.39)
holds.

5. Case 3. Assume that

x� ∈ ∂Dα1 ∩ B(x0, c3 · ∆) for some x0 ∈ Gα1,α2
\

⋃
γ∈Tα2

Im(γ), (3.54)

and that
x� ∈ ∂Dα2 ∩ B(y0, c3 · ∆) for some y0 ∈ G

α1,α2
\

⋃
γ∈Tα2

Im(γ). (3.55)

Observe that, by (3.7), (3.26) and (3.54)–(3.55), one has∣∣x� − x0

∣∣ < c3 · ∆ < δ2, (3.56)∣∣x� − y0

∣∣ < c3 · ∆ < min{δ1, λ }, (3.57)∣∣x� − x0

∣∣ < (1 + c3) · ∆ < λ. (3.58)

But then from (3.57)–(3.58), because of (3.22), we deduce that x0 = y0. Hence, by (3.22), (3.54) and (3.57),
it follows that x0, x� belong to the same connected component of ∂Dα2 \

⋃
γ∈Tα2

Im(γ). Moreover, since y�(·)
satisfies property ii), we deduce also that (3.32)–(3.34) hold. Therefore, relying on (3.57), and applying prop-
erty P1-a), we derive ∣∣τ2 − τ1 − t+α2

(x0)
∣∣ < c1 c3 · ∆. (3.59)

On the other hand, since by property i) there holds (3.43), and because of (3.27)1 and (3.56), applying prop-
erty P2 as in Case 2 we deduce that there is another backward trajectory t �→ xg(t; 0, x0), t ∈ [−τ̂g

x0,x� , 0],
of (1.11) arriving in x0, for which the estimates (3.44), (3.45) and (3.47) are verified. Thus, setting

σ
�,�

.= τ0 + τ̂g
x0,x� + t+α2

(x0), (3.60)

and relying on (3.44) and (3.59), we derive∣∣σ
�,�

− τ2

∣∣ ≤ ∣∣τ0 + τ̂g

x0,x� − τ1

∣∣+
∣∣τ1 − τ2 + τ̂α2

x0,x�

∣∣ < (c1 + c2)(1 + c3) · ∆, (3.61)
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while, using (3.13), (3.44) and (3.57), and because of (3.34), we get∣∣y�(t) − xα2
(
t; τ0 + τ̂g

x0,x� , x0

)∣∣ ≤ c0 ·
(∣∣x� − x0

∣∣+
∣∣τ1 − τ0 − τ̂g

x0,x�

∣∣)
≤ c0 · (1 + c2)(1 + c3) · ∆

∀ t ∈ ]τ0 + τ̂g
x0,x� , min{τ2, σ

�,�
}]. (3.62)

Observe now that the map Φ
�,�

(·) defined in (3.53) is a solution of (1.11) verifying (3.10) since, by the defini-
tion (3.14) of the quantity t+α2

, one has

Φ
�,�

(σ
�,�

) = xα2
(
t+α2

(x0); 0, x0

)
∈ ∂Dα2 . (3.63)

Moreover, from (3.45), (3.47), (3.59) and (3.62), it follows that Φ
�,�

(·) satisfies the estimates (3.8), (3.9)
and (3.11) with the constant Cıv > 2(M + c0)(1 + c2)(1 + c3), thus showing that (3.53) provides the de-
sired map even in the case where (3.54)–(3.55) hold. This completes the proof of Proposition 3.1 since, because
of (3.5)–(3.6) one has x� ∈ ∂Dα1 , x� ∈ ∂Dα2 , and hence the above three Cases 1–3 cover all the possibilities. �

Completion of the proof of Theorem 1

Let g be a uniformly bounded away from zero, polygonal patchy vector field on R
2, satisfying condition (C).

Fix a compact set K ⊂ R
2. Observe that, thanks to Proposition 2.4, in order to establish Theorem 1 it

will be sufficient to take in consideration only perturbed solutions of (1.1) with values in the compact set
K ′′′ = B(K, C′′′ · δ′′′) that are CCS of (1.11), and derive for any such solution y(·) a linear estimate of the
distance from some solution x(·) of (1.11), of the type∥∥x − y

∥∥
L∞ ≤ C · ∆(y), (3.64)

where ∆(y) denotes the total amount of jumps in y(·) as defined in (3.1). To this end we will establish the
following

Lemma 3.2. In the same setting of Proposition 3.1, given any compact set K ⊂ R
2, there exist constants

Cv = Cv(K), δv = δv(K) > 0, for which the following hold.
For every CCS of (1.11) y : [0, T ] �→ K, such that ∆(y) < δv, letting 0 = τ1 < τ2 < · · · < τm+1 = T be the

partition of [0, T ] induced by y(·) according with (2.4)–(2.5), there exist a sequence of points τ̂2, τ̂3, · · · , τ̂m′ = T ,
together with a sequence of CCS yk : [0, T ] �→ R

2, k = 1, · · · , m′ − 1, having the following properties.
I) yk �[0, τ̂k+1] is a Carathéodory solution of (1.11) and, letting

αk
.= max

{
α ; α ∈ Im

(
(α∗ ◦ yk)�[0, τ̂k+1]

)}
, (3.65)

one has

αk > αk−1 if k > 1,

yk( τ̂
k+1) ∈ ∂Dαk

if k < m′ − 1, (3.66)

(where Dαk
denotes a polygonal domain defined as in (2.3)).

II) If k < m′ − 1, one has

yk( τ̂ +
k+1

) ∈
⋃

γ>αk

Dγ , (3.67)

α∗(yk(t)
)

> αk ∀ t ∈ ]τ̂k+1, T ]. (3.68)
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III) If k > 1, there holds ∣∣yk(t) − yk−1(t)
∣∣ ≤ Cv · ∆(yk−1) ∀ t ∈ [0, T ], (3.69)k

∆(yk) ≤
(
1 + 2Cv

)k−1 · ∆(y). (3.70)k

Proof of Lemma 3.2. Fix a compact set K ⊂ R
2. Let K0 and AK0 be, respectively, the neighborhood of K (3.2)

and the set of indices in (3.3), and choose the constants C ıv = C ıv(K0), δıv = δıv(K0) > 0 according with
Proposition 3.1. By the properties of a CCS and because of the regularity of the vector fields gα, α ∈ AK0 ,
there will be some constant c4 > 0 so that, for any CCS of (1.11) y : [0, T ] �→ K0, one has∣∣y(t) − y(t′)

∣∣ ≤ c4 ·
(
|t − t′| + ∆(y)

)
∀ t, t′ ∈ [0, T ]. (3.71)

Then, set

δv .= min

{
δıv(

1 + 2Cv
)N

,
δ4(

1 + 2Cv
)N

,
δ0

N
(
1 + 2Cv

)N
,

}
, Cv .= 3c4(1 + 2C ıv), (3.72)

and consider a CCS of (1.11) y : [0, T ] �→ K, with

∆(y) < δv. (3.73)

We shall construct the sequence of of CCS yk : [0, T ] �→ K0 and of points τ̂k+1, enjoing the properties I–III,
applying Proposition 3.1 and proceeding by induction on k ≥ 1. Set

τ̂2
.= τ2, y1(y) .= y(t) ∀ t ∈ [0, T ] (3.74)

and, if m = 1, i.e. τ2 = T, set m′ .= 2, otherwise let m′ > 2. Observe that, by the properties a′′′)–b′′′) of a
CCS stated in Proposition 2.4, the point τ̂2 and the map y1(·) in (3.74) clearly verify the conditions I–II of
Lemma 3.2. Next, assume to have constructed, for some 1 < k ≤ N, a sequence of CCS y1, . . . , yk−1, together
with a sequence of points 0 < τ̂2, · · · , τ̂k < T, enjoing the properties I–III, with Cv, as in (3.72). Set

τ̂ ′
k+1

.= sup
{
t ∈ ] τ̂k, T ] ; α∗(yk−1(t)

)
= α∗(yk−1(τ̂ +

k )
)}

, (3.75)

and observe that, because of I–III, and by (3.70)k−1, (3.72)–(3.73), the maps

yk,� .= yk−1 �[0, τ̂k], yk,� .= yk−1 �] τ̂k, τ̂ ′
k+1

],

have the properties i) − iii) stated in Proposition 3.1. Moreover, since the estimates (3.69)h, (3.70)h, h =
2, . . . , k − 1, together with (3.72)–(3.73), imply

∣∣yk−1(t) − y(t)
∣∣ ≤ k−1∑

h=2

∣∣yh(t) − yh−1(t)
∣∣

≤
k−1∑
h=2

(
1 + 2Cv

)h−1 · ∆(y)

≤ N
(
1 + 2Cv

)N · ∆(y) < δ0 ∀ t ∈ [0, T ], (3.76)
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by the above assumptions it follows that yk−1(·), and hence yk,�(·), yk,�(·), take values in the set K0. Then,
letting

Φk
�,�

.= Φ
[
yk,�, yk,�

]
: [0, σk

�,�
] �−→ R

2

be the Carathéodory solution of (1.11) provided by Proposition 3.1, and denoting by xg
(
t; t0, x0) a Carathéodory

solution of (1.11) starting from x0 at time t0, set

τ̂
k+1

.= min
{
σk

�,�
, T

}
, τ̂ ′′

k+1

.= min
{
T, T + τ̂

k+1 − τ̂ ′
k+1

}
, (3.77)

yk(t) .=


Φk

�,�
(t) if t ∈ [0, τ̂

k+1 ],
yk−1

(
t + τ̂ ′

k+1
− τ̂

k+1

)
if t ∈ ] τ̂

k+1 , τ̂ ′′
k+1

],
xg
(
t; τ̂ ′′

k+1
, yk−1(T )

)
if t ∈ ] τ̂ ′′

k+1
, T ].

(3.78)

Next, if τ̂
k+1 = T, set m′ .= k + 1, otherwise let m′ > k + 1. By construction, and because Φk

�,�
satisfies

condition (3.10) of Proposition 3.1, the map in (3.78) defines a CCS of (1.11) that enjoys the properties I–II.
Moreover, by (3.8), (3.9) and (3.11), and because of the above definition (3.77) of τ̂

k+1 , we derive∣∣τ̂
k+1 − τ̂ ′

k+1

∣∣ ≤ C ıv · ∆(yk−1), (3.79)∣∣yk(t) − yk−1(t)
∣∣ ≤ C ıv · ∆(yk−1) ∀ t ∈ [0, min{τ̂

k+1 , τ̂ ′
k+1

}]. (3.80)

On the other hand, using (3.71) and (3.79)–(3.80), if τ̂ ′
k+1

< τ̂
k+1 we obtain∣∣yk(t) − yk−1(t)

∣∣ ≤ ∣∣Φk
�,�

(t) − Φk
�,�

(τ̂ ′
k+1

)
∣∣+

∣∣yk(τ̂ ′
k+1

) − yk−1(τ̂ ′
k+1

)
∣∣+

∣∣yk−1(t) − yk−1(τ̂ ′
k+1

)
∣∣

≤ 2c4 ·
∣∣t − τ̂ ′

k+1

∣∣+ c4 ·
(
∆(Φk

�,�
) + ∆(yk−1)

)
+ C ıv · ∆(yk−1)

≤ 3c4(1 + 2C ıv) · ∆(yk−1) ∀ t ∈ ] τ̂ ′
k+1

, τ̂
k+1 ], (3.81)

while, in the case τ̂
k+1 < T, we get∣∣yk(t) − yk−1(t)

∣∣ ≤ c4 ·
(∣∣τ̂

k+1 − τ̂ ′
k+1

∣∣+ ∆(yk−1)
)

≤ c4(1 + C ıv) · ∆(yk−1) ∀ t ∈ ] τ̂
k+1 , T ]. (3.82)

From (3.80)–(3.82) we recover the estimate (3.69)k, with Cv as in (3.72), while (3.70)k−1, together with (3.69)k,
immediately yields (3.70)k, showing that the map in (3.78) enjoys also the property III.

To complete the proof of Lemma 3.2, observe that proceeding by induction on k ≥ 2, either we find some
m′ ≤ N such that τ̂m′ = T, or else we construct a sequence of CCS of (1.11) y1, . . . , yN−1, together with a
sequence of points 0 < τ̂2, · · · , τ̂N < T, enjoing the properties I–III. But then, if we define yN and τ̂N+1 according
with (3.77)–(3.78), we certainly find τ̂

N+1 = T, since otherwise, relying on properties I–III, one deduces

yN (t) ∈ R
2 \

⋃
α∈AK0

Ωα ∀ t ∈ ]τ̂N+1, T ], (3.83)

while, performing a computation as in (3.76), one deduces∣∣yN (t) − y(t)
∣∣ < δ0 ∀ t ∈ [0, T ],
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which, by (3.3), implies
yN (t) ∈ B(K0, δ0) ⊂

⋃
α∈AK0

Ωα ∀ t ∈ [0, T ],

yielding a contradiction with (3.83). This concludes the proof of the lemma. �

We are in the position now to complete the proof of Theorem 1, relying on Lemma 3.2. Let Cv =
Cv(K ′′′), δv = δv(K ′′′) > 0 be constants chosen according with Lemma 3.2 and consider a CCS of (1.11)
y : [0, T ] �→ K ′′′, such that ∆(y) < δv. Then, letting y1 = y, y2, . . . ym′−1 be the sequence of CCS provided by
Lemma 3.2 that enjoy the properties I–III, and using (3.69)k–(3.70)k, we derive

∣∣ym′−1(t) − y(t)
∣∣ ≤ m′−1∑

k=2

∣∣yk(t) − yk−1(t)
∣∣

≤ N
(
1 + 2Cv

)N · ∆(y) ∀ t ∈ [0, T ]. (3.84)

By property I, ym′−1 : [0, T ] → R
2 is a Carathéodory solution of (1.11), and hence (3.84) yields the estimate

in (3.63), taking C = N
(
1 + 2Cv

)N
, which concludes the proof of the theorem.

4. Appendix

We provide here the proofs of the Lemmas 2.2–2.3 stated in Section 2. To this end we shall first establish
the following

Lemma 4.1. Let g be a uniformly bounded away from zero polygonal patchy vector field on R
2, associated to a

family of polygonal patches
{
(Ωα, gα); α ∈ A

}
. Assume that condition (C) (stated in Sect. 2) is satisfied. Then,

given C > 0 and any compact set K ⊂ R
2, there exist constants Cvı = Cvı(K, C) ≥ C, Cvıı = Cvıı(K, C), δvı =

δvı(K, C) > 0, so that the following property holds.
For every BV perturbation w = w(t) with Tot.Var.{w} < δvı, and for every left continuous solution y :

[0, T ] �→ K of (1.1), for which the map t �→ α∗(y(t)
)

is non-decreasing, letting{
αi1 , . . . , αim

}
= Im

(
α∗ ◦ y

)
, (4.1)

with
αi1 < · · · < αim , (4.2)

and setting

Dαij

.= Ωαij
\

⋃
β>αij

Ωβ j = 1, . . . , m, (4.3)

]τj , τj+1]
.=
{
t ∈ [0, T ] : y(t) ∈ Dαij

}
j = 1, . . . , m, (4.4)

there holds

meas

⋃
j

{
t ∈]τj , τj+1] : d(y(t), ∂Dαij

) < Cvı · Tot.Var.{w}
} < Cvıı · Tot.Var.{w}· (4.5)

Proof. 1. Fix C > 0 and a compact set K ⊂ R
2. Letting AK = {α1, · · · , αN} be the set of indices defined as

in (3.3), for each α ∈ AK call E1
α, . . . , E

pα

α , and r1
α, . . . , r

pα

α , respectively, the edges of the domain Dα (defined
as in (4.3)) that form the boundary ∂Dα, and the corresponding lines in which the edges are contained. By
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construction, every edge E�
α is a part of the boundary of some Ωβ , β ≥ α. Call n�

α the normal to E�
α pointing

towards the interior of Dα, and let ϕ�
α(x) denote the signed distance of the point x from r�

α, i.e.

ϕ�
α(x) .=

{
d
(
x, r�

α

)
if x ∈ r�

α +
{
λn�

α : λ ≥ 0
}
,

−d
(
x, r�

α

)
if x ∈ r�

α +
{
λn�

α : λ ≤ 0
}
·

(4.6)

Given any BV perturbation w : [t0, t1] �→ Dα, and any solution y : [t0, t1] �→ Dα of the Cauchy prob-
lem (1.1)–(1.2), consider the map ϕ�

α ◦ y : [t0, t1] �→ R. One can easily verify that, for every Borel set
E ⊂ [t0, t1], the Radon measure µ

.= D (ϕ�
α ◦ y) satisfies∣∣∣∣µ(E) −

∫
E

〈
∇ϕ�

α(y(t)), gα(y(t))
〉

dt

∣∣∣∣ ≤ c5 · Tot.Var.{w}, (4.7)

for some constant c5 > 0 depending only on the compact set K. Then, fix

Cvı > max{C, c5}, (4.8)

and take δ5 > 0 so that one has{
x ∈ Dαi : d(x, ∂Dαi) > 2Cvı · δ5

}

= ∅ ∀ i. (4.9)

Observe now that, since gα are smooth, bounded away from zero vector fields, the transversality condition (C)
and the inward-pointing condition (1.15) guarantee that there exists some constant c6 > 0 such that, for every αi,
i = 1, . . . , N, and for every � = 1, . . . , pαi , one of the following two conditions holds〈

gαi(x), n�
αi

〉
≥ c6 ∀ x ∈ Dαi ∩ r�

αi
∩ K, (4.10)〈

gαi(x), n�
αi

〉
≤ −c6 ∀ x ∈ Dαi ∩ r�

αi
∩ K. (4.11)

For each αi, define the sets Iαi and Oαi of (incoming and outgoing) indices

Iαi

.=
{
1 ≤ � ≤ pαi : (4.10) holds

}
,

Oαi

.=
{
1 ≤ � ≤ pαi : (4.11) holds

}
· (4.12)

Because of the regularity assumptions on the fields gα, there will be some constants 0 < δ6 ≤ δ5, c7 > 0, so that

sup
{〈

gαi(x), n�
αi

〉
: x ∈ Dαi ∩

(
r�
αi

+
{
λn�

αi
: |λ| ≤ 2Cvı · δ6

})
∩ K,

i = 1, . . . , N, � ∈ Iαi

}
≥ c7, (4.13)

sup
{〈

gαi(x), n�
αi

〉
: x ∈ Dαi ∩

(
r�
αi

+
{
λn�

αi
: |λ| ≤ 2Cvı · δ6

})
∩ K,

i = 1, . . . , N, � ∈ Oαi

}
≤ −c7.

2. Consider now a BV perturbation w = w(t) with Tot.Var.{w} < δ6, and let y : [0, T ] �→ K be a solution
of (1.1), for which there is a partition τ1 < τ2 < · · · < τm+1 of [0, T ], such that

α∗(y(t)) = αij ∀ t ∈ ]τj , τj+1], j = 1, . . . , m, (4.14)



190 F. ANCONA AND A. BRESSAN

with
αi1 < · · · < αim . (4.15)

For any α ∈ {αi1 , . . . , αim}, � ∈ {1, . . . , pα}, call S�
α the connected component of the set{

x ∈ Dα : d(x, ∂Dα) < Cvı · Tot.Var.{w}
}⋂(

r�
α +

{
λn�

α : 0 ≤ λ < Cvı · Tot.Var.{w}
})

(4.16)

whose boundary contains the edge E�
α. Then, by similar computations as those used in [2] to establish ([2],

Prop. 2.2), relying on (4.7), (4.8) and (4.13), one can establish the following claims.

Claim 1. If, for some αij , j = 1, . . . , m, � ∈ Iαij
, and for some constant 0 ≤ c ≤ 2Cvı, there exists t′ ∈]τj , τj+1],

such that
ϕ�

αij
(y(t′ )) ≥ c · Tot.Var.{w}, (4.17)

then, there holds
ϕ�

αij
(y(t)) > c − Cvı · Tot.Var.{w} ∀ t ∈ [t′, τj ]. (4.18)

Claim 2. If, for some αij , j = 1, . . . , m, � ∈ Oαij
, and for some constant |c| ≤ Cvı, there exists t′ ∈]τj , τj+1],

such that
ϕ�

αij
(y(t′ )) ≤ c · Tot.Var.{w}, (4.19)

then, there holds
ϕ�

αij
(y(t)) < c + Cvı · Tot.Var.{w} ∀ t ∈ [t′, τj ]. (4.20)

Claim 3. If, for some interval [t1, t2] ⊂]τj , τj+1], j = 1, . . . , m, and for some � ∈ Iαij
, the following two

conditions hold

ϕ�
αij

(y(t)) < 2Cvı · Tot.Var.{w} ∀ t ∈ [t1, t2], (4.21)

meas
{
t ∈ [t1, t2] : y(t) ∈ S�

αij

}
> c8 · Tot.Var.{w}, (4.22)

with

c8
.=

2Cvı

c7
, (4.23)

then, one has
ϕ�

αij
(y(t2)) > Cvı · Tot.Var.{w}· (4.24)

Claim 4. If, for some interval [t1, t2] ⊂ ]τj , τj+1], j = 1, . . . , m, and for some � ∈ Oαij
, there holds

ϕ�
αij

(y(t)) > −Cvı · Tot.Var.{w} ∀ t ∈ [t1, t2], (4.25)

together with the condition (4.22), then, one has

ϕ�
αij

(y(t2)) < 0. (4.26)

From Claim 1 (taking the constant c = 2Cvı), Claim 2 (taking the constant c = −Cvı), and Claims 3–4, it
clearly follows that, for every fixed j = 1, . . . , m, and every � = 1, . . . , pαij

, there holds

meas
{
t ∈]τj , τj+1] : y(t) ∈ S�

αij

}
≤ c8 · Tot.Var.{w}· (4.27)
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Thus, observing that by construction we have⋃
j

{
t ∈]τj , τj+1] : d(y(t), ∂Dαij

) < Cvı · Tot.Var.{w}
}

=
⋃
j, �

S�
αij

, (4.28)

from (4.27) we derive the estimate (4.5) with

Cvıı .=
( N∑

i=1

pαi

)
· c8, (4.29)

where pαi denotes the number of edges of the domain Dαi defined as in (4.3), while c8 is the constant defined
in (4.23). This completes the proof of Lemma 4.1, taking δvı = δ6 and Cvı as in (4.8). �
Proof of Lemma 2.2.
1. Fix a compact set K ⊂ R

2, let C′ = C′(K), δ′ = δ′(K) > 0 be the constants provided by Proposition 2.1,
and set K ′ .= B(K, C′ · δ′). Observe that, thanks to Proposition 2.1, in order to establish Lemma 2.2 it will
be sufficient to show that, there exist constants C′′ = C′′(K ′), δ′′ = δ′′(K ′) > 0, so that the following holds.
Given any BV function w(·) with Tot.Var.{w} < δ′′, for every left continuous solutions y : [0, T ] �→ K ′ of (1.1)
for which the map t �→ α∗(y(t)

)
is non-decreasing, there exists a piecewise smooth function y�(·) enjoing the

properties a′)–c′). Letting AK′ = {α1, · · · , αN} be the set of indices defined as in (3.3), we shall assume that
every vector field gαi is defined on a neighborhood B(Ωαi , ρ), ρ > 0, of the domain Ωαi and, for any fixed
t0 > 0, x0 ∈ B(Ωαi , ρ), we will denote by t �→ xαi(t; t0, x0) the solution of the Cauchy problem

ẏ = gαi(y), y(t0) = x0, (4.30)

and set
M

.= sup
{
|gαi(y)| : y ∈ B(Ωαi , ρ), i = 1, . . . , N

}
· (4.31)

Similarly, for every given w ∈ BV, we denote by t �→ zαi(t; w, t0, x0) the left-continuous solution of

ż = gαi(z) + ẇ, z(t0) = x0. (4.32)

For every x0 ∈ B(Ωαi , ρ), t0 > 0, we let tαi,+(t0, x0), tαi,−(t0, x0) denote the time that is necessary to reach
the set B(Ωαi , ρ) \Dαi , starting from x0 at time t0, and following, respectively, the forward and backward flow
of gαi , i.e.

t+
αi

(t0, x0)
.= inf

{
t > t0 : xαi(t; t0, x0) ∈ B(Ωαi , ρ) \ Dαi

}
,

t−αi
(t0, x0)

.= sup
{
t < t0 : xαi(t; t0, x0) ∈ B(Ωαi , ρ) \ Dαi

}
· (4.33)

Since gαi are smooth vector fields, and because of the linear estimate (1.6), the Cauchy Problems (4.30) and
(4.32) are well posed. Hence, there will be some constant c9 > 0 so that there holds∣∣∣xαi(t; t0, x0) − zαi(t′; w, t1, x1)

∣∣∣ ≤ c9

{
|t − t′| + |t0 − t1| + |x0 − x1| + Tot.Var.{w}

}
(4.34)

for any t, t′, t0, t1, x0, x1, w, and for every αi. Moreover, recalling that gαi are uniformly bounded away from
zero vector fields that satisfy the inward-pointing condition (1.15) and the transversality condition (C), we
deduce that there will be constants c10 > 1, δ7 > 0, so that, if

d
(
x0, B(Ωαi , ρ) \ Dαi

)
< δ7, (4.35)



192 F. ANCONA AND A. BRESSAN

then ∣∣t±αi
(t0, x0) − t0

∣∣ ≤ c10 · d
(
x0, B(Ωαi , ρ) \ Dαi

)
. (4.36)

Set
c11

.= 4(1 + c9)2 · (1 + 2Mc10)N+1, (4.37)
and let Cvı = Cvı(K ′, 2c11) ≥ 2c11, Cvıı = Cvıı(K ′, 2c11), δvı = δvı(K ′, 2c11) > 0, be constants chosen according
with Lemma 4.1. Then, fix any w ∈ BV with

Tot.Var.{w} < δ′′
.= min

{
δvı,

δ7

c11
,

ρ

c11

}
, (4.38)

and consider a left continuous solution y : [0, T ] �→ K ′ of (1.1), for which the map t �→ α∗(y(t)
)

is non-decreasing.
As an intermediate step towards the construction of the map y� : [0, T ] �→ R

2 enjoing properties a′)–c′), we
shall first produce a piecewise smooth function ỹ : [0, T ] �→ R

2 whose L∞ distance from y(·) is bounded by
c11 · Tot.Var.{w}, and for which there is a partition 0 = τ ′

1 < τ ′
2 < · · · < τ ′

m′+1 = T of [0, T ], together with
an increasing sequence of indices αi′1 < · · · < αi′

m′ , so that ỹ(·) is a classical solution of ẏ = gαi′
k

(y) on every
interval ]τ ′

k, τ ′
k+1[, 1 ≤ k ≤ m′, but does not satisfy the condition ỹ(t) ∈ Dαi′

k

for all t ∈ ]τ ′
k, τ ′

k+1[.

2. In order to define the map ỹ(·), in connection with the partition 0 = τ1 < τ2 < · · · < τm+1 = T of [0, T ]
induced by y(·) according with (4.14)–(4.15), consider the sequence of points τ ′

1
.= 0 < τ ′

2 < · · · < τ ′
m′+1 =

T, m′ ≤ m, and of sub-indices j(1) = 1, j(2), . . . , j(m′) ∈ {1, . . . , m}, recursively defined as follows. If
τ2 + t+

αi1

(
0, xαi1

(
τ2; 0, y(0+)

))
≥ T, set τ ′

2
.= T, otherwise set

τ ′
2

.= τ2 + t+
αi1

(
0, xαi1

(
τ2; 0, y(0+)

))
. (4.39)

Next, for all 1 < k ≤ m such that τ ′
k < T, let j(k) be the subindex of αi for which there holds αi

j(k)
= α∗(y(τ ′

k
+)
)
,

so that
τ ′
k ∈ [τ

j(k) , τ
j(k)+1 ], (4.40)

and set
τ ′
k+1

.= min
{
T, τ

j(k)+1− t−αi
j(k)

(
0, y(τ ′

k
+)
)

+ t+
αi

j(k)

(
0, x

αi
j(k)

(
τ

j(k)+1 ; τ ′
k, y(τ ′

k
+)
))}

· (4.41)

Then, set
m′ .= max

{
1 ≤ k ≤ m : τ ′

k < T
}
, τ ′

m′+1
.= T.

Observe that, using (4.34), and because of (4.37)–(4.38), one finds, for every k ≥ 1,

d
(
x

αi
j(k)

(
τ

j(k)+1 ; τ ′
k, y(τ ′

k
+)
)
, B(Ωαi

j(k)
, ρ) \ Dαi

j(k)

)
≤
(∣∣xαi

j(k)
(
τ

j(k)+1 ; τ ′
k, y(τ ′

k
+)
)
− z

αi
j(k)

(
τ

j(k)+1 ; w, τ ′
k, y(τ ′

k
+)
)∣∣

+
∣∣zαi

j(k)
(
τ

j(k)+1 ; w, τ ′
k, y(τ ′

k
+)
)
− y(τ

j(k)+1
+)
∣∣)

≤ c9 · Tot.Var.{w} +
∣∣y(τ

j(k)+1

)
− y

(
τ
j(k)+1

+
)∣∣

≤ (1 + c9) · Tot.Var.{w} < δ7. (4.42)

Thanks to (4.42), and because of (4.35), we can apply (4.36) obtaining∣∣t+
αi

j(k)

(
0, x

αi
j(k)

(
τ

j(k)+1 ; τ ′
k, y(τ ′

k
+)
))∣∣ ≤ c10 · d

(
x

αi
j(k)

(
τ

j(k)+1 ; τ ′
k, y(τ ′

k
+)
)
, B(Ωαi

j(k)
, ρ) \ Dαi

j(k)

)
≤ c10 ·

(
c9 · Tot.Var.{w} +

∣∣y(τ
j(k)+1

)
− y

(
τ
j(k)+1

+
)∣∣) ∀ k ≥ 1.

(4.43)
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Thus, (4.39)–(4.41) and (2.46) together, imply

τ ′
2 − τ

j(2) ≤ τ ′
2 − τ2

≤
∣∣t+

αi1

(
0, xαi1

(
τ2; 0, y(0+)

))∣∣
≤ c10 ·

(
c9 · Tot.Var.{w}+

∣∣y(τ2) − y(τ2
+)
∣∣), (4.44)

and

τ ′
k − τ

j(k) ≤ τ ′
k − τ

j(k−1)+1

≤
∣∣t+

αi
j(k)

(
0, x

αi
j(k)

(
τ

j(k)+1 ; τ ′
k, y(τ ′

k
+)
))∣∣+

∣∣t−αi
j(k−1)

(
0, y(τ ′

k−1
+)
)∣∣

≤ c10 ·
(
c9 · Tot.Var.{w}+

∣∣y(τ
j(k−1)+1

)
− y

(
τ
j(k−1)+1

+
)∣∣) +

∣∣t−αi
j(k−1)

(
0, y(τ ′

k−1
+)
)∣∣ ∀ k > 2.

(4.45)

On the other hand, since y(·) satisfies (1.3), using (4.31) we find

d
(
y(τ ′

k
+), B(Ωαi

j(k)
, ρ) \ Dαi

j(k)

)
≤
∣∣y(τ ′

k
+) − y

(
τ

j(k)
+
)∣∣ +

∣∣y(τ
j(k)

+
)
− y

(
τ

j(k)

)∣∣
≤ M

∣∣τ ′
k − τ

j(k)

∣∣+ Tot.Var.{w} +
∣∣y(τ

j(k)
+
)
− y

(
τ

j(k)

)∣∣ ∀ k. (4.46)

Therefore, proceeding by induction on k, using (4.36) (thanks to (4.35) and (4.38)), and relying on (4.37)
and (4.43)–(4.46), we obtain for every k > 1 the estimates

τ ′
k − τ

j(k) ≤ τ ′
k − τ

j(k−1)+1 ≤ (2 + c9)c10 · (1 + Mc10)k−2 · Tot.Var.{w}

≤ c11

2(1 + c9)(1 + 2Mc10)
· Tot.Var.{w}, (4.47)

d
(
y(τ ′

k
+), B(Ωαi

j(k)
, ρ) \ Dαi

j(k)

)
≤ (2 + c9) · (1 + Mc10)k−1 · Tot.Var.{w}

≤ c11 · Tot.Var.{w} < δ7 , (4.48)

∣∣t−αi
j(k)

(
0, y(τ ′

k
+)
)∣∣ ≤ c10 · d

(
y(τ ′

k
+), B(Ωαi

j(k)
, ρ) \ Dαi

j(k)

)
≤ (2 + c9)c10 · (1 + Mc10)k−1 · Tot.Var.{w}

≤ c11

2c9(1 + 2Mc10)
· Tot.Var.{w}· (4.49)

3. Consider now the piecewise smooth map ỹ : [0, T ] �→ R
2 defined by setting

ỹ(0) .= y(0), ỹ(t) .= xαi1
(
t; 0, y(0+)

)
t ∈]0, τ ′

2], (4.50)

and

ỹ(t) .= x
αi

j(k)

(
t; τ ′

k, x
αi

j(k)
(
t−αi

j(k)

(
0, y(τ ′

k
+)
)
; 0, y(τ ′

k
+)))

t ∈ ]τ ′
k, τ ′

k+1], 1 < k ≤ m′. (4.51)
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By construction one has

ỹ(τ ′
k

+) ∈ ∂Dαi
j(k)

∀ 1 < k ≤ m′,

ỹ(τ ′
k+1) ∈ Ω \

◦
Dαi

j(k)
∀ 1 ≤ k < m′. (4.52)

Moreover, since ỹ(·) is a classical solution of ẏ = gαi
j(k)

(y) on ]τ ′
k, τ ′

k+1[, and because y(·) satisfies (1.3), setting

t−αi1
(0, y(0+)) .= 0, and using (4.31), (4.34), (4.47) and (4.49), we derive, for all k, the estimates∣∣ỹ(t) − y(t)

∣∣ ≤ ∣∣ỹ(t) − y(τ ′
k

+)
∣∣ +

∣∣y(τ ′
k

+) − y(t)
∣∣

=
∣∣ỹ(t) − ỹ(τ ′

k−t−αi
j(k)

(
0, y(τ ′

k
+)
)
)
∣∣+

∣∣y(τ ′
k

+) − y(t)
∣∣

≤ 2M ·
∣∣t−αi

j(k)

(
0, y(τ ′

k
+)
)∣∣+ Tot.Var.{w}

≤ c11 · Tot.Var.{w}
∀ t ∈

]
τ ′
k, τ ′

k−t−αi
j(k)

(
0, y(τ ′

k
+)
)]

, (4.53)

∣∣ỹ(t) − y(t)
∣∣ =

∣∣∣xαi
j(k)

(
t; τ ′

k−t−αi
j(k)

(
0, y(τ ′

k
+)
)
, y(τ ′

k
+)
)
− z

αi
j(k)

(
t; w, τ ′

k, y(τ ′
k

+))∣∣∣
≤ c9 ·

(∣∣t−αi
j(k)

(
0, y(τ ′

k
+)
)∣∣+ Tot.Var.{w}

)
≤ c11 · Tot.Var.{w}

∀ t ∈
]
τ ′
k−t−αi

j(k)

(
0, y(τ ′

k
+)
)
, τ

j(k)+1

]
, (4.54)

∣∣ỹ(t) − y(t)
∣∣ ≤ ∣∣ỹ(t) − ỹ(τ

j(k)+1 )
∣∣ +

∣∣ỹ(τ
j(k)+1 ) − y(τ

j(k)+1 )
∣∣ +

∣∣y(τ
j(k)+1

+) − y(τ
j(k)+1 )

∣∣ +
∣∣y(t) − y(τ

j(k)+1
+)
∣∣

≤ 2M ·
∣∣τ ′

k+1 − τ
j(k)+1

∣∣+ c9 ·
∣∣t−αi

j(k)

(
0, y(τ ′

k
+)
)∣∣+ (2 + c9) · Tot.Var.{w}

≤ (2M + c9) ·
∣∣τ ′

k+1 − τ
j(k)+1

∣∣+ (2 + c9) · Tot.Var.{w}
≤ c11 · Tot.Var.{w}

∀ t ∈
]
τ
j(k)+1 , τ ′

k+1

]
, (4.55)

which, together, and thanks to (4.38), yield∥∥ỹ − y
∥∥
L∞([0,T ])

≤ c11 · Tot.Var.{w} < ρ. (4.56)

Notice that (4.56), in particular, implies ỹ(t) ∈
⋃

i B(Ωαi , ρ) for all t ∈ ]τ ′
k, τ ′

k+1], 1 < k ≤ m′, and hence
guarantees that ỹ(·) is well defined by (4.51).

4. Because of (4.56), the choice of the constants Cvı ≥ 2c11, Cvıı, δvı according with Lemma 4.1 guarantees that

meas

(⋃
k

{
t ∈]τ ′

k, τ ′
k+1] : ỹ(t) /∈ Dαi

j(k)

})
< Cvıı · Tot.Var.{w}· (4.57)

Therefore, relying on (4.52) and (4.57), the inward-pointing condition (1.15) together with the transversality
condition (C) imply that, for every k = 1, . . . , m′, there exists a partition τ ′

k = t̃k,1 < t̃k,1 < · · · < t̃k,q̃k
= τ ′

k+1
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of [τ ′
k, τ ′

k+1], so that

ỹ(t) ∈ Dαi
j(k)

∀ t ∈] t̃k,�, t̃k,�+1 [ for all odd �,∑
� even

( t̃k,�+1 − t̃k,�) ≤ Cvıı · Tot.Var.{w}, (4.58)

and with the property that the points

ỹ( t̃ +
k,1 ), tk,1 
= 0, ỹ( t̃k,�), 1 < � ≤ 2�q̃k/2�,

lie on different edges of the domain Dαi
j(k)

(�a� denoting the integer part of a). For each k = 1, . . . , m′, consider

the sequence of points tk,1 < tk,2 < · · · < tk,qk
, qk

.= �q̃k/2�+ 1, recursively defined by setting t1,1
.= 0, and

tk,1
.= tk−1, qk−1 1 < k ≤ m′,

tk,�+1
.= tk,� + t̃k,2� − t̃k,2�−1 1 ≤ � < qk, 1 ≤ k ≤ m′. (4.59)

Then, letting xg
(
t; t0, x0) denote a solution of (1.11) starting from x0 at time t0, we define the map y� : [0, T ] �→

R
2 as follows: y�(0) .= ỹ(0), and

y�(t) .=

{
ỹ
(
t + t̃k,2�−1 − tk,�

)
∀ t ∈] tk,�, tk,�+1 ], 1 ≤ � < qk, 1 ≤ k ≤ m′,

xg
(
t; tm′,qm′ , y�(tm′,qm′ )

)
∀ t ∈] tm′,qm′ , T ].

(4.60)

Notice that, by construction, and by the properties of the solutions of a patchy system (recalled in Sect. 1), the
map t �→ y�(t) enjoys the properties a′)–b′) stated in Lemma 2.2. Moreover, since one has

t̃k,2�−1 − tk,� ≤
∑

p even

t̃k,p+1 − t̃k,p = T − tm′,qm′ ∀ l, ∀ k,

and because ỹ(·) is a solution of ẏ = gαi
j(k)

(y) on ]τ ′
k, τ ′

k+1[, using (4.31), (4.56) and (4.58), we derive

∣∣y�(t) − ỹ(t)
∣∣ ≤ ∑

1<k≤m′

∣∣ỹ(τ ′
k

+) − ỹ(τ ′
k)
∣∣+ M · max

k,�

∣∣ t̃k,2�−1 − tk,�

∣∣
≤

∑
1<k≤m′

(∣∣ỹ(τ ′
k

+) − y(τ ′
k

+)
∣∣+∣∣y(τ ′

k
+) − y(τ ′

k)
∣∣+∣∣ỹ(τ ′

k) − y(τ ′
k)
∣∣)+MCvıı · Tot.Var.{w}

≤
(
1 + 2c11 + MCvıı

)
· Tot.Var.{w} ∀ t ∈ [0, tm′,qm′ ], (4.61)

and ∣∣y�(t) − ỹ(t)
∣∣ ≤ ∣∣y�(t) − y�(tm′,qm′ )

∣∣+
∣∣y�(tm′,qm′ ) − ỹ(tm′,qm′ )

∣∣ +
∣∣ỹ(t) − ỹ(tm′,qm′ )

∣∣
≤

∑
1<k≤m′

∣∣ỹ(τ ′
k

+) − ỹ(τ ′
k)
∣∣ + 2M ·

∣∣T − tm′,qm′
∣∣+

∣∣y�(tm′,qm′ ) − ỹ(tm′,qm′ )
∣∣

≤
(
2 + 4c11 + 3MCvıı

)
· Tot.Var.{w} ∀ t ∈ [tm′,qm′ , T ]. (4.62)
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Thus, (4.61)–(4.62) together with (4.56), show that y�(·) satisfies the estimates (2.7)–(2.8) of property c′), taking

C′′ >
(
5 + 10c11 + 6MCvıı

)
, (4.63)

which completes the proof of Lemma 2.2. �

Proof of Lemma 2.3.
1. As in the proof of Lemma 4.1, call E1, . . . , E

pαo , and r1, . . . , r
pαo , respectively, the edges of the polygonal

domain Dαo that form the boundary ∂Dαo , and the corresponding lines in which the edges are contained. Let
n� be the normal to E� pointing towards the interior of Dαo , and call Iαo and Oαo , respectively, the set of
incoming and of outgoing indices defined as in (4.12), so that〈

gαo(x), n�
〉

> 0 ∀ x ∈ Dαo ∩ r�, ∀ � ∈ Iαo ,〈
gαo(x), n�

〉
< 0 ∀ x ∈ Dαo ∩ r�, ∀ � ∈ Oαo .

(4.64)

Let Vαo be the set of vertices of the domain Dαo , and denote

T .=
{

γj : [0, τ̂ j ] �→ R
2 ; j = 1, . . . , m

}
(4.65)

the set of maximal trajectories of ẏ = gαo(y) that go through some vertex in Vαo , and whose graph is contained
in Dαo . Thus, we have

Im(γj) ∩ Vαo 
= ∅, γj(0), γj(τ̂ j) ∈ ∂Dαo ,

γj(t) = xαo
(
t; 0, γj(0)

)
∈ Dαo ∀ t ∈ [0, τ̂ j ]. (4.66)

In connection with every trajectory γj , there will be a partition t̂j,1 = 0 < t̂j,2 < · · · < t̂j,kj = τ̂ j of [0, τ̂ j ] such
that

γj( t̂j,h) ∈ ∂Dαo ∀ 1 ≤ h ≤ kj ,

γj(t) ∈
◦
Dαo ∀ t ∈] t̂j,h, t̂j,h+1[ , 1 ≤ h < kj . (4.67)

Then, set
γ

j,h

.= γj �[ t̂j,h, t̂j,kj
],

and let

LI
j,h

.=
{
� ∈ 1, . . . , pαo ; γj( t̂j,h) ∈ E� and � ∈ Iαo

}
,

LO
j,h

.=
{
� ∈ 1, . . . , pαo ; γj( t̂j,h) ∈ E� and � ∈ Oαo

}
, (4.68)

denote the incoming and outgoing indices of the edges of Dαo that pass through γj(t̂j,h). Moreover, set

Lj,h
.= LI

j,h ∪ LO
j,h. (4.69)

Since we are assuming that gαo is a smooth vector field defined on a neighborhood of Dαo that satisfies the
transversality condition (C) and the inward-pointing condition (1.15), there will be some constant δ8 > 0 so
that one has

∀ x0 ∈ Dαo ∩ B
(
γj( t̂j,h), δ8

)
, ∀ h′ > h, ∀ � ∈ LO

j,h′ ∃! t > 0 : xαo
(
t; 0, x0

)
∈ r�. (4.70)
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Thus, for such x0, �, define
t�(x0)

.= t > 0 s.t. xαo(t; 0, x0) ∈ r�. (4.71)
The regularity properties of the flow map of gαo together with the transversality condition (C) and the inward-
pointing condition (1.15) guarantee that there exists some constant c12 > 1 such that∣∣t�(x0) − t�(y0)

∣∣ ≤ c12 ·
∣∣x0 − y0

∣∣ ∀ x0, y0. (4.72)

2. We shall construct now an increasing tube Γ(γj , λ) of size λ around each trajectory γj ∈ T , which is positively
invariant w.r.t. left-continuous, piecewise smooth function having the properties a′′)–b′′). Take 0 < λ < δ8, and
let

F (γ
j,1 , λ) .= B

(
γj( t̂j,1), λ

)
∩
( ⋃

�∈Lj,1

E�

)
,

G(γ
j,1 , λ) .=

{
xαo(s; 0, x0) ; x0 ∈ F (γ

j,1 , λ), 0 ≤ s ≤ t�
′
(x0), �′ ∈ LO

j,kj

}
∩ Dαo . (4.73)

Then, proceeding by induction on h > 1, and relying on (4.34), (4.70) and (4.72), one can show that there exists
constants c13 > 1, λ < δ8/c13, such that, letting

F (γ
j,h

, λ) .= B
(
G(γ

j,h−1 , λ), λ
)
∩
(⋃

�∈Lj,h
E�

)
,

G(γ
j,h

, λ) .=
{
xαo(s; 0, x0) ; x0 ∈ F (γ

j,h
, λ), 0 ≤ s ≤ t�

′
(x0), �′ ∈ LO

j,kj

}
∩ Dαo ,

λ ≤ λ, (4.74)

for 1 < h < kj , one has∣∣γj( t̂j,h) − x0

∣∣ ≤ c13 · λ ∀ x0 ∈ F (γ
j,h

, λ), 1 ≤ h < kj , λ ≤ λ. (4.75)

Moreover, we may choose λ so that, setting

Γ(γj , λ) .=
kj−1⋃
h=1

G(γ
j,h

, λ), 1 ≤ j ≤ m, (4.76)

there holds
Γ(γj , λ) ∩ Γ(γi, λ) = ∅, ∀ 1 ≤ i, j ≤ m, i 
= j, ∀ λ ≤ λ. (4.77)

Let R1(λ), . . . , Rr(λ), denote the connected components of Dαo \ ∪m
j=1Γ(γj , λ), and set

ρ(λ) .= min
{
d
(
Rs(λ), E�

)
; 1 ≤ s ≤ r, 1 ≤ � ≤ pαo , Rs(λ) ∩ E� = ∅

}
· (4.78)

Observe that, by the transversality condition (C) and because of the inward-pointing condition (1.15), one has

inf
{

ρ(λ)
λ

: 0 < λ ≤ λ

}
> 0. (4.79)

Therefore, there exist constants c14 > 1, 0 < δ9 < λ/c14, so that

ρ(c14 · δ) > 2δ ∀ 0 < δ ≤ δ9. (4.80)
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3. Consider now a left-continuous, piecewise smooth function y� : ]τ0, τ1] �→ R
2 having the properties a′′)–b′′)

with
δ ≤ δ9. (4.81)

Observe that, since y� is left-continuous, a′′) in particular implies

y�(τ1) ∈ ∂Dαo . (4.82)

The other two cases can be treated in an entirely similar manner. Since, by construction, the tubes G(γj,h, λ)
defined in (4.73)–(4.74) are invariant subsets of Dαo for the flow map of gαo , if

y�(τ +
0 ) ∈ Dαo \

m⋃
j=1

Γ(γj , c14 · ∆(y�)
)
, (4.83)

then, by property a′′) it follows that

y�(t) ∈ Dαo \
m⋃

j=1

Γ(γj , c14 · ∆(y�)
)

∀ t ∈ ]t′1, t′2]. (4.84)

We claim that (4.84) implies qo = 2. Indeed, if Rs(c14 ·∆(y�)) denotes the connected component of Dαo\
(
∪m

j=1

Γ(γj , c14 · ∆(y�))
)

that contains Im(y� �]t′1, t′2]), and we assume by contradiction that qo > 2, relying on (4.77)
and on property a′′-3) we deduce that y�(t′2

+) lies on some edge E� such that Rs(c14 · ∆(y�)) ∩ E� = ∅. But
then, using the inequality (4.80), and because of the definition (4.78) of the quantity ρ, we would obtain∣∣y�(t′2) − y�(t′2

+)
∣∣ ≥ d

(
Rs(c14 · ∆(y�)), E�

)
≥ ρ

(
c14 · ∆(y�)

)
> 2∆(y�)

which yields a contradiction by the definition of ∆(y�) at (2.10). Therefore, it must be q0 = 2, and hence we
have

y�(t) = xαo
(
t; τ0, y�(τ +

0 )
)

∀ t ∈]τ0, τ1],

which, together with (2.9), (4.82), clearly shows that Qαo

.= y�(τ +
0 ), σαo

.= τ1 enjoy pro-perties c′′)–e′′) whenever
(4.83) holds.

4. Assume now that (4.83) is not verified i.e. that, for some 1 ≤ j ≤ m, 1 ≤ h′ ≤ kj , there holds

y�(τ +
0 ) ∈ G

(
γ

j,h′ , c14 · ∆(y�)
)
. (4.85)

Proceeding by induction on h′ ≤ h < kj , and relying on (4.70) and (4.77) and on property a′′), one then easily
derives that

y�(t) ∈
kj−1⋃
h=h′

G
(
γ

j,h
, c14 · ∆(y�)

)
⊂ Γ

(
γj , c14 · ∆(y�)

)
∀ t ∈ ]τ0, τ1]. (4.86)

In connection with the partition t′1 = τ0 < t′2 < · · · < t′qo
= τ1 of [τ0, τ1], induced by y�(·) according with

property a′′), define the triplet of indices h(�), p−(�), p+(�), 1 < � ≤ qo so that Ep−(�), Ep+(�) denote the edges
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of Dαo which cross the trajectory γj in γj( t̂j,h(�)), h(�) > h′, and contain, respectively, the point y�(t′�), and the
point y�(t′�

+), i.e. such that

y�(t′�) ∈ Ep−(�), p−(�) ∈ LO
j,h(l), ∀ 1 < � ≤ q0,

y�(t′�
+) ∈ Ep+(�), p+(�) ∈ LI

j,h(l) ∀ 1 < � < q0.
(4.87)

Then, set
Qαo

.= xαo
(
t′1 − t′2; 0, γj( t̂j,h(2))

)
, (4.88)

and observe that, by property a′′), one has

y�(τ +
0 ) = xαo

(
t′1 − t′2; 0, y�(t′2)

)
. (4.89)

Thus, using (4.34), (4.88)–(4.89), we obtain∣∣Qαo − y�(τ +
0 )

∣∣ ≤ c9 ·
∣∣γj( t̂j,h(2)) − y�(t′2)

∣∣. (4.90)

On the other hand, since one can show with an inductive argument that (4.86)–(4.87) imply

y�(t′�) ∈ F
(
γ

j,h
, c14 · ∆(y�)

)
, ∀ 1 < � ≤ q0,

y�(t′�
+) ∈ F

(
γ

j,h
, c14 · ∆(y�)

)
, ∀ 1 < � < q0,

relying on (4.75) we derive ∣∣y�(t′�) − γj( t̂j,h(�))
∣∣ ≤ c13 · c14 · ∆(y�), ∀ 1 < � ≤ q0,∣∣y�(t′�

+) − γj( t̂j,h(�))
∣∣ ≤ c13 · c14 · ∆(y�), ∀ 1 < � < q0. (4.91)

In turn, the first estimate in (4.91) for � = 2, together with (4.90), yields∣∣Qαo − y�(τ +
0 )

∣∣ ≤ c9 · c13 · c14 · ∆(y�). (4.92)

Moreover, observing that by the definitions (4.71), (4.87), one has

t′�+1 − t′� = tp
−(�+1)

(
y�(t′�)

)
,

t̂j,h(�+1) − t̂j,h(�) = tp
−(�+1)

(
γj( t̂j,h(�))

)
,

∀ 1 < � < q0,

thanks to (4.72) we get∣∣(t′�+1 − t′�) − (t̂j,h(�+1) − t̂j,h(�))
∣∣ ≤ c12 · c13 · c14 · ∆(y�), ∀ 1 < � < q0. (4.93)

Therefore, since by the definition (4.88) we have

Qαo = γj

(
t̂j,h(2) + t′1 − t′2

)
,

which, in particular, implies

xαo
(
t; τ0, Qαo

)
= γj

(
t̂j,h(2) − t′2 + t

)
,

xαo
(
t̂j,h(�) − t̂j,h(2) + t′2; τ0, Qαo

)
= γj

(
t̂j,h(�)

)
∀ � ≥ 2, (4.94)
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and because by property a′′) one has

y�(t) = xαo
(
t; t′�, y�(t′�

+)
)

∀ t ∈ ]t′�, t′�+1], 1 ≤ � < q0, (4.95)

relying on (4.91)–(4.93), and using (4.34) and (4.94)–(4.95), we derive∣∣y�(t) − xαo
(
t; τ0, Qαo

)∣∣ ≤ ∣∣xαo
(
t; t′�, y�(t′�

+)
)
− xαo

(
t; t′�, γj

(
t̂j,h(�)

))∣∣
+
∣∣xαo

(
t +( t̂j,h(�)− t̂j,h(2))−(t′� −t′2); t′1, Qαo

)
− xαo

(
t; t′1, Qαo

)∣∣
≤ c9 ·

(∣∣y�(t′�) − γj( t̂j,h(�))
∣∣+

∣∣( t̂j,h(�)− t̂j,h(2))−(t′� −t′2)
∣∣)

≤ c9 · c13 · c14 ·
(
1 + q0 · c12

)
· ∆(y�),

∀ t ∈ ]t′�, min{t′�+1, t̂j,h(q0)− t̂j,h(2)+ t′2}], 1 ≤ � < q0,
(4.96)

and ∣∣( t̂j,h(q0)− t̂j,h(2)+ t′2
)
− τ1

∣∣ =
∣∣( t̂j,h(q0)− t̂j,h(2))− (t′q0

− t′2)
∣∣

≤ q0 · c12 · c13 · c14 · ∆(y�). (4.97)

Moreover, if we set σαo

.= t̂j,h(q0)− t̂j,h(2)+ t′2, thanks to (4.67) and (4.94) we obtain

xαo
(
σαo ; τ0, Qαo

)
= γj

(
t̂j,h(q0)

)
∈ ∂Dαo . (4.98)

Hence, (4.96)–(4.98) together, show that Qαo defined as in (4.88) and σαo = t̂j,h(q0)− t̂j,h(2)+ t′2 enjoy proper-
ties c′′)–e′′), taking C > c9 · c13 · c14 ·

(
1+ q0 · c12

)
, in the case where (4.85) is verified, which completes the proof

of Lemma 2.3. �
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