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BOUNDARY INTEGRAL FORMULAE FOR THE RECONSTRUCTION
OF ELECTRIC AND ELECTROMAGNETIC INHOMOGENEITIES

OF SMALL VOLUME

Habib Ammari1, Shari Moskow2 and Michael S. Vogelius3

Abstract. In this paper we discuss the approximate reconstruction of inhomogeneities of small vol-
ume. The data used for the reconstruction consist of boundary integrals of the (observed) electromag-
netic fields. The numerical algorithms discussed are based on highly accurate asymptotic formulae for
the electromagnetic fields in the presence of small volume inhomogeneities.
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1. Introduction

The problem of determining interior information about a medium from boundary field measurements is one
that is not in general well posed. If, however, in advance we have additional structural information about the
medium, then we may be able to determine specific features with “higher resolution”. As an example consider
a bounded domain consisting of a homogeneously conducting background medium with volumetrically small
inhomogeneities of conductivity different from the background. The geometry of each of the inhomogeneities
may take the form of

εB + z,

where B is some fixed bounded domain containing the origin, or,

{x+ ηh(x)n(x) : x ∈ σ0, η ∈ (−ε, ε)},

where σ0 is a simple curve, n(x) is a unit vectorfield orthogonal to σ0, and h(x) is some smooth positive
function. That is, we assume the inhomogeneities are either small domains of diameter ≈ ε, or they are thin
strips of thickness ≈ ε (this latter case only pertains to two dimensions). When in the shape of strips, the
inhomogeneities are required to have bounded, nonzero conductivity, in order that the limiting (ε→ 0) voltage
potential coincide with that of the pure background medium.

In both of the settings described above, asymptotic formulae have been derived for the voltage potential as
ε→ 0. These formulae express the ε-dependent voltage potential in terms of the background potential, a certain
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Neumann-function, and the relevant polarization tensors [5, 8, 11]. In this paper we will use these formulae to
develop an efficient algorithm to determine the location and/or shape of the inhomogeneities.

To be quite precise, let us assume we are given some finite set of small inhomogeneities ωε

ωε =
m⋃

j=1

ωj
ε

where, either all the inhomogeneities are of the form

ωj
ε = εBj + zj,

for some smooth, bounded, star-shaped domains, Bj , or they are all of the form

ωj
ε = {x+ ηh(j)(x)n(x) : x ∈ σj

0, η ∈ (−ε, ε)},

for some simple curves, σj
0. Here n(x) is a unit normal vectorfield to σj

0, and h(j) is some positive smooth
function. The potential uε satisfies

∇ · γε∇uε = 0 in Ω (1.1)

γε
∂uε

∂ν
= g on ∂Ω

with conductivity

γε =
{
γ0 x ∈ Ω \ ωε,
γj x ∈ ωj

ε .
(1.2)

We know that as ε approaches zero, the potential uε converges to the background potential, u, which satisfies

∆u = 0 in Ω, (1.3)

γ0
∂u

∂ν
= g on ∂Ω.

In the case of m star-shaped imperfections of type εBj + zj (of either finite or extreme conductivity) that are
well separated from each other and from the boundary, it has been shown in [8,11] that the following asymptotic
formula holds:

uε(y) = u(y) + εn
m∑

j=1

(
γ0

γj
− 1

)
∇xN(zj , y) ·M (j)∇u(zj) + o(εn). (1.4)

N(x, y) is the standard Neumann function

∆xN(x, y) = −δy in Ω (1.5)
∂N

∂νx
(x, y) = − 1

|∂Ω| on ∂Ω,

and each M (j) is a n× n, symmetric, positive definite matrix (called the polarization tensor). M (j) is given by

M
(j)
kl = |Bj |δkl −

∫
∂Bj

yk
∂φ+

l

∂ν
dσy, (1.6)
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where, for 0 < cj = γ0
γj
<∞ and 1 ≤ l ≤ n, φl(y) is the unique solution to

∆φl = 0 in Bj , (1.7)

∆φl = 0 in R
n \Bj ,

cj
∂φ+

l

∂ν
− ∂φ−l

∂ν
= (cj − 1)νl on ∂Bj,

with φl continuous across ∂Bj , and
lim

|y|→∞
φl(y) = 0.

Note that the polarization tensor depends on the conductivity aspect ratio and the size and the shape of the
inhomogeneity. Also note that the above asymptotic formula for uε holds in R

n for any n ≥ 2 (later we
shall specialize to two dimensions). It is sometimes convenient to emphasize the dependence of M (j) on the
conductivity aspect ratio, cj = γ0/γj , in which case we write M (j)(cj). The tensor M (j), introduced here, is
the same as that introduced in [8], and is exactly c−1

j times that introduced in [16].
There are very similar formulae for the (rescaled) polarization tensor in the case γj = 0 or γj = ∞, see [8]

and [11]. The remainder, o(εn) in (1.4) signifies a term which goes to zero faster than εn uniformly in y, for
y bounded away from the inhomogeneities. (It has been shown rigorously that this term is O(εn+1/2), but
numerical computations seem to suggest it goes to zero faster than this when the Bj are smooth.)

Remark 1. If (for fixed inhomogeneity Bj) we define ϕl = −φl + yl, then ϕl satisfies

∇y · γ(y)∇yϕl = 0 in R
n,

ϕl − yl → 0 as |y| → ∞.

Here γ(y) is given by

γ(y) =
{
γ0 y ∈ R

n \Bj ,
γj x ∈ Bj .

(1.8)

A simple calculation now shows that

M
(j)
kl = c−1

j

∫
Bj

∂

∂yk
ϕl(y) dy. (1.9)

For n = 2 there is a very special relationship between the polarization tensor corresponding to aspect ratio c
and that corresponding to aspect ratio c−1. Based on the formula just above, and convex duality, we get that

M (j)(c−1
j ) = cjRM

(j)(cj)RT ,

where R denotes the matrix corresponding to a counterclockwise rotation by π/2, i.e., the matrix given
by R11 = R22 = 0, R12 = −R21 = −1.

When the m conductivity imperfections ωj
ε all take the form of the thin strips described above, and when

these strips are well separated from each other and from the boundary, a similar asymptotic formula has been
formally derived in [5]:

uε(y) = u(y)− ε

m∑
j=1

∫
σj
0

∇xN(x, y) · A(j)(x)∇u(x)h(j)(x)dsx + o(ε). (1.10)
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The matrix A(j)(x) is similar to the polarization tensor M (j). If τ(x) and n(x) are the unit tangential and
normal fields to σj

0, then A(j)(x) is the symmetric matrix with eigenvectors τ(x) and n(x), with respective
eigenvalues 2(c−1

j − 1) and 2(1− cj). Although this formula has not been proven rigorously, the computational
evidence in [5] attests to its accuracy. We also note that this formula only pertains to two dimensions.

Our first goal is to apply these asymptotic formulae for the purpose of identifying the location and certain
properties of the shapes of the inhomogeneities. In contrast to a (straightforward) boundary least squares fit
to “the measured data”, we develop a method based on appropriate averaging, using particular “background”
solutions as weights. The order εn term in the representation formula (1.4) is physically that of a voltage
potential corresponding to m appropriately polarized dipoles located at the points zj, 1 ≤ j ≤ m. Similarly
the order ε term in (1.10) is an “average” of voltage potentials corresponding to appropriately polarized dipoles
distributed along the curve σ0. Results that address the theoretical feasibility of recovering the location of
dipoles from boundary measurements are found various places in the literature; the reader may for example
consult [14] and [12]. The special formulae found in [12] Section 3 for the recovery of a single inhomogeneity
are very related to our brief discussion in Section 3 of the present paper.

Our second goal is to formally show that a similar “small volume” perturbation approach may be applied to
the full Maxwell equations with inhomogeneities of different electric permittivity or magnetic permeability (or
both). The formal arguments we present provide excellent insight when it comes to the inner workings of this
“small volume” perturbation approach – an insight which may hopefully be used to adapt the approach for use
in other contexts (for instance in the context of spectral data).

2. Integration against special test functions

The general approach we take to reconstruct the locations and certain properties of the shapes of the inho-
mogeneities is to form the integral of “the measured boundary data” against harmonic test functions. In this
section we use the formulae (1.4) and (1.10) to derive alternate expressions for these boundary integrals. These
expressions are rather explicit in terms of the inhomogeneities and their locations. Suppose uε is the solution
to (1.1) and w is some known harmonic function. We look for an expression for the “averaged measurement”

Γ =
∫

∂Ω

uε γ0
∂w

∂ν
dσ −

∫
∂Ω

γε
∂uε

∂ν
w dσ. (2.11)

Integrals like Γ have already been used in several contexts to determine “interior” information from boundary
data, most notably to determine the location of plane cracks, see for instance [2, 3] or [4]. If, in (2.11), we
replace uε with the right hand side of (1.4), and γε

∂uε

∂ν with g, then we obtain

Γ =
∫

∂Ω

u γ0
∂w

∂ν
dσ + εn

m∑
j=1

(
γ0

γj
− 1

)∫
∂Ω

∇xN(zj , y) ·M (j)∇u(zj)γ0
∂w

∂ν
(y) dσy −

∫
∂Ω

gw dσ + o(εn).

The first and third terms cancel due to the harmonicity of u and w (and the fact that γ0
∂u
∂ν = g) and we are

left with

Γ = εn
m∑

j=1

(
γ0

γj
− 1

)
M (j)∇u(zj) · ∇x

∫
∂Ω

N(zj , y)γ0
∂w

∂ν
(y) dσy + o(εn).

By integration by parts and use of the equation for N we have∫
∂Ω

N(x, y)
∂w

∂ν
dσy = w(x) − 1

|∂Ω|
∫

∂Ω

w dσ, or

∇x

∫
∂Ω

N(x, y)γ0
∂w

∂ν
dσy = γ0∇w(x). (2.12)
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We have thus established the following theorem:

Theorem 1. Let uε be the solution to (1.1) with inhomogeneities of type εBj+zj, with polarization tensors M (j).
Let u be the background potential, satisfying (1.3). If w is any harmonic function, then the measurement Γ,
defined by (2.11), has the expansion

Γ = εn
m∑

i=j

γ0

(
γ0

γj
− 1

)
M (j)∇u(zj) · ∇w(zj) + o(εn).

The same argument can be applied to the case of strips. By replacing uε with the expansion (1.10) we obtain
the approximation

Γ = −ε
m∑

j=1

∫
∂Ω

∫
σj
0

∇xN(x, y)A(j)(x)∇u(x)h(j)(x)γ0
∂w

∂ν
(y)dsxdσy + o(ε),

which, by interchange of the order of integration, yields

Γ = −ε
m∑

j=1

∫
σj
0

A(j)(x)∇u(x) · ∇x

∫
∂Ω

N(x, y)γ0
∂w

∂ν
(y)dσy h

(j)(x)dsx + o(ε).

Now, due to (2.12), we obtain

Γ = −ε
m∑

j=1

γ0

∫
σj
0

∇w(x) · A(j)(x)∇u(x)h(j)(x)dsx + o(ε).

We note that this last expansion has not been completely rigorously verified (due to the fact that the derivation
of (1.10) is only formal).

To summarize: we have at this point at our disposal two asymptotic formulae with which to reconstruct the
inhomogeneities; if the inhomogeneities are all of small diameter, then

∫
∂Ω

uε γ0
∂w

∂ν
dσ −

∫
∂Ω

γε
∂uε

∂ν
w dσ ≈ εn

m∑
j=1

γ0

(
γ0

γj
− 1

)
M (j)∇u(zj) · ∇w(zj), (2.13)

and if the inhomogeneities are all thin strips (in two dimensions) then

∫
∂Ω

uε γ0
∂w

∂ν
dσ −

∫
∂Ω

γε
∂uε

∂ν
w dσ ≈ −ε

m∑
j=1

γ0

∫
σj
0

∇w(x) ·A(j)(x)∇u(x)h(j)(x) dsx. (2.14)

In both cases w is an arbitrary harmonic function.

Remark 2. Let us restrict attention to two dimensions. If we were to consider the simultaneous presence
of thin inhomogeneities of thickness ε2 and diametrically small inhomogeneities of diameter ε (i.e., differently
shaped inhomogeneities of same magnitude area) then a direct, additive combination of the formulae (2.13)
and (2.14) gives the leading order perturbation of the “averaged data”. Perhaps more interesting, one might
calculate a higher order version of (2.14) (including terms of order ε2) and by combination with (2.13) now
obtain an asymptotic perturbation for the “averaged data” in the simultaneous (well separated) presence of
thin strips and diametrically small inhomogeneities, with thickness and diameter of same magnitude, ε.
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Remark 3. If γε is a small amplitude perturbation (an L∞-small perturbation) of the constant γ0, i.e.,
if γε(x) = γ0 + εγ(x), with γ ∈ L∞(Ω), then it is not difficult to show that

∫
∂Ω

uεγ0
∂w

∂ν
dσ −

∫
∂Ω

γε
∂uε

∂ν
w dσ = −ε

∫
Ω

γ(x)∇uε · ∇w dx ≈ −ε
∫

Ω

γ(x)∇u · ∇w dx, (2.15)

for any harmonic function w. This approximation was for example used by Calderon [7]. The formulae (2.13)
and (2.14) may be viewed as the analogues of (2.15) for special “low volume fraction perturbations”, that is for
special types of L1-small perturbations.

3. Detecting one inhomogeneity

In this section we look at the simple case of only one inhomogeneity and show how formula (2.13) can be
used to approximate its location and its polarization tensor. Suppose the inhomogeneity is centered at the
point p = (p1, p2), and has polarization tensor M . For simplicity we here denote the “rescaled” polarization
tensor γ0

(
γ0
γ1
− 1

)
M by M , and we consider only the case n = 2. Then, for any harmonic w

∫
∂Ω

uε γ0
∂w

∂ν
dσ −

∫
∂Ω

γε
∂uε

∂ν
w dσ ≈ ε2M∇u(p) · ∇w(p). (3.16)

Let us neglect the asymptotically small remainder term, and apply the currents (gi = γ0νi) corresponding to
background potentials

u(i) = xi, i = 1, 2.

First, we use the two test functions
w(1) = x1, and w(2) = x2.

Define the “measurement” Γij by

Γij =
∫

∂Ω

u(i)
ε γ0

∂w(j)

∂ν
dσ −

∫
∂Ω

γε
∂u

(i)
ε

∂ν
w(j) dσ.

From (3.16) we immediately get an approximation to the terms of the tensor ε2M . In fact,

ε2Mij = Γij .

Now that we have “recovered” ε2M , we may use the same two currents, γ0ν1 and γ0ν2, to determine the location
of the inhomogeneity. By inserting the test function

w(3) = x1x2

into (3.16), we obtain the linear system

Γ13 = ε2(M11p2 +M21p1),

Γ23 = ε2(M12p2 +M22p1),

which, since we already know ε2M , is solvable for p1 and p2 (here we rely on the positive definiteness of M). By
taking two boundary measurements we have thus directly obtained an approximation to the rescaled polarization
tensor as well as the location of the inhomogeneity. The above formulas are in the same spirit as those derived
in [2] for the identification of a single linear crack.
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Remark 4. If there are more than one inhomogeneity but we know a priori that they all have the same rescaled
polarization tensor, then we can easily determine the number of inhomogeneities by one boundary measurement.
Simply apply boundary current γ0ν1 (so that u = x1) and let w = x1. Then (2.13) gives

Γ ≈ ε2mM11

where Γ is measured. Assuming ε2M11 is known, we obtain m directly.

4. Using Fourier inversion

In the previous section we saw an example of how the formula (2.13) can be used to directly calculate
an approximation to the polarization tensor and the location of one inhomogeneity. By choosing more test
functions w and possibly taking more boundary measurements, one may in a quite similar way calculate the
locations and/or polarization tensors for several inhomogeneities. For a large number of inhomogeneities of dif-
ferent shape this becomes more difficult as the corresponding systems become highly nonlinear (and potentially,
ill-posed). In this section we focus on an alternate (linear) method to determine the locations (and possibly, the
shapes) of inhomogeneities of a wide range of types. This approach may require quite a number of boundary
measurements, but if these are readily available, then the approach is rapid and simple to implement. This
approach is based on the original idea of Calderon [7], which was, by way of the low amplitude perturbation
formula (2.15), to reduce the reconstruction problem to the calculation of an inverse Fourier Transform.

We rewrite the formula (2.13)

Γ =
∫

∂Ω

uεγ0
∂w

∂ν
dσ −

∫
∂Ω

γε
∂uε

∂ν
w dσ ≈ ε2

m∑
i=1

M (i)∇xu(zi) · ∇xw(zi), (4.17)

by absorbing the constant γ0

(
γ0
γj
− 1

)
into the matrix M (j). For an arbitrary η ∈ R

2, we assume we are in
possession of the boundary data for the voltage potential, uε, whose corresponding background potential is
given by

u = ei(η+iη⊥)·x

(boundary current = i(η + iη⊥) · νei(η+iη⊥)·x) and we average this boundary data using the test function

w = ei(η−iη⊥)·x.

Note that both of these functions are harmonic. Let us now view the measurement (4.17) as a function of η:

Γ(η) ≈ ε2
m∑

j=1

M (j)∇
(
ei(η+iη⊥)·x

) ∣∣
x=zj

· ∇
(
ei(η−iη⊥)·x

) ∣∣
x=zj

,

or

Γ(η) ≈ −ε2
m∑

j=1

M (j)(η + iη⊥) · (η − iη⊥)e2iη·zj .

Recall that the function
e2iη·zj

(up to a multiplicative constant) is exactly the Fourier Transform of the Dirac delta

δ−2zj
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(a point mass located at −2zj). Multiplication by powers of η in Fourier space corresponds differentiation of
the delta functions. The function Γ(η) is therefore the Fourier Transform of a linear combination of derivatives
of point masses, or

Γ̌(x) ≈ ε2
m∑

j=1

Ljδ−2zj ,

where Lj is a second order constant coefficient, differential operator whose coefficients depend on the polarization
tensor M (j), and Γ̌(x) represent the inverse Fourier Transform of Γ(η). The method of reconstruction we propose
here consists in sampling the values of Γ(η) at some discrete set of points and then calculating the corresponding
discrete inverse Fourier Transform. After a rescaling (by −1/2) the support of this inverse Fourier Transform
yields the location of the inhomogeneities. Once the locations are known we may calculate the polarization
tensors by solving an appropriate linear system arising from (2.13).

Similarly, when we have m inhomogeneities in the form of thin strips

Γ(η) ≈ ε

m∑
j=1

∫
σj
0

A(j)(x)(η + iη⊥) · (η − iη⊥)ei2η·x dsx,

where γ0 as well as h(j)(x) have been absorbed into A(j)(x). This is the Fourier Transform of a linear combination
of derivatives of distributions with support on the curves −2σj

0, or

Γ̌(x) ≈ ε

m∑
j=1

LjDσj
0
,

where Γ̌(x) denotes the inverse Fourier Transform of Γ(η), the the Lj are second order constant coefficient
differential operators, and Dσj

0
are distributions supported on −2σj

0. In this case we also propose to calculate

a discrete inverse Fourier Transform of Γ(η) to approximate the locations and shapes of the curves σj
0.

Calderon’s analysis (cf. [7]) showed that the inverse Fourier Transform of Γ(η) yielded a good approximation to
small amplitude perturbations in the conductivity (around a constant). The calculations above shows that it also
yields a good approximation to (large amplitude but) small volume fraction perturbations of the conductivity.
Finally we note that it is possible to construct exponential solutions, with properties similar to those above, for
use in more complicated situations, for instance in connection with the Maxwell equations (see [17]).

5. Numerical results

In the last section we saw that the boundary measurement

Γ(η) =
∫

∂Ω

uεγ0
∂w

∂ν
dσ −

∫
∂Ω

γε
∂uε

∂ν
w dσ,

corresponding to background potential
u = ei(η+iη⊥)·x,

and test function
w = ei(η−iη⊥)·x

is approximately (up to rescalings) the Fourier Transform of a distribution with support at the centers of the
inhomogeneities. We now consider the computational aspects of performing a discrete inverse Fourier Transform
in order to identify the location of the inhomogeneities. Since the accuracy of the approximations (1.4, 1.10)
(and thus the accuracy of the approximations (2.13, 2.14)) has already been carefully documented the most
important computational issue that remains is the conditioning of the discrete inverse Fourier Transform, when
applied to data that arise from distributions that are supported at a finite set of points or on a finite set of simple
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curves. Again, reflecting the fact that the accuracy of the approximations (2.13) and (2.14) are not at issue,
we shall use these two formulas to generate the data for Γ(η) (as opposed to computing it from approximate
solutions to the elliptic boundary value problems). We do want to emphasize that before one could contemplate
to use this algorithm “in real life” there is of course one important practical issue, which we do not attempt to
address, and which needs to be resolved. We are here referring to the issue of how to obtain a sufficient number
of real measurements to generate the values of Γ(η) needed for a satisfactory Fourier Inversion.

To arrive at some idea of the number of data (sampling) points needed for an accurate discrete Fourier
inversion we remind the reader of the main assertion of the so-called Shannon’s Sampling theorem (cf. [9]):
“a function f is completely specified (by a very explicit formula) by the sampled values {f( n

2M + c0)}∞n=−∞ if
and only if the support of f̂ is contained inside a square of side 2M”. For our application this suggests two
things: (1) if the inhomogeneities are contained inside a square of side 2M , then we need to sample Γ(η) at a
uniform, infinite, rectangular grid of meshsize 1

2M to obtain an accurate reconstruction, (2) if we only sample
the points in this grid for which the absolute values of the coordinates are less than K, then the resulting
discrete inverse Fourier Transform will recover the location of the inhomogeneities with a resolution of order
δ = 1

2K . In summary: we need (conservatively) of the order (2M/δ)2 sampled values of Γ(η) to reconstruct,
with resolution δ, a collection of inhomogeneities that lie inside a square of side 2M .

It may be useful to compare these measurement counts to those related to another method (a linear “linear
sampling” method) which has recently been proposed as a tool for the reconstruction of collections of small
inhomogeneities (see [6]). For the accurate reconstruction of the location of m inhomogeneities this method
requires knowledge of the subspace spanned by the first 2m eigenvectors of the incremental Dirichlet to Neumann
data operator. For moderate size m it is reasonable to assume that we are able to approximate this subspace (so
as to determine the location of the inhomogeneities with a resolution of oder δ) by Cδ m measurements (using
a “power-like” method) where Cδ depends on δ and (the gaps in) the spectrum of the incremental Dirichlet
to Neumann data operator. For a relatively small number of inhomogeneities (m � (2M/δ)2/Cδ) the “linear
sampling” method would therefore require fewer measurements than the Fourier Inversion based approach. For
relatively large number of inhomogeneities the count should be in favor of the Fourier Inversion based approach.
We note that the largest possible number of inhomogeneities that are well separated (by δ) is a priori bounded
by (2M/δ)2. A more precise comparison of measurement counts would require a careful analysis of the actual
size of Cδ and the range of validity of the bound Cδ m. We also note that the present crude comparison may
substantially overestimate the number of measurements needed for the Fourier Inversion based approach in
the case of only a few inhomogeneities. Some of the following numerical examples clearly indicate that fewer
measurents are sufficient to reconstruct the location of a very small number of inhomogeneities.

As our first example, we take the domain Ω to be the square [−10, 10] × [−10, 10] and we insert five in-
homogeneities in the shape of balls, with the j-th ball positioned at the point (j, j). In the case of balls the
polarization tensor is just a multiple of the identity, M (j) = djI, where dj depends on the aspect ratio γ0/γj and
the relative size of the ball [8]. Here we take each dj to be 10 and ε = 0.1. We sample our approximation of Γ(η)
on the square [−3, 3]× [−3, 3] with a uniform 30 × 30 grid. We are thus following the recipe from above, with
M = 2.5 and K = 3. We should expect a recovery of all the locations of the inhomogeneities, with a resolution
δ = 1/6. The discrete inverse Fourier Transform yields the grey-level (intensity) plot shown in Figure 1.

Note, though, that the reconstruction in Figure 1 corresponds to sampling Γ(η) at 900 points. Next we sample
the same function on [−2.5, 2.5]× [−2.5, 2.5] with a uniform 20 × 20 grid, thus having a total of 400 sample
points. In Figure 2 we see that the five balls are still visible. If the domain has only one inhomogeneity, then we
can find its location by sampling far fewer values of Γ. The reconstruction shown in Figure 3 corresponds to a
single inhomogeneity at the point (1, 1). We have sampled the values of Γ on the square [−1.5, 1.5]× [−1.5, 1.5]
using a uniform 4× 4 grid.

In order to simulate errors in the boundary measurements, as well as the error inherent in the approxima-
tions (2.13, 2.14) we add on the order of 10% of random noise to the values of Γ in the examples with five
inhomogeneities. We see from Figures 4 and 5 that the reconstruction is quite stable.
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Figure 1. Five inhomogeneities −30× 30 sample points.
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Figure 2. Five inhomogeneities −20× 20 sample points.

For our next example we take the case in which there are 50 equidistant balls (of same size and aspect ratio
as before) lying on the diagonal between (−5, 5) and (5, 5). We sample the approximation to Γ(η) (with 10%
noise added) on the square [−10, 10]× [−10, 10] using a uniform 128 × 128 grid. From Figure 6 see that the
placement of the 50 balls is clearly defined, but on the other hand we can not identify individual balls. We note
that, due to the closeness of the balls, it is not clear how good an approximation to Γ the expression (2.13)
provides. We also note that “background” noise is more visible here than in any of the previous plots: this
is entirely to be expected, since the fairly high number of balls leads to much larger values for the “averaged
data” and thus to much larger absolute noise. The “maximal intensity” near the location of the balls is also
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Figure 3. One inhomogeneity −4× 4 sample points.
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Figure 4. Five inhomogeneities −30× 30 sample points with 10% noise.

significantly larger than before; this may be a little hard to appreciate on a grey-level plot, it is much easier to
see on the corresponding surface plot, shown in Figure 7.

In our last example we take an inhomogeneity in the shape of a thin strip, i.e. we use the approximation
to Γ(η) arising from (2.14). The strip is situated about the interval [0, 1] on the x-axis. We choose the
background conductivity to be 1 and the conductivity on the strip to be 10, and take ε = 0.1. We sample the
approximation to Γ(η) with (10% noise added) on the square [−3, 3]× [−3, 3] using a uniform 10× 10 grid. The
position of the strip is clearly visible in Figure 8.

The numerical experiments we have presented here correspond to but one of many possible choices for the
background voltages and the test functions in the formulae (2.13) and (2.14). We are currently exploring other
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Figure 5. Five inhomogeneities −20× 20 sample points with 10% noise.

Figure 6. Fifty inhomogeneities −128× 128 sample points with 10% noise.

choices, some of which are undoubtedly more practical, as far as the required number of measurements are
concerned. We are convinced that the use of approximate formulae such as (2.13) and (2.14) represents a very
promising approach to the reconstruction problem, in particular when one considers reconstructions based on
the use of electric as well as magnetic fields. This is the main reason why we devote the next section to the
(formal) derivation of a formula analogous to (2.13) for solutions to the Maxwell equations.
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Figure 7. Fifty inhomogeneities −128× 128 sample points with 10% noise.
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Figure 8. Strip −10× 10 sample points with 10% noise.

6. Identification of small inhomogeneities
using electromagnetic fields

In this section we establish the basis for the extension of our reconstruction approach to take into account
all electromagnetic fields. To be more precise: we give a formal derivation of an identity similar to (2.13) for
solutions to the 3-d Maxwell equations (the identity (6.32)). This formal derivation provides an extremely
intuitive and accessible alternative to the rigorous, at times quite technical, derivation found in [1]. We strongly
feel that the additional insight provided by this formal derivation will allow the discovery of similar identities
in other contexts.
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Let Ω be a bounded subset of R
3, with smooth boundary ∂Ω. Let ν denote the outward unit normal to ∂Ω,

and let (k1, k2, k3) be an orthonormal basis of R
3. For fixed frequency ω > 0, (Eε, Hε) denote time-harmonic

electromagnetic fields. These time-harmonic fields satisfy the following form of the Maxwell equations

∇× Eε = iωµεHε in Ω,
∇×Hε = −iωqεEε in Ω,
Eε × ν = f on ∂Ω.

(6.18)

Here f is a tangential field on the boundary ∂Ω that furthermore belongs to the Sobolev space H−1/2
div (∂Ω) =

{g ∈ H−1/2(∂Ω)3, g · ν = 0 on ∂Ω, div∂Ω(g) ∈ H−1/2(∂Ω)}. The magnetic permeability µε and the electric
permittivity qε differ from the (background) values µ0 and q0 inside the small inhomogeneity Bε = εB + z. In
other words

µε =

{
µ0 in Ω \Bε,

µ1 in Bε,

and

qε =

{
q0 in Ω \Bε,

q1 in Bε.

B is a bounded smooth domain, containing the origin; µj and qj are constants with µj > 0, Re qj > 0, and
Im qj ≥ 0. For simplicity we only consider one inhomogeneity Bε. The general case (with a finite number of
well separated inhomogeneities) does not lead to any new difficulties. We assume that ω is not an eigenvalue
for the problem (6.18), and so by assumption there exists a unique solution (Eε, Hε) ∈ [H(curl,Ω)]2 = {F ∈
L2(Ω)3,∇× F ∈ L2(Ω)3}2. From (6.18) we have that

∇ · (qεEε) = ∇ · (µεHε) = 0 in Ω. (6.19)

From [15] and [13] we know that the boundary map given by

Λ : Eε × ν|∂Ω 7→ Hε × ν|∂Ω,

where Eε, Hε satisfy (6.18) determines the functions µε and qε, in the case when these are sufficiently smooth.
The goal in the piecewise constant context, considered here, is to construct an efficient method for determining
the location of Bε, and certain aspects of B from only one pair (Eε × ν,Hε × ν).

Let v be a smooth solution to

∇× (∇× v)− ω2µ0q0 v = 0. (6.20)

From the Maxwell equations (6.18) we obtain by integration by parts

∫
∂Ω

(∇× Eε)× ν · v dσ −
∫

∂Ω

(∇× v)× ν · Eε dσ = ω2µ0(q0 − q1)
∫

Bε

Eε · v dx

+
(
µ0

µ1
− 1

)∫
Bε

∇× Eε · ∇ × v dx. (6.21)
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If we replace v and ∇× v by v(z) and ∇× v(z) in Bε we formally obtain

∫
∂Ω

(∇× Eε)× ν · v dσ −
∫

∂Ω

(∇× v)× ν · Eε dσ = ω2µ0(q0 − q1)
(∫

Bε

Eε dx
)
· v(z)

+
(
µ0

µ1
− 1

) (∫
Bε

∇× Eε dx
)
· ∇ × v(z) + o(ε3). (6.22)

We note that it is quite easy, systematically to create vector valued functions v, that satisfy (6.20). For example,
let ξ ∈ R

3 be such that ξ · ξ = ω2µ0q0, let k be an arbitrary vector in R
3, and define

vξ,k(x) = eiξ · xk +
1

ω2µ0q0
∇∇ · (eiξ · xk) = eiξ · x

(
k − k · ξ

ω2µ0q0
ξ

)
. (6.23)

In order to derive a formula that is similar to (2.13) we first derive an asymptotic expansion for Eε inside Bε,
which we then insert into (6.22).

6.1. The asymptotic expansion for Eε

Following a common practice in multiscale expansions we introduce the local variable y =
x− z

ε
, where z is

the “center” of Bε. Let (E0, H0) be the solution to the following (background) Maxwell Equations

∇× E0 =iωµ0H0 in Ω,

∇×H0 =− iωq0E0 in Ω, (6.24)
E0 × ν =f on ∂Ω.

We expect that Eε(x) will differ appreciably from E0(x) for x near z, but that it will differ little from E0(x)
for x far from z. Therefore, in the spirit of matched asymptotic expansions, we shall represent Eε(x) by two
different expansions, an inner expansion for x near z, and an outer expansion for x far from z. The outer
expansion must begin with E0, so we write

Eε(x) = E0(x) + εα1E1(x) + εα2E2(x) + . . . , for |x− z| � O(ε), (6.25)

where 0 < α1 < α2 < . . . , and E1, E2 , . . . are to be found. We write the inner expansion as

Eε(z + εy) = eε(y) = e0(y) + εe1(y) + ε2e2(y) + . . . for |y| = O(1), (6.26)

where e0, e1, . . . are to be found. The magnetic fieldHε has similar expansions. The inner and outer expansions
must be asymptotically equal in some “overlap” domain within which the stretched variable y is large and x− z
is small. In this domain the matching condition is

E0(x) + εα1E1(x) + εα2E2(x) + . . . ∼ e0(y) + εe1(y) + ε2e2(y) + . . . (6.27)

From the terms of order ε0, we obtain the first matching condition

e0(y) → E0(z) as |y| → +∞.

If we substitute (6.26) into (6.18, 6.19) and formally equate coefficients of ε−1 we get

∇y × e0 = 0 , ∇y · (qe0) = 0 in R
3 ,
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where

q =

{
q0 in R

3 \B,
q1 in B.

Therefore,

e0(y) =
3∑

i=1

(E0(z) · ki) ∇yϕi(y), (6.28)

where ϕi is the unique solution to the following problem

∇y · (q(y)∇yϕi) = 0 in R
3,

ϕi(y)− yi → 0, as |y| → +∞.
(6.29)

The asymptotic behavior of ∇yϕi(y) as |y| → +∞ (see [10]) is

∇yϕi(y) = ki +
C

|y|3 y + o

(
1
|y|2

)
,

where C is a constant that depends on q0, q1, and B. We note that the coefficients qj are complex, but the fact
that Re qj > 0 is sufficient to guarantee the uniqueness and the decay mentioned above.

Exactly as for the electric field, the first order term in the asymptotic expansion of 1
iωµ1

∇×Eε = Hε inside Bε

is given by

h0(y) =
3∑

i=1

(H0(z) · ki) ∇yψi(y), (6.30)

where ψi is the unique solution to the following problem

∇y · (µ(y)∇y ψi) = 0 in R
3,

ψi(y)− yi → 0 , as |y| → +∞,
(6.31)

with

µ =

{
µ0 in R

3 \B,
µ1 in B.

Based on Remark 1.7 we immediately get that

q1
q0

∫
B

∂

∂yj
ϕl(y) dy = |B|δjl −

∫
∂B

yj
∂φ+

l

∂ν
dσy = Mjl

(
q0
q1

)
,

where the tensor M( q0
q1

) has been appropriately extended to complex aspect ratios. Similarly we get

µ1

µ0

∫
B

∂

∂yj
ψl(y) dy = Mjl

(
µ0

µ1

)
·
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6.2. The asymptotic formula for the measured data

By combining (6.22) and the (inner) asymptotic expressions (6.28, 6.30) we arrive at the following formula.

∫
∂Ω

(∇× Eε)× ν · v dσ −
∫

∂Ω

(∇× v)× ν · ν × (Eε × ν) dσ

= ε3ω2µ0(q0 − q1)
3∑

i=1

(E0(z) · ki)(
∫

B

∇yϕi(y) dy) · v(z)

+
(
µ0

µ1
− 1

)
iωµ1

3∑
i=1

(H0(z) · ki)
(∫

B

∇yψi(y) dy
)
· ∇ × v(z)

+o(ε3)

= ε3

[
ω2µ0q0

(
q0
q1
− 1

)
M

(
q0
q1

)
E0(z) · v(z) (6.32)

+iωµ0

(
µ0

µ1
− 1

)
M

(
µ0

µ1

)
H0(z) · ∇ × v(z)

]
+ o(ε3).

Here (Eε, Hε) is the unique solution to (6.18) and (E0, H0) is the unique solution to the unperturbed prob-
lem (6.24). The functions ϕi and ψi are defined by (6.29) and (6.31). To proceed from (6.22) to (6.32) we have
also used that ν × (Eε × ν) is the projection of Eε onto the tangent plane of ∂Ω. For a rigorous derivation of
this formula (and other asymptotic representations) we refer the reader to [1]. We may now insert the functions
vξ,k (or other solutions to (6.20) into (6.32)) to arrive at reconstruction algorithms related to those described
in Sections 3–5.

Remark 5. Note that if the inhomogeneity εB+ z (and the domain Ω) is cylindrical (in the x3 direction) then
we have ψ3 = ϕ3 = y3. Furthermore, the (correctly interpreted) functions ψ1, ψ2, ϕ1 and ϕ2 depend only on the
variables (y1, y2), and thus the polarization tensor ε3M(c) gets replaced by

ε2M(c) = ε2

[
{Mα,β(c)}2α,β=1 0
0 c−1|B′|

]
.

If we now consider the TE (transverse electric) case – that is the case of an electric field E = (0, 0, E(x1, x2)) with
corresponding magnetic field H = 1

iωµ ( ∂
∂x2

E,− ∂
∂x1

E, 0) – and take v = (0, 0, v(x1, x2)) (with4v+ω2µ0q0 v = 0)
then the analogue of (6.32) reads

∫
∂Ω′

∂Eε

∂ν
v dσ −

∫
∂Ω′

∂v

∂ν
Eε dσ = ε2

[
ω2µ0(q0 − q1)|B′|E0(z′)v(z′)

+
(
µ0

µ1
− 1

)
M

(
µ0

µ1

)
RT∇E0(z′) · RT∇v(z′)

]
+ o(ε2)

= ε2

[
ω2µ0(q0 − q1)|B′|E0(z′)v(z′) (6.33)

+
(
µ0

µ1
− 1

)
µ1

µ0
M

(
µ1

µ0

)
∇E0(z′) · ∇v(z′)

]
+ o(ε2)
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where B′, Ω′ and z′ denote the two dimensional base domains (or point) of B, Ω and z, respectively. In the last
identity we used the second observation from Remark 1.7. The formula (6.33) is closely related to the boundary
representations, rigorously derived in [16]. Indeed, the formula (6.33) may obtained by appropriate integration
of a slight variation of the representation given in Theorem 1 of [16].

This research was partially supported by the National Science Foundation under grants DMS-9704575 (MSV) and
INT-9815798 (HA and SM).
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