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HOMOGENIZATION AND DIFFUSION ASYMPTOTICS
OF THE LINEAR BOLTZMANN EQUATION

Thierry Goudon
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and Antoine Mellet
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Abstract. We investigate the diffusion limit for general conservative Boltzmann equations with os-
cillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free
path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led
to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium
function has a non-vanishing flux.
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1. Introduction

In this paper, we investigate the asymptotic behaviour as ε goes to zero of the solution of the following kinetic
equation: {

ε∂tfε + a(v) · ∇xfε =
1
ε
Qε(fε) in [0,∞)× RN × V,

fε(0, x, v) = f0
ε (x, v) in RN × V.

(1)

Such a problem naturally arises when modeling the behaviour of a cloud of “particles” (e.g., electrons moving
in a semiconductor material or neutrons moving in a nuclear reactor). The unknown fε(t, x, v) ≥ 0 can be
interpreted as the density of particles occupying the position x with a physical state described by the variable
v ∈ V at time t ≥ 0. Usually v is nothing but the translation velocity of the particle; more complicated modeling
can be handled. The set V is endowed with a measure dµ and the quantity

∫
Ω

∫
V fε dµ(v) dx is the number of

particles at time t in the domain Ω × V of the phase space. Later, we will make precise the crucial properties
required on (V, dµ). The left-hand side in (1) describes the transport of the particles, with a velocity field
a : V −→ RN , while the right-hand side takes into account the interactions that particles may undergo while
crossing the device.

The parameter ε, which tends to zero, is related to the following physical scaling:
– comparing the mean free path of the particles, λ, and a typical length of heterogeneities of the medium,
`, with an observation length scale L, we assume that the ratio `/L and λ/L have the same order ε� 1;

– we observe the system at a large time scale, of order 1/ε� 1.
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Hence, the ε in front of ∂t is related to the long time scaling, while the 1/ε in front of the collision operator
means that particles undergo more and more interactions. These interactions modify the physical state of the
particles, but are localized in time and space. They can be described by the following integral operator:

Qε(f)(x, v) =
∫

V

σ(x, x/ε, v, v′) f(v′) dµ(v′)− Σ(x, x/ε, v) f(v). (2)

Note that this operator depends on ε through the oscillating variable x/ε, which takes into account het-
erogeneities of the medium. These heterogeneities will be assumed periodic. We therefore suppose that
y 7−→ σ(x, y, v, v′) is Y -periodic, with Y = (0, 1)N . Moreover, assuming that the total density is conserved:∫

RN

∫
V

fε(t) dµ(v) dx =
∫

RN

∫
V

f0
ε dµ(v) dx , (3)

we are led to the following relation:

Σ(x, x/ε, v) =
∫

V

σ(x, x/ε, v′, v) dµ(v′). (4)

For a general introduction of the physical background, we refer the reader to the classical book of Cercignani [13].
The question of diffusion approximation of kinetic processes (limit λ/L� 1 and `/L ∼ 1) has motivated a lot of
works, with various fields of applications: neutron transport by Larsen and Keller [35], Rosseland approximation
for radiative transfer problems by Bardos et al. [7] and Bardos et al. [8], discrete-velocity models by Lions and
Toscani [37], semiconductors Boltzmann equations by Poupaud [40], semiconductors Boltzmann equations with
Pauli exclusion principle by Golse and Poupaud [26] and Goudon and Mellet [28], general linear equation without
detailed balance relation by Degond et al. [17], chemotaxis phenomena by Chalub et al. [14]... On the other
hand, we can search for effective transport coefficients (limit `/L� 1 and λ/L ∼ 1), as in Dumas and Golse [19]
and Gérard and Golse [23]. In our case, the ordering assumes that these length scales have the same order.
The problem is particularly relevant in neutron engineering (see Wigner [43]). A lot of progress has been made
since the pionneering works of Larsen [33, 34], Larsen and Williams [36], and Bensoussan et al. [9]. A Hilbert-
expansion-based method has been successfully used by Goudon and Poupaud [29] and Goudon and Mellet [27],
but in these papers, a crucial assumption is made that the equilibrium functions, i.e. solutions of Q(f) = 0, do
not depend on the fast variable x/ε. In this paper, we aim at filling that gap, by considering general oscillating
kernels with modulated oscillations. On the other hand, the specific (and delicate) difficulties of the spectral
problem have been treated by Allaire and Bal [2], for the case of purely oscillating coefficients, by using a
factorization method (inspired from nuclear engineering). For the eigenvalue problem, the spatial modulations
have very complicated concentration effects; they are investigated in the recent paper of Allaire et al. [3].

The paper is organized as follows. In Section 2, the limit equation is guessed by means of a formal double-
scale series expansion. At this formal level, we realize that the result depends on the solvability of certain cell
problems, with variables y, v, parametrized by x. We solve these auxilliary equations by applying the Fredholm
alternative. This is done in Section 3, where assumptions on the set V , the cross-section σ, the initial data f0

ε are
precisely stated, and we also give the complete statement of our main convergence result. However, solvability
of the cell problems depends also on the condition that the flux associated to the equilibrium state vanishes. We
justify the convergence result with this condition in Section 4. Then, in Section 5, we investigate the behaviour
of the solutions of (1) when this null flux condition is not fulfilled. (For the spectral problem, we refer to this
respect to Bal [6] and Capdeboscq [11].) In view of the natural conservation (3), the only immediate estimate
of fε is in L1(RN × V ). Therefore, we can expect only convergence in a very weak sense (vague convergence
for measures), and the limit is, a priori, only a measure. Hence, one of the main contribution of the paper
consists of treating the asymptotic regime having only this physical estimate. Then, we detail in Section 6 some
dissipative properties which allow us, in some situations, to improve the regularity of the limit.
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2. Formal asymptotics

In this section, we formally investigate the asymptotic behaviour of fε by introducing the following formal
double-scale expansion of fε:

fε(t, x, v) = f0(t, x, x/ε, v) + εf1(t, x, x/ε, v) + ε2f2(t, x, x/ε, v) + · · · ,

where the functions f i(t, x, y, v) are Y -periodic with respect to y for all i. We now insert this expansion in
equation (1) remarking that

∂x

(
f i(t, x, x/ε, v)

)
= (∂xf

i)(t, x, x/ε, v) +
1
ε
(∂yf

i)(t, x, x/ε, v).

Identifying terms having the same power with respect to ε, we obtain the following set of cell equations, in
which the x variable is nothing but a parameter:

a(v) · ∇yf
0 −Q(f0) = 0 (ε−1 terms),

a(v) · ∇yf
1 −Q(f1) = −a(v) · ∇xf

0 (ε0 terms),
a(v) · ∇yf

2 −Q(f2) = −∂tf
0 − a(v) · ∇xf

1 (ε1 terms),
(5)

where Q stands for

Q(f) =
∫

V

σ(x, y, v, v′) f(v′)− σ(x, y, v′, v)f(v) dµ(v′).

(In the sequel, we shall note Qε(x) = Q(x, x/ε).) In view of (5), we introduce the following operator:

T = a(v) · ∇y −Q,

with domain
D(T ) = {f ∈ Lp(Y × V ), such that a(v) · ∇yf ∈ Lp(Y × V )}·

Then, the ε−2 equation reads f0 ∈ Ker(T ), and the other equations have the general form T (f) = g. Therefore,
the properties of the operator T will play a key role in the derivation of the asymptotic model. In particular, as
a consequence of periodicity and conservation property of the operatorQ, we remark that

∫
Y

∫
V
g dµ(v) dy = 0

is a necessary condition to solve T (f) = g. We shall see later on that this condition is also sufficient (as a
consequence of the Fredholm alternative for the operator T ). For the time being, let us assume the following
facts:

(a) the kernel of T is spanned by a unique normalized and nonnegative function F (x, y, v):

Ker(T ) = Span{F},
∫

Y

∫
V

F dµ(v) dy = 1, F (x, y, v) ≥ 0;

(b) the equation T (f) = g has a solution (unique up to elements of Ker(T )) if and only if∫
Y

∫
V
g dµ(v) dy = 0.

From (a), we deduce that f0(t, x, y, v) = ρ(t, x)F (x, y, v). Then, the ε−1 equation becomes (applying formally
the chain rule)

T (f1) = −a(v)F (x, y, v) · ∇xρ(t, x) − ρ(t, x) a(v) · ∇xF (x, y, v),

the solvability of which, in view of (b), requires that the flux associated to the equilibrium function F vanishes:∫
Y

∫
V

a(v)F (x, y, v) dµ(v) dy = 0. (6)
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When (6) holds, using (b) we can define the vector valued function χ(x, y, v) and the scalar function λ(x, y, v)
defined by the cell equations

T (χi) = −a(v)i F (x, y, v), ∀i ∈ {1, ..., N}, (7)
T (λ) = −a(v) · ∇xF (x, y, v). (8)

We deduce:
f1(t, x, y, v) = χ(x, y, v) · ∇xρ(t, x) + λ(x, y, v) ρ(t, x) + q(t, x)F (x, y, v).

Inserting this relation in the ε0 equation, the solvability condition in (b) leads to the limit equation for ρ(t, x):

0 = ∂t

(∫
Y

∫
V

f0 dµ(v) dy
)

+∇x ·
(∫

Y

∫
V

a(v)f1 dµ(v) dy
)

= ∂tρ+∇x ·
(∫

Y

∫
V

a(v)⊗ χ dµ(v) dy ∇xρ+
∫

Y

∫
V

a(v)λdµ(v) dy ρ
)
.

(Note that, due to (6), the term q(t, x)F in the definition of f1 does not give any contribution in this formula.)
Therefore, the density ρ(t, x) satisfies the drift-diffusion equation

∂tρ− divx(D(x)∇xρ) + divx(U(x)ρ) = 0 (9)

with effective coefficients 
D(x) = −

∫
Y

∫
V

a(v)⊗ χ(x, y, v) dµ(v) dy,

U(x) =
∫

Y

∫
V

a(v)λ(x, y, v) dµ(v) dy.
(10)

(We remark that the drift is due to the dependence of the cross section σ with respect to the slow space variable,
when solving the auxilliary problem (8).)

From a physical point of view, we can explain the limit as follows: in view of the conservation property of
the operator, the macroscopic density

ρε(t, x) =
∫

V

fε dµ(v)

and the macroscopic current

Jε(t, x) =
∫

V

a(v)
ε

fε dµ(v)

are related by the conservation equation
∂tρε + divxJε = 0.

When ε goes to zero, we expect to justify that ρε → ρ and Jε → J (at least in some weak sense) with a limit
current related to the density by a generalized Fick relation

J = −D∇xρ+ Uρ.

We will come back to this approach in Section 6. This problem has been studied under some restrictive
hypotheses (by using different strategies of proof): in [2] the cross-section does not depend on the slow variable,
while in [29] and [27] the equilibrium function does not depend on the fast variable. The general situation is
dealt with, for the spectral problem, in [3]. On the other hand, the reasoning depends crucially on the realization
of the vanishing flux condition (6). The situation where this condition does not hold has been investigated for
the delicate case of the eigenvalue problem in [6], and in [11] for diffusion equations. We will come back to this
question in Section 5.
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3. Main results

The remainder of the paper is devoted to the rigorous proof of the formal result obtained in the previous
section: the convergence of ρε =

∫
V
fε dµ(v) to ρ, the solution of (9). We split this section into five parts. First,

we collect the various assumptions needed on the data of the problems, with some comments. Second, we study
the cell problems described above and we discuss the realization of (a) and (b). Third, we discuss the properties
of the effective coefficients; in particular positivity of the (symmetric part of the) matrix D. In the fourth part
we set up some notations and compactness results. Finally, we give the statement of the convergence result.

3.1. General assumptions

First of all, let us make precise the nature of the measured space (V, dµ):

(H1)


V is a compact subset of RM , and the measure µ satisfies µ(V ) <∞.
The velocity function a : V → RN lies in W1,∞(V ).
There exist two constants C, γ > 0 such that

µ
(
{v ∈ V, |a(v) · ξ| ≤ h}

)
≤ C hγ , for all ξ ∈ SN−1, h > 0.

The assumption on µ will allow us to use the Averaging lemma, introduced by Golse et al. [25]. Next, we make
precise the assumptions on the function σ:

(H2)


σ(x, y, v, v′) ∈ C1(RN ; W1,∞(Y,C0(V × V ))) .
The function y 7−→ σ(x, y, v, v′) is Y−periodic.
There exists σ∗, σ∗ ∈ C0(RN ) such that 0 < σ∗(x) ≤ σ(x, y, v, v′) ≤ σ∗(x).

Note that the regularity assumption on σ may not be optimal (see Lem. 3.2). However, since we shall obtain
the limit equation in a weak sense, with ρ only a measure with respect to x, it is clear we need some regularity
with respect to the slow variable (in order to define, at least in the distributional sense, the products ρU and
D∇xρ). Similarly, regularity with respect to the variables y, v, v′ is related to the fact that we will need the
continuity of the solutions of certain cell problems.

Finally, for a proof of convergence, we have to suppose some uniform bound on the initial data. In view
of (3), the only immediate estimate on fε is in the space L∞([0,∞); L1(RN × V )), provided we suppose that
the initial data f0

ε ≥ 0 satisfies:

(H3) sup
ε>0

∫
RN

∫
V

f0
ε (x, v) dµ(v) dx ≤ C0 <∞.

In this paper, we shall say nothing about the existence of a solution fε ∈ C0([0,∞); L1(RN × V )) of (1), for
ε > 0, with assumptions (H1–H3). Instead, we refer for instance to the paper of Petterson [39].

3.2. Cell problems

In this section, we are interested in the cell problem T (f) = g, as well as the adjoint problem T ?(φ) = ψ,
with

T ?(φ) = −a(v) · ∇yφ−Q?(φ) ,
where the adjoint collision operator is given by

Q?(φ)(y, v) =
∫

Y

σ(x, y, v′, v)
(
f(y, v′)− f(y, v)

)
dµ(v′)

(note that constants belong to Ker(T ?)).
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In order to state our results, we need to introduce some functional spaces: Let Ω ⊂ RD, and p , q ∈ N. We
denote by Cp

#(Ω×RN×V ) the set of p-times continuously differentiable functions on Ω×RN which are Y -periodic
with respect to the second variable. Similarly, Cp

b,#(Ω× RN × V ) and Cp
c,#(Ω× RN × V ) are the subspaces of

functions having bounded derivatives up to order p, and those having support in K×RN ×V for some compact
subset K of Ω, respectively. Finally, we denote by Lp

#(Ω × RN × V ) (respectively, W 1,p
# (Ω × RN × V )...) the

completion of C∞c,#(Ω× RN × V ) under the Lp(Ω× Y × V ) norm (resp., W 1,p(Ω× Y × V )...).
In the first two results, we look at the operator T and T ? for a fixed value of the parameter x (all the

estimates will be uniform with respect to x). The first claim describes the kernel of the operators T , T ?, and
the Fredholm alternative.

Proposition 3.1. Suppose (H1) and σ ∈ C0(Y ; L∞(V × V )) such that 0 < σ∗ ≤ σ ≤ σ∗. The following
assertions hold:

i) there exists a unique function F ∈ Lp
#(Y × V ), for 1 ≤ p <∞, satisfying

T (F ) = 0,
∫

Y

∫
V

F dµ(v) dy = 1, F > 0.

Similarly, we have Ker(T ?) = Span{11};
ii) let 1 < p < ∞ and g ∈ Lp

#(Y × V ). The equation T (f) = g admits a solution if and only if∫
Y

∫
V g dµ(v) dy = 0. Uniqueness is guaranteed by the condition

∫
Y

∫
V g dµ(v) dy = 0. Furthermore,

there exists a constant C > 0 such that

‖f‖Lp
#(Y×V ) ≤ C ‖g‖Lp

#(Y×V );

iii) let 1 < p < ∞ and ψ ∈ Lp
#(Y × V ). The equation T ?(φ) = ψ admits a solution if and only if∫

Y

∫
V ψF dµ(v) dy = 0. Uniqueness is garanteed by the condition

∫
Y

∫
V φdµ(v) dy = 0. Furthermore,

there exists a constant C > 0 such that

‖φ‖Lp
#(Y×V ) ≤ C ‖ψ‖Lp

#(Y×V ).

Quite similar statements can be found for instance in Bal [5]. For the sake of completeness, we will give some
details of the proof in the Appendix. Next, we show how the regularity of the coefficients gives regularity of the
solutions of the cell problems.

Lemma 3.2. Suppose that σ(y, v, v′) and ∂yσ(y, v, v′) lie in C0(Vv;L∞(Y ×Vv′ ))∩C0(Vv′ ;L∞(Y ×Vv)). Then,
for g ∈ C0(V,W 1,p

# (Y )), 1 < p < ∞, the solution of T (f) = g lies in C0(V,W 1,p
# (Y )). A similar conclusion

holds for the adjoint equation T ?(φ) = ψ.

Note that, using the Sobolev embedding W 1,p(Y ) ⊂ C0(Y ), for p > N , we deduce f ∈ C0(V × Y ).
Finally, we take into account the dependence with respect to the parameter x.

Lemma 3.3. If σ ∈ Ck(RN ; L∞# (Y × V )) and g ∈ Ck(RN ; Lp
#(Y × V )), then the solution of T (f) = g lies in

Ck(RN ; Lp
#(Y × V )). A similar conclusion holds for the adjoint equation T ?(φ) = ψ.

In particular, with assumptions (H1, H2), combining together all the pieces, we are led to the following
conclusion, which will be useful in our proof.

Corollary 3.4. Suppose (H1, H2) hold.
i) Then, F and ∇xF are continuous functions of their arguments.
ii) For any g ∈ C1(RN ; C0(V,W1,p

# (Y ))), p > N , satisfying the compatibility condition in Proposition 3.1,
the solution of T (f) = g is a continuous function of its arguments as well as its first derivative with
respect to x. A similar conclusion holds for the adjoint equation T ?(φ) = ψ.
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3.3. Effective coefficients

We shall obtain in the proof the effective coefficients U and D by means of dual formulae. Indeed, let
χ?(x, y, v) be the (vector-valued) solution of the adjoint cell equation

T ?(χ?) = −a(v),
∫

Y

∫
V

χ? dµ(v) dy = 0.

(Of course, we assume the null flux condition (6) holds.) By using the results of Section 3.2, χ? is well-defined
and its components belong to C0(RN × Y × V ), and the first derivatives with respect to x are also continuous
functions. Then, we have

D(x) = −
∫

Y

∫
V

a(v)⊗ χ dµ(v) dy =
∫

Y

∫
V

T ?(χ?)⊗ χ dµ(v) dy

=
∫

Y

∫
V

χ? ⊗ T (χ) dµ(v) dy = −
∫

Y

∫
V

χ? ⊗ a(v)F dµ(v) dy.
(11)

Similarly, for the drift term, we have

U(x) =
∫

Y

∫
V

a(v)λdµ(v) dy = −
∫

Y

∫
V

T ?(χ?) λdµ(v) dy

= −
∫

Y

∫
V

χ? T (λ) dµ(v) dy =
∫

Y

∫
V

χ? a(v) · ∇xF dµ(v) dy.
(12)

Positivity of the matrix D relies on the following dissipative property of the operator T (note that this kind of
property is reminiscient of general dissipative properties of Markov processes as explained by Collet [15] (see
also [32])).

Lemma 3.5. For all g ∈ D(T ) we have

∫
Y

∫
V

T (g)
g

F
dµ(v) dy =

1
2

∫
Y

∫
V

∫
V

σ(y, v, v′)F (y, v′)
∣∣∣ g
F

(y, v′)− g

F
(y, v)

∣∣∣2 dµ(v′) dµ(v) dy.

Similarly, for φ ∈ D(T ?) we have

∫
Y

∫
V

T ?(φ) φF dµ(v) dy =
1
2

∫
Y

∫
V

∫
V

σ(y, v′, v)F (y, v)
∣∣∣φ(y, v′)− φ(y, v)

∣∣∣2 dµ(v′) dµ(v) dy.

Proof. We shall only detail the computations for the adjoint operator. Setting φ = g/F and noticing that∫
Y

∫
V
T ?(φ)φF dµ(v) dy =

∫
Y

∫
V
T (g)g/F dµ(v) dy, the result for T follows.

The keypoint is the (pointwise!) equality

Q?(φ) φF = −1
2

∫
V

σ(v′, v)F (v)
∣∣∣φ(v′)− φ(v)

∣∣∣2 dµ(v′) +Q?(φ2)
F

2
(13)
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(this relation actually holds for any φ and F and does not use the equation satisfied by F ), which yields:∫
Y

∫
V

T ?(φ) φF dµ(v) dy = −
∫

Y

∫
V

a(v) · ∇y

(φ2

2

)
F dµ(v) dy −

∫
Y

∫
V

Q?(φ) φF dµ(v) dy

= +
∫

Y

∫
V

φ2

2
a(v) · ∇yF dµ(v) dy −

∫
Y

∫
V

φ2

2
Q(F ) dµ(v) dy

+
1
2

∫
Y

∫
V

∫
V

σ(v′, v)F (v)
∣∣∣φ(v′)− φ(v)

∣∣∣2 dµ(v′) dµ(v) dy

=
1
2

∫
Y

∫
V

∫
V

σ(v′, v)F (v)
∣∣∣φ(v′)− φ(v)

∣∣∣2 dµ(v′) dµ(v) dy,

since a(v) · ∇yF −Q(F ) = 0.
It remains to justify (13). First of all, we compute

Q?(φ)φF (v) =
∫

V

σ(v′, v)(φ(v′)− φ(v))φ(v)F (v) dµ(v′) = −
∫

V

σ(v′, v)F (v)(φ(v′)− φ(v))2 dµ(v′)

+
∫

V

σ(v′, v)(φ(v′)− φ(v))φ(v′)F (v) dµ(v′).

We rewrite the last integral as follows:∫
V

σ(v′, v)φ(v′)2 dµ(v′) F (v)−
∫

V

σ(v′, v)φ(v′) dµ(v′) φF (v)

= Q?(φ2)F (v) +
∫

V

σ(v′, v) dµ(v′) φ2(v)F (v) −Q?(φ)φF (v)

−
∫

V

σ(v′, v) dµ(v′) φ2(v)F (v) = Q?(φ2)F (v) −Q?(φ)φF (v),

which leads to (13). Note that, similarly, we can prove

2Q(g)g/F = Q(g2/F ) +Q(F )(g/F )2 −
∫

Y

∫
V

∫
V

σ(v, v′)F (v′)
∣∣∣ g
F

(v′)− g

F
(v)
∣∣∣2 dµ(v′) dµ(v) dy.

�

As a consequence, we can show that we are effectively led to a diffusion process in the limit ε → 0, since the
symmetric part of D is positive definite.

Proposition 3.6. The effective drift coefficient U is a continuous function of x; the components of D are C1

functions of x. For any x ∈ RN , ξ ∈ RN\{0}, we have D(x)ξ · ξ > 0.

Proof. The regularity of the coefficients follows immediately from the regularity of χ? and F . Positivity of Dξ ·ξ
follows from the duality formula (11) combined with Lemma 3.5. Indeed, since T ?(χ?) = −a(v), we obtain

Dξ · ξ = −
∫

Y

∫
V

χ? · ξ a(v) · ξ F dµ(v) dy =
∫

Y

∫
V

χ? · ξ T ?(χ? · ξ) F dµ(v) dy

=
1
2

∫
Y

∫
V

∫
V

σ(v′, v)F (v)
∣∣∣χ?(v′) · ξ − χ?(v) · ξ

∣∣∣2 dµ(v′) dµ(v) dy ≥ 0.

Furthermore, since σF > 0, this quantity vanishes when χ? · ξ does not depend on v. In this case, we have
Q?(χ? · ξ) = 0 and the cell equation reduces to T ?(χ? · ξ) = −a(v) · ∇y(χ? · ξ) = −a(v) · ξ, which does not
depend on y. The periodicity implies that, for any v, a(v) · ξ = 0; thus ξ = 0. �
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3.4. Functional preliminaries

In the present problem there is no “immediate” a priori L2-estimates, and the natural estimate is in L1

(see (3)). For this reason, we need to introduce some definitions and basic results about families of parametrized
measures. In what follows, we shall denote by M1(Ω) the set of Radon measures on Ω.

Definition 3.7. Let I be an interval of R. A family {ρ(t); t ∈ I} of Radon measures on RN is said to be
vaguely continuous if and only if for any ϕ ∈ C0

c (RN ),

t 7−→
∫

RN

ϕ(x) ρ(t, dx) is a continuous function on I.

Definition 3.8. A sequence {ρn(t); t ∈ I, n ∈ N} of parametrized measures on RN is said to be equibounded
and vaguely equicontinuous on I if and only if

i) there exists M > 0 such that
sup

t∈I, n∈N

|ρn(t)|(RN ) ≤M ;

ii) for any ϕ ∈ C0
c (RN ), the sequence of functions

(
t 7−→

∫
RN ϕ(x) ρn(t, dx)

)
n∈N

is equicontinuous on I.

Classical methods of analysis lead to the following compactness property:

Proposition 3.9. Let I be an interval of R. Let
(
ρn(t)

)
n∈N

be a sequence of Radon measures on RN , equi-
bounded and vaguely equicontinuous on I. Then, there exists a measure ρ(t), which is vaguely continuous on I,
and a subsequence

(
ρnk

(t)
)
k∈N

such that for any ϕ ∈ C0
c (I × RN ),∫

RN

ϕ(t, x) ρnk
(t, dx) −−−−→

k→∞

∫
RN

ϕ(t, x) ρ(t, dx),

uniformly with respect to t ∈ I. We say that the sequence
(
ρnk

(t)
)

k∈N
converges vaguely to ρ(t) locally, uni-

formly on I.

Next, we need a measure-valued version of the existence of double-scale limit, as introduced by N’Guetseng [38]
and Allaire [1].

Proposition 3.10. Let
(
εn

)
n∈N

be a sequence of positive numbers converging to 0. Let
(
µn(t))n∈N be a sequence

of measures on [0,∞)× RN × V which satisfies, for any bounded interval I ⊂ R,

sup
n∈N

|µn|(I × RN × V ) ≤ C(I) <∞.

Then, there exists a subsequence
(
µnk

(t))k∈N and a measure M on [0,∞) × RN × Y × V such that, for any
ϕ ∈ C0

c,#(I × RN × RN × V ), we have∫ ∞

0

∫
RN

∫
V

ϕ(t, x, x/εnk
, v) µnk

( dv, dx, dt) −−−−→
k→∞

∫ ∞

0

∫
RN

∫
Y

∫
V

ϕ(t, x, y, v) M( dv, dy, dx, dt).

We say that M is the double-scale limit of the sequence
(
µnk

(t))k∈N.

This proposition is just a consequence of the Banach-Alaoglu theorem (see e.g. [10]) applied to the sequence
of measures Mn defined by∫

[0,+∞)×RN×Y×V

ϕ(t, x, y, v) Mn( dv, dy, dx, dt) =
∫

[0,+∞)×RN×V

ϕ(t, x, x/εn, v) µn( dv, dx, dt).
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The double-scale limit captures the periodic oscillations of µn which have frequency 1/εn with respect to the
variable x. Actually, if µn is obtained from a sequence of functions bounded in L∞([0,∞); L1(RN × V )),
then the double-scale limit M has a slightly better regularity with respect to time: it belongs to the set
L∞w ([0,∞);M1(RN × Y × V ) of weakly-* measurable functions M : t ∈ (0, T ) −→ M(t) ∈ M1(RN × Y × V )
satisfying

sup
0≤t≤T

‖M(t)‖M1 <∞.

This set is identified with the dual of L1(0, T ;C0
0(RN × Y × V )). We refer the reader to [20] (Chap. 8, 18) for

details of these aspects. As usual, the vague limit µ of µnk
in M1(I ×RN × V ) is given by the marginal of the

double scale limit µ( dv, dx, dt) =
∫

Y M( dv, dy, dx, dt).

3.5. Convergence result

We are now in position to give the statement of our main result.

Theorem 3.11. Suppose (H1–H3) hold. Suppose that the velocity field a : V → RN is such that the normalized
solution of T (F ) = 0 satisfies ∫

Y

∫
V

a(v)F (x, y, v) dµ(v) dy = 0.

Moreover, suppose that ρ0
ε =

∫
V
f0

ε dµ(v) converges vaguely to ρ0 in M1(RN ). Then, up to a subsequence,
ρε(t, x) =

∫
V fε dµ(v) converges to ρ vaguely, uniformly on any time interval [0, T ]. The limit satisfies the

drift-diffusion equation
∂tρ− divx(D∇xρ) + divx(Uρ) = 0

in D′([0,∞)× RN ) with Cauchy data ρ0. The effective coefficients are defined by
D(x) = −

∫
Y

∫
V

χ?(x, y, v)⊗ a(v)F (x, y, v) dµ(v) dy,

U(x) =
∫

Y

∫
V

χ?(x, y, v) a(v) · ∇xF (x, y, v) dµ(v) dy ,

with χ? solution of the cell problem T ?(χ?) = −a(v).

The next section is devoted to the proof of this theorem.

4. The vanishing flux case

The proof of Theorem 3.11 relies on the use of oscillating test functions, in the spirit of the works by Tartar [42]
or Evans [21, 22]. The method has been used by Goudon and Poupaud [30] when dealing with homogenization
of general advection-diffusion equations. Let us recall that the only immediate estimate we have deals with the
L1-norm of fε (3).

Step 1: Duality Relations and Compactness of ρε.

Let us multiply the equation (1) by a test function ϕ
(
t, x, x

ε , v
)

with ϕ ∈ C1
c,#([0,∞) × RN × RN × V ).

We get

d
dt

∫
RN

∫
V

fε(t, x)ϕ(t, x, x/ε, v) dµ(v) dx =∫
RN

∫
V

fε(t, x)
(
∂tϕ+

1
ε
a(v) · ∇xϕ+

1
ε2
a(v) · ∇yϕ+

1
ε2
Q?(ϕ)

)
(t, x, x/ε, v) dµ(v) dx. (14)
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- As a first consequence, for any such test function ϕ, we have

lim
ε→0

∫ ∞

0

∫
RN

∫
V

fε(t, x) T ?(ϕ)(t, x, x/ε, v) dµ(v) dxdt = 0. (15)

- Then, choosing a test function ϕ(t, x, x/ε, v) = φ(t, x) + εψ(t, x, x/ε, v), we get rid of the ε−2 terms in (14)
(since φ(t, x) lies in the kernel of T ?), and we get:

lim
ε→0

∫ ∞

0

∫
RN

∫
V

fε(t, x)
(
a(v) · ∇xφ(t, x) − T ?(ψ)(t, x, x/ε, v)

)
dµ(v) dxdt = 0 ,

which yields, in view of (15),

lim
ε→0

∫ ∞

0

∫
RN

∫
V

fε(t, x) a(v) · ∇xφ(t, x) dµ(v) dxdt = 0 . (16)

It is worth rewriting this relation as a limit equation for the macroscopic current Jε(t, x) =
∫

V
a(v)

ε fε dµ(v).
Here, we have no bound on Jε, but (16) says that

lim
ε→0

∫ ∞

0

∫
RN

εJε · ∇xψ(t, x) dxdt = 0.

- We now choose the ε-correction, ψ(t, x, y, v), to be solution to the following adjoint cell equation:

T ?(ψ) = a(v) · ∇xφ(t, x) .

We therefore have ψ(t, x, y, v) = −χ?(x, y, v) · ∇xφ(t, x), with χ? the vector-valued function defined by

T ?(χ?) = −a(v),
∫

Y

∫
V

χ? dµ(v) dy = 0.

By Corollary 3.4, since φ ∈ C2
c([0,∞)×RN ), the functions ψ and ∇xψ belong to C0

c,#([0,∞)×RN ×RN ×V ).
With this particular choice of test function, the singular terms in (14) vanish and we get

d
dt

∫
RN

∫
V

fε(t, x)
(
φ(t, x) + εψ(t, x, x/ε, v)

)
dµ(v) dx =

∫
RN

∫
V

fε(t, x)
(
∂tφ(t, x) + ε∂tψ(t, x, x/ε, v)

)
dµ(v) dx

+
∫

RN

∫
V

fε(t, x) a(v) · (∇xψ)(t, x, x/ε, v) dµ(v) dx .

(17)

The last integral reads4

−
∫

RN

∫
V

fε(t, x)
(
a(v) ⊗ χ?(x, x/ε, v) : D2

xφ(t, x) + (Dxχ
?)T (x, x/ε, v)a(v) · ∇xφ(t, x)

)
dµ(v) dx.

In (17), the right hand side is bounded, uniformly with respect to ε. We deduce that, for any given function
φ ∈ C2

c ([0,∞)× RN ), the family

t 7−→
∫

RN

∫
V

fε(t, x)
(
φ(t, x) + εψ(t, x, x/ε, v)

)
dµ(v) dx

4For a vector valued function g : RN → RN , Dxg stands for the Jacobian matrix ∂jgi. For two N ×N matrices A, B, we denote

A : B = tr(ABT ) =
∑N

ij=1 AijBij .
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is equicontinuous. Since the functions

t 7−→
∫

RN

∫
V

fε φ(t, x) dµ(v) dx =
∫

RN

ρε φ(t, x) dx

are close, up to O(ε), to the previous ones, they also form an equicontinuous family of functions. By density of
C2

c (RN ) in C0
c (RN ), we conclude that the family of nonnegative measures

(
ρε(t)

)
ε>0

is vaguely equicontinuous
on [0,∞).

Step 2: Passage to the limit.

We can therefore suppose that ρε converges to ρ in the sense of Proposition 3.9, and that the nonnegative
measure fε(t, x, v) dµ(v) dxdt converges to the double scale limit F , in the sense of Proposition 3.10. Clearly,
these limits are related by

ρ(t, dx) dt =
∫

Y

∫
V

F( dv, dy, dx, dt) ,

i.e., ρ is the marginal with respect to t, x of F (note, however, that equicontinuity with respect to time is far
from obvious for the sequence of microscopic quantities fε). It remains to identify these limits.

Lemma 4.1. The double scale limit F is given by

F( dv, dy, dx, dt) = F (x, y, v) dµ(v) dyρ(t, dx) dt.

Remark 4.2. Roughly speaking, this result says that fε(t, x, v) behaves like the product ρ(t, x)F (x, x/ε, v),
with ρ a solution of a drift-diffusion equation. In particular, oscillations of the equilibrium function obstruct
strong convergence, contrary to the situation dealt with in [27, 29].

Let us postpone the proof of Lemma 4.1, and proceed to the limit ε→ 0 in (17). In the sense of distributions
on [0,∞)× RN , we get:

〈∂tρ, φ〉 = −
∫

RN

φ(0, x)ρ0( dx) −
∫ ∞

0

∫
RN

∂tφ(t, x)ρ(t dx) dt

= −
∫ ∞

0

∫
RN

∫
Y×V

(
a(v) ⊗ χ? : D2

xφ+ (Dxχ
?)T a(v) · ∇xφ

)
F( dv, dy, dx, dt)

= −
∫ ∞

0

∫
RN

[ ∫
Y×V

a(v)F ⊗ χ? dµ(v) dy : D2
xφ

+
∫

Y×V

(Dxχ
?)T a(v)F dµ(v) dy · ∇xφ

]
ρ(t, dx) dt

= −
∫ ∞

0

∫
RN

[
∇x ·

( ∫
Y×V

a(v)F ⊗ χ? dµ(v) dy∇xφ
)

−
∫

Y×V

χ?a(v) · ∇xF dµ(v) dy · ∇xφ
]
ρ(t, dx) dt

=
∫ ∞

0

∫
RN

(
∇x · (DT∇xφ) + U∇xφ

)
ρ(t, dx) dt

= 〈∇x · (D∇xρ− Uρ), φ〉,

which is nothing but the drift-diffusion equation for ρ. Note that the effective coefficients are defined by the
duality formulae (11) and (12).
Proof of Lemma 4.1. In order to complete the proof, it remains to establish Lemma 4.1. Coming back to (15),
we have: ∫ ∞

0

∫
RN

∫
Y

∫
V

T ?(ϕ) F( dv, dy, dx, dt) = 0.
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Formally, it means that F lies in
(
Ran(T ?)

)⊥ = Ker(T ) which leads to F(t, x, y, v) = ρ(t, x) F (x, y, v) (with
ρ(t, x) = ρ(t, x), since the equilibrium function F is normalized). However, the lack of regularity of the double
scale limit, which is only a measure, does not allow to use this direct argument. Instead, let us consider a
smooth function H such that

∫
Y

∫
V
HF dv dy = 0. By Proposition 3.1, it can be written as H = T ?(ϕ) and we

get, by (15), ∫ ∞

0

∫
RN

∫
Y

∫
V

HF( dv, dy, dx, dt) = 0.

Let ϕ be any test function. We split it as follows:
ϕ(t, x, y, v) = cϕ(t, x)F (x, y, v) + (ϕ(t, x, y, v)− cϕ(t, x)F (x, y, v)),

cϕ(t, x) =
∫

Y

∫
V

ϕ(t, x, y, v)F (x, y, v) dµ(v) dy
(∫

Y

∫
V

F 2(x, y, v) dµ(v) dy
)−1

.

By definition
∫

Y

∫
V

(ϕ− cϕF )F dµ(v) dy = 0, and we have∫ ∞

0

∫
RN

∫
Y

∫
V

ϕ(t, x, y, v)F( dv, dy, dx, dt) =
∫ ∞

0

∫
RN

∫
Y

∫
V

cϕ(t, x)F (x, y, v)F( dv, dy, dx, dt)

=
∫ ∞

0

∫
RN

∫
Y

∫
V

ϕ(t, x, z, w)F (x, z, w) dµ(w) dz ρ( dx, dt)

where the (nonnegative) measure ρ ∈ M1(I × RN ) is defined by

ρ( dx, dt) =
(∫

Y

∫
V

F 2(x, y, v) dµ(v) dy
)−1 ∫

Y

∫
V

F (x, y, v)F( dv, dy, dx, dt).

It follows that F ( dv, dy, dx, dt) = F (x, y, v) dµ(v) dy ρ( dx, dt). And when ϕ only depends on t, x, the previous
computation yields

ρ( dx, dt) = ρ(t, dx) dt.

5. The non-vanishing flux case

All the results we derived up to now have been obtained under the hypothesis that the flux of the equilibrium
function vanishes. Nevertheless, such an hypothesis could be violated in physical situations. In this section, we
shall therefore investigate the asymptotic behaviour of fε when the null flux condition (6) is no longer fulfilled.
Other attempts on this question can be found in [12].

5.1. The general case

We introduce the flux of the equilibrium function:

c(x) =
∫

Y

∫
V

a(v)F (x, y, v) dµ(v) dy 6= 0.

It is then possible to adapt the proof of Theorem 3.11, and establish the following result:

Theorem 5.1. Suppose that (H1–H3) hold. Assume moreover that ρ0
ε =

∫
V
f0

ε dµ(v) converges vaguely to ρ0 in
M1(RN ). Then, up to a subsequence, ρε(t, x) =

∫
V fε dµ(v) converges to ρ ≥ 0 vaguely in

M1((0, T )× RN ); the limit satisfies

divx(cρ) = 0 in D′((0,∞)× RN ).
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Moreover, for any ϕ ∈ C∞c ([0,∞)× RN ) satisfying c · ∇xϕ = 0, we have∫
RN

ϕρε(t, x) dx −−−→
ε→0

∫
RN

ϕρ(t, dx)

uniformly on any time interval [0, T ]. Moreover, the following relation holds:

d
dt

∫
RN

ϕρ(t, dx) =
∫

RN

(
∂tϕ− U · ∇xϕ+∇x · (DT∇xϕ)

)
ρ(t, dx) , (18)

with
∫

RN ϕρ(0, dx) =
∫

RN ϕρ0( dx). The effective coefficients are defined by
D(x) = −

∫
Y

∫
V

χ?(x, y, v) ⊗ (a(v)− c)F (x, y, v) dµ(v) dy,

U(x) =
∫

Y

∫
V

χ?(x, y, v) (a(v) − c) · ∇xF (x, y, v) dµ(v) dy

with χ? a solution of the cell problem T ?(χ?) = −(a(v)− c).

Proof. We follow the proof of Theorem 3.11 with some slight modifications. First, we modify (16) as follows:

∫ ∞

0

∫
RN

∫
V

fε(t, x)
(
(a(v) − c) · ∇xφ(t, x) − T ?(ψ)(t, x, x/ε, v)

)
dµ(v) dxdt

+
∫ ∞

0

∫
RN

∫
V

fε c · ∇xφ(t, x) dµ(v) dxdt −−−→
ε→0

0. (19)

Then, we choose the function ψ so that the first integral vanishes, i.e. ψ(t, x, y, v) = χ?(x, y, v) · ∇xψ, with
T ?(χ?) = −(a(v)− c). It leads to the constraint

lim
ε→0

∫ ∞

0

∫
RN

ρε c · ∇xφdxdt = 0.

And finally, fixing a test function φ, satisfying c · ∇xφ = 0, we can reproduce the arguments of the proof of
Theorem 3.11. �

It is very tempting to describe the orthogonality constraint in (18) by means of Lagrange multiplier. We
interpret the condition c · ∇xϕ = 0 as ϕ ∈ Ker(A) with A the symmetric operator A = ∇x(c ⊗ c∇x·). Hence,
formally, a distribution T ∈ (KerA)⊥ lies in Ran(A) and it can be rewritten T = divx(cp), p = c · ∇q. Thus,
equation (18) becomes ∂tρ− divx(D∇xρ− Uρ) = divx(cp), with p a Lagrange multiplier. However, this result
can be quite deceptive: indeed the set of admissible test functions can be reduced to 0. This is the case when the
characteristic curves associated to the field c escape to infinity (i.e. d

dtX(t, x) = c(X(t, x)) satisfies X(t, x) →∞
as |x| → ∞): a test function ϕ : RN → R such that c · ∇xϕ = 0 is constant along these curves, hence it cannot
have a compact support. The simplest example where the result is meaningless is given by c = (1, 0, ..., 0). Then
the constraint divx(cρ) = 0 means ∂1ρ = 0 which actually implies ρ = 0, since ρ is a finite measure on RN .

5.2. The purely oscillating case

In this section, we shall see how the result of the previous section can be precised when we assume that the
coefficients depend only on the fast variable x/ε. The flux is now a nonzero constant:

c =
∫

Y

∫
V

a(v)F (y, v) dµ(v) dy 6= 0.
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The idea is to follow the characteristic line with velocity c/ε. More precisely, the formal approach can be led
by introducing the following Hilbert expansion:

fε(t, x, v) = f0

(
t, x− c

t

ε
,
x

ε
, v

)
+ εf1

(
t, x− c

t

ε
,
x

ε
, v

)
+ ε2f2

(
t, x− c

t

ε
,
x

ε
, v

)
· · · (20)

Note that in this expansion, we only translate the macroscopic variable x, and leave the microscopic one, y,
invariant. As a matter of fact, we expect the equilibrium flux c to produce a drift at the macroscopic scale only.

Inserting this expansion in (1), a formal identification of the terms having the same power with respect to ε
leads to (compare with (5)):

a(v) · ∇yf
0 −Q(f0) = 0 (ε−1 terms),

a(v) · ∇yf
1 −Q(f1) = −(a(v)− c) · ∇xf

0 (ε0 terms),
a(v) · ∇yf

2 −Q(f2) = −∂tf
0 − (a(v)− c) · ∇xf

1 (ε1 terms).

We can now proceed as in Section 2:
– the first equation is the same as before, and yields: f0(t, x, y) = ρ(t, x)F (y, v),

with ρ(t, x) =
∫

V

∫
Y f

0(t, x, y, v) dµ(v) dy;

– then the first order equation becomes:

T (f1) = −(a(v)− c)F (y, v) · ∇xρ(t, x).

The definition of c and the normalization of F provide the required solvability condition: There exists
χ(y, v) solving

T (χ) = −(a(v)− c)F (y, v),

and we can define the first order corrector f1 by (up to elements of Ker(T ))

f1(t, x, y, v) = χ(y, v) · ∇xρ(t, x). (21)

– Finally, the solvability condition for the second order corrector reads:

∂tρ+ divxJ = 0, (22)

with J =
∫

Y

∫
V

(a(v)− c)f1 dµ(v) dy. In view of the previous expression of f1, we deduce that

J = −D̃∇xρ, (23)

with

D̃ = −
∫

Y

∫
V

(a(v)− c)⊗ χ(y, v) dµ(v) dy.

Putting (22) and (23) together, we get

∂tρ(t, x)− divx

[
D̃∇xρ(t, x)

]
= 0.

In view of the Hilbert expansion, fε asymptotically behaves as

ρ
(
t, x− c

ε
t
)
F
(x
ε
, v
)
.
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However, as in the previous section, we would like to study the asymptotic behaviour of fε using only the
natural L1 estimate. First of all, we set

f̃ε(t, x, v) = fε(t, x+ ct/ε, v), (24)

which satisfies  ∂tf̃ε +
1
ε
(a(v)− c) · ∇xf̃ε =

1
ε2
Q̃ε(f̃ε) in [0,∞)× RN × V

f̃ε(0, x, v) = f0
ε (x, v) in RN × V.

(25)

The right-hand side is defined by

Q̃ε(f̃ε)(t, x, v) =
∫

V

σ(x/ε+ ct/ε2, v, v′)f̃ε(t, x, v′) dµ(v′)− Σ(x/ε+ ct/ε2, v)f̃ε(t, x, v). (26)

This change of variable induces a new time scale: we are concerned with additional oscillations in time, with
frequency 1/ε2. Note that this time scaling is consistent with the diffusion scaling (t → t/ε2, x → x/ε). We
then get the following theorem:

Theorem 5.2. Suppose (H1–H3) hold, where σ(y, v, v′) does not depend on the slow variable x. Let F be the
normalized solution of T (F ) = 0 and set∫

Y

∫
V

a(v)F (y, v) dµ(v) dy = c.

Suppose that ρ0
ε =

∫
V
f0

ε dµ(v) converges vaguely to ρ0 in M1(RN ). Then, up to a subsequence, ρ̃ε(t, x) =∫
V
f̃ε dµ(v), with f̃ε defined by (24), converges to ρ̃ vaguely, uniformly on any time interval [0, T ], and the limit

satisfies the diffusion equation
∂tρ̃− divx(D̃∇xρ̃) = 0

in D′([0,∞)× RN ) with Cauchy data ρ0. The effective coefficients are defined by

D̃ = −
∫

Y

∫
V

χ?(y, v)⊗ (a(v)− c)F (y, v) dµ(v) dy,

with χ? a solution to the cell problem T ?(χ?) = −(a(v)− c).

Remark 5.3. The symmetric part of the matrix D̃ is positive definite. The proof is exactly the same as for D
in Proposition 3.6.

Proof. Consider the following simple remark. Let {e1, ..., eN} be the canonical basis in RN . Let ϕ be a
Y−periodic function, i.e., for any k ∈ Z, ϕ(y + kei) = ϕ(y). To such a function we associate

ϕ̃ : R× RN −→ R

(τ, y) 7−→ ϕ̃(τ, y) = ϕ(y + cτ).

Let us introduce the vectors in RN+1: ẽ0 = (1,−c), ẽi = (0, ei), i ∈ {1, ..., N}. Let Ỹ be the cube in RN+1

defined by the basis {ẽ0, ..., ẽN}. Hence, ϕ̃ is Ỹ -periodic, i.e., for any k ∈ Z, ϕ̃((τ, y)+ kẽi) = ϕ̃(τ, y). With this
notation, Qε corresponds to the operator

Q̃(f)(τ, y) =
∫

V

σ̃(τ, y, v, v′)f(v′) dµ(v′)− Σ̃(τ, y, v)f(v)
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evaluated at the fast variables τ = t/ε2 and y = x/ε, and the cross-section σ̃ is Ỹ -periodic. Then, we can
reproduce all the previous arguments up to the following change of variables:

y ∈ Y ⊂ RN −→ (τ, y) ∈ Ỹ ⊂ R× RN ,

v ∈ V −→ (v0, v) ∈ Ṽ = R× V,
a(v) ∈ RN −→ (a(v) − c) ∈ RN ,
dµ(v) −→ dµ̃(v0, v) = δv0=1 ⊗ dµ(v).

In particular, T̃ = ∂τ +(a(v)−c) ·∇y−Q̃ remains a Fredholm operator with index 0; its kernel is spanned by the
positive function F (y + cτ, v). Accordingly, the double scale limit of f̃ε is given by
F (y + cτ, v) dµ(v) dy dτ ρ̃(t, dx) dt. �
Remark 5.4. Returning to the original problem, the result tells us that fε(t, x, v), the solution of (1), behaves
like ρ̃(t, x− ct/ε)F (x/ε, v).

5.3. Parabolic scaling vs. hyperbolic scaling

When the flux of the equilibrium function does not vanish, it is common to deal with another scaling, involving
a slower time scale. Namely, we change t to εt in (1), and we are interested in the equation{

∂tfε + a(v) · ∇xfε =
1
ε
Qε(fε) in [0,∞)× RN × V,

fε |t=0 = f0
ε in RN × V .

(27)

The method of proof adopted in Theorem 3.11 leads to the following statement.

Theorem 5.5. Suppose (H1–H3) hold. Suppose that ρ0
ε =

∫
V f

0
ε dµ(v) converges vaguely to ρ0 in M1(RN ).

Then, up to a subsequence, ρε(t, x) =
∫

V fε dµ(v) converges to ρ ≥ 0 vaguely, uniformly on any time interval
[0, T ]. The limit satisfies the transport equation

∂tρ+ divx(cρ) = 0

in D′([0,∞)× RN ) with Cauchy data ρ0.

Remark 5.6. When c = 0 the limit equation reduces to ∂tρ = 0, which indicates that the hyperbolic scaling
in (27) is meaningless: interesting effects should be observed on larger time scale, of order 1/ε, as shown in
Section 4. We refer the reader to the lecture notes of Golse [24] for comments on this question. Similar results,
starting from diffusion equations, have been described by Capdeboscq [11, 12].

Remark 5.7. The result obtained in Section 5.2 can be interpreted as the description of a diffusive correction
to the transport equation in Theorem 5.5. Indeed, Theorem 5.2 tells us that ρε(t, x) behaves like ρ̃(t, x− ct/ε),
with ρ̃ solution of ∂tρ̃ − ∇x · (D̃∇xρ̃) = 0. Changing the time scale t → εt means that ρε(t, x) = ρε(εt, x)
behaves like rε(t, x) = ρ̃(εt, x− ct). This quantity satisfies the drift-diffusion equation

∂trε + c · ∇xrε = ε∇x · (D̃∇xrε)

with a diffusion coefficient of order ε. For approximation of kinetic equations, under a non-vanishing flux
condition, by such an ε-dependent drift-diffusion equation, we refer the reader to Ringeisen and Sentis [41].

Proof. Multiplying (27) by ϕ(t, x, x/ε, v), we get

d
dt

∫
RN

∫
V

fε ϕ(t, x, x/ε, v) dµ(v) dx =
∫

RN

∫
V

fε ∂tϕ(t, x, x/ε, v) dµ(v) dx

+
∫

RN

∫
V

fε

(
a(v) · ∇xϕ+

1
ε
a(v) · ∇yϕ+

1
ε
Q?(ϕ)

)
(t, x, x/ε, v) dµ(v) dx

(28)
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(compare with (14)). We deduce that∫ ∞

0

∫
RN

∫
V

fε T ?(ϕ)(t, x, x/ε, v) dµ(v) dxdt −−−→
ε→0

0 (29)

holds. Next, we choose as test function ϕ = φ(t, x) + εψ(t, x, x/ε, v). We obtain

d
dt

∫
RN

∫
V

fε (φ(t, x) + εψ(t, x, x/ε, v)) dµ(v) dx =
∫

RN

∫
V

fε (∂tφ(t, x) + ε∂tψ(t, x, , x/ε, v)) dµ(v) dx

+
∫

RN

∫
V

fε

(
(a(v) − c) · ∇xφ(t, x) +

(
a(v) · ∇yψ +Q?(ψ)

)
(t, x, x/ε, v)

)
dµ(v) dx

+
∫

RN

∫
V

fε c · ∇xφ(t, x) dµ(v) dx +
∫

RN

∫
V

fε εa(v) · ∇xψ(t, x, x/ε, v) dµ(v) dx. (30)

With ψ = 0, we recover the conservation law

∂tρε + divxJε = 0

where Jε(t, x) =
∫

V a(v)fε dµ(v). We can define ψ(t, x, y, v) which solves the cell problem
T ?(ψ) = (a(v) − c) · ∇xφ, since the right hand side fulfils the compatibility condition. It amounts to say-
ing that ψ(t, x, y, v) = −χ?(x, y, v) · ∇xφ, with T ?(χ?) = −(a(v)− c).

Hence, we observe that ∫
RN

∫
V

fε φdµ(v) dx =
∫

RN

ρε φdx

is equicontinuous on [0,∞). Therefore, we can suppose, up to a subsequence, that ρε converges to ρ vaguely,
uniformly on any interval [0, T ]. Furthermore, passing to the limit in (30) yields the limit equation

−
∫

RN

φ(0, x) ρ0( dx) =
∫ ∞

0

∫
RN

(
∂tφ+ c · ∇xφ

)
(t, x) ρ(t, dx) dt

for any test function in C∞c ([0,∞)× RN ). �

6. Dissipation properties

In this section, we aim at showing that, in the situation we studied in Section 4, we can obtain better
estimates on fε, when the equilibrium function F (x, y, v) is bounded from below by a positive constant. In
turn, the limit ρ will be a function and not only a measure. In particular, we can observe regularizing effects
due to the limit ε → 0. These estimates are consequences of dissipation properties of the collision operator
which has recently been studied in a much more general setting by Collet [15]. We refer the reader to his paper
for deeper comments and nice applications of these properties.

6.1. Entropies

Our aim is to obtain some estimates on quantities, which could be called relative entropies, like∫
RN

∫
V

H(f/Φ)Φ dµ(v) dx

for convex functions H .
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Proposition 6.1. Let f ∈ C0([0, T ]; L1(RN × V )) solution of (∂t + a(v) · ∇x)f = Q(f), with f|t=0 = f0. Let Φ
be a positive function bounded from above and below, such that (∂t + a(v) · ∇x)Φ ∈ L∞((0, T )× RN × V ). Let
H : R → R be a nonnegative C1 convex function verifying |sH ′(s)| ≤ CH(s). Then, we have

∫
RN

∫
V

H(f/Φ)Φ(t) dµ(v) dx+
∫ t

0

∫
RN

∫
V

D(f,Φ)dµ(v) dxds ≤
∫

RN

∫
V

H(f/Φ)Φ(0) dµ(v) dx

+
∫ t

0

∫
RN

∫
V

G(f/Φ) (∂t + a(v) · ∇x −Q)Φ dµ(v) dxds,

with G(s) = H(s)− sH ′(s) and

D(f,Φ) =
∫

V

σ(v, v′)Φ(v′)
(
H(f/Φ)(v′)−H(f/Φ)(v)−H ′(f/Φ)(v)

(
f

Φ
(v′)− f

Φ
(v)
))

dµ(v′).

Considering smooth functions, we have

(∂t + a(v) · ∇x)[H(f/Φ)Φ] = H ′(f/Φ)(∂t + a(v) · ∇x)f +G(f/Φ)(∂t + a(v) · ∇x)Φ.

Integration of this relation leads to the result, when taking into account the following claim.

Lemma 6.2. Let f ∈ L1(V ), let Φ ∈ L∞(V ), with Φ > 0. Let H : R → R be a C1 function, verifying
H(s) ≤ Cs. Then, the following relation

Q(f)H ′(f/Φ) = −D(f,Φ) +Q(ΦH(f/Φ))−Q(Φ)G(f/Φ), (31)

holds with G(s) and D(f,Φ) defined as in Proposition 6.1.

Remark 6.3. Considering convex functions H , we have D(f,Φ) ≥ 0. The restriction on the linear growth
of H is made only to guarantee integrability of the quantities under consideration. In particular, we ob-
tain Proposition 6.1 for such a convex function. We get rid of Q(ΦH(f/Φ)) when integrating with respect
to v, by the conservation property. To obtain the general case, it suffices to consider the approximation
Hn(s) = H(s)χs≤n +H ′(n)(s − n) +H(n)χs≥n. By the Gronwall lemma,

∫
RN

∫
V
Hn(f/Φ)Φ dµ(v) dx, as well

as the dissipation term, is bounded uniformly with respect to n, t ∈ (0, T ). We conclude by letting n→∞ and
using the Fatou lemma.

Proof of Lemma 6.2. We will use the simple relation∫
V

σ(v, v′)g(v′) dµ(v′) = Q(g) +
∫

V

σ(v′, v) dµ(v′) g(v)

for various functions g. First, we compute

Q(f)H ′(f/Φ)(v) =
(∫

V

σ(v, v′)f(v′) dµ(v′)−
∫

V

σ(v′, v) dµ(v′) f(v)
)
H ′(f/Φ)(v)

=
(∫

V

σ(v, v′)Φ(v′)
f

Φ
(v′) dµ(v′)−

∫
V

σ(v′, v)Φ(v) dµ(v′)
f

Φ
(v)
)
H ′(f/Φ)(v)

=
∫

V

σ(v, v′)Φ(v′)H ′(f/Φ)(v)
(
f

Φ
(v′)− f

Φ
(v)
)

dµ(v′) +Q(Φ)
f

Φ
H ′(f/Φ).
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Since for a convex function H , we have H(y) − H(x) − H ′(x)(y − x) ≥ 0, we would like to recognize in this
expression the dissipation D(f,Φ) which is nonnegative for a convex function H . The missing term reads∫

V

σ(v, v′)Φ(v′)
(
H(f/Φ)(v)−H(f/Φ)(v′)

)
dµ(v′) = Q(Φ)H(f/Φ)(v) +

∫
V

σ(v′, v) dµ(v′)Φ(v)H(f/Φ)(v)

−Q(ΦH(f/Φ))−
∫

V

σ(v′, v) dµ(v′)Φ(v)H(f/Φ)(v)

= Q(Φ)H(f/Φ)(v)−Q(ΦH(f/Φ)).

Hence, we are led to (31). Note that similar computations have been performed for the quadratic case in the
proof of Lemma 3.5.

6.2. Application to the diffusion asymptotics

We now apply Proposition 6.1 in the framework of Section 4, by taking into account the dependence with
respect to ε as follows: 

f → fε,
∂t + a(v) · ∇x → ∂t + ε−1a(v) · ∇x, Q→ ε−2Qε,
Φ → Φε(x, v) = F (x, x/ε, v) + ελ(x, x/ε, v).

We recall that λ is the solution of a(v) · ∇yλ−Q(λ) = −a(v) · ∇xF . Moreover, we shall assume the following
hypotheses:

(H4)


the functions F (x, y, v) and λ(x, y, v) are uniformly bounded,

as well as their first derivatives with respect to x.
Moreover, F (x, y, v) is bounded from below by a positive constant.

Since F and λ are continuous, with F > 0, assumption (H4) holds for x in any compact set K. Uniform
bounds on the whole space are not easy to obtain. Nevertheless, this can be guaranteed by requiring a uniform
behaviour of σ at infinity (for instance the problem holds in the torus with periodic boundary conditions, or we
impose that σ tends to a constant at infinity...). As consequence of (H4), Φε(x, v) will be bounded from above
and below for ε small enough.

Proposition 6.4. We assume (H1–H4) hold. Let H be a nonnegative convex function such that there exists a
constant C satisfying, for any s > 0, |sH ′(s)| ≤ CH(s). We set Φε(x, v) = F (x, x/ε, v) + ελ(x, x/ε, v) (which
is bounded from above and below for ε ∈ (0, ε0)). Suppose moreover that (H3) is strengthened by

sup
0<ε<ε0

∫
RN

∫
V

H(f0
ε /Φε) Φε dµ(v) dx ≤ C0 <∞.

Then, the quantities ∫
RN

∫
V

H(fε/Φε) Φε dµ(v) dx and
1
ε2

∫ t

0

∫
RN

D(fε,Φε) dxds

are uniformly bounded with respect to t ∈ [0, T ], and 0 < ε < ε0.

We recall that

1
ε2

∫ t

0

∫
RN

D(fε,Φε) dxds =
1
ε2

∫ t

0

∫
RN

∫
V

σ(x, x/ε, v, v′)Φε(v′)
(
H(fε/Φε)(v) −H(fε/Φε)(v′)

−H ′(fε/Φε)(v)
(
fε/Φε(v′)− fε/Φε(v)

))
dµ(v) dxds ≥ 0.
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Proof. Integration of the equation satisfied by (∂t+ε−1a(v)·∇x)[H(fε/φε)Φε] gives, according to Proposition 6.1,

d
dt

∫
RN

∫
V

H(fε/Φε) Φε dµ(v) dx +
1
ε2

∫
RN

D(fε,Φε) dx

≤
∫

RN

∫
V

G(fε/Φε)
(

1
ε
a(v) · ∇x −

1
ε2
Qε

)
(Φε) dµ(v) dx. (32)

However, we have(
1
ε
a(v) · ∇x −

1
ε2
Qε

)[
Φ(x, x/ε, v)

]
=

1
ε2

(
a(v) · ∇yF −Q(F )

)
(x, x/ε, v)

+
1
ε

(
a(v) · ∇yλ−Q(λ) + a(v) · ∇xF

)
(x, x/ε, v) + a(v) · ∇xλ(x, x/ε, v)

= a(v) · ∇xλ(x, x/ε, v)

which is bounded, uniformly with respect to ε. Hence, we get

d
dt

∫
RN

∫
V

H(fε/Φε) Φε dµ(v) dx +
∫

RN

D(fε,Φε) dx ≤ C

∫
RN

∫
V

H(fε/Φε) Φε dµ(v) dx,

which allows us to end by applying the Gronwall lemma. �
We are now going to use this statement with H(s) = s2/2, to improve the regularity of the limit ρ obtained

in Theorem 3.11; in turn, we obtain uniqueness of the limit.

Corollary 6.5. Let the assumptions of Proposition 6.4 hold, with H(s) = s2/2. Suppose moreover that χ? is
uniformly bounded, as well as its first derivatives. Then, the whole sequence ρε(t, x) =

∫
V fε dµ(v) converges to

ρ in C0([0, T ]; L2(RN )-weakly). The limit is the unique solution in L∞(0, T ; L2(RN )) ∩ L2(0, T ; H1(RN )) of the
drift-diffusion equation ∂tρ− divx(D∇xρ− Uρ) = 0.

The keypoint is to justify the regularity of the limit.

Lemma 6.6. The limit density ρ belongs to L2(0, T ;H1(RN )).

Since we have uniqueness of the solution of the parabolic equation in this class of functions, the whole se-
quence ρε converges to a unique cluster point. Lemma 6.6 illustrates the regularizing effects due to the diffusion
approximation: the limit ρ has much more regularity than can be expected from the bounds on ρε. We divide
the proof into several steps.

Step 1: Expansion of the Solution.

We recall that Φε(x, v) = F (x, x/ε, v) + ελ(x, x/ε, v) is bounded from above and below for ε ∈ (0, ε0). We
expand the solution as follows 

fε(t, x, v) = rε(t, x)Φε(x, v) + εgε(t, x, v),

rε(t, x) =
∫

V

fε

Φε
dµ(v),∫

V

gε

Φε
dµ(v) = 0.

By Proposition 6.4,
fε is bounded in L∞(0, T ; L2(RN × V )),

so that
ρε and rε are bounded in L∞(0, T ; L2(RN )).
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On the other hand, the dissipation term controls the quantity

1
ε2

∫
V

∫
V

∣∣∣ fε

Φε
(v′)− fε

Φε
(v)
∣∣∣2 dµ(v′) dµ(v) =

∫
V

∫
V

∣∣∣ gε

Φε
(v′)− gε

Φε
(v)
∣∣∣2 dµ(v′) dµ(v) = 2

∫
V

∣∣∣ gε

Φε
(v′)
∣∣∣2 dµ(v).

We deduce that

gε is bounded in L2((0, T )× RN × V ).

However, it is worth pointing out that we cannot deduce a L2 estimate on the current

Jε(t, x) =
∫

V

a(v)
ε

fε dµ(v) =
1
ε
rε(t, x)

∫
V

a(v)Φε dµ(v) +
∫

V

a(v)gε dµ(v).

This is unusual in diffusion approximation and homogenization and can be an obstacle to the strong conver-
gence of ρε.

Combining the estimates provided by Proposition 6.4, and the results obtained in Theorem 3.11, we have, at
least for a subsequence,

{
ρε(t, x) ⇀ ρ(t, x) in C0([0, T ]; L2(RN )− weak)),
fε(t, x, v) ⇀ ρ(t, x)F (x, y, v) in the (usual) double-scale sense.

Furthermore, Φε is an admissible function (see [1]) and converges double-scale strongly to F (x, y, v). Therefore,
identifying limits leads to

rε ⇀ ρ weakly in L∞(0, T ; L2(RN )) and double scale

(in particular, note that the double scale limit of rε, in L2((0, T )× RN × Y ), does not depend on the periodic
variable y ∈ Y ).

Step 2: Limit Current.

Even if we have no immediate estimate in a reasonable functional space, we can identify the limit current,
at least in the sense of distributions.

Lemma 6.7. We can write the current as

Jε = ε∂tEε +Kε

with Eε bounded in L∞(0, T ; L2(RN )), Kε bounded in L∞(0, T ; H−1(RN )). Letting ε→ 0 yields

Jε −−−→
ε→0

−D∇xρ+ Uρ in D′((0, T )× RN ).

Proof. Let Ψ ∈
(
C∞0 ((0, T )× RN )

)N . We associate to Ψ, the following function

X(t, x, y, v) = χ?(x, y, v) ·Ψ(t, x),
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which is a continuous function of its arguments, as its first derivative ∂xX . It satisfies a(v)·∇yX+Q?(X)=a(v)·Ψ.
Then, we get (see (14) with ϕ = εX)∫ T

0

∫
RN

Jε ·Ψ dxdt =
∫ T

0

∫
RN

∫
V

a(v)
ε

·Ψ fε dµ(v) dxdt

=
1
ε

∫ T

0

∫
RN

∫
V

(
a(v) · ∇yX +Q?(X)

)
(t, x, x/ε, v)fε dµ(v) dxdt

= −ε
∫ T

0

∫
RN

∫
V

∂tX(t, x, x/ε, v)fε dµ(v) dxdt

−
∫ T

0

∫
RN

∫
V

(
a(v) · ∇xX

)
(t, x, x/ε, v)fε dµ(v) dxdt.

The first term reads

−ε
∫ T

0

∫
RN

(∫
V

fεχ
?(x, x/ε, v) dµ(v)

)
· ∂tΨ dxdt = ε〈∂tEε,Ψ〉

with

Eε(t, x) =
∫

V

fεχ
?(x, x/ε, v) dµ(v)

bounded in L∞(0, T ; L2(RN )). The second term reads

〈Kε,Ψ〉 =
∫ T

0

∫
RN

(∫
V

(Dxχ
?)T (x, x/ε, v)a(v)fε dµ(v)

)
·Ψ dxdt

+
∫ T

0

∫
RN

(∫
V

a(v)⊗ χ?(x, x/ε, v)fε dµ(v)
)

: DxΨ dxdt

which immediately gives the aforementioned bound.
Moreover, passing to the limit yields

〈Jε,Ψ〉 −−−→
ε→0

0 +
∫ T

0

∫
RN

(∫
Y

∫
V

(Dxχ
?)T a(v)F dµ(v) dy

)
ρ(t, x) ·Ψ dxdt

+
∫ T

0

∫
RN

( ∫
Y

∫
V

a(v)⊗ χ?F dµ(v) dy
)
ρ : DxΨ dxdt

−−−→
ε→0

∫ T

0

∫
RN

(
divx(DT Ψ) + U · ψ

)
ρ dxdt = 〈−D∇xρ+ Uρ,Ψ〉·

�

Step 3: Regularity of the Limit Macroscopic Density.

Lemma 6.6 follows from the following claim.

Lemma 6.8. The limit of ∇xrε in D′((0, T )× RN ) belongs to L2((0, T )× RN ).

Proof. Let us write the equation satisfied by Jε. Multiplying fε by a(v) and integrating yields

ε2∂tJε + DivxPε =
∫

V

a(v)
ε

Qε(fε) dµ(v), (33)
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which involves the second moment of fε

Pε(t, x) =
∫

V

a(v)⊗ a(v)fε dµ(v).

The kinetic pressure reads

DivxPε = rε

∫
V

a(v) a(v) ·
(

1
ε
∇yF +∇xF +∇yλ+ ε∇xλ

)
(x, x/ε, v) dµ(v)

+Θε∇xrε + εDivxQε

with the matrices 
Θε(x) = Θ(x, x/ε) =

∫
V

a(v)⊗ a(v)(F + ελ)(x, x/ε, v) dµ(v)

Qε(t, x) =
∫

V

a(v)⊗ a(v)gε dµ(v) ,

while the right-hand side in (33) becomes

1
ε
rε

∫
V

a(v)Q(F + ελ)(x, x/ε, v) dµ(v) +
∫

V

a(v) Qε(gε) dµ(v).

Define

Sε(t, x) =
∫

V

a(v) Qε(gε) dµ(v) − εrε

∫
V

a(v) a(v) · ∇xλ(x, x/ε, v) dµ(v).

This quantity is bounded in L2((0, T )×RN), as well as Qε. On the other hand, the matrix Θε can be evaluated
uniformly: there exists θ∗, θ∗ such that

for any ξ ∈ RN , 0 < θ∗|ξ|2 ≤ Θε(x)ξ · ξ ≤ θ∗|ξ|2, ‖DxΘε‖L∞(RN ) ≤
θ∗

ε
·

Therefore, equation (33) can be rewritten

∇xrε = Θ−1
ε

(
Sε − ε2∂tJε − εDivxQε

)
= Θ−1

ε Sε − ε3∂2
t (Θ−1

ε Eε)− ε∂t(εΘ−1
ε Kε)− εΘ−1

ε DivxQε,

using Lemma 6.7. It tends to ∇xr = ∇xρ in D′((0, T )× RN ). Let ϕ ∈ C∞c ((0, T )× RN ). We can estimate as
follows:

|〈∇xrε, ϕ〉| ≤ ‖Θ−1
ε Sε‖L2

tx
‖ϕ‖L2

tx
+ ε3‖Θ−1

ε Eε‖L2
tx
‖∂2

t ϕ‖L2
tx

+ ε‖Kε‖L2
t (H−1

x )‖ε(Θ
−1
ε )T∂tϕ‖L2

t (H1
x) + ‖Qε‖L2

tx
‖εDx((Θ−1

ε )Tϕ)‖L2
tx

≤ C
(
‖ϕ‖L2

tx
+ ε3‖∂2

t ϕ‖L2
tx

+ ε‖∂2
t ϕ‖L2

t (H1
x) + +ε‖Dxϕ‖L2

tx

)
,

where the constant C does not depend on ε. Therefore, we deduce that

lim
ε→0

|〈∇xrε, ϕ〉| ≤ C‖ϕ‖L2
tx

which ends the proof. �
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Appendix A. Resolution of the cell problems

This Appendix is devoted to the proofs of the statements on the cell problems in Section 3.2.

Proof of Proposition 3.1. As a preliminary, we remark that, since σ ∈ L∞# (Y ×V ×V ), Q is a bounded operator
on Lp

#(Y × V ) for any 1 ≤ p ≤ ∞. We also note that
∫

Y

∫
V
T (f) dµ(v) dy = 0 and 11 ∈ Ker(T ?). We wish to

determine the dimension of Ker(T ?) and to conclude by a Fredholm alternative argument. Let us first rewrite
T as a perturbation of A = a(v) · ∇y + Σ(y, v) by an integral operator K T = A−K,

K(f) =
∫

V

σ(y, v, v′)f(y, v′) dµ(v′).

The advection operator A is invertible. Indeed, integrating along the characteristics lines y + σv the equation
Af = h, we get

f(y, v) = A−1h =
∫ ∞

0

exp
(
−
∫ σ

0

Σ(y − τa(v), v) dτ
)
h(y − σa(v), v) dσ.

Since Σ(y, v) ≥ µ(V )σ∗ > 0, it defines a bounded operator on Lp
#(Y × V ). We also notice that A−1 is a

nonnegative operator: if h ≥ 0 (resp., h > 0), then f = A−1h ≥ 0 (resp., > 0). Now, we rewrite the equation
T (f) = g as

(I −K ◦ A−1)h = g, h = Af.
The key of the proof relies on the following claim:

Lemma A.1. Suppose (H1), and let σ ∈ C0(Y ; L∞(V × V )), with 0 < σ∗ ≤ σ ≤ σ∗. Then the operator
Q = K ◦ A−1 is compact on Lp

#(Y × V ) for 1 < p <∞.

Let us temporarily assume this lemma. Since σ > 0, for any nonnegative function f , we have K(f) > 0.
Hence, Q = K ◦ A−1 is a positive, compact operator on Lp

#(Y × V ), and the Krein–Rutman theorem applies
(see [31]): the spectral radius, λ, is an eigenvalue, associated to a non negative eigenfunction H ≥ 0. We set
AF = H , so that K(F ) = λAF . By using (4) and the periodicity with respect to y, integration of this relation
leads to

λ

∫
Y

∫
V

ΣF dµ(v) dy =
∫

Y

∫
V

ΣF dµ(v) dy > 0.

We deduce that λ = 1 is the principal eigenvalue of Q. Furthermore, from F = A−1H ≥ 0, we deduce that
AF = H = K(F ) > 0; hence, F = A−1H > 0. Finally, since f ≥ 0 implies Q(f) > 0, we deduce that the
dimension of the eigenspace is one. Similar arguments apply to the adjoint operator. This ends the proof of i).

Next, we apply the Fredholm alternative: T (f) = g is solvable for g ∈ Ran(T ) = Ker(T ?)⊥. Since eigenspaces
of T and T ? are spanned by positive functions, the condition of vanishing integral guarantees uniqueness.
Hence, for any elements in Lp

#,0 = {g ∈ Lp
#(Y × V ),

∫
Y

∫
V g dµ(v) dy = 0}, we find a unique f ∈ Lp

#,0 solution
of T (f) = g. The Open Mapping Theorem (see, for instance [10], p. 19) gives the existence of C > 0 such that
‖f‖Lp

#
≤ C‖g‖Lp

#
. The same conclusion applies for the adjoint operator.

Proof of Lemma A.1. This result is by now quite classical, as a consequence of the Averaging lemma (see, for
instance [16], Chap. XXI.5). We recall the main steps of the proof for the sake of completeness. First, we split
Y into hN cubes of size h > 0, denoted by Ei

h, i ∈ {1, ..., hN}. and we replace K by

Kh(f) =
hN∑
i=1

χEi
h
(y)
∫

V

(
1
|Ei

h|

∫
Ei

h

σ(z, v, v′) dz

)
f(y, v′) dµ(v′).
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Since σ ∈ C0(Y ; L∞(V × V )), we have |||K −Kh|||L(Lp) → 0 as h tends to 0. Hence, we are left with the task of
proving the compactness of Kh ◦ A−1. This a consequence of the compactness for an operator K whose kernel
σ depends only on the velocity variables v, v′.

Actually, the problem reduces to consider a continuous kernel. Indeed, we approximate σ ∈ Lp(V ;Lp′(V ))
by continuous functions σn and we have

‖(Kn −K)f‖p
Lp(Y×V ) ≤ ‖f‖p

Lp(Y×V ) ‖σn − σ‖p

Lp(V ;Lp′(V ))
,

i.e. |||K −Kn|||L(Lp) → 0 as n tends to ∞.
Thus, let σ(v, v′) ∈ C0(V ;Lp′(V )). By applying the Lp version of the average lemma (see [18,25]), we obtain

that, for v ∈ V fixed, the mapping

g ∈ Lp(Y × V ) 7−→
∫

V

σ(v, v′)A−1g(y, v′) dµ(v′)

has its range in a Sobolev space Ws,p(Y ), s > 0 (precisely s = γ inf(1/p, 1− 1/p)), and is therefore compact in
Lp(Y ). But we also have

∫
Y

|Kf(y, v + h)−Kf(y, v)|p dy ≤ ‖f‖p
Lp(Y×V )

(∫
V

|σ(v + h, v′)− σ(v, v′)|p
′
dµ(v′)

)p/p′

.

Hence, we conclude by the Arzela-Ascoli theorem that g 7→ K ◦ A−1g(y, v′) is compact in C0(V ; Lp(Y )), thus
in Lp(Y × V ).

Proof of Lemma 3.2. When σ and g have the regularity of Lemma 3.2, the previous proof shows that the
solution h(y, v) of

(I −K ◦ A−1)h = g,

actually belongs to C0(V ; Lp(Y )) (since K ◦ A−1h has its range in C0(V ; Lp(Y ))). It remains to see that
f(y, v) = A−1h has the same regularity. But this is an immediate consequence of the following formula:

f(y, v) =
∫ ∞

0

exp
(
−
∫ σ

0

Σ(y − τa(v), v) dτ
)
h(y − σa(v), v) dσ.

Let now ∂ stand for any derivative with respect to the y variable. We have

a(v) · ∇y∂f −Q(∂f) = ∂g + ∂Q(f)

where ∂Q is defined like Q but with coefficients ∂σ and ∂Σ. It follows from Proposition 3.1 that ∂f ∈ Lp(Y ×V ).
Moreover, since ∂σ ∈ C0(V, L∞(Y ×V )), ∂Σ ∈ C0(V, L∞(Y )), and f ∈ C0(V, L∞(Y )), it is easy to check that the
right-hand side belongs to C0(V,Lp(Y )). It follows from the first part of the proof that ∂f lies in C0(V, Lp(Y )).

Similar considerations apply to the adjoint problem. Note also that derivation of the equation for the equi-
librium function F shows similarly that F belongs to C0(V,W1,p

# (Y )), 1 ≤ p <∞.

Proof of Lemma 3.3. We check that the constant C in Proposition 3.1, which depends on the parameter x, is
actually locally bounded. Indeed, let K be a compact subset of RN . Let 0 < δ < 1. By using the Heine theorem,
we can pick ηδ > 0 such that, for any x, x′ ∈ K with |x− x′| ≤ ηδ, we have ‖σ(x, ·)− σ(x′, ·))‖L∞(Y×V×V ) ≤ δ.
Accordingly |||Q(x) −Q(x′)|||L(Lp

#) ≤ δ. Then, we can find a finite covering K ⊂ ∪Iδ
i=1B(xi, ηδ). For x ∈ K, we

rewrite the equation T (x)(f(x)) = g(x) as

T (xi)(f(x)) = g(x) + (Q(x) −Q(xi))(f(x)).
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It follows that

‖f(x)‖Lp(Y×V ) ≤
C(xi)
1− δ

‖g(x)‖Lp(Y×V ).

Hence, we can use the constant C = C(K, δ) = max{C(xi)/(1− δ), i ∈ {1, ..., Iδ}}.
Let δh stand for a differential quotient with respect to x. We get

a(v) · ∇yδhf −Q(δhf) = δhg + δhQ(f).

The right-hand side is bounded in Lp(Y × V ), so that
(
δhf
)
h>0

is bounded in Lp(Y × V ). It implies that
x 7→ f(x, ·) is differentiable with values in Lp(Y × V ), and we have

a(v) · ∇y∂f −Q(∂f) = ∂g + ∂Q(f).

We check the continuity of the right-hand side with respect to x, and this gives the continuity of ∂f . Similar
arguments apply to higher derivatives and to the adjoint equation.

The authors wish to thank L.A. Caffarelli and F. Poupaud for many fruitful discussions concerning this work.
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