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1. Introduction

Asymptotic stabilization of low dimensional non generic nonlinear systems is of much interest in nonlinear
control theory since such systems occur naturally as the system evolving on a center manifold (see [1, 3], etc.).
Within this class, those systems with non vanishing quadratic part are generic, and there in lies our principle
interest in the asymptotic stabilization problem for homogeneous systems. It has been established that in a
system of ordinary differential equations if the leading homogeneous part is asymptotically stable, then the
overall system is locally asymptotically stable (see [6], and [7] in the weighted homogeneous case).

In this paper we address such a problem for systems of the form

[ẋ, ẏ]T = P (x, y) + uQ(x, y) (1.1)

where (x, y) ∈ R2, u ∈ R, P (x, y) = (P1(x, y), P2(x, y))T (the notation MT stands for the transpose matrix
of M); P1 and P2 being homogeneous polynomials of degree 2k + 1 (i.e. P (λx, λy) = λ2k+1P (x, y) ∀λ ∈ R)
Q(x, y) = (Q1(x, y), Q2(x, y))T ; Q1 and Q2 are homogeneous polynomials of degree p. Here, we wish to find a
feedback function (x, y) 7→ u(x, y), which is homogeneous of degree 2k+1−p and which asymptotically stabilizes
the control system (1.0). If such a feedback exists, we will say that system (1.0) is globally asymptotically
stabilizable (GAS). If there exists control law u such that lim

t→∞(x(t), y(t)) = 0 ((x(t), y(t)) denoting the solution

of [ẋ, ẏ]T = P (x, y) + u(.)Q(x, y), (x(0), y(0)) = (x0, y0)) for all (x0, y0) ∈ R2, we will say that system (1.0)
is asymptotically controllable to the origin. Obviously, to be asymptotically controllable to the origin is a
necessary condition for the asymptotic stabilizability.

We give a necessary and sufficient conditions, algebraically computable, for the global asymptotic stabilization
of (1.0) when Q1 and Q2 have no linear common factors and the equation G(x, 1) = Q1(x, 1) − Q2(x, 1)x = 0
has at most two solutions.

Our study generalizes the stabilizability of a large class of bilinear systems in R2 considered in [4].
Our analysis here is built upon some of the recent work on the stabilizability of low dimensional systems.

In particular, some topologic conditions for stabilizability which were derived by Brockett (see [2]), and later
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extended by using a well known index theorem due to Krosnosel’skii and Zabreiko (see [8]) by Coron (see [5]).
In this paper we will use as our principal tools some necessary conditions (Ths. 2, 3, 4 and Prop. 1) for the
stabilizability of homogeneous systems.

We recall the following theorem, which will be used to prove the stabilizability of some classes of planar
homogeneous systems:

Theorem 1 (For the proof see [6]). Consider the two dimensional system

T[ż1, ż2] =T [f1(z1, z2), f2(z1, z2)]

where T[f1, f2] is Lipschitz continuous and is homogeneous of degree p. We define the function F

F(x, y) = yf1(x, y)− xf2(x, y).

The system is asymptotically stable if and only if one of the following is satisfied

(i) the system does not have any one dimensional invariant subspaces and

I =
∫ 2π

0

cos θf1(cos θ, sin θ) + sin θf2(cos θ, sin θ)
cos θf2(cos θ, sin θ)− sin θf1(cos θ, sin θ)

dθ < 0

or

(ii) the restriction of the system to each of its one dimensional invariant subspaces is asymptotically stable, i.e.
If the point (ξ1, ξ2) satisfies F(ξ1, ξ2) = 0 then 〈(f1(ξ1, ξ2), f2(ξ1, ξ2)) | (ξ1, ξ2)〉 < 0.

In the remainder of the paper, we use essentially part (ii) of Theorem 1 to verify the stability of the closed
loop system under consideration.

2. Asymptotic stabilization of homogeneous system

We consider the system {
ẋ = P1(x, y) + uQ1(x, y)
ẏ = P2(x, y) + uQ2(x, y) (2.1)

where P1 and P2 (respectively Q1 and Q2) are two homogeneous polynomials of degree 2k + 1 (respectively p).
We define the following real functions, which will play an important role in our study

Φ(x, y) = det
(

P1(x, y) x
P2(x, y) y

)
= yP1(x, y)− xP2(x, y)

F (x, y) = det
(

P1(x, y) Q1(x, y)
P2(x, y) Q2(x, y)

)
= P1(x, y)Q2(x, y)− P2(x, y)Q1(x, y)

G(x, y) = det
(

Q1(x, y) x
Q2(x, y) y

)
= yQ1(x, y)− xQ2(x, y).

In this section we give a necessarily and sufficient condition for the stabilizability of the homogeneous sys-
tem (2.1), when the equation G(x, 1) = Q1(x, 1) − Q2(x, 1)x = 0 has at most two distinct solutions and Q1

and Q2 have no linear common factors.
The closed loop system (2.1) with the homogeneous feedback u(x, y) of degree (2k + 1− p) is

{
ẋ = P1(x, y) + u(x, y)Q1(x, y) = X1(x, y)
ẏ = P2(x, y) + u(x, y)Q2(x, y) = X2(x, y).
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Letting F(x, y) = yX1(x, y)−xX2(x, y), it is easy to see that F is an homogeneous polynomial of degree 2k+2.
To prove that the feedback u(x, y) stabilizes the system (2.1), it is important to establish the following:

Proposition 1. If F(m, 1) = 0 then the straight line D : my− x = 0 is invariant for the system ẋ = X1(x, y),
ẏ = X2(x, y) and we have 〈(m, 1)|(X1(m, 1), X2(m, 1))〉 = −F (m,1)

G(m,1) (1 + m2).

Proof. If (m, 1) is such that F(m, 1) = 0 then there exists ν ∈ R such that

(X1(m, 1), X2(m, 1)) = (νm, ν).

It follows that: (
P1(m, 1) Q1(m, 1)
P2(m, 1) Q2(m, 1)

) (
1

u(m, 1)

)
= ν

(
m
1

)
.

Then one can write: (
1

u(m, 1)

)
=

ν

F (m, 1)

(
Q2(m, 1) −Q1(m, 1)
−P2(m, 1) P1(m, 1)

) (
m
1

)
,

so

1 = −ν
G(m, 1)
F (m, 1)

and ν = −F (m, 1)
G(m, 1)

·

Proposition 2. We define v = ρ(cos θ, sin θ) and ṽ = ρ̃(cos θ̃, sin θ̃) two vectors of R2. We suppose that ρ > 0
and ρ̃ > 0.

If det(v, ṽ) < 0 then angle(̂v, ṽ) = θ̃ − θ ∈)π, 2π(.
If det(v, ṽ) > 0 then angle(̂v, ṽ) = θ̃ − θ ∈)0, π(.

Proof. The proof is rather simple and follows from

det(v, ṽ) = det
(

ρ cos θ ρ̃ cos θ̃

ρ sin θ ρ̃ sin θ̃

)
= ρ̃ρ sin(θ̃ − θ).

Under the assumption that the equation G(x, 1) = 0 has at most two distinct solutions, we can assume that G
takes one of these forms

(i) G(x, y) = (x − c1y)(x − c2y)f(x, y), where f(x, y) is a definite homogeneous function (i.e. f(x, y) 6= 0
for all (x, y) ∈ R2 \ {(0, 0)});

(ii) G(x, y) = (x− cy)f(x, y), where f(x, y) is a definite homogeneous function;
(iii) G(x, y) =

∏
i

Q̃i(x, y), where Q̃i are a definite quadratics forms.

2.1. Case where G(x, y) = (x − c1y)(x − c2y) f(x, y)

We consider the equation {
ẋ = Q1(x, y)
ẏ = Q2(x, y) (2.2)

where Q1 and Q2 are two homogeneous polynomials of degree p. We recall the function G

G(x, y) = (x− c1y)(x− c2y)f(x, y)

with f(x, y) 6= 0 for all (x, y) ∈ R2 \ {(0, 0)}. Without loss of generality, one can suppose that the function f is
definite negative (i.e. f(x, y) < 0 ∀(x, y) ∈ R2 \ {(0, 0)}). In these conditions, one necessarily has p = 2q + 1.



346 H. JERBI

We define λ = Q2(c1, 1), ρ = Q2(c2, 1). The representation of system ẋ = Q1(x, y), ẏ = Q2(x, y) in polar
coordinates is

ṙ = rp (cos θQ1(cos θ, sin θ) + sin θQ2(cos θ, sin θ)) = rpg(θ)
θ̇ = rp−1 (cos θQ2(cos θ, sin θ)− sin θQ1(cos θ, sin θ)) = −rp−1G(cos θ, sin θ).

If we introduce a new time s via ds
dt = rp−1 then the above system becomes

ṙ = r g(θ) Ê θ̇ = −G(cos θ, sin θ).

According to [6] one can see that the straights lines D1: x + c1y = 0 and D2 : x + c2y = 0 are invariant for (2.2)
and the orbits of the equation (2.2) take one of the following forms:

ρ < 0 λ > 0

A1

Figure 1. R
2 \ {(0, 0)∪

O(x0,y0)} = A1 ∪ Ã1 A1

and Ã1 are two connected

sets.

ρ > 0 λ < 0

A2

Figure 2. R
2 \ {(0, 0)∪

O(x0,y0)} = A2 ∪ Ã2 A2

and Ã2 are two connected

sets.

ρ > 0 λ > 0

Figure 3. We have the
same figure when λ < 0
and ρ < 0.

For the stabilizability of system (2.1), we need some results guaranteeing the existence of the homogeneous
feedback. Let us define α = Φ(c1, 1), β = Φ(c2, 1).

With this notation, one can easily verify that:
F (c1, 1) = Q2(c1, 1)Φ(c1, 1) = λα and F (c2, 1) = Q2(c2, 1)Φ(c2, 1) = ρβ.

Theorem 2. If αβ < 0 and the system (2.1) is GAS then there exists some m ∈]c1, c2[ such that F (m, 1) > 0.

Proof. It is easy to see that if λ > 0 and ρ > 0 (respectively λ < 0 and ρ < 0) then F (c1, 1)F (c2, 1) = ρλαβ < 0
and there exists an m ∈]c1, c2[ such that F (m, 1) > 0.

In the case where λ > 0 and ρ < 0, for all m ∈]c1, c2[ we have F (m, 1) < 0. Since F (m, 1) =

det
(

P1(m, 1) Q1(m, 1)
P2(m, 1) Q2(m, 1)

)
< 0, and according to Proposition 2 we can deduce that angle(̂P, Q) ∈)π, 2π( and it

follows that the subset A1 is invariant for the open loop system (2.1) (see Fig. 1). So it cannot be asymptotically
controllable to the origin.

In the case where λ < 0 and ρ > 0, for all m ∈]c1, c2[ we have F (m, 1) < 0. Since F (m, 1) =

det
(

P1(m, 1) Q1(m, 1)
P2(m, 1) Q2(m, 1)

)
< 0, and according to Proposition 2 we can deduce that angle(̂P, Q) ∈)π, 2π( and

it follows that the subset A2 is invariant for the open loop system (2.1) (see Fig. 2). Using the fact that if
any equation ṗ = Y (p) is GAS on the manifold M then M must be simply connected. We can assume that
system (2.1) cannot be GAS.
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Theorem 3. If α = 0, ρβ
c1−c2

< 0 and the system (2.1) is GAS then there exists some m ∈]c1, c2[ such that
F (m, 1) > 0.

Proof. Clearly if λ > 0 and ρ > 0 (respectively λ < 0 and ρ < 0) then F (c1, 1)F (c2, 1) = ρλαβ < 0 and there
exists some m ∈]c1, c2[ such that F (m, 1) > 0.

In the case where λ > 0 and ρ < 0 (respectively λ < 0 and ρ > 0), for all m ∈]c1, c2[ we have F (m, 1) < 0.

Since F (m, 1) = det
(

P1(m, 1) Q1(m, 1)
P2(m, 1) Q2(m, 1)

)
< 0, then the subset A1 (respectively A2) is invariant for the open

loop system (2.1) (see Figs. 1, 2). So it cannot be asymptotically controllable (respectively stabilizable) to
origin.

We can also prove the following theorem:

Theorem 4. If α = β = 0, ρλ < 0 and the system (2.1) is GAS then there exists some m ∈]c1, c2[ such that
F (m, 1) > 0.

We consider an homogeneous feedback u(x, y) of degree 2k + 1 − p which makes the system (2.1) globally
asymptotically stable. We denote X1(x, y) = P1(x, y)+u(x, y)Q1(x, y) and X2(x, y) = P2(x, y)+u(x, y)Q2(x, y).
It is clear that X1, X2 are homogeneous polynomials of degree 2k + 1. Let F(x, y) = yX1(x, y) − xX2(x, y), a
simple computation gives

F(x, y) = Φ(x, y) + u(x, y)G(x, y).

From Theorem 1 the function F play an important role in the stabilizability of the vector field (X1, X2).
Moreover to determine the feedback u(x, y) which stabilizes system (2.1) we must choose the function F such
that

(Γ1) the functions (x− ciy) divide the homogeneous function F(x, y)− Φ(x, y) for i ∈ {1, 2};
(Γ2) if the point (m, 1) is such that F(m, 1) = 0 then 〈(X1(m, 1), X2(m, 1)) | (m, 1)〉 < 0;
(Γ3) the function F(x, y) must be an homogeneous function of degree 2k + 2.

Here it is important to show that from Proposition 1, the condition (Γ2) is equivalent to
If the point (m, 1) satisfy F(m, 1) = 0 then F (m,1)

G(m,1) > 0.

Theorems 2, 3, and 4 guarantee the existence of the set of points Mi : (mi, 1) such that F (mi,1)
G(mi,1)

> 0.

Theorem 5. If there exists a function F(x, y) satisfying the conditions (Γ1), (Γ2) and (Γ3) then the feedback

u(x, y) =
F(x, y)− Φ(x, y)

G(x, y)

is C∞ on R2 \ {0}, homogeneous of degree 2k + 1− p and stabilizes the system (2.1).

Proof. Since the function F satisfies (Γ1), we can establish

F(x, y)− Φ(x, y) = (x− c1y)(x− c2y)F̃(x, y),

this implies

u(x, y) =
F(x, y)− Φ(x, y)

G(x, y)
=
F̃(x, y)
f(x, y)

which is C∞ on R2 \ {0} and homogeneous of degree 2k + 1− p. The proof of the theorem follows from the fact
that the closed loop system with the feedback u(x, y) is homogeneous of degree 2k + 1 and it satisfies to the
condition (ii) of Theorem 1.
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Theorem 6. If λρ > 0 then for η > 0 large enough, the feedback

u(x, y) = −ηλ(x2 + y2)k−q

stabilizes the system (2.1).

Proof. The proof is rather simple and requires only to show that the vector fields −λ(x2 + y2)k−pQ(x, y) is
GAS and using the same argument as in the proof of Theorem 5 one can deduce that for η > 0 large enough
the feedback

u(x, y) = −ηλ(x2 + y2)k−q

stabilizes the system (2.1).

Theorem 7. In the case when λρ < 0, the system (2.1) is GAS if and only if the following holds.

(S) There exist m1 ∈]c1, c2[ and m2 ∈]−∞, c1[∪]c2,∞[ such that F (1, m1) > 0 and F (1, m2) < 0.

In this case there exists an homogeneous feedback of degree 2k− 2q which stabilizes the system (2.1). Stabilizing
feedback control laws are given in the following table.

case The feedback

αβ > 0 u(x, y) =
α(x −m1y)2(a(x − c2y)2 + b(x− c1y)2)K − Φ(x, y)

(x − c1y)(x− c2y)f(x, y)

where a =
1

(c1 − c2)2

(
1

(c1 −m1)2

)1/k

and b =
1

(c1 − c2)2

(
β

α(c2 −m1)2

)1/k

.

αβ < 0 u(x, y) =

(
α

c1−m2

)
(x−m1y)(x−m2y)(a(x − c2y)2 + b(x− c1y)2)k − Φ(x, y)

(x− c1y)(x− c2y)f(x, y)

where a =
1

(c1 − c2)2

(
1

c1 −m1

)1/k

and b =
1

(c1 − c2)2

(
β(c1 −m2)

α(c2 −m1)(c2 −m2)

)1/k

.

α = 0; λβ > 0 u(x, y) =
β(x − c1y)(x−m1y)(a(x − c2y)2 + b(x− c1y)2)k − Φ(x, y)

(x− c1y)(x− c2y)f(x, y)

where b =
1

(c2 − c1)2

(
1

(c2 − c1)(c2 −m1)

)1/k

and a > 0, large enough.

α = 0; λβ < 0 u(x, y) =
β(c1 −m2)(x− c1y)(x−m2y)

(
a(x− c2y)2 + b(x− c1y)2

)k − Φ(x, y)
(x− c1y)(x− c2y)f(x, y)

where b =
1

(c2 − c1)2

(
1

(c2 − c1)(c2 −m2)(c2 − c1)

)1/k

and a > 0 large enough.

β = 0 αρ > 0 u(x, y) =
α(x − c2y)(x−m1y)(a(x− c2y)2 + b(x− c1y)2)k − Φ(x, y)

(x − c1y)(x− c2y)f(x, y)

where a =
1

(c2 − c1)2

(
1

(c1 − c2)(c1 −m1)

)1/k

and b > 0 large enough.
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β = 0 αρ < 0 u(x, y) =
−α(c2 −m2)(x − c2y)(x−m2y)

(
a(x− c2y)2 + b(x− c1y)2

)k − Φ(x, y)
(x− c1y)(x − c2y)f(x, y)

where a =
1

(c2 − c1)2

(
1

(c2 − c1)(c1 −m2)(c2 −m2)

)1/k

and b > 0 large enough.

β = α = 0 u(x, y) =
−λ(c2−m2)(x−c1y)(x−c2y)(x−m1y)(x−m2y)

(
a(x−c2y)2+b(x−c1y)2

)(k−2)−Φ(x, y)
(x− c1y)(x− c2y)f(x, y)

where a > 0 and b > 0 are large enough.

Proof. The condition (S) follows from Theorems 2, 3 and 4. Suppose that there exist m1 and m2 ∈ R such
that F (1, m1) > 0 and F (1, m2) < 0. We consider the closed loop system (2.1)

{
ẋ = P1(x, y) + u(x, y)Q1(x, y) = X1(x, y)
ẏ = P2(x, y) + u(x, y)Q2(x, y) = X2(x, y)

to determine the stabilizing feedback of the system (1.2), we construct an homogeneous function F(x, y) =

det
(

X1(x, y) x
X2(x, y) y

)
witch satisfies to the conditions (Γ1), (Γ2) and (Γ3). It is clear that F(x, y) = Φ(x, y) +

u(x− c1y)(x− c2y)f(x, y) and

u(x, y) =
F(x, y)− Φ(x, y)

(x− c1y)(x− c2y)f(x, y)
·

Here we investigate some cases and all other cases can be treated similarly.
In the case when αβ > 0 we choose

F(x, y) = α(x −m1y)2
(
a(x− c2y)2 + b(x− c1y)2

)k
,

a = 1
(c2−c1)2

(1/(c1 −m1)2)1/k and b = 1
(c2−c1)2

( β
α(c2−m1)2

)1/k. For this choice of a and b we can assume that
(x− c1y)(x− c2y) divides F(x, y)− Φ(x, y), and it follows that the function F satisfies to the conditions (Γ1),
(Γ2) and (Γ3).

For β = α = 0 we construct

F(x, y) = −λ(c2 −m2)(x − c1y)(x− c2y)(x−m1y)(x −m2y)
(
a(x− c2y)2 + b(x− c1y)2

)(k−2)
.

Straightforward calculations yield that

X2(c1, 1) = P2(c1, 1)− (c2 −m2)(c1 − c2)(c1 −m1)(c1 −m2)(a(c1 − c2)2)k

(c1 − c2)f(c1, 1)
λ2 − Φ′x(c1, 1)

(c1 − c2)f(c1, 1)
λ

and

X2(c2, 1) = P2(c2, 1)− (c2 −m2)2(c2 − c1)(c2 −m1)(b(c1 − c2)2)k

(c2 − c1)f(c2, 1)
λρ− Φ′x(c2, 1)

(c2 − c1)f(c2, 1)
ρ.

For a > 0 and b > 0 large enough we obtain X2(c1, 1) < 0 and X2(c2, 1) < 0. F satisfies to the conditions (Γ1),
(Γ2) and (Γ3) hence the system (2.1) is GAS.
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2.2. The case when G(x, y) = (x − cy) f (x, y)

Where f(x, y) is definite negative. Under these hypothesis we have necessarily p = 2q. We set λ = Q2(c, 1).
According to [6] one can see that the straight line D : x + cy = 0 is invariant for the equation

{
ẋ = Q1(x, y)
ẏ = Q2(x, y)

and the orbits of this equation take one of the following forms:

λ > 0

A2

Figure 4. R2 \{(0, 0)∪O(x0,y0)} =
A2 ∪ Ã2 A2 and Ã2 are two con-
nected sets.

λ < 0

A1

Figure 5. R2 \{(0, 0)∪O(x0,y0)} =
A1 ∪ Ã1 A1 and Ã1 are two con-
nected sets.

Theorem 8. The system (2.1) is GAS if and only if there exists m ∈ R such that (c−m)F (m, 1) > 0 (S), and
if the condition (S) holds then, in the case when Φ(c, 1) = α 6= 0 the homogeneous feedback

u(x, y) =
α(x −my)2((x− cy)2 + by2)k − Φ(x, y)

(x− cy)f(x, y)

where b = (c−m)(−2/k) stabilizes the system (2.1), and in the case when α = 0, one has for b > 0 large enough
the homogeneous feedback

u(x, y) =
λ(c−m)(x− cy)(x−my)(x2 + by2)k − Φ(x, y)

(x− cy)f(x, y)

stabilizes the system (2.1).

Proof. The property (S) follows from Theorem 2 (with ρ = −λ). Conversely, we suppose that there exists
m ∈ R such that (c−m)F (m, 1) > 0. The closed loop system (2.1) with the feedback u(.) is

{
ẋ = P1(x, y) + u(x, y)Q1(x, y) = X1(x, y)
ẏ = P2(x, y) + u(x, y)Q2(x, y) = X2(x, y).

In these conditions one has
F(x, y) = Φ(x, y) + u(x− cy)f(x, y).
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From Theorem 1 the function F plays an important role in the stabilizability of the vector field (X1, X2).
Moreover to prove that the feedback u(x, y) stabilizes system (2.1) the function F must satisfies to the following
conditions:

(Γ′1) if the point (ξ, 1) is such that F(ξ, 1) = 0 then 〈(X1(ξ, 1), X2(ξ, 1)) | (ξ, 1)〉 < 0;
(Γ′2) the function F(x, y) is an homogeneous function of degree 2k + 2.

Here it is important to show that from Proposition 1, the condition (Γ′2) is equivalent to
If the point (ξ, 1) verify F(ξ, 1) = 0 then F (ξ,1)

G(ξ,1) > 0.

The condition of the stabilizability guarantee the existence of a point M : (m, 1) such that F (m,1)
G(m,1) > 0.

For α 6= 0 we found F(x, y) = α(x − my)2((x − cy)2 + by2)k witch is misspelled to the conditions (Γ′1)
and (Γ′2).

In the case α = 0 we found F(x, y) = λ(c − m)(x − cy)(x − my)(ax2 + by2)k and X2(c, 1) = P2(c, 1) −
(c−m)(c2+b)k

f(c,1) λ2 − Φ′
x(c,1)

f(c,1) λ. For b > 0 large enough, one has X2(c1, 1) < 0 and the system (2.1) is GAS.

2.3. Case when G(x, y) is definite

Without loss of generality, one can suppose that G(x, y) is a positive definite function (i.e. G(x, y) > 0
∀(x, y) ∈ R2 \ {(0, 0)} ), we denote

I =
∫ +∞

−∞

Q1(1, s)
G(1, s)

ds.

If I 6= 0 then the orbits of the vector fields Q(z) = (Q1(z), Q2(z)) will be spirals. Moreover, if IQ2(1, 0) > 0
(respectively IQ2(1, 0) < 0) then −Q (respectively Q) will be globally asymptotically stable (GAS).

If I = 0 then the orbits of the vector fields Q(z) = (Q1(z), Q2(z)) are periodic and (0, 0) is a center. We have
Q2(1, 0) = −G(1, 0) < 0.

I > 0
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Theorem 9. In the case when I 6= 0 one has for η > 0 large enough the feedback

u(x, y) = ηε(x2 + y2)k−q where ε =
|I|
I

stabilizes the system (2.1).

Proof. Since the vector fields ε(x2 + y2)k−q Q(z) where ε = |I|
I are GAS and are homogeneous of degree 2k +1,

then from [9] there exists ξ > 0 such that for all vector fields h definite on R2 and verify ‖h(x, y)‖ ≤ ξ‖(x, y)‖2k+1,
one has that ε(x2 + y2)k−q Q(z) + h(z) is locally asymptotically stable.
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The function P (x, y) is homogeneous of degree 2k + 1, so ‖P (x, y)‖ ≤ A‖(x, y)‖2k+1 where

A = sup
(x,y)∈S1

‖P (x, y)‖.

It is clear that for η > 0 large enough the vector fields P (z) + ηε(x2 + y2)k−q Q(z) are locally asymptotically
stable, and since it is homogeneous then the vector fields is GAS.

Theorem 10. In the case when I = 0 one has:
The system (2.1) is GAS if and only if it holds the following properties (S)

(S) there exists some m such that F (1, m) > 0.
In this case the homogeneous feedback

u(x, y) =
(x−my)2(x2k + y2k)− Φ(x, y)

G(x, y)

stabilizes the system (2.1).

Proof. We define z(t) the solution of the equation ż(t) = Q(z(t)), z(0) = (1, 1). Let O = {z(t) ∀t ∈ R}. It is
clear that R2 − {O} = A3 ∪ Ã3 where A3 and Ã3 are two connected open sets. Without loss of generality, let
(0, 0) ∈ Ã3.

If the system holds the condition (S) then for all x, y ∈ R

Φ(x, y) = det
(

P1(x, y) Q1(x, y)
P2(x, y) Q2(x, y)

)
< 0

it follows that the angle (P (z(t), Q(z(t)) lie in ]π, 2π[ and for such control u(.) the subset A3 is invariant for the
system ż = P + uQ (see Fig. 8). The system (2.1) is not asymptotically controllable to the origin hence it can
not be stabilizable.

Conversely, suppose that there exists some m such that F (1, m)>0. We define u(x, y)= (x−cy)2(x2k+y2k)−Φ(x,y)
G(x,y)

and the system ż = P (z) + u(z)Q(z) = Y (z). If F(x, y) = yY1(x, y)− xY2(x, y) straightforward

F(x, y) = (x−my)2
(
x2k + y2k

)
.

From Theorem 1 and Proposition 1, the vector fields Y (z) are GAS.
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