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Abstract. This paper is concerned with the construction of local observers for nonlinear systems
without inputs, satisfying an observability rank condition. The aim of this study is, first, to define
an homogeneous approximation that keeps the observability property unchanged at the origin. This
approximation is further used in the synthesis of a local observer which is proven to be locally convergent
for Lyapunov-stable systems. We compare the performance of the homogeneous approximation observer
with the classical linear approximation observer on an example.
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1. Introduction

Observers design for nonlinear systems has been an active research area for the last decades. Explicit con-
structions for nonlinear systems have been investigated, for example high gain observers (see [8, 9, 16, 20]) or
backstepping observers (see [2, 19]). But these constructions only apply to very specific class of systems. That
is why many tools have been developed in order to transform systems into a suitable form for observer design.

The first results have been obtained using differential geometry. Necessary and sufficient conditions for exact
linearization of nonlinear systems can be found in [17] for systems without inputs and in [18] for systems with
inputs. These papers give explicit change of coordinates, nevertheless there is two restrictions to their application.
First, the class of systems which are exactly linearizable is restrictive. Second, even if the conditions are met,
the computation of the transformation becomes quickly very heavy as the dimension increases, see [22].

A theory which has similar considerations has been developed in the early 90’s, see [6, 7] for recent devel-
oppment. The algebraic observability characterizes systems for which the state can be written as a function of
the input and output and a finite number of their derivatives. This theory uses differential algebra, and instead
of solving differential equations to find the transformation, we need to solve algebraic equations. Just as exact
linearization, these equations can be very complex for nonlinear systems.
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The restrictions of the previous approaches have been alleviated since then. Conditions for the transformation
of nonlinear systems into more general forms than exact linear systems have been explored. These classes of
systems consists in systems which are made up of a particular linear part and a nonlinear part satisfying some
conditions, and are characterized using algebro-geometric tools, see [3, 5, 10, 21, 24] for example. The common
point in all these approaches is that the output function is always linearized, hence, this still restrict the class
of systems considered while it allows to obtain global or semi-global convergence.

Another construction which does not require to linearize the output function has been developed in [15], it
uses the Lyapunov auxiliary Theorem and a direct coordinate transformation. Conditions for the existence of
this transformation have been further study, especially in [1]. The main drawback is that it requires to solve a
set of partial differential equations and is then not constructible in general.

An alternative method is to consider approximations and to design the observer considering only a part of
the system. This allow to reduce the complexity of the system and then to actually design an observer. But,
generally, only local convergence is obtained for the observer. Nevertheless, if the considered system is too
complex, this can be the only possibility since other methods cannot be applied in practice.

Some of the previous approaches cited here, especially the one derived from exact linearization, can be
viewed as approximation design, since the observer is designed using the linear part only while the conditions
on the nonlinear part ensure convergence of the observer. Here, we are interested in a dedicated approach to
approximation for the observability problem, which applied to a wide class of systems, that is systems verifying
an observability rank condition. Unlikely to the works derived from the exact linearization, here we aim at
designing an approximation for both the vector field and the output function.

The simplest strategy when the system is too complex is the linear approximation. It gives an efficient
procedure to design a local observer and apply to a wide class of systems. Two options are available, we can
consider the linear approximation in the neighborhood of a point or along a trajectory. Although the linear
approximation along a trajectory leads to better results, a very few results exist about the convergence and lead
to very restrictive conditions. Thus, we consider here approximation in the neighborhood of a point, without
loss of generality, we assume that this point is the origin.

We believe that a more efficient approximation can be designed, since the linear one is not directly induced
by the problem of observability. We want to construct an approximation which is specially adapted to the
observability problem. In order to obtain such an approximation, we consider the tool of homogeneity which gives
the necessary freedom for this construction. This tool has already been used for the construction of homogeneous
approximations for controlled systems and has been worked out by numerous authors [4,12,13,25,27]. It is rooted
from the theory of hypo-elliptic operators [11,23]. It has been proved that for any nonlinear control system which
is fully accessible, there always exists an homogeneous approximation which remains fully accessible, see [13].
More precisely, given a control system

ẋ = f0(x) +
m∑

i=1

uifi(x), x ∈ R
n, (Σ)

the rank of the Lie algebra spanned by the vector fields f0, . . . , fm is assumed to be n. A change of coordinates
is derived from a suitable filtration of this Lie algebra. The homogeneous approximation of system (Σ) is then
obtained by taking the first term in the homogeneous expansion of the vector fields {f0, f1, . . . , fm} written in
the new system of coordinates.

To the best of our knowledge, the dual problem of the existence of an observable homogeneous approximation
for an observable nonlinear system has not been investigated yet. This problem is solved next (locally at the
origin). It is shown that this homogeneous approximation always exists and is explicitly constructed. Similarly
to the case of controllability we construct a flag on the space of observability, which is spanned by the one-
forms associated to the output functions and their Lie derivative along the vector field of the system. There
are two main issues which make the difference between accessible homogeneous approximation and observable
homogeneous approximation. First, the space of observability is a subspace of the space of one-forms on R

n and
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not the algebra of vector fields. Second, an homogeneous approximation has to be constructed that copes with
both state equation and output equation. The resulting system has to consist simultaneously of an approximation
for the vector fields and of an approximation for the output function.

The approximation obtained here is further used in order to construct an observer for a general class of
nonlinear systems. Sufficient conditions are given for the convergence of the obtained observer. The construc-
tion presented here is compared with the linear approximation observer. The performance of both methods is
illustrated by an example.

The paper is organized as follows. In Section 2, definitions and notations are given, which will be used in
the paper. Section 3 contains the main theoretic development of this paper. The approximation induced by
the observability property of a system without inputs is constructed. Properties of the space of observation of
the approximating system are stated. An observer is designed using the previously constructed approximation,
in Section 4. Sufficient conditions for the convergence of this observer are stated. In Section 5, an example is
given which illustrate the performance of the observers obtained by a linear approximation and an homogeneous
approximation. Section 6 contains the proofs. Finally, the conclusion is given in Section 7.

2. Definitions and notations

2.1. Notations

In the sequel, we denote:

• R the set of real numbers;
• N the set of nonnegative integers;
• “span” the linear span on the corresponding vector space over the field R;
• Lfh the Lie derivative of the function h : R

n → R along the vector field f : R
n → R

n;
• [f, g] the Lie bracket of the vector fields f, g : R

n → R
n;

• adi
fg, where i ∈ N is defined by induction with ad0

fg = g and adi
f = [f, adi−1

f g] for i ≥ 1;

• ω(g)(x) Δ= ω(x)(g(x)), x ∈ R
n, where ω is a 1-form on R

n and g is a vector field on R
n;

• (t, ξ) → exp(tf)(ξ) the solution of ẋ(t) = f(x(t)), x(0) = ξ ∈ R
n, where f : R

n → R
n is a smooth vector

field;
• an open subset U of R

n is said to be positively invariant under system ẋ(t) = f(x(t)) if every solution x(t)
of this system starting in U stays in U ;

• ‖.‖i,k the i-norm on R
k, where i, k ∈ N (if not specified, norm 2 will be used);

• ‖.‖M the norm associated to the symmetric definite positive matrix M ;
• B‖.‖(x, ε) = {z ∈ R

n | ‖z − x‖ < ε}, where x ∈ R
n, ε > 0 and ‖.‖ is a norm on R

n;
• δj

i the usual Kronecker symbol which equal 1 if i = j, 0 otherwise;
• |α| =

∑n
i=1 αi, where α ∈ N

n is a multi-index;
• ‖α‖r =

∑n
i=1 riαi, where α, r ∈ N

n;
• zα = zα1

1 . . . zαn
n , where α ∈ N

n and z ∈ R
n;

• ∂α/∂zα = ∂α1/∂zα1
1 . . . ∂αn/∂zαn

n , where α ∈ N and (z1, . . . , zn) are coordinates.

Throughout the paper, the functions and vector fields are supposed to be analytic.

2.2. Homogeneity

We recall here the definition of homogeneity and direct properties, see [13, 14] for more details.

Definition 2.1. The function

Δr
ε : R

n → R
n,

(x1, . . . , xn) �→ Δr
εx = (εr1x1, . . . , ε

rnxn), (2.1)

is called a dilation with respect to the weights r = (r1, . . . , rn) ∈ N
n, where ε > 0.
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Definition 2.2. A real valued function h : R
n → R is said to be homogeneous of degree d with respect to the

dilation Δr
ε if

h(Δr
εx) = εdh(x), ∀x ∈ R

n, (2.2)

for all ε > 0. Equivalently, we say that h is homogeneous of degree d with respect to the weights (r1, . . . , rn).

Example 2.3. The function h(x1, x2) = x1x
2
2 + x2

1 is homogeneous of degree 4 with respect to the weights
(r1, r2) = (2, 1).

Definition 2.4. A vector field f : R
n → R

n is said to be homogeneous of degree d with respect to the dilation
Δr

ε if
f(Δr

εx) = εdΔr
εf(x), ∀x ∈ R

n, (2.3)

for all ε > 0.

Example 2.5. The vector field f(x1, x2) = (x1x
2
2)

∂
∂x1

+ (x1x2) ∂
∂x2

is homogeneous of degree 2 with respect to
the weights (r1, r2) = (2, 1).

The following lemma shows that the Lie derivative and the Lie bracket are compatible with the notion of
homogeneity.

Lemma 2.6. The following results hold true:

(a) if h1, h2 : R
n → R are homogeneous functions of degree d1 and d2 respectively, with respect to Δr

ε , then
their product h1h2 is homogeneous of degree d1 + d2 with respect to Δr

ε ;
(b) if h : R

n → R is an homogeneous function of degree d with respect to the dilation Δr
ε , then the partial

derivative ∂h
∂xi

of h relative to the ith coordinate is homogeneous of degree d − ri with respect to Δr
ε ;

(c) if f1, f2 : R
n → R

n are homogeneous vector fields of degree d1 and d2 respectively, with respect to Δr
ε , then

the Lie bracket [f1, f2] of f1, f2 is a homogeneous vector field of degree d1 + d2 with respect to Δr
ε ;

(d) if h : R
n → R and f : R

n → R
n are a function and a vector field homogeneous of degree d1 and d2

respectively, with respect to the dilation Δr
ε , then the Lie derivative Lfh of h along the vector field f is a

homogeneous function of degree d1 + d2 with respect to Δr
ε .

Proof. (a), (b) are given by property 2 and (c) by property 1 in [13]. A direct computation gives (d). �

2.3. Order induced by homogeneity

Let h : R
n → R and f : R

n → R
n be a function and a vector field, respectively. Let Δr

ε be a dilation with
nonnegative integer weights. Then h and f admit an homogeneous expansion of the following form

h(x) =
+∞∑
l=0

hl(x), (2.4)

f(x) =
+∞∑

l=−max
i

{ri}
fl(x), (2.5)

where each hl : R
n → R and fl : R

n → R
n are homogeneous function and vector field, respectively, of degree l

with respect to Δr
ε . Indeed, h an f are analytic, therefore an expansion in polynomial functions exists. Since the

weights are nonnegative integer, each polynomial function is homogeneous of a certain degree. We can switch
the terms of this series, because it is absolutely convergent, in order to obtain the homogeneous expansion.

Definition 2.7. An analytic function h : R
n → R (respectively, an analytic vector field f : R

n → R
n) is said

to be of order o(h) (respectively o(f)) greater or equal to m ∈ Z if all the terms of degree d ≤ m − 1 in the
homogeneous expansion vanish.
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Example 2.8. The vector field f(x) = (x2 + x1 + x2x1) ∂
∂x1

+
(
x3

1 + x1x2 + x2
2

)
∂

∂x2
with the weights (r1, r2) =

(1, 2), admits the following homogeneous expansion

f(x) =
2∑

l=−2

fl(x), (2.6)

with f−2(x) = 0, f−1(x) = 0, f0(x) = (x1) ∂
∂x1

, f1(x) = (x2) ∂
∂x1

+ (x3
1 + x1x2) ∂

∂x2
, f2(x) = (x1x2) ∂

∂x1
+ (x2

2)
∂

∂x2
·

Furthermore f is of order o(f) ≥ 0.

3. Construction of an homogeneous approximation for the observability

problem

Consider the following system {
ẋ = f(x), x ∈ R

n,

y = h(x) = (h1(x), . . . , hp(x)), y ∈ R
p,

(3.1)

where x is the state and y is the measured output. Functions f and h are supposed to be analytic and to satisfy
f(0) = 0 and h(0) = 0. We assume that system (3.1) fulfills an observability rank condition, i.e.

dim (dO(0)) = n, (3.2)

where
dO = {dγ, γ ∈ O}, (3.3)

and
O = span

{Li
fhj , i ∈ N, j = 1, . . . , p

}
. (3.4)

The space O is called the observability space of system (3.1).
The construction of the approximation is divided into two parts. First, we construct a change of coordinates

z = ϕ−1(x). Then, we show that these new coordinates allow us to define an approximation which keeps
observability properties unchanged at the origin.

3.1. Construction of new coordinates

The construction of the change of coordinates is split into four part

(1) definition of a flag on dO;
(2) definition of a basis of 1-forms for the flag, at the origin;
(3) construction of a dual basis of vector fields;
(4) definition of the change of coordinates.

3.1.1. Definition of the flag

In order to define an approximation which keeps the informations of the observability space at the origin of
the original system, we need to put a structure on this space. This structure has to describe the action of the
vector field f on the output function, performed by the Lie derivative. Therefore, we consider the following flag

Lj = d
(
span{Li

fhk : 0 ≤ i ≤ j − 1, k = 1, . . . , p }) . (3.5)

The flag {Lj}j≥1 has the following properties

• Lj ⊂ Lj+1, j ≥ 1;
• LfLj ⊂ Lj+1, j ≥ 1;
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• dO = ∪j≥1Lj.

Remark 3.1. The subsets Lj, j ≥ 1, contain only exact 1-forms because of their construction. Hence, the
Lie derivative LfLj of the subspace of 1-forms Lj is defined via the Cartan formula Lfdh = dLfh, where
h : R

n → R.

3.1.2. Definition of the basis

Now that a structure on the space of observability has been defined, we need a related basis. Let us define
first

n0 = 0, (3.6)
nj = dim Lj(0), j ≥ 1, (3.7)

and
d = min{k : dim Lk(0) = n}, (3.8)

where the number d is a finite integer because of (3.2). We define next a basis (ωi)1≤i≤n, following a recursive
procedure:

• pick ω1, . . . , ωn1 in L1 such that ω1(0), . . . , ωn1(0) is a basis of L1(0);
• pick ωn1+1, . . . , ωn2 in L2 such that ω1(0), . . . , ωn2(0) is a basis of L2(0),

...
• pick ωnd−1+1, . . . , ωnd

in Ld such that ω1(0), . . . , ωnd
(0) is a basis of Ld(0).

Remark 3.2. By the definition of dO, each ωi, 1 ≤ i ≤ n is exact, then we can associate a unique real function
hi : R

n → R to ωi by

dhi = ωi, (3.9)
hi(0) = 0.

3.1.3. Construction of the dual basis of vector fields

The delicate part for the construction of the change of coordinates is to find a dual basis of vector fields with
the required properties. We proceed as follow, first we state what properties are needed for the dual basis and
then, we show that there always exists such a basis.

We define a basis of vector fields at the origin, of R
n, as a set of n vector fields g1, . . . , gn defined on a

neighborhood U of the origin and such that g1(0), . . . , gn(0) are independent.
Let V be the Lie algebra generated by g1, . . . , gn and f , and (Vj)j≥0 the increasing sequence of subspaces of

V , defined by
Vj = {g ∈ V : ωi(g) = 0, 1 ≤ i ≤ nd−j}. (3.10)

A dual basis adapted to the flag (3.5) is defined as a basis g1, . . . , gn of vector fields at the origin which verify
the following assumption:

Assumption 3.3.

(i) Vj ⊂ Vj+1;
(ii) [Vj , Vk] ⊂ Vj+k;
(iii) ∪0≤j≤dVj = V ;
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ωnd
ω1

gnd−1+1

ωnd−1+1ωn1 , ωn2

g1 gnd
gn1

, gn1+1

1

d−1

1

d

d

d−1

Figure 1.

(iv) For all i = 1, . . . , n (
Dhi

)
(0) = 0, ∀D ∈ Bd−j;

where j ∈ {1, . . . , d} is such that nj−1 + 1 ≤ i ≤ nj, and

Bd−j−1 = span

{
Lg1 ◦ · · · ◦ Lgk

| k ∈ N, {g1, . . . , gk} ⊂ {g1, . . . , gn} and
k∑

l=1

w(gl) ≤ d − j − 1

}
,

w(g) = min{k : g ∈ Vk}.

(v) For k = 1, . . . , n and j ∈ {1, . . . , d} verifying nj−1 + 1 ≤ k ≤ nj , the following equality holds true

(ωi(gk)) (0) = 0, i = 1, . . . , nj−1.

Remark 3.4. Conditions (i)–(iii) are the same as in [13] and are used to obtain the approximation of the vector
field. Condition (iv) is for the output function approximation. And the last condition ensures that the basis of
vector fields are ordered with respect to (Vj) as illustrated in Figure 1.

Now, we exhibit a vector fields basis satisfying Assumption 3.3. Consider the matrix M(x) for which the
columns are the components of the 1-forms ω1, . . . , ωn, i.e.

Mij(x) = ωi
j(x), ωj(x) =

n∑
k=1

ωk
j (x)dxk, x ∈ R

n, 1 ≤ i, j ≤ n. (3.11)

Since the observability rank condition is fulfilled at the origin, the matrix M is invertible on a neighborhood U
of the origin. Hence, there exist analytics vector fields g̃1, . . . , g̃n defined on U , such that

ωi (g̃j) (x) = δj
i , ∀x ∈ U . (3.12)

Let i = 1, . . . , n, define
gi(x) = (g̃n−i+1)(j+2)(x), ∀x ∈ U , (3.13)

where j ∈ {1, . . . , d} is such that nj−1 ≤ n − j + 1 ≤ nj . Then we have the following result.
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Proposition 3.5. The dual basis defined by equation (3.13) verifies Assumption 3.3.

Remark 3.6. Another possible dual basis is given by

gi = g̃n−i+1, i = 1, . . . , n. (3.14)

But as demonstrated by Proposition 3.5, we do not need to take an exact dual basis. Furthermore, this would
make the computations for the change of coordinates unnecessarily complicated, or even impossible.

3.1.4. Definition of the change of coordinates

Consider a basis of vector fields at the origin g1, . . . , gn verifying Assumption 3.3. Then, we can define new
coordinates z = ϕ−1(x), ϕ : R

n → R
n, by

ϕ(z1, . . . , zn) = exp(zngn) ◦ · · · ◦ exp(z1g1)(0), (3.15)

We call z, coordinates adapted to the flag (3.5). In the coordinates z defined by (3.15), the system (3.1) becomes{
ż = ∂ϕ−1

∂x (ϕ(z)).f(ϕ(z)) := F (z),
y = h(ϕ(z)) := H(z) = (H1, (z), . . . , Hp(z)),

(3.16)

similarly, we denote

Hi(z) := hi(ϕ(z)), i = 1, . . . n, (3.17)

Gi(z) =
∂ϕ−1

∂x
(ϕ(z)).gi(ϕ(z)), i = 1, . . . , n, (3.18)

and we have the following result:

Proposition 3.7 ([13], Prop. 2.1). In the new coordinates defined by (3.15), we have Gi(0) = ∂/∂zi, i =
1, . . . , n.

3.2. Approximation design for the observability

We now investigate the properties of the system (3.1) in the new coordinates defined by (3.15). This will
allow us to define an homogeneous approximation which contains the informations of the observability space at
the origin.

3.2.1. Definition of the approximation

We first define the weights (r1, . . . , rn) adapted to the filtration (Lj)j≥1 at the origin by

ri = d − j, nj + 1 ≤ i ≤ nj+1, j = 0, . . . , d − 1. (3.19)

The following main result is fundamental for our study, indeed, it shows that the order of H1, . . .Hn and F are
suited to the definition of an homogeneous approximation with respect to the weights defined by (3.19).

Theorem 3.8. Let F be given by (3.16) and H1, . . . , Hn by equation (3.17). The order of F and H1, . . . , Hn

with respect to the weights (3.19) verify:

• o(Hi) ≥ d − j, where j ∈ {1, . . . , d} is such that nj−1 + 1 ≤ i ≤ nj;
• o(F ) ≥ −1.

Remark 3.9. We have obtained properties on the order of the functions (Hi)i=1,...,n. Thus, to define an
approximation of the system (3.16), we need to have the same property to apply to the output function. That
is why, in the following, we assume that dh1(0), . . . , dhp(0) are independent and that h1 = h1, . . . hp = hp. One
can notice that n1 = p.
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The one-forms dh1, . . . , dhp associated to the output function of system (3.1) belong to L1 by construction.
Hence, applying Theorem 3.8, the homogeneous expansion of F and Hi, i = 1, . . . , p (given by (3.12)), with
respect to the weights (r1, . . . , rn) can be written as

F (z) =
+∞∑

l=−1

Fl(z), (3.20)

Hi(z) =
+∞∑

l=d−1=r1

H l
i(z), (3.21)

where for each l, Fl and H l
i are homogeneous of degree l with respect to the weights (3.19).

Definition 3.10. The approximation of system (3.16) with respect to the flag (Lj)j≥1 is defined as

H̃i(z) = Hd−1
i (z), (3.22)

F̃ (z) = F−1(z). (3.23)

Remark 3.11. The approximation simply consists in taking the first term in the homogeneous approximation
with respect to the given weights.

3.2.2. Properties of the approximation

The following result states, in a precise way, the correspondence between the observability space of the original
system (3.1) and its approximating system{

ż = F̃ (z), z ∈ R
n,

y = H̃(z), y ∈ R
p.

(3.24)

Theorem 3.12. Let ω ∈ L1 and let ω̃ be the corresponding one-forms given by the approximating system (3.24).
Let k ∈ {0, . . . , d − 1}, then if we denote Lk

F ω(z) =
∑n

i=1 ai(z)dzi and Lk
F̃

ω̃(z) =
∑n

i=1 bi(z)dzi, we have

ai(0) = bi(0), nk + 1 ≤ i ≤ nk+1,
ai(0) = bi(0) = 0, nk+1 + 1 ≤ i ≤ n.

(3.25)

Let (L̃j)j≥1 be the flag associated to the approximating system (3.24), the following corollary is a direct
consequence of Theorem 3.12 and hence will not be proved.

Corollary 3.13. For each j = 1, . . . , d, we have the following equality

Lj(0) = L̃j(0). (3.26)

4. Local observer design

In this section, we present the construction of a local observer, using the approximation developed in the
previous section. We consider the case of a system with an output of dimension 1 to avoid unnecessary compli-
cated notations, but the extension to the multi-output case follows the same lines. Let us consider the system{

ẋ = f(x), x ∈ R
n,

y = h(x), y ∈ R,
(4.1)

where f and h are analytics. We assume that

dim
(
span{dLk

fh(0), k = 0, . . . , n − 1}) = n. (4.2)

Hence system (4.1) verifies the observability rank condition.
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According to the previous section, there exists new coordinates z defined by z = ϕ−1(x) and weights ri = n−i,
i = 1, . . . , n, such that, in the new coordinates, F (z) = (∂ϕ−1/∂x)(ϕ(z)).f(ϕ(z)) and H(z) = h(ϕ(z)) are of
order greater or equal to −1 and r1 = n − 1 respectively. The approximating system is then given by{

ż = F̃ (z),
y = H̃(z),

(4.3)

where F̃ (z) = F−1(z) and H̃(z) = Hr1(z) are the first terms of the homogeneous expansion of F and H
respectively, with respect to weights ri = n − i, i = 1, . . . , n.

In order to construct an observer for system (4.1), we first design an observer for system (4.3). We use the
high gain observer presented in [9] after having transformed the system (4.3) into an observability canonical
form. The observer for the original system is then obtained simply by replacing f̃ and h̃ by f and h.

The second change of coordinates is given by

ξ = Φh(z) =

⎛
⎜⎜⎜⎝

H̃(z)
LF̃ H̃(z)

...
Ln−1

F̃
H̃(z)

⎞
⎟⎟⎟⎠ . (4.4)

In the new coordinates ξ, system (4.3) is in the following observability canonical form{
ξ̇ = Aξ,

y = Cξ,
(4.5)

where Aij = δj−1
i , 1 ≤ i, j ≤ n and C = [1 0 . . . 0]. An observer is thus given by

˙̂
ξ = Aξ̂ − K(θ)C(ξ̂ − ξ), (4.6)

where the gain K(θ) is given by

K(θ) :=

⎡
⎢⎢⎣

θC1
n

θ2C2
n

...
θnCn

n

⎤
⎥⎥⎦ , Cp

n =
n!

(n − p)!p!
, θ ∈ R. (4.7)

In the original coordinates x, the gain Kh(θ, x̂) reads

Kh(θ, x̂) =
∂(ϕ ◦ Φ−1

h )
∂ξ

(
Φh ◦ ϕ−1(x̂)

)
K(θ), (4.8)

and the observer for the original system (4.1)

˙̂x = f(x̂) − Kh(θ, x̂)(h(x̂) − h(x)). (4.9)

We have the following result of convergence for the observer (4.9).

Proposition 4.1. Assume that system (4.1) verifies property (4.2). Then, there exists θ∗ > 0 such that for all
θ > θ∗, there exist V1(θ) and V2(θ), two neighborhoods of the origin, such that:

if V1 positively invariant under system (4.1) then the observer (4.8)–(4.9) is convergent on V2.
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Remark 4.2. Proposition 4.1 states that for every θ > θ∗, there exists a set in which the approximation is
valid. Thus if the solutions of system (4.1) stay in this set, the observer is locally convergent.

The following proposition is similar to Proposition 4.1 but with different assumptions.

Proposition 4.3. If system (4.1) verifies property (4.2) and if its origin is Lyapunov stable, then there exists
a real number θ∗ > 0, such that for all θ > θ∗, there exists a neighborhood of the origin U(θ) such that
observer (4.8)–(4.9) is convergent on U .

Remark 4.4. Proposition 4.1 and 4.3 can be seen as an application of Theorem 1 in [26], which is derived from
the center manifold theory. But we propose here an original proof, derived from Lyapunov theory, which give
the possibility to obtain an analytic estimation of the domain of convergence.

5. Example

In this section, we apply the methodology developed in this paper on a particular example and we compare
it to the observer given by the linear approximation.

5.1. System

The considered system is ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = −x1 + x2 + x2
2 − x3

3 − x3
2,

ẋ2 = x3 − x2 + x1 − x3
3 − x5

1,

ẋ3 = −x5
3 − x3

2,

y = h(x) = x2 + x2
1 + x1x3 + x2

3.

(5.1)

This system fulfill the observability rank condition, since

dh(0) = dx2,

dLfh(0) = dx3 − dx2 + dx1,

dL2
fh(0) = −2dx1 + 2dx2 − dx3.

Thus dim dO(0) = 3.

5.2. Observer design by homogeneous approximation

We can apply our method:

• Computation of the first change of coordinates:
A basis for the flag is given by

dh1 = dh,

dh2 = dLfh,

dh3 = dL2
fh.

It is straightforward to check that the following dual basis fulfill the requirements of Assumption 3.3

g1(x) =
∂

∂x2
,

g2(x) =
∂

∂x1
,

g3(x) = − ∂

∂x1
+ 2x1

∂

∂x2
+

∂

∂x3
·
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Then the diffeomorphism (3.15) is given by

ϕ(z) =

⎛
⎝ −z3 + z2

−z2
3 + z1 + 2z2z3

z3

⎞
⎠ , ϕ−1(x) =

⎛
⎝x2 − 2x1x3 − x2

3

x1 + x3

x3

⎞
⎠ . (5.2)

Hence, we obtain the following approximation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż1 = −z2
3 + z2,

ż2 = z3,

ż3 = 0,

y = z1 + z2z3.

(5.3)

• Construction of the second change of coordinates:
By definition

ξ = Φh(z) =

⎛
⎝ H̃(z)

LF̃ H̃(z)
L2

F̃
H̃(z)

⎞
⎠ . (5.4)

Thus

Φh(z) =

⎛
⎝ z1 + z2z3

z2

z3

⎞
⎠ , Φ−1

h (ξ) =

⎛
⎝ ξ1 − ξ2ξ3

ξ2

ξ3

⎞
⎠ . (5.5)

• Construction of the observer:
The change of coordinates from x to ξ is given by

ξ = Φh ◦ ϕ−1(x) =

⎛
⎝x2 − x1x3

x1 + x3

x3

⎞
⎠ , x = ϕ ◦ Φ−1

h (ξ) =

⎛
⎝ ξ2 − ξ3

−ξ2
3 + ξ1 + ξ2ξ3

ξ3

⎞
⎠ . (5.6)

Then

Kh(θ, x̂) =

⎛
⎝ 3θ − θ3

3θ + θ3x̂1 + (3θ2 − θ3)x̂3

θ3

⎞
⎠ , (5.7)

with K(θ) = [3θ, 3θ2, θ3]T . The observer is given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̂x1 = −x̂1 + x̂2 + x̂2
2 − x̂3

3 − x̂3
2

−(3θ − θ3)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3) − (x2 + x2
1 + x1x3 + x2

1)),
˙̂x2 = x̂3 − x̂2 + x̂1 − x̂3

3 − x̂5
1

−(3θ + θ3x̂1 + (3θ2 − θ3)x̂3)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3) − (x2 + x2
1 + x1x3 + x2

1)),
˙̂x3 = x̂5

3 − x̂3
2 − (θ3)((x̂2 + x̂2

1 + x̂1x̂3 + x̂2
3) − (x2 + x2

1 + x1x3 + x2
1)).

(5.8)

5.3. Observer design by linear approximation

In order to compare our approach with the linear approximation, we apply the same method:

• Definition of the linear approximation ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = −x1 + x2,

ẋ2 = x3 − x2 + x1,

ẋ3 = 0,

y = x2.

(5.9)
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• Computation of the change of coordinates

ξ = Φl(x) =

⎛
⎜⎝ h̃l(x)

Lf̃l
h̃l(x)

L2
f̃l

h̃l(x)

⎞
⎟⎠ =

⎛
⎝ x2

x1 − x2 + x3

−2x1 + 2x2 − x3

⎞
⎠ , Φ−1

l (ξ) =

⎛
⎝ ξ1 − ξ2 − ξ3

ξ1

2ξ1 + ξ3

⎞
⎠ . (5.10)

• Construction of the observer

Kl(θ) =
∂Φ−1

l

∂ξ
(Φl(x̂))K(θ) =

⎛
⎝3θ − 3θ2 − θ3

3θ
3θ2 + θ3

⎞
⎠ . (5.11)

with K(θ) = [3θ, 3θ2, θ3]T . We obtain the following observer
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1 = −x̂1 + x̂2 + x̂2
2 − x̂3

3 − x̂3
2

−(3θ − 3θ2 − θ3)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3) − (x2 + x2
1 + x1x3 + x2

3)),
˙̂x2 = x̂3 − x̂2 + x̂1 − x̂3

3 − x̂5
1

−(3θ)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3) − (x2 + x2
1 + x1x3 + x2

3)),
˙̂x3 = x̂5

3 − x̂3
2

−(3θ2 + θ3)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3) − (x2 + x2
1 + x1x3 + x2

3)).

(5.12)

5.4. Results of simulations

We have computed an estimation of the domain of convergence of both observers by numerical means. More
precisely, we have determined the larger δ > 0 such that B(0, δ)×B(0, δ) is in the domain of convergence U of the
observer. For each δ, we have run 100 000 simulations where each corresponds to a couple of initial conditions
taken randomly in B(0, δ)×B(0, δ). An initial condition is said to be into the domain of convergence if at time
tsimulation = 30s the error between the original system and the observer is less than εsimulation = 10−3. The
results are given in (5.13).

δ observer by homogeneous approximation δ observer by linear approximation
θ = 1 0.56 0.3
θ = 2 0.3 0.2

(5.13)

We illustrate the convergence of both observers for particular initial conditions. We consider the initial
condition x0 = [0.1, 0.1, 0.1] for the original system and x̂0 = [−0.2, 0.1, 0.05] for both observers. The results
are given in Figure 2 for θ = 1 and in Figure 3 for θ = 2, where the original system is represented with solide
lines while the observers are represented with dashed lines. We notice that the behavior of both observers is
similar for θ = 1, but for θ = 2, as expected from the estimation of the domain of convergence, the homogeneous
approximation observer is still convergent but not the linear one, which explode in finite time, indeed ‖x0‖2 ≈
0.17 and ‖x̂0‖2 ≈ 0.23.

6. Proofs

6.1. Proof of Proposition 3.5

In order to prove Proposition 3.5, we need the following technical result:

Lemma 6.1. Let g : U → R be an analytic vector field and ω be an analytic one form defined on U , where U
is a neighborhood of the origin in R

n, such that

ω(g)(x) = 0, ∀x ∈ U . (6.1)
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Figure 2. Original system (5.1) (solid line) and the two observers (dashed line) with a gain θ = 1.

If we denote g(k) the Taylor expansion of g up to order k, then

(
ω(g(k))

)
(l)

= 0, l = 0, . . . , k − 1. (6.2)

Proof of Lemma 6.1. Since g and ω are analytics, we can write g as followed:

g(x) =
n∑

i=1

(
+∞∑
k=0

gi
k(x)

)
∂

∂xi
, x ∈ U , (6.3)

where gi
k(x) is the kth term in the Taylor expansion of the real valued function gi(x), and

ω(x) =
n∑

i=1

(
+∞∑
k=0

ωi
k(x)

)
dxi, x ∈ U , (6.4)
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Figure 3. Original system (5.1) (solid line) and the two observers (dashed line) with a gain θ = 2.

where ωi
k(x) is the kth term in the Taylor expansion of ωi. Thus

ω(g)(x) =
n∑

i=1

(
+∞∑
k1=0

gi
k1

(x)

)(
+∞∑
k2=0

ωi
k2

(x)

)
, (6.5)

=
n∑

i=1

(
+∞∑
l=0

l∑
m=0

gi
m(x)ωi

l−m(x)

)
, (6.6)

=
+∞∑
l=0

(
n∑

i=1

l∑
m=0

gi
m(x)ωi

l−m(x)

)
, (6.7)

is the Taylor expansion of the function ω(g). Since ω(g) is analytic and vanish in a neighborhood U of the origin,
we necessarily have

n∑
i=1

l∑
m=0

gi
m(x)ωi

l−m(x) = 0, ∀x ∈ U , ∀l ∈ N. (6.8)

Hence, if g(k) is taken instead of g, the first (k−1) terms of the Taylor expansion of ω(g) vanish, i.e. (ω(g))(l) =
0, l = 0, . . . , k − 1. �
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Proof of Proposition 3.5.

Points (i) and (v)
These properties are direct consequences of the definition of (gi)1≤i≤n and (Vj)j≥1.
Point (iv)
Let i ∈ {1, . . . , n}, then there exists j ∈ {1, . . . , d} such that nj−1 + 1 ≤ i ≤ nj . We have to prove that for all
D ∈ Bd−j

Dhi(0) = 0. (6.9)

Since D is in Bd−j , we can write

D = Lg1 . . .Lgk
, with

k∑
l=1

w(gl) ≤ d − j. (6.10)

Let p = w(gk), by definition of B, gk ∈ {g1, . . . , gn−nd−p
}. Apply Lemma 6.1 with equation (3.13), we get(Lgk

hi

)
(l)

(0) = 0, 0 ≤ l ≤ d − p + 1. (6.11)

We have k − 1 < d − p + 1, because (k − 1) + p ≤ d − j ≤ d, hence

Dhi(0) = Lg1 . . .Lgk
hi(0) = 0. (6.12)

Point (ii)
Since V is spanned by f and {g1, . . . , gn}, we just have to show that, for a given k ∈ N and vector fields
g1, . . . , gk ∈ {g1, . . . , gn, f} verifying

∑k
l=1 w(gl) = j, the following property is verified

adg1 . . . adgk−1gk ∈ Vj , (6.13)

i.e., we have to prove that
ωi(adg1 . . . adgk−1gk)(0) = 0, 1 ≤ i ≤ nd−j. (6.14)

The left hand-side of equation (6.14) can be rewritten as

Ladg1 ...adgk−1gk
hi(0). (6.15)

For two vector fields f̃ , g̃ : U → R
n and a function h̃ : U → R

n, we have

L[f̃ ,g̃]h = Lf̃Lg̃h − Lg̃Lf̃h. (6.16)

Hence (6.15) can be written as the sum of terms of the type cLgs1
. . .Lgsk

hi with {s1, . . . , sk} = {1, . . . , k} and
c = ±1. There is two possible cases. First, assume that gsk

belongs to {g1, . . . , gn}. In this case, the idea of the
proof is the same that for property (iv). Indeed, we have to prove that

Lgs1
. . .Lgsk

hi(0) = 0, (6.17)

where 1 ≤ i ≤ nd−j and
∑k

l=1 w(gl) ≤ j. Take j̃ = d − j, it comes 1 ≤ i ≤ nj̃ and
∑k

l=1 w(gl) ≤ nd−j̃ , hence
equation (6.17) can be proven exactly in the same fashion than property (iv).

The second case happens when gsk
= f . In that case, we have

Lgs1
. . .Lgsk

hi = Lgs1
. . .Lgsk−1

◦ Lfhi. (6.18)

Since Lfhi belong to Ld−j+1 and
∑k−1

l=1 w(gl) ≤ d− j − 1, then, again, we check if gsk−1 is equal to f or belong
to {g1, . . . , gn}. If there is only f vector fields, then equation (6.15) holds true because f(0) = 0 and hi(0) = 0.
This ends the proof. �
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6.2. Proof of Theorem 3.8

Order of the vector field f .. Following the notations of [13], a basis adapted to the filtration (Vj)j≥1 is given
by gn, . . . , g1. More specifically, gnd

(0), . . . , gnd−1+1(0) is a basis of V1 at zero, gnd
(0),. . . ,gnd−2+1(0) is a basis

of V2 at zero, etc. According to Theorem 2.1 in [13], in the the new coordinates z defined by the inverse of the
function

ϕ(z) = exp(zngn) ◦ · · · ◦ exp(z1g1)(0), (6.19)

if g ∈ Vj , we have

o(G) ≥ −j, with respect to the weights ri = d − j, nj−1 + 1 ≤ i ≤ nj , (6.20)

where G(z) = (∂ϕ−1/∂x)(ϕ(z))g(ϕ(z)) is the vector field g written in the new coordinates. The basis taken here
is in reverse order (for the index) compared to the one in [13], it explains why the weights are reversed too.

In particular, the vector field f belongs to V1, since ωi(f)(0) = 0 for all i = 1, . . . , n. Applying (6.20), we
obtain the result. �

Order of the functions Hi, i = 1, . . . , n. We need to prove the following statement

∂α

∂zα
Hi(0) = 0, ∀α ∈ N

n such that ‖α‖r ≤ d − j − 1. (6.21)

By Assumption 3.3 (iv), we know that, in the x coordinates,

Dhi(0) = 0, ∀D ∈ Bd−j−1. (6.22)

In the following, we will prove that (6.22) actually implies (6.21). First, we rewrite (6.22) in the new coordinates.
Let us denote G1, . . . , Gn for the vector fields g1, . . . , gn in the new coordinates, that is

Gi(z) =
∂ϕ−1

∂x
(ϕ(z))gi(ϕ(z)), i = 1, . . . , n. (6.23)

In the same fashion, we have

∇Hi(z) = (∇hi)(ϕ(z))
∂ϕ

∂z
(z), i = 1, . . . , n. (6.24)

Then, for i = 1, . . . , n and k = 1, . . . , n, we obtain

LGi
Hk(z) = (∇hi)(ϕ(z))

∂ϕ

∂z
(z)

∂ϕ−1

∂x
(ϕ(z))gk(ϕ(z)), (6.25)

= (∇hi)(ϕ(z))gk(ϕ(z)), (6.26)
= Lgi

hk(x). (6.27)

In the new coordinates z, (6.22) becomes

DHi(0) = 0, ∀D ∈ Bd−j−1, (6.28)

where

Bd−j−1 =

{
LG1 ◦ · · · ◦ LGk

: {G1, . . . , Gk} ⊂ {G1, . . . , Gn} and
k∑

l=1

w(Gk) ≤ j

}
. (6.29)

We are now going to prove (6.21) by induction on the order ‖α‖r.
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Case ‖α‖r = 1
Since ‖α‖r = 1, we necessarily have |α| = 1 and αi = 0 if i = 1, . . . , nd−1. Hence we have to prove that

∂

∂zk
Hi(0) = 0, i = nd−1 + 1, . . . , nd. (6.30)

According to Proposition 2.1 in [13], Gk(0) = ∂/∂zk, for k = 1, . . . , n, then by (6.28), we get

0 = LGk
Hi(0) =

∂

∂zk
Hi(0), k = nd−1 + 1, . . . , nd, (6.31)

which prove this case.

Case ‖α‖r = k + 1
We assume now that (6.21) holds true for α ∈ N

n, such that ‖α‖r ≤ k, k ≤ d − j − 2.
Let D = LG1 . . .LGs belong to Bk+1. We write

Gl(z) =
n∑

k=1

al
k(z)

∂

∂zk
, l = 1, . . . , s. (6.32)

The expression
DHi(0) = LG1 . . .LGsHi(0), (6.33)

is a sum of terms of the form

a1
i1(0)

(
∂α1

∂zα1 a2
i2

)
(0)

(
∂α2

∂zα2 a3
i3

)
(0) . . .

(
∂αs−1

∂zαs−1 as
is

)
(0)

(
∂αs

∂zαs Hi

)
(0) (6.34)

where, for l = 1, . . . , s, il ∈ {1, . . . , n}. Furthermore, we have the following property

s∑
l=1

ril
=

s∑
l=1

‖αl‖r. (6.35)

First, we show that if ‖αs‖r ≥ k + 2 then (6.34) is equal to zero.
According to Theorem 2.1 in [13], a vector field G ∈ V , verify o(G) ≥ −w(G) with respect to the weights

(ri)1≤i≤n given by (3.19). If we write G in coordinates, G(z) =
∑n

k=1 ak(z)∂/∂zk, then o(ai) ≥ ri − w(G).

Hence if ‖αl‖r < o
(
al+1

il+1

)
= ril+1 − w(Gl+1), for any l = 1, . . . , s − 1 or if ri1 ≤ w(G1) then (6.34) is equal

to zero.
We assume now that

‖αl‖r ≥ ril+1 − w(Gl+1), l = 1, . . . , s − 1, (6.36)
ri1 ≤ w(G1). (6.37)

We consider the inequality obtained by summing the inequalities (6.36) for l = 1, . . . , s − 1, we obtain

s−1∑
l=1

‖αl‖r ≥
s∑

l=2

ril
−

s∑
l=2

w(Gl). (6.38)

Adding inequality (6.37) and reordering, we get

s−1∑
l=1

‖αl‖r +
s∑

l=1

w(Gl) ≥
s∑

l=1

ril
. (6.39)
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Using (6.35), we obtain
s−1∑
l=1

‖αl‖r +
s∑

l=1

w(Gl) ≥
s∑

l=1

‖αl‖r, (6.40)

then

k + 1 =
s∑

l=1

w(Gl) ≥ ‖αs‖r ≥ k + 2. (6.41)

Thus we must have ‖αs‖ ≤ k + 1.
Second, if ‖αs‖r ≤ k, by the induction hypothesis, we have that (6.34) is equal to zero.
The last case left is ‖αs‖r = k + 1.
Until now, we have proved that DHi(0) is the sum of terms of the form (6.34) with ‖αs‖r = k + 1 for

D ∈ Bk+1.
Let us consider E = {α ∈ N

n | ‖α‖r = k + 1} and El = {α ∈ E | |α| = l}, then E is the disjoint union of El,
l = 1, . . . , k + 1.

We are going to prove that ∂α/∂zαHi(0) = 0, α ∈ El for l = 1, . . . , k + 1, by induction on l.

Case |α| = 1
It is equivalent to prove that ∂/∂zlHi(0) = 0 for l = nd−j + 1 ≤ l ≤ nd−j+1. According to Proposition 3.7,

we have Gl(0) = ∂/∂zl, l = 1, . . . , n, then

0 = LGl
Hi(0) =

∂

∂zl
Hi(0). (6.42)

Case |α| = m + 1
We assume that ∂α/∂zαHi(0) = 0 for α ∈ El, l = 1, . . . , m, with m ≤ k. Let α ∈ Em+1, then Lα1

G1
. . .Lαn

Gn
is in

Bk+1. Furthermore Lα1

G1
. . .Lαn

Gn
Hi(0) can be written as the sum of elements in the form (6.34) with |αs| ≤ m

plus
∑

1≤i1,i2,...,is≤n ai1(0) . . . ais(0)∂αs

/∂zαs

Hi(0) where |αs| = m + 1. By the induction hypothesis the terms
with |αs| ≤ m vanish. And since Gl(0) = ∂/∂zl, l = 1, . . . , n, the only term left is ∂α/∂zαHi(0) which is equal
to zero by (6.28). �

6.3. Proof of Theorem 3.12

Before proving the Theorem, we need the following lemma.

Lemma 6.2. Let Hl be a homogeneous function of degree l with respect to the weights (3.19), denote dHl(0) =∑n
i=1 aidzi, then ai = 0 for i ≥ nd−l (for l < 0, we set nl as 0).

Proof of Lemma 6.2. First notice that ai �= 0 if and only if Hl contains a linear term in zi. For i = 1, . . . , n, the
function z → zi is homogeneous of degree ri = d−ni, since the weights are decreasing, a homogeneous function
of degree l cannot contains linear terms zi for i ≥ nd−l. Then ai = 0 for i ≥ nd−l. �

Proof of Theorem 3.12. Let H : R
n → R be the unique function such that dH = ω and H(0) = 0. Since L1 is

spanned by H1, . . . , Hn1 , it is sufficient to prove the Theorem for H = Hi, i = 1, . . . , n1. We prove only the
cases k = 0 and 1, other cases can be proved in the exact same fashion.
According to Theorem 3.8, H is of order greater or equal to d − 1 with respect to the weights (3.19), hence we
can write

dH(z) = dHd−1(z) +
∑
l1≥d

dHl1(z), (6.43)
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where Hl is homogeneous of degree l with respect to the weights (3.19). Similarly, F admit an homogeneous
expansion of the form

F (z) = F−1(z) +
∑
l2≥0

Fl2(z), (6.44)

where Fl is homogeneous of degree l with respect to the weights (3.19).

Case k = 0
We apply Lemma 6.2 to the right hand-side of equation (6.43), it comes

(∑
l1≥0 dHl1

)
(0) = 0 and

dH̃(0) = dHd−1(0) =
∑n1

i=1 aidzi. Evaluating both sides of equation (6.43) at the origin gives the conclusion.

Case k = 1
Using equations (6.43) and (6.44), we obtain

LF ω = d(LF H), (6.45)

= d

⎛
⎝LF−1Hd−1 +

∑
l2≥0

LFl2
Hd−1

⎞
⎠ + d

⎛
⎝∑

l1≥d

LF−1Hl1 +
∑

l1≥d, l2≥0

LFl2
Hl1

⎞
⎠ , (6.46)

�
= d

(
LF̃ H̃

)
+ dHR. (6.47)

According to Lemma 2.6,
(
LF̃ H̃

)
is of degree (d − 2) and HR is the sum of homogeneous functions of degree

greater or equal to (d − 1). Applying Lemma 6.2 and evaluating both sides of equation (6.47) at the origin,
again, gives the result. �

6.4. Proof of Propositions 4.1 and 4.3

We are going to prove Propositions 4.1 and 4.3 in the ξ coordinates, since the Lyapunov stability is a property
independent of the coordinates. For this purpose, we introduce first some notations. We denote system (4.1){

ξ̇ = F(ξ),

y = H(ξ),
(6.48)

and the error system
ė = G(ξ + e, H(ξ)) − F(ξ), (6.49)

where e = ξ̂−ξ and G is the vector field associated to system (4.9) in the ξ coordinates defined by equation (4.4).
We need to state two lemmas before proving Propositions 4.1 and 4.3.

Lemma 6.3. Let Φ : R
n → R

n be a diffeomorphism, homogeneous of degree d with respect to the weights
(r1, . . . , rn) (as a vector field). Then, the inverse function Φ−1 is homogeneous of degree −d with respect to the
weights ri + d.

Proof. We have the following identity

Φ−1(Φ(x)) = x, ∀x ∈ R
n. (6.50)

Hence
Φ−1(Φ(λr1x1, . . . , λ

rnxn)) = (λr1x1, . . . , λ
rnxn). (6.51)

Since the function Φ is homogeneous, we get

Φ−1(λr1+dΦ1(x), . . . , λrn+dΦn(x)) = (λr1x1, . . . , λ
rnxn). (6.52)



926 T. MÉNARD ET AL.

Let x = Φ(x), then x = Φ−1(x)) and

Φ−1(λr1+dx1, . . . , λ
rn+dxn) = (λ(r1+d)−d(Φ−1)1(x), . . . , λ(rn+d)−d(Φ−1)n(x)). (6.53)

This equality is true for every x in R
n, since Φ is a diffeomorphism. �

Lemma 6.4. The function (e, ξ) �→ G(e + ξ, H(ξ)) − F(ξ) can be written as

G(e + ξ, H(ξ)) − F(ξ) = Ee + α(e, ξ)e + γ(e), x, ξ ∈ R
n, (6.54)

where E = A − KC, α(e, ξ) is a matrix of dimension n × n such that α(0, 0) = 0 and γ is a function of the
form

γ(e) =

⎛
⎜⎝

γ1(e1)
...

γn(en)

⎞
⎟⎠ , (6.55)

with ei = (e1, . . . , ei) and each γi : R
i → R is linear.

Proof. Denote RF (z) = F (z)− F̃ (z) and RH(z) = F (z)− F̃ (z). By construction, system (6.49) can be written
as

G(e + ξ, H(ξ)) − F(ξ) = E.e (6.56)

+
∂Φh

∂z

(
Φ−1

h (e + ξ)
)
Rf

(
Φ−1

h (e + ξ)
)− ∂Φh

∂z

(
Φ−1

h (ξ)
)
Rf

(
Φ−1

h (ξ)
)

(6.57)

+
(
Rh(Φ−1

h (e + ξ)) − Rh(Φ−1
h (ξ))

)
K. (6.58)

But, since G(ξ, H(ξ)) − F(ξ) = 0, we also have

G(e + ξ, H(ξ)) − F(ξ) = Me + α(e, ξ)e, (6.59)

where M is a n × n real matrix and α(e, ξ) is a matrix of dimension n × n such that α(0, 0) = 0. Then, all is
left to prove is that the linear parts of (6.57) and (6.58) are upper triangular.

We first consider (6.57), it is sufficient to prove that

∂
(

∂Φh

∂z

(
Φ−1

h (e)
)
Rf

(
Φ−1

h (e)
))

i

∂ej
(0) = 0, j ≥ i + 1. (6.60)

By construction, the vector field z �→ Rf (z) is a sum of homogeneous vector fields of degree higher or equal to 0,
with respect to the weights ri = n− i, i = 1, . . . , n. The function Φl is homogeneous of degree 0 with respect to
the weights ri = n − i, i = 1, . . . , n (as a vector field), thus, according to Lemma 6.3, the inverse function Φ−1

l

is homogeneous of degree 0 with respect to the weights ri = n− i, i = 1, . . . , n. We obtain that the vector field

e → ∂Φh

∂z

(
Φ−1

h (e)
)
Rf

(
Φ−1

h (e)
)
, (6.61)

is a sum of homogeneous vector fields of degree higher or equal than 0, which gives the result.
We now consider (6.58). It can be proved in the same way than for (6.57). Indeed, by construction the real

valued function z �→ Rh(z) is a sum of homogeneous functions of degree higher or equal to r1 + 1 = n with
respect to the same weights (ri)1≤i≤n. Then applying Lemma 6.3 gives the result. �

We prove propositions 4.1 and 4.3 in the meantime. Indeed, the first part of the proof is the same for both
propositions, only the end is different.
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Proof of Propositions 4.1 and 4.3. We have to prove that the error system

ė = G(e + ξ(t), H(ξ(t))) − F(ξ(t)), ∀ξ, e ∈ R
n, (6.62)

is locally asymptotically stable. For this, we consider the Lyapunov function

V (e) = eT S∞(θ)e, (6.63)

where S∞(θ) is the solution of the Riccati equation{
−θS∞(θ) − AT S∞(θ) − S∞(θ)A + CT C = 0,

S∞(θ)T = S∞(θ).
(6.64)

This Lyapunov function verifies:

• V (0) = 0;
• V (e) > 0, e �= 0;
• V is of class C1.

Now, we need to show that the derivative of V is negative definite along the solutions of system (6.62). According
to Lemma 6.4, we can write

G(e + ξ(t), H(ξ(t))) − F(ξ(t)) = Ee + α(ξ(t), e)e + γ(e), (6.65)

with:

• E = A − KC,
• α(ξ(t), e) is a matrix of dimension n × n such that α(0, 0) = 0,
• γ(e) is linear and in a triangular form.

Hence, it gives

V̇|(6.62) = −θeT S∞(θ)e − (Ce)2 + 2eT S∞(θ)(α(ξ(t), e)e)2eT S∞(θ)(γ(e)). (6.66)

We overvalue the last two terms in the previous equation. The first over-valuation is done following the same
computations as in [9]. The second one is obtained by applying first the Cauchy−Schwarz inequality and then
the mean value Theorem. For all e in V2, where V2 is a neighborhood of the origin that will be set later, we
have

|eT S∞(θ)(γ(e))| ≤ nl1C1

√
S‖e‖2

S∞(θ),

|eT S∞(θ)(α(ξ(t), e)e)| ≤ ‖α(ξ(t), e)e‖S∞(θ)‖e‖S∞(θ),

≤

⎛
⎜⎝ sup

ξ∈{ξ(t), t≥0}
e∈V2

‖η(ξ, e)‖S∞(θ)

⎞
⎟⎠ ‖e‖2

S∞(θ), (6.67)

with
S = max1≤i,j≤n |S∞(1)i,j |

C1 is such that ‖x‖1,n ≤ C1‖x‖S∞(1), ∀x ∈ R
n

‖γ(e′) − γ(e′′)‖ ≤ l1‖e′ − e′′‖
(6.68)

and η(ξ, e) is the derivative of the function e �→ α(ξ, e)e.
We obtain

V̇|(6.62)(e) ≤

⎛
⎜⎝−θ + M + sup

ξ∈{ξ(t), t≥0}
e∈V2

‖η(ξ, e)‖S∞(θ)

⎞
⎟⎠ ‖e‖2

S∞(θ), ∀e ∈ V2. (6.69)
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Let
θ∗ = 2 + M, (6.70)

where M = nl1C1

√
S and take θ > θ∗.

We have to be sure that
sup

ξ∈{ξ(t), t≥0}
e∈V2

‖η(ξ, e)‖S∞(θ) ≤ 1 + (θ − θ∗). (6.71)

Since α(0, 0) = 0, then η(0, 0) = 0. In addition, the function η is continuous, because all the functions considered
here are analytics. Hence, it ensures the existence of two neighborhoods of the origin V1,V2 such that

sup
ξ∈V1
e∈V2

‖η(ξ, e)‖S∞(θ) ≤ 1 + (θ − θ∗). (6.72)

We have proved until now that
V̇|(6.62)(e) ≤ −‖e‖2

S∞(θ), (6.73)

if ξ(t) ∈ V1 for all t ≥ 0 and e ∈ V2.

Proof of Proposition 4.1. Denote V3 a neighborhood of the origin included in V1 such that for all x, y ∈ V3,
(x − y) ∈ V2. Then limt→+∞

[
ξ(t) − ξ̂(t)

]
= 0 if ξ(0), ξ̂(0) ∈ V3 and if the set V1 is positively invariant under

system (6.48).
Finally, we define V1 = ϕ ◦ Φ−1

h

(V1

)
and V2 = ϕ ◦ Φ−1

h

(V3

)
. The sets V1 and V2 are neighborhoods of the

origin and V1 is positively invariant under system (6.48) if and only if V1 is positively invariant under system
(4.1) since the map ξ �→ ϕ ◦ Φ−1

h (ξ) is a diffeomorphism. �

Proof of Proposition 4.3. The origin of system (6.48) is Lyapunov stable since Lyapunov stability is invariant
under change of coordinates, thus there exists a neighborhood of the origin V4 such that any solution of
system (6.48) starting in V4 stays in V1. Let V3 be a neighborhood of the origin included in V4 such that for
all x, y ∈ V3, (x − y) ∈ V2. We then obtain that limt→+∞

[
ξ(t) − ξ̂(t)

]
= 0 if ξ(0), ξ̂(0) ∈ V3. Finally, we define

U = ϕ ◦Φ−1
h

(V3

)
which is a neighborhood of the origin since the map ξ �→ ϕ ◦Φ−1

h (ξ) is a diffeomorphism. �

7. Conclusion

In this paper, we have constructed a homogeneous approximation for systems with multi-output and without
input, satisfying an observability rank condition. This approximation retains pertinent information relative to
observability, particularly, it has the same observability space as the original system. The construction given
here is not always easy to compute, even if it is explicit. But, we have exhibited sufficient conditions which give
some degree of freedom for the construction.
This approximation has been further used for the design of a local observer which has been shown to be conver-
gent for Lyapunov stable systems. Once the change of coordinates is obtained, the observer design is straight
and simple.
The performance of the proposed method has been illustrated on an example and compared with linear approx-
imation. It appears that our observer presents a substantially wider domain of convergence for this system.
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