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UNIFORMLY EXPONENTIALLY OR POLYNOMIALLY STABLE
APPROXIMATIONS FOR SECOND ORDER EVOLUTION EQUATIONS

AND SOME APPLICATIONS
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Abstract. In this paper, we consider the approximation of second order evolution equations. It is well
known that the approximated system by finite element or finite difference is not uniformly exponentially
or polynomially stable with respect to the discretization parameter, even if the continuous system has
this property. Our goal is to damp the spurious high frequency modes by introducing numerical viscosity
terms in the approximation scheme. With these viscosity terms, we show the exponential or polynomial
decay of the discrete scheme when the continuous problem has such a decay and when the spectrum
of the spatial operator associated with the undamped problem satisfies the generalized gap condition.
By using the Trotter–Kato Theorem, we further show the convergence of the discrete solution to the
continuous one. Some illustrative examples are also presented.
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1. Introduction and main results

Let H be a complex Hilbert space with norm and inner product denoted respectively by ‖.‖ and (., .). Let
A : D(A) → H be a densely defined self-adjoint and positive operator with a compact inverse in H. Let
V = D(A

1
2 ) be the domain of A

1
2 . Denote by D(A

1
2 )′ the dual space of D(A

1
2 ) obtained by means of the inner

product in H.
Furthermore, let U be a complex Hilbert space (which will be identified to its dual space) with norm and

inner product denoted respectively by ‖.‖U and (., .)U and let B ∈ L(U, H). We consider the closed loop system

ω̈(t) +Aω(t) +BB∗ω̇(t) = 0,
ω(0) = ω0, ω̇(0) = ω1,

(1.1)
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where t ∈ [0, ∞) represents the time, ω : [0, ∞) → H is the state of the system. Most of the linear equations
modeling the vibrations of elastic structures with feedback control (corresponding to collocated actuators and
sensors) can be written in the form (1.1), where ω represents the displacement field.

We define the energy of system (1.1) at time t by

E(t) =
1
2

(
‖ω̇(t)‖2 +

∥∥∥A 1
2ω(t)

∥∥∥2
)
.

Simple formal calculations give

E(0) − E(t) =
∫ t

0

(BB∗ω̇(s), ω̇(s)) ds, ∀t ≥ 0.

This obviously means that the energy is non-increasing.
In many applications, the system (1.1) is approximated by finite dimensional systems but usually if the

continuous system is exponentially or polynomially stable, the discrete ones do no more inherit of this property
due to spurious high frequency modes. Several remedies have been proposed and analyzed to overcome this
difficulties. Let us quote the Tychonoff regularization [18, 19, 31, 34], a bi-grid algorithm [16,28], a mixed finite
element method [6, 10, 11, 17, 27], or filtering the high frequencies [22, 25, 35] (both methods providing good
numerical results).

As in [31,34] our goal is to damp the spurious high frequency modes by introducing a numerical viscosity in
the approximation schemes. Though our paper is inspired from [31], it differs from that paper on the following
points:

(i) Contrary to [31] where the standard gap condition is required, we only assume that the spectrum of the
operator A1/2 satisfies the generalized gap condition, allowing to treat more general concrete systems;

(ii) we analyze the polynomial decay of the discrete schemes when the continuous problem has such a decay;
(iii) we prove a result about uniform polynomial stability for a family of semigroups of operators;
(iv) by using a general version of the Trotter–Kato Theorem proved in [23], we show that the discrete solution

tends to the solution of (1.1) as the discretization parameter goes to zero and if the discrete initial data
are well chosen.

Before stating our main results, let us introduce some notations and assumptions.
We denote by ‖.‖V the norm

‖ϕ‖V =
√

(A
1
2ϕ, A

1
2ϕ), ∀ϕ ∈ V.

Remark that
‖ϕ‖V =

√
(Aϕ, ϕ), ∀ϕ ∈ D(A).

We now assume that (Vh)h>0 is a sequence of finite dimensional subspaces of D(A
1
2 ). The inner product in Vh

is the restriction of the inner product of H and it is still denoted by (., .) (since Vh can be seen as a subspace
of H). We define the operator Ah : Vh → Vh by

(Ahϕh, ψh) = (A
1
2ϕh, A

1
2ψh), ∀ϕh, ψh ∈ Vh. (1.2)

Let a(., .) be the sesquilinear form on Vh × Vh defined by

a(ϕh, ψh) = (A
1
2ϕh, A

1
2ψh), ∀(ϕh, ψh) ∈ Vh × Vh. (1.3)

We also define the operators Bh : U → Vh by

Bhu = jhBu, ∀u ∈ U, (1.4)

where jh is the orthogonal projection of H into Vh with respect to the inner product in H .
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The adjoint B∗
h of Bh is then given by the relation

B∗
hϕh = B∗ϕh, ∀ϕh ∈ Vh.

We also suppose that the family of spaces (Vh)h approximates the space V = D(A
1
2 ). More precisely, if πh

denotes the orthogonal projection of V = D(A
1
2 ) onto Vh, we suppose that there exist θ > 0, h∗ > 0 and C0 > 0

such that, for all h ∈ (0, h∗), we have:

‖πhϕ− ϕ‖V ≤ C0h
θ ‖Aϕ‖ , ∀ϕ ∈ D(A), (1.5)

‖πhϕ− ϕ‖ ≤ C0h
2θ ‖Aϕ‖ , ∀ϕ ∈ D(A). (1.6)

Assumptions (1.5) and (1.6) are, in particular, satisfied in the case of standard finite element approximations
of Sobolev spaces.

Denote by {λk}k≥1 the set of eigenvalues of A
1
2 counted with their multiplicities (i.e. we repeat the eigenvalues

according to their multiplicities). We further rewrite the sequence of eigenvalues {λk}k≥1 as follows:

λk1 < λk2 < . . . < λki < . . .

where k1 = 1, k2 is the lowest index of the second distinct eigenvalue, k3 is the lowest index of the third distinct
eigenvalue, etc. For all i ∈ N∗, let li be the multiplicity of the eigenvalue λki , i.e.

λki−1 < λki = λki+1 = . . . = λki+li−1 < λki+li = λki+1 .

We have k1 = 1, k2 = 1+l1, k3 = 1+l1+l2, etc. Let {ϕki+j}0≤j≤li−1 be the orthonormal eigenvectors associated
with the eigenvalue λki .

Now, we assume that the following generalized gap condition holds:

∃M ∈ N∗, ∃γ0 > 0, ∀k ≥ 1, λk+M − λk ≥Mγ0. (1.7)

Fix a positive real number γ′0 ≤ γ0 and denote by Ak, k = 1, . . . , M the set of natural numbers km satisfying
(see for instance [5]) ⎧⎨

⎩
λkm − λkm−1 ≥ γ′0
λkn − λkn−1 < γ′0 for m+ 1 ≤ n ≤ m+ k − 1,
λkm+k

− λkm+k−1 ≥ γ′0.

Then one easily checks that

{km+j + l |km ∈ Ak, k ∈ {1, . . . ,M} , j ∈ {0, . . . , k − 1} , l ∈ {0, . . . , lm+j − 1}} = N∗.

Notice that some sets Ak may be empty because, for the generalized gap condition, the choice of M takes into
account multiple eigenvalues. For kn ∈ Ak, we define Bkn = (Bkn, ij)1≤i, j≤k the matrix of size k × k by

Bkn, ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n+j−1∏
q=n

q �=n+i−1

(λkn+i−1 − λkq )−1 if i ≤ j, (i, j) 
= (1, 1),

1 if (i, j) = (1, 1),
0 else.

More explicitly, we have

Bkn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1
λkn−λkn+1

1
(λkn−λkn+1)(λkn−λkn+2 ) · · · 1

(λkn−λkn+1)···(λkn−λkn+k−1 )

0 1
λkn+1−λkn

1
(λkn+1−λkn )(λkn+1−λkn+2) · · · 1

(λkn+1−λkn )···(λkn+1−λkn+k−1 )

0 0 1
(λkn+2−λkn )(λkn+2−λkn+1) · · · 1

(λkn+2−λkn )···(λkn+2−λkn+k−1 )

...
...

. . .
...

0 0 0 · · · 1
(λkn+k−1−λkn )···(λkn+k−1−λkn+k−2 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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Lemma 1.1. The inverse matrix of Bkn is given by

B−1
kn, ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n+i−2∏
q=n

(λkn+j−1 − λkq ) if i ≤ j, i 
= 1,

1 if i = 1,
0 else,

that is to say

B−1
kn

=

⎛
⎜⎜⎜⎜⎝

1 1 · · · 1
0 (λkn+1 − λkn) · · · (λkn+k−1 − λkn)
0 0 · · · (λkn+k−1 − λkn)(λkn+k−1 − λkn+1)
...

...
. . .

...
0 0 · · · (λkn+k−1 − λkn) · · · (λkn+k−1 − λkn+k−2)

⎞
⎟⎟⎟⎟⎠,

and therefore

B−1
kn

→

⎛
⎜⎜⎝

1 1 · · · 1
0 0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎠, when n→ +∞.

Proof. The form of B−1
kn

is obtained by induction on the size k of Bkn . The generalized gap condition (1.7)
implies that λkn+j − λkn → 0 as n→ +∞, ∀0 ≤ j ≤ k − 1. This leads to the convergence of B−1

kn
. �

Now, for kn ∈ Ak, we define the matrix Φkn with coefficients in U and size k×Ln, where Ln =
k∑

i=1

ln+i−1, as

follows: for all i = 1, . . . , k, we set

(Φkn)ij =
{
B∗ϕkn+i−1+j−Ln, i−1−1 if Ln, i−1 < j ≤ Ln, i,
0 else,

where

Ln, 0 = 0, Ln, i =
i∑

i′=1

ln+i′−1 for i ≥ 1. (1.8)

For a vector c = (cl)m
l=1 in Um, we set ‖c‖U, 2 its norm in Um defined by

‖c‖2
U, 2 =

m∑
l=1

‖cl‖2
U .

In this paper, we prove two results. The first result gives a necessary and sufficient condition to have the
exponential stability of the family of systems

ω̈h(t) +Ahωh(t) +BhB
∗
hω̇h(t) + hθAhω̇h(t) = 0

ωh(0) = ω0h ∈ Vh, ω̇h(0) = ω1h ∈ Vh,
(1.9)

in the absence of the standard gap condition assumed in [31]. Here and below ω0h (resp. ω1h) is an approximation
of ω0 (resp. ω1) in Vh. For that purpose, we need to make the following assumption

∃α0 > 0, ∀k ∈ {1, . . . ,M}, ∀kn ∈ Ak, ∀C ∈ RLn ,
∥∥B−1

kn
ΦknC

∥∥
U, 2

≥ α0 ‖C‖2 , (1.10)

where ‖.‖2 is the euclidian norm. The first main result is the following
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Theorem 1.2. Suppose that the generalized gap condition (1.7) and the assumption (1.10) are verified. Assume
that the family of subspaces (Vh) satisfies (1.5) and (1.6). Then the family of systems (1.9) is uniformly expo-
nentially stable, in the sense that there exist constants M, α, h∗ > 0 (independent of h, ω0h, ω1h) such that for
all h ∈ (0, h∗):

‖ω̇h(t)‖2 + a(ωh(t), ωh(t)) ≤Me−αt(‖ω1h‖2 + a(ω0h, ω0h)), ∀t ≥ 0.

Remark 1.3. If the standard gap condition

∃γ0 > 0, ∀n ≥ 1, λkn+1 − λkn ≥ γ0 (1.11)

holds, then A1 = N∗ and B1 = 1. In this case, the assumption (1.10) becomes

∃α0 > 0, ∀kn ≥ 1, ∀C ∈ RLn , ‖ΦknC‖U ≥ α0 ‖C‖2 .

Moreover, if the standard gap condition (1.11) holds and if the eigenvalues are simple, the assumption (1.10)
becomes

∃α0 > 0, ∀k ≥ 1, ‖B∗ϕk‖U ≥ α0. (1.12)

These assumptions are assumed in [31].

Remark 1.4. Note that Theorem 1.2 is the discrete counterpart of the exponential decay of the solution of
the continuous problem (1.1) under the assumptions (1.7) and (1.10), which follows Theorem 2.2 of [3] (see
also [29]). Note that the assumption (H) from [3] here holds since A is a positive selfadjoint operator with a
compact resolvent and B is bounded.

Remark 1.5. The uniform exponential stability of the family of systems (1.9) has been already proved in
Theorem 7.1 of [14] without any assumption on the spectrum of A and the dimension of the space. The proof of
this theorem is based on decoupling of low and high frequencies. More precisely, the author combines a uniform
observability estimate for filtered initial data corresponding to low frequencies (see [14], Thm. 1.3) together
with a result of [15]. Indeed, in [15], after adding the numerical viscosity term, another uniform observability
estimate is obtained for the high frequency components. The two established observability inequalities yield the
uniform exponential decay of (1.9).

If the condition (1.10) is not satisfied, we may look at a weaker version. Namely if we assume that

∃l ∈ N∗, ∃α0 > 0, ∀k ∈ {1, . . . ,M}, ∀kn ∈ Ak, ∀C ∈ RLn ,
∥∥B−1

kn
ΦknC

∥∥
U, 2

≥ α0

λl
kn

‖C‖2 , (1.13)

then we will obtain a polynomial stability for the family of systems

ω̈h(t) +
(
1 + hθ

)−2
(
I + hθA

l
2
h

)2

Ahωh(t) +
(
I + hθA

l
2
h

)(
BhB

∗
h + hθA

1+ l
2

h

)(
I + hθA

l
2
h

)−1

ω̇h(t) = 0,

ωh(0) = ω0h ∈ Vh, ω̇h(0) =
(
1 + hθ

)−1
(
I + hθA

l
2
h

)
ω1h ∈ Vh.

(1.14)

The structure of the above discrete system has been inspired from the one introduced in [31] for the exponential
stability case where the authors have used system (1.9) corresponding to l = 0. In both cases, this choice

is motivated by the corresponding observability estimates. The numerical viscosity term (I + hθA
l
2
h )(BhB

∗
h +

hθA
1+ l

2
h )(I+hθA

l
2
h )−1ω̇h(t) is added to damp the high frequency modes and as the set of high frequency modes is

larger in the polynomial case, the viscosity term is naturally stronger. In the case l ≥ 2 the powers of (I+hθA
l
2
h )

have been added to guarantee the boundedness of the resolvent of Ãl,h (defined below) near zero. The question
of the optimality of these viscosity terms remains open.

The second main result of our paper is the following one.
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Theorem 1.6. Suppose that the generalized gap condition (1.7) and the Assumption (1.13) are verified with
l ∈ N∗ even. Assume that the family of subspaces (Vh) satisfies (1.5) and (1.6). Then the family of systems (1.14)
is uniformly polynomially stable, in the sense that there exist constants C, h∗ > 0 (independent of h, ω0h, ω1h)
such that for all h ∈ (0, h∗):∥∥∥∥(I + hθA

l
2
h

)−1

ω̇h(t)
∥∥∥∥

2

+ a (ωh(t), ωh(t)) ≤ C

t2
‖(ω0h, ω1h)‖2

D(Ã2l
l,h) ,∥∥∥∥(I + hθA

l
2
h

)−1

ω̇h(t)
∥∥∥∥

2

+ a (ωh(t), ωh(t)) ≤ C

t
1
l

‖(ω0h, ω1h)‖2
D(Ãl,h) , ∀t > 0, ∀ (ω0h, ω1h) ∈ Vh × Vh,

where for q ∈ N∗, ‖.‖D(Ãq
l,h) is the graph norm of the matrix operator Ãq

l,h given in (4.1) of Section 4 below.

For a technical reason, we assume l to be even (see Lem. 4.4). If (1.13) holds for l odd, then it is also true
for l+ 1 and we can apply the previous result with l+ 1.

Remark 1.7. If the standard gap condition (1.11) holds, the Assumption (1.13) becomes

∃l ∈ N∗, ∃α0 > 0, ∀kn ≥ 1, ∀C ∈ RLn , ‖ΦknC‖U ≥ α0

λl
kn

‖C‖2 .

Moreover, if the standard gap condition (1.11) holds and if the eigenvalues are simple, the Assumption (1.13)
becomes

∃l ∈ N∗, ∃α0 > 0, ∀k ≥ 1, ‖B∗ϕk‖U ≥ α0

λl
k

· (1.15)

Remark 1.8. As before, Theorem 1.6 is the discrete counterpart of the polynomial decay of the solution of
the continuous problem (1.1) under the Assumptions (1.7) and (1.13), that follows from Theorem 2.4 of [3] (see
also [29]).

The paper is organized as follows: In Section 2, we show that the generalized gap condition and the observ-
ability conditions (1.10) and (1.13) remain valid for filtered eigenvalues. Section 3 first recalls a result about
uniform exponential stability for a family of semigroup of operators, and then extends such a result to the case of
uniform polynomial stability. Some technical lemmas are proved in Section 4. Sections 5 and 6 are devoted to the
proof of Theorem 1.2 and 1.6 respectively. In Section 7, we show that the solution ωh (resp.

(
I + hθA

l
2
h )−1ω̇h

)
tends to ω, the solution of (1.1), (resp. ω̇) in V (resp. in H) as h goes to zero and if the discrete initial data are
well chosen. Finally, we illustrate our results by presenting different examples in Section 8.

2. Spectral analysis of the discretized problem

The eigenvalue problem of the discretized problem is the following one: find λk, h ∈]0, +∞[, ϕk, h ∈ Vh, such
that

a(ϕk, h, ψh) = λ2
k, h(ϕk, h, ψh), ∀ψh ∈ Vh. (2.1)

Let N(h) be the dimension of Vh. We denote by {λ2
k, h}1≤k≤N(h) the set of eigenvalues of (2.1) counted with

their multiplicities. Let {ϕk, h}1≤k≤N(h) be the orthonormal eigenvectors associated with the eigenvalue λ2
k, h.

In this Section, we show that the generalized gap condition (1.7) and the observability conditions (1.10)
and (1.13) still hold for the approximate problem (uniformly in h), provided that we consider only “low fre-
quencies”. More precisely, we first have the following result:

Proposition 2.1. Suppose that the generalized gap condition (1.7) and the Assumption (1.10) are verified.
Then, there exist two constants ε > 0 and h∗ > 0, such that, for all 0 < h < h∗ and for all k ∈ {1, . . . , N(h)}
satisfying

hθλ2
k ≤ ε, (2.2)
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we have
∃M ∈ N∗, ∃γ > 0, λk+M, h − λk, h ≥Mγ (2.3)

and
∃α > 0, ∀p ∈ {1, . . . ,M}, ∀kn ∈ Ap,h, ∀C ∈ RLn ,

∥∥B−1
kn
Φkn, hC

∥∥
U, 2

≥ α ‖C‖2 , (2.4)

where α is independent of h, and where the matrix Φkn, h ∈ Mp, Ln(U), with coefficients in U , is defined as
follows: for all i = 1, . . . , p, we set

(Φkn, h)ij =
{
B∗

hϕkn+i−1+j−Ln, i−1−1, h if Ln, i−1 < j ≤ Ln, i,
0 else,

where Ln, i−1 is defined by (1.8) and

Ap,h = {kn ∈ Ap satisfying (2.2) and s.t.kn+p−1 + ln+p−1 − 1 ≤ N(h)} .
For the proof of this proposition, we need a result proved by Babuska and Osborn in [4]. For that purpose, we
introduce εh(n, j) such that

εh(n, j) = inf
ϕ∈Mj(λkn )

inf
vh∈Vh

‖ϕ− vh‖V ,

where Mj(λkn) = {ϕ ∈ M(λkn) : a(ϕ, ϕkn, h) = . . . = a(ϕ, ϕkn+j−2, h) = 0} and M(λkn) =
{ϕ : ϕ is an eigenvector of A

1
2 corresponding to λkn , ‖ϕ‖ = 1}. The restrictions a(ϕ, ϕkn, h) = . . . =

a(ϕ, ϕkn+j−2, h) = 0 are not imposed if j = 1. Then, we have the following estimate about the eigenvalue
and eigenvector errors for the Galerkin method in terms of the approximability quantities εh(n, j).

Theorem 2.2. There are positive constants C and h0 such that

λkn+j, h − λkn+j ≤ Cε2h(n, j), ∀0 < h ≤ h0, j = 0, . . . , ln − 1, kn + j ≤ N(h), n ∈ N∗ (2.5)

and such that the eigenvectors {ϕkn+j}0≤j≤ln−1 of A
1
2 can be chosen so that

‖ϕkn+j, h − ϕkn+j‖V ≤ Cεh(n, j), ∀0 < h ≤ h0, j = 0, . . . , ln − 1, kn + j ≤ N(h), n ∈ N∗. (2.6)

This result is proved by Babuska and Osborn in [4], p. 702. because

λ2
kn+j, h − λ2

kn+j = (λkn+j, h − λkn+j)(λkn+j, h + λkn+j) ≥ 2λ1(λkn+j, h − λkn+j).

Remark 2.3. Notice that for every ϕ ∈Mj(λkn) we have

εh(n, j) ≤ inf
vh∈Vh

‖ϕ− vh‖V

≤ C0h
θ ‖Aϕ‖ by (1.5)

≤ C0h
θλ2

kn
‖ϕ‖ = C0h

θλ2
kn+j .

(2.7)

Proof of Proposition 2.1. We begin with the proof of the generalized gap condition for the approximate eigen-
values λk, h. First, we use the Min-Max principle (see [32]) to obtain

λk ≤ λk, h, ∀k ∈ {1, . . . , N(h)}. (2.8)

Second, we use the estimates (2.5) and (2.7) and we have

λk, h ≤ λk + C(C0h
θλ2

k)2 ≤ λk + C(C0ε)2 ≤ λk + CC2
0ε, (2.9)

for all k ∈ {1, . . . , N(h)} verifying (2.2) and ε ≤ 1. Therefore, we may write

λk+M, h − λk, h ≥ λk+M − λk − CC2
0 ε ≥Mγ0 − CC2

0 ε ≥M
γ0

2
=: Mγ

for all k ∈ {1, . . . , N(h)} satisfying (2.2) and for ε ≤ Mγ0
2CC2

0
·
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Now, we prove the estimate (2.4) which is the approximated version of (1.10). Notice that

‖Φkn, h − Φkn‖U ≤ C max
i=0,...,p−1

ln+i−1∑
j=0

∥∥B∗ϕkn+i+j, h −B∗ϕkn+i+j

∥∥
U

≤ C max
i=0,...,p−1

ln+i−1∑
j=0

‖B∗‖L(H, U)

∥∥ϕkn+i+j, h − ϕkn+i+j

∥∥
≤ C max

i=0,...,p−1

ln+i−1∑
j=0

‖B∗‖L(H, U)

∥∥ϕkn+i+j, h − ϕkn+i+j

∥∥
V

≤ C max
i=0,...,p−1

ln+i−1∑
j=0

εh(n+ i, j) by (2.6)

≤ C max
i=0,...,p−1

ln+i−1∑
j=0

hθλ2
kn+i+j by (2.7).

Thus, by (2.2), we get
‖Φkn, h − Φkn‖U ≤ Cε. (2.10)

Therefore the triangular inequality leads to∥∥B−1
kn
Φkn, hC

∥∥
U, 2

=
∥∥B−1

kn
ΦknC +B−1

kn
(Φkn, h − Φkn)C

∥∥
U, 2

≥ ∥∥B−1
kn
ΦknC

∥∥
U, 2

− ∥∥B−1
kn

(Φkn, h − Φkn)C
∥∥

U, 2

≥ α0 ‖C‖2 −
∥∥B−1

kn
(Φkn, h − Φkn)C

∥∥
U, 2

by (1.10). But, as B−1
kn

=

⎛
⎜⎜⎝

1 1 · · · 1
0 0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎠ +Rkn , with Rkn → 0, when kn → +∞ (see Lem. 1.1), we obtain

∥∥B−1
kn

(Φkn, h − Φkn)C
∥∥

U, 2
≤

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

1 1 · · · 1
0 0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎠ (Φkn, h − Φkn)C

∥∥∥∥∥∥∥∥
U, 2

+ ‖Rkn(Φkn, h − Φkn)C‖U, 2

≤ C ‖Φkn, h − Φkn‖U ‖C‖2 + ηn ‖Φkn, h − Φkn‖U ‖C‖2≤ Cε(1 + ηn) ‖C‖2 ,

(2.11)

where ηn = ‖Rkn‖ → 0. Thus∥∥B−1
kn
Φkn, hC

∥∥
U, 2

≥ (α0 − Cε(1 + ηn)) ‖C‖2 ≥ α0

2
‖C‖2

for ε ≤ α0

2C(1+ max
n

(1 + ηn)) ·
For the polynomial stability, we have the same kind of result, but more filtering is necessary in order to have
the discrete counterpart of the observability condition (1.13) (uniformly in h). �
Proposition 2.4. Suppose that the generalized gap condition (1.7) and the Assumption (1.13) are verified.
Then, there exist two constants ε > 0 and h∗ > 0, such that, for all 0 < h < h∗ and for all k ∈ {1, . . . , N(h)},
satisfying

hθλ2
k ≤ ε

λl
k

, (2.12)
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we have (2.3) and

∃α > 0, ∀p ∈ {1, . . . ,M}, ∀kn ∈ A
(l)
p,h, ∀C ∈ RLn ,

∥∥B−1
kn
Φkn, hC

∥∥
U, 2

≥ α

λl
kn

‖C‖2 , (2.13)

where A(l)
p,h = {kn ∈ Ap satisfying (2.12) and s.t. kn+p−1 + ln+p−1 − 1 ≤ N(h)} .

Proof. The generalized gap condition for the approximate eigenvalues λk, h is a consequence of Proposition 2.1,
because λk ≥ λ1 > 0.

To prove the estimate (2.13) we notice that

‖Φkn, h − Φkn‖U ≤ C max
i=0,...,p−1

ln+i−1∑
j=0

hθλ2
kn+i+j ≤ C hθλ2

kn+p−1
.

Moreover, by the triangular inequality and (1.13), we have∥∥B−1
kn
Φkn, hC

∥∥
U, 2

≥ α0
λl

kn

‖C‖2 −
∥∥B−1

kn
(Φkn, h − Φkn)C

∥∥
U, 2

.

By (2.11) and (2.12), we obtain

∥∥B−1
kn
Φkn, hC

∥∥
U, 2

≥
(

α0
λl

kn

− C(1+ηn)ε

λl
kn+p−1

)
‖C‖2

≥
(

α0
λl

kn

− Cε
λl

kn
+ρn

(1 + ηn)
)
‖C‖2 , with ρn = λl

kn+p−1
− λl

kn
→ 0

≥ α
λl

kn

‖C‖2

for an appropriate choice of ε > 0. �

3. Uniform stability results

3.1. Exponential stability result

The Proof of Theorem 1.2 is based on the following result (see Thm. 7.1.3 in [26]):

Theorem 3.1. Let (Th)h>0 be a family of semigroups of contractions on the Hilbert spaces (Xh)h>0 and let
(Ãh)h>0 be the corresponding infinitesimal generators. The family (Th)h>0 is uniformly exponentially stable,
that is to say there exist constants M > 0, α > 0 (independent of h ∈ (0, h∗)) such that

‖Th(t)‖L(Xh) ≤Me−αt, ∀t ≥ 0,

if and only if the two following conditions are satisfied:

(i) For all h ∈ (0, h∗), iR is contained in the resolvent set ρ(Ãh) of Ãh,
(ii) sup

h∈(0,h∗),ω∈R

∥∥∥(iω − Ãh)−1
∥∥∥
L(Xh)

< +∞.

3.2. Polynomial stability result

The proof of Theorem 1.6 is based on the results presented in this section by adapting the results from [9]
and from [24] to obtain the (uniform) polynomial stability of the discretized problem (1.14). Throughout this
section, let (Th(t)) t≥0

h∈(0,h∗)
be a family of uniformly bounded C0 semigroups on the associated Hilbert spaces

(Xh)h∈(0,h∗) (i.e., ∃M > 0, ∀h ∈ (0, h∗), ‖Th(t)‖L(Xh) ≤ M ) and let (Ãh)h∈(0,h∗) be the corresponding
infinitesimal generators.

In the following, for shortness, we denote by R(λ, Ãh) the resolvent (λ − Ãh)−1; moreover, for any operator
mapping Xh into Xh, we skip the index L(Xh) in its norm, since in the whole section we work in Xh.
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Definition 3.2. Assuming that
iR ⊆ ρ(Ãh), ∀h ∈ (0, h∗), (3.1)

and that for all m ≥ 1, there exists c = c(m) > 0 such that

sup
h∈(0,h∗)
|s|≤m

‖R(is, Ãh)‖L(Xh) ≤ c, (3.2)

we define the fractional power Ã−α
h for α > 0 and h ∈ (0, h∗), according to [2] and [13], as

Ã−α
h =

1
2πi

∫
Γ

λ−α(λ− Ãh)−1dλ,

where λ−α = e−α log λ and R+ is taken as the cut branch of the complex log function and where the curve
Γ = Γ1 ∪ Γ2 is given by

Γ = {−ε+ teiθ, t ∈ [0,+∞)} ∪ {−ε− te−iθ, t ∈ (−∞, 0]} (3.3)

for some ε > 0 small enough independent of h and θ is a fixed angle in
(
0,
π

4

)
.

Remark 3.3. Throughout this section, whenever Ã−α
h is mentioned, the Assumptions (3.1) and (3.2) are

directly taken into consideration since otherwise Ã−α
h is not well defined.

In fact, under the Assumptions (3.1) and (3.2), for all m > 0 there exists ε = ε(m) > 0 such that

−μ+ iβ ∈ ρ(Ãh), ∀h ∈ (0, h∗), ∀0 ≤ μ ≤ ε, ∀|β| ≤ m.

Indeed, for all m > 0 such that |β| ≤ m, we have

(−μ+ iβ − Ãh)−1 = (iβ − Ãh)−1[Ih − μ(iβ − Ãh)−1]−1

and
‖μ(iβ − Ãh)−1‖ ≤ μc.

Hence, if |β| ≤ m and μ ≤ ε ≤ 1
2c , then (−μ+ iβ − Ãh) is invertible and we have

‖(−μ+ iβ − Ãh)−1‖ ≤ 2‖(iβ − Ãh)−1‖ ≤ 2c, ∀h ∈ (0, h∗). (3.4)

We choose m = (−ε + teiθ) = ε tan θ when �(−ε + teiθ) = 0, i.e. when t = ε
cos θ · Therefore, by (3.4),

Assumptions (3.1) and (3.2) imply that there exists ε > 0 independent of h such that the curve Γ is included in
ρ(Ãh) for any h ∈ (0, h∗), and hence Ã−α

h is well defined. In fact, if ξ ∈ Γ such that �ξ > 0, then, by the Hille
Yosida theorem, ξ ∈ ρ(Ãh), while if −ε ≤ ξ ≤ 0, then, by (3.4), ξ ∈ ρ(Ãh).

Proposition 3.4. If, in addition to Assumptions (3.1) and (3.2), we have

sup
h∈(0,h∗)

‖R(is, Ãh)‖L(Xh) = O(|s|α), |s| → ∞, (3.5)

then Ã−α
h is uniformly bounded independently of h ∈ (0, h∗).
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Proof. We have

Ã−α
h =

1
2πi

∫ +∞

0

(−ε+ teiθ)−α(−ε+ teiθ − Ãh)−1eiθdt

+
1

2πi

∫ 0

−∞
(−ε− te−iθ)−α(−ε− te−iθ − Ãh)−1(−e−iθ)dt. (3.6)

Since (Th(t)) t≥0
h∈(0,h∗)

is bounded, then by Hille–Yosida Theorem (see Thm. I.3.1 of [30]) we get

‖R(λ, Ãh)‖ ≤ M

Reλ
, ∀Reλ > 0.

For −ε ≤ Reλ ≤ 0, we have |λ| ≤ m and therefore, by (3.4), we get

‖R(λ, Ãh)‖ ≤ 2c.

Let t0 > 0 be such that −ε ≤ Re(−ε + teiθ) ≤ 0, ∀0 ≤ t ≤ t0 =
ε

cos θ
and Re(−ε + teiθ) ≥ 0, ∀t ≥ t0 and let

t1 = − ε

cos θ
≤ 0 be such that Re(−ε− te−iθ) ≤ 0, ∀t1 ≤ t ≤ 0 and Re(−ε− te−iθ) ≥ 0, ∀t ≤ t1. Therefore, split

the integrals in (3.6) then use (3.4) in case of 0 ≤ t ≤ t0 or t1 ≤ t ≤ 0; in addition to (3.5) in case of t ≥ t0 or
t ≤ t1 to get the uniform boundedness of Ã−α

h . �

The proof of the polynomial stability of (Th(t))t≥0 (see Thm. 3.8 below) is based on the following three
lemmas. The first lemma is the discretized version of Lemma 3.2 in [24] and the other ones are the discrete
versions of similar results of Lemmas 2.1 and 2.3 in [9].

Lemma 3.5. Let S = {λ ∈ C : a ≤ Reλ ≤ b} be a subset of ρ(Ãh) for all h ∈ (0, h∗) where 0 ≤ a < b. Then
if (3.1)–(3.5) are satisfied and if for some positive constants α and M we have

sup
h∈(0,h∗)

λ∈S

‖R(λ, Ãh)‖
1 + |λ|α ≤M,

then there exists a constant c > 0 independent of h such that

sup
h∈(0,h∗)

λ∈S

‖R(λ, Ãh)Ã−α
h ‖ ≤ c.

Proof. There exists c > 0 and ϕ0, 0 < ϕ0 <
π

2
, such that

|μ− eiϕ| ≥ c|μ|, ∀μ ∈ Γ, ∀ϕ0 < |ϕ| < π − ϕ0 (3.7)

where the curve Γ is given by (3.3).
Since b is finite, choose N large enough such that whenever λ ∈ S and |λ| > N we get both ϕ0 < |argλ| <

π − ϕ0 and λ does not belong to the sector bounded by the curve |λ|Γ = {−ε|λ| + t|λ|eiθ, t ∈ [0,+∞)} ∪
{−ε|λ| − t|λ|e−iθ , t ∈ (−∞, 0]}.

For all such choice of λ ∈ S, we have according to (3.7)

|μ− eiargλ| ≥ c|μ| ∀μ ∈ Γ. (3.8)

Consider the following integral for all λ ∈ S with |λ| > N

Iλ =
∫

Γ

μ−α

μ− λ
dμ.
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By the above choice of λ, we have λ /∈ Γ and λ /∈ |λ|Γ . Consequently, the integral has no singular points
between Γ and |λ|Γ . Therefore, by the Cauchy theorem, we have

Iλ =
∫
|λ|Γ

μ−α

μ− λ
dμ =

1
|λ|α

∫
Γ

μ−α

μ− eiargλ
dμ.

Therefore, by (3.8), we get
|Iλ| ≤ c

|λ|α ·

Now, for |λ| > N with λ ∈ S, we have by the resolvent identity

R(λ, Ãh)Ã−α
h =

1
2πi

∫
Γ

μ−αR(λ, Ãh)R(μ, Ãh)dμ

=
1

2πi

∫
Γ

μ−α

μ− λ
R(λ, Ãh)dμ− 1

2πi

∫
Γ

μ−α

μ− λ
R(μ, Ãh)dμ

=
1

2πi
IλR(λ, Ãh) − 1

2πi

∫
Γ

μ−α

μ− λ
R(μ, Ãh)dμ.

On the other hand, similar to the proof of Proposition 3.4,∣∣∣∣
∫

Γ

μ−α

μ− λ
R(μ, Ãh)dμ

∣∣∣∣ ≤ c

∫
Γ

1
|μ|α+1

‖R(μ, Ãh)‖dμ ≤ c′,

where c is independent of h. Therefore for all λ ∈ S, with |λ| > N , we have

‖R(λ, Ãh)Ã−α
h ‖ ≤ c

|λ|α ‖R(λ, Ãh)‖ + c ≤ c
1 + |λ|α
|λ|α + c ≤ c′′.

Now, for λ ∈ S such that |λ| ≤ N , we have

‖R(λ, Ãh)Ã−α
h ‖ ≤ ‖R(λ, Ãh)‖‖Ã−α

h ‖ ≤ c(1 + |λ|α) ≤ c(1 +Nα),

which completes the proof with Proposition 3.4. �

Lemma 3.6. If (3.1)–(3.5) are satisfied, then there exists c > 0 independent of h such that

sup
h∈(0,h∗)
Reλ>0

‖R(λ, Ãh)Ã−α
h ‖ ≤ c. (3.9)

Proof. For all h ∈ (0, h∗), m > 0, and B > max{2m, 1}, consider Fh(λ) = R(λ, Ãh)λ−α(1 − λ2

B2 ) on the domain

D =
{
λ ∈ C : Reλ > 0, m < |λ| ≤ B

2

}
. Fh, by the maximum principle, attains its maximum for |λ| =

B

2
·

Therefore,
|Fh(λ)| ≤ c

Reλ
·

If there exists ε > 0 such that Reλ > ε, then |Fh(λ)| ≤ c.
Otherwise, for 0 < Reλ < ε, using the resolvent identity

R(λ, Ãh) = R(iImλ, Ãh) −ReλR(iImλ, Ãh)R(λ, Ãh) (3.10)

then, as |Imλ| ≥ m− ε for all m > 0, we have

‖R(λ, Ãh)‖ ≤ c|Imλ|α.
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Therefore,

|Fh(λ)| ≤ c|Imλ|α|λ|−α

∣∣∣∣1 − λ2

B2

∣∣∣∣ ≤ c.

Hence, in all cases, there exists c > 0 independent of B such that

|Fh(λ)| ≤ c.

As a result, for all λ ∈ D,

‖R(λ, Ãh)‖ ≤ c|λ|α∣∣1 − λ2

B2

∣∣ ≤ c|λ|α ≤ c(1 + |λ|α).

If 0 < Reλ ≤ |λ| ≤ m, then by (3.10) and Assumption (3.2), we get

‖R(λ, Ãh)‖ ≤ c‖R(iImλ, Ãh)‖ ≤ c ≤ c(1 + |λ|α).

Letting B → +∞ yields
‖R(λ, Ãh)‖ ≤ c(1 + |λ|α), ∀Reλ > 0.

Applying Lemma 3.5, we get for 0 ≤ Reλ ≤ m,

‖R(λ, Ãh)Ã−α
h ‖ ≤ c.

In addition, if Reλ ≥ m, by the Hille Yosida theorem and Proposition 3.4, there exists some positive constants c1
and c2 such that

‖R(λ, Ãh)Ã−α
h ‖ ≤ c1

‖Ã−α
h ‖

Reλ
≤ c2.

In all cases, we get (3.9). �

The last lemma in this section gives the necessary and sufficient conditions for the boundedness of any family
of C0 semigroups (Sh(t)) t≥0

h∈(0,h∗)
.

Lemma 3.7. Let (Sh(t)) t≥0
h∈(0,h∗)

be a family of C0 semigroups on the associated Hilbert spaces (Yh)h∈(0,h∗) and

let (Ẽh)h∈(0,h∗) be the corresponding infinitesimal generators. Then (Sh(t)) t≥0
h∈(0,h∗)

is uniformly bounded if and

only if

(i) {λ ∈ C : Reλ > 0} ⊆ ρ(Ẽh), ∀h ∈ (0, h∗)
(ii) There exists c > 0 independent of h such that

sup
ξ>0

h∈(0,h∗)

ξ

∫
R

(‖R(ξ + iη, Ẽh)‖2 + ‖R(ξ + iη, Ẽ∗
h)‖2)dη ≤ c.

Proof. First, we assume that (Sh(t)) is uniformly bounded. Then (i) holds by the Hille–Yosida theorem. As
for (ii), we only need to prove that

sup
ξ>0

h∈(0,h∗)

ξ

∫
R

‖R(ξ + iη, Ẽh)xh‖2dη ≤ c‖xh‖2, ∀xh ∈ Yh (3.11)

because according to the theory of adjoint semigroups, (see [30]), S∗(t) is a C0 semigroup with the same
properties as S(t).
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Similar to the proof of Theorem 1.1 in [21], we have for all h ∈ (0, h∗), xh ∈ Yh

‖R(ξ + iη, Ẽh)xh‖2 =
∫

R

e−iηsfh(s)ds,

where

fh(s) =
∫ +∞

max{0,−s}
e−ξ(s+2u) < Sh(u + s)xh, Sh(u)xh >Yh,Yh

du.

For s ≥ 0, since (Sh(t)h∈(0,h∗) is uniformly bounded, i.e. sup
h∈(0,h∗)

‖Sh(t)‖ ≤M , we have

|fh(s)| ≤
∫ +∞

0

M2‖xh‖2e−ξ(s+2u)du =
M2‖xh‖2

2ξ
e−ξs ≤ M2‖xh‖2

2ξ
·

For s < 0, we have

|fh(s)| ≤
∫ +∞

−s

M2‖xh‖2e−ξ(s+2u)du =
M2‖xh‖2eξs

2ξ
≤ M2‖xh‖2

2ξ
·

Hence, fh ∈ L1(R) ∩ L∞(R) and

F(fh(s)) =
1√
2π

‖R(ξ + iη, Ẽh)xh‖2.

Using Lemma 21.50 in [20], it follows that

1
2π

∫
R

‖R(ξ + iη, Ẽh)xh‖2dη =
1√
2π

∫
R

F(fh)(τ)dτ ≤ c‖fh‖L∞ ≤ cM2‖xh‖2

2ξ
·

Hence, (3.11) is verified.
As for the sufficient condition, since {λ ∈ C : Reλ > 0} ⊆ ρ(Ẽh), with σ = 1

t , we get for all xh ∈ Yh

Sh(t)xh =
1

2πi

∫ σ+i∞

σ−i∞
eλt(λ− Ẽh)−1xhdλ,

=
1

2πi

∫ σ+i∞

σ−i∞

eλt

t
(λ− Ẽh)−2xhdλ+

eλt

t
(λ− Ẽh)−1xh |σ+i∞

σ−i∞.

But eλt

t (λ − Ẽh)−1xh|σ+i∞
σ−i∞ = 0 since according to Lemma 2.1 of [33], under condition (ii), we have

‖R(λ, Ẽh)xh‖ → 0 as |λ| → +∞ whenever Reλ > 0. Therefore,

〈Sh(t)xh, yh〉Yh,Yh
=

〈
1

2πit

∫ σ+i∞

σ−i∞
eλt(λ− Ẽh)−2xhdλ, yh

〉
Yh,Yh

=
1

2πit

∫ σ+i∞

σ−i∞
eλt

〈
(λ− Ẽh)−2xh, yh

〉
Yh,Yh

dλ.

Let λ = 1
t + iη with η ∈ R. Then

〈Sh(t)xh, yh〉Yh,Yh
=

e

2πt

∫
R

eiηt

〈
R2

(
1
t

+ iη, Ẽh

)
xh, yh

〉
Yh,Yh

dη.
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Hölder’s inequality yields

| 〈Sh(t)xh, yh〉Yh,Yh
| =

∣∣∣∣∣ e

2πt

∫
R

eiηt

〈
R

(
1
t

+ iη, Ẽh

)
xh, R

(
1
t

+ iη, Ẽ∗
h

)
yh

〉
Yh,Yh

dη

∣∣∣∣∣
≤ e

2πt

(∫
R

‖R
(

1
t

+ iη, Ẽh

)
xh‖2dη

) 1
2
(∫

R

‖R
(

1
t

+ iη, Ẽ∗
h

)
yh‖2dη

) 1
2

≤ c‖xh‖‖yh‖.

Therefore
‖Sh(t)‖ ≤ c, ∀h ∈ (0, h∗). �

Now, we display the main theorem which leads to the polynomial stability of the discretized problem (1.14).

Theorem 3.8. Let (Th(t)) t≥0
h∈(0,h∗)

be a family of uniformly bounded C0 semigroups on the associated Hilbert

spaces (Xh)h∈(0,h∗) and let (Ãh)h∈(0,h∗) be the corresponding infinitesimal generators such that (3.1) and (3.2)
are satisfied. Then for a fixed α > 0, the following statements are equivalent:

(i)
sup

h∈(0,h∗)

‖R(is, Ãh)‖ = O(|s|α), |s| → ∞

(ii)
sup

h∈(0,h∗)

‖Th(t)Ã−α
h ‖ = O(t−1), t → +∞

(iii)
sup

h∈(0,h∗)

‖Th(t)Ã−1
h ‖ = O(t

−1
α ), t→ +∞.

Proof. We begin to prove (ii) ⇔ (iii). We adapt the proof found in [7] Proposition 3.1 without the discretization
parameter h. Given (ii), we have

‖Th(t)Ã−αn
h ‖ =

∥∥∥∥
[
Th

(
t

n

)
Ã−α

h

]n∥∥∥∥ ≤ c
(n
t

)n

≤ c(n)t−n, ∀n ∈ N∗, h ∈ (0, h∗), t→ +∞.

According to the moment inequality in Theorem II.5.34 of [13], we remark that there exists a positive constant
L independent of h such that, for all ν ∈ (0, 1), we have

‖Th(t)Ã−αnν
h ‖ = ‖Ãαn(1−ν)

h Th(t)Ã−αn
h ‖

≤ L‖Ãαn
h Th(t)Ã−αn

h ‖(1−ν)‖Th(t)Ã−αn
h ‖ν

≤ LM1−νcν(n)t−nν .

Choose ν =
1
αn

with n >
1
α

to get

‖Th(t)Ã−1
h ‖ ≤ c(n)t−

1
α .

Conversely, assume that (iii) holds. Then

‖Th(t)Ã−n
h ‖ = ‖[Th

(
t

n

)
Ã−1

h ]n‖ ≤
(
t

n

)−n
α

≤ n
n
α t−

n
α , ∀n ∈ N∗.
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Therefore,
‖Th(t)Ã−nν

h ‖ ≤ c‖Ãn
hTh(t)Ã−n

h ‖1−ν‖Th(t)Ã−n
h ‖ν

≤ cM1−νc(n)νt−
nν
α , ∀ν ∈ (0, 1).

Take ν =
α

n
with n > α to get

sup
h∈(0,h∗)

‖Th(t)Ã−α
h ‖ = O

(
t−1

)
.

Now, we prove the implication (ii) ⇒ (i) (for the continuous case, see [8]). Given (ii), define

m1(t) = sup
h∈(0,h∗)

s≥t

‖Th(s)Ã−1
h ‖.

Notice that m1(t) is non increasing. Let u0h ∈ D(Ãh), f0h = (−Ãh + iτ)u0h, τ ∈ R, and let vh(t) = eitτu0h. We
have {

∂tvh − Ãhvh = iτeitτu0h − Ãh(eitτu0h) = eitτf0h

vh(0) = u0h.

By the Duhamel formula,

vh = etÃhu0h +
∫ t

0

e(t−s)Ãheiτsf0hds.

By the boundedness of the semigroup (Th(t)) and the definition of m1, we have

‖u0h‖ = ‖vh(t)‖ ≤ ‖Th(t)Ã−1
h Ãhu0h‖ + c t‖f0h‖

≤ m1(t)‖Ãhu0h‖ + c t‖f0h‖
≤ m1(t)(‖f0h‖ + |τ |‖u0h‖) + c t‖f0h‖.

Apply the above inequality with t = G(|τ |) where

G(ξ) =

⎧⎪⎨
⎪⎩
m−1

1r

(
1

2(ξ + 1)

)
if ξ > 0 and

1
2(ξ + 1)

≤ m1(0),

0 if ξ > 0 and
1

2(ξ + 1)
> m1(0),

where m−1
1r is the right inverse of m1. Therefore,

m1(t)|τ | = m1(G(|τ |))|τ | ≤ |τ |
2(|τ | + 1)

≤ 1
2
.

Hence,
1
2‖u0h‖ ≤ m1(G(|τ |))‖f0h‖ + c G(|τ |)‖f0h‖

≤ ‖f0h‖
2(|τ | + 1)

+ c G(|τ |)‖f0h‖
≤ (

1
2 + c G(|τ |)) ‖f0h‖.

Consequently,
‖(iτ − Ãh)−1‖ ≤ 1 + 2c G(|τ |),

i.e.,
sup

h∈(0,h∗)

‖(iτ − Ãh)−1‖ ≤ 1 + 2c G(|τ |).
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Since, by (iii),
sup

h∈(0,h∗)

‖Th(t)Ã−1
h ‖ ≤Mt

−1
α , t→ +∞,

then, as m1 is non-increasing, we get
m1(t) ≤Mt

−1
α , t→ +∞.

Besides, as the inverse of t
−1
α is t−α, then

G(ξ) ≤ m−1
1r

(
1

2(ξ + 1)

)
≤ C

(
1

2(ξ + 1)

)−α

= C(2(ξ + 1))α ≤ cξα, ξ → +∞.

Finally, we get
sup

h∈(0,h∗)

‖(iτ − Ãh)−1‖ ≤ 1 + 2c|τ |α ≤ c|τ |α, |τ | → +∞.

It remains to prove that (i) ⇒ (ii). For this aim, for all h ∈ (0, h∗), let Xh = Xh×Xh and consider the operator
Ãh given by the operator matrix

Ãh =

⎛
⎝ Ãh Ã

−α
h

0 Ãh

⎞
⎠,

where D(Ãh) = D(Ãh) ×D(Ãh). For all h ∈ (0, h∗) and all λh ∈ ρ(Ãh), we have

R(λh, Ãh) =
(
R(λh, Ãh) R2(λh, Ãh)Ã−α

h

0 R(λh, Ãh)

)
.

Indeed,

R(λh, Ãh)(λh − Ãh) = (λh − Ãh)R(λh, Ãh) =
(
Ih 0
0 Ih

)
.

Therefore, ρ(Ãh) = ρ(Ãh) and for all h ∈ (0, h∗), the operator Ãh is the generator of the C0 semigroup
(Th(t))t≥0 on Xh defined by

Th(t) =
(
Th(t) tTh(t)Ã−α

h
0 Th(t)

)
.

In fact,

T̂h(t) =

(
T̂h(t) t̂Th(t)Ã−α

h

0 T̂h(t)

)

=
(
R(λh, Ãh) R2(λh, Ãh)Ã−α

h

0 R(λh, Ãh)

)

= R(λh, Ãh),

where T̂h(t) is the Laplace transform of Th(t). Since for all h ∈ (0, h∗) we have

‖R(is, Ãh)‖ = O(|s|α), as |s| → +∞,

then by Lemma 3.6 we get
sup

h∈(0,h∗)
Reλ>0

‖R(λ, Ãh)Ã−α
h ‖ ≤ c.
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Hence, for all xh = (x1h, x2h) ∈ Xh, and Reλh > 0, we have

‖R(λh, Ãh)xh‖2 =
∥∥∥∥
(
R(λh, Ãh)x1h +R2(λh, Ãh)Ã−α

h x2h

R(λh, Ãh)x2h

)∥∥∥∥
2

≤ c
(
‖R(λh, Ãh)x1h‖2 + ‖R(λh, Ãh)x2h‖2

)
.

Similarly, we have
‖R(λh, Ã∗

h)xh‖2 ≤ c(‖R(λh, Ã
∗
h)x1h‖2 + ‖R(λh, Ã

∗
h)x2h‖2).

Indeed, we have

Ã∗
h =

(
Ã∗

h (Ã∗
h)−α

0 Ã∗
h

)
.

In order to get
sup

h∈(0,h∗)
Reλ>0

‖R(λ, Ã∗
h)(Ã∗

h)−α‖ ≤ c,

we must have at least
‖R(is, Ã∗

h)‖ = O(|s|α), as |s| → +∞.

Actually, we have
R(is, Ã∗

h) = [(is− Ã∗
h)]−1 = [(is− Ãh)∗]−1 = R(is, Ãh)∗.

Therefore, we get
‖R(is, Ã∗

h)‖ ≤ ‖R(is, Ãh)‖ = O(|s|α), as |s| → +∞.

Now, by Lemma 3.7, since for all h ∈ (0, h∗), Th(t) is a uniformly bounded family of C0 semigroups, we get

sup
ξ>0

h∈(0,h∗)

ξ

∫
R

(‖R(ξ + iη, Ãh)xh‖2) + (‖R(ξ + iη, Ã∗
h)xh‖2)dη <∞, ∀xh ∈ Xh.

Hence,

sup
ξ>0

h∈(0,h∗)

ξ

∫
R

(‖R(ξ + iη, Ãh)xh‖2) + (‖R(ξ + iη, Ã∗
h)xh‖2)dη <∞, ∀xh ∈ Xh.

Therefore, (Th(t)) t≥0
h∈(0,h∗)

is uniformly bounded over (Xh)h∈(0,h∗) by Lemma 3.7. Since (Th(t)) t≥0
h∈(0,h∗)

is uni-

formly bounded over (Xh)h∈(0,h∗), the definition of Th(t) implies that

sup
t≥0

h∈(0,h∗)

‖tTh(t)Ã−α
h ‖ < +∞. �

4. Preliminary lemmas

In this section, we fix l ∈ N, l even. We introduce the Hilbert space Xh = Vh × Vh and the operator
Ãl,h : Xh → Xh defined by

Ãl,h =

⎛
⎝ 0 (1 + hθ)−1

(
I + hθA

l
2
h

)
−(1 + hθ)−1(I + hθA

l
2
h )Ah −hθA

1+ l
2

h −BhB
∗
h

⎞
⎠. (4.1)
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The space Xh is here equipped with the inner product((
uh

vh

)
,

(
ũh

ṽh

))
Xh

= a(uh, ũh) + (vh, ṽh), ∀(uh, vh), (ũh, ṽh) ∈ Xh, (4.2)

with associated norm ‖.‖Xh
. Therefore, the system (1.14) is equivalent to the following first order system in Xh:

żh(t) = Ãl,hzh(t), zh(0) = z0h,

where zh(t) =
(

ωh(t)

(1 + hθ)(I + hθA
l
2
h )−1ω̇h(t)

)
and z0h =

(
ω0h

ω1h

)
. Note that we recover the system (1.9) in the

particular case l = 0. We define the sesquilinear form al(., .) on Vh by

al(uh, vh) =
(
A

1+ l
2

h uh, vh

)
, ∀(uh, vh) ∈ Vh × Vh,

i.e.

al(uh, vh) =
N(h)∑
k=1

ckdkλ
2+l
k, h,

for uh =
N(h)∑
k=1

ckϕk, h and vh =
N(h)∑
k=1

dkϕk, h. Remark that a0(., .) = a(., .) defined in (1.3).

We easily prove that Ãl,h is maximal dissipative in Xh, hence (Tl,h(t)) = (etÃl,h) forms a family of C0

semigroups of contractions in Xh. In the sequel we prove that the family (Ãl,h)h∈(0,h∗) satisfies condition i)
in Theorem 3.1 and the properties (3.1) and (3.2) of Subsection 3.2. Condition i) in Theorem 3.1 or (3.1) in
Section 3.2 is satisfied due to the following lemma:

Lemma 4.1. The spectrum of the operator Ãl,h contains no point on the imaginary axis.

Proof. Suppose that
(
ϕh

ψh

)
∈ Xh and ω ∈ R are such that

Ãl,h

(
ϕh

ψh

)
= iω

(
ϕh

ψh

)
.

Then, by using the definition (4.1) of Ãl,h, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψh = iω(1 + hθ)
(
I + hθA

l
2
h

)−1

ϕh

−(1 + hθ)−1
(
I + hθA

l
2
h

)
Ahϕh − iω(1 + hθ)

(
hθA

1+ l
2

h +BhB
∗
h

)(
I + hθA

l
2
h

)−1

ϕh =

−ω2(1 + hθ)(I + hθA
l
2
h )−1ϕh.

(4.3)

Let χh = (1 + hθ)(I + hθA
l
2
h )−1ϕh then the second relation of (4.3) becomes

(1 + hθ)−2
(
I + hθA

l
2
h

)2

Ahχh + iω(hθA
1+ l

2
h +BhB

∗
h)χh = ω2χh. (4.4)

If ω = 0, then taking the inner product of (4.4) with χh ∈ Vh, we get (I + hθA
l
2
h )A

1
2
hχh = 0 and hence χh = 0

which implies by the definition of χh that ϕh = ψh = 0.
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It then remains to consider the case ω 
= 0. In that case, we take the imaginary part of the inner product
(in H) of (4.4) with χh ∈ Vh to obtain

0 = ωhθ
(
A

1+ l
2

h χh, χh

)
+ ω (BhB

∗
hχh, χh)

= ωhθ
(
A

1
2+ l

4
h χh, A

1
2+ l

4
h χh

)
+ ω (B∗

hχh, B
∗
hχh)U ,

that is to say

hθ
∥∥∥A 1

2+ l
4

h χh

∥∥∥2

+ ‖B∗
hχh‖2

U = 0.

This leads to χh = 0, and hence ϕh = ψh = 0. �

Our main goal is to prove condition (ii) of Theorem 3.1 in the case l = 0 and condition (i) of Theorem 3.8 as
well as (3.2) in the case l ≥ 2 and α = 2l. In that last case (l ≥ 2), these two conditions are equivalent to

sup
h∈(0,h∗), s∈R

(1 + |s|2l)−1‖R(is, Ãl,h)‖L(Xh) <∞. (4.5)

To prove this above property, we use a contradiction argument. More precisely, we will assume that, for all

n ∈ N, there exist hn ∈ (0, h∗), ωn ∈ R and zn =
(
ϕn

ψn

)
∈ Xhn such that

‖zn‖2
Xhn

= a(ϕn, ϕn) + ‖ψn‖2 = 1, ∀n ∈ N, (4.6)

and
(1 + |ωn|2l)

∥∥∥iωnzn − Ãl,hnzn

∥∥∥
Xhn

→ 0, as n→ ∞, (4.7)

where l = 0 in the setting of Theorem 3.1.

Lemma 4.2. Assume that the sequences (hn), (ωn), (zn) satisfy (4.6) and (4.7). Then, we have

(1 + |ωn|2l)(hθ
na

l(ψn, ψn) +
∥∥B∗

hn
ψn

∥∥2

U
) → 0, as n→ ∞ (4.8)

and
lim

n→∞a(ϕn, ϕn) = lim
n→∞ ‖ψn‖2 =

1
2
· (4.9)

Proof. For (4.8), we take the inner product in Xhn of iωnzn− Ãl,hnzn with zn and take the real part. We obtain

�
(
iωnzn − Ãl,hnzn, zn

)
Xhn

= −�
⎛
⎝
⎛
⎝ (1 + hθ

n)−1
(
I + hθ

nA
l
2
hn

)
ψn

−(1 + hθ
n)−1

(
I + hθ

nA
l
2
hn

)
Ahnϕn − hθ

nA
1+ l

2
hn

ψn −BhnB
∗
hn
ψn

⎞
⎠,

(
ϕn

ψn

)⎞
⎠

Xhn

= �
(
−(1 + hθ

n)−1
((
I + hθ

nA
l
2
h

)
Ahnψn, ϕn

)
+ (1 + hθ

n)−1
((
I + hθ

nA
l
2
hn

)
Ahnϕn, ψn)

)
+
(
hθ

nA
1+ l

2
hn

ψn +BhnB
∗
hn
ψn, ψn

))
=

(
hθ

nA
1+ l

2
hn

ψn +BhnB
∗
hn
ψn, ψn

)
.

Then(
1 + |ωn|2l

)
�
(
iωnzn − Ãl,hnzn, zn

)
Xhn

=
(
1 + |ωn|2l

)(
hθ

na
l(ψn, ψn) +

∥∥B∗
hn
ψn

∥∥2

U

)
→ 0 by (4.7).
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In order to prove (4.9), we introduce the operator

A1hn = (1 + hθ
n)−1(I + hθ

nA
l
2
hn

)
(

0 I
−Ahn 0

)
. (4.10)

We have

Ãl,hn

(
ϕn

ψn

)
= A1hn

(
ϕn

ψn

)
−
(

0

hθ
nA

1+ l
2

hn
ψn +BhnB

∗
hn
ψn

)
, ∀

(
ϕn

ψn

)
∈ Xhn .

We take the norm ‖.‖Xhn
of iωnzn −A1hnzn +

(
0

hθ
nA

1+ l
2

hn
ψn

)
to obtain

(1 + |ωn|2l)

∥∥∥∥∥iωnzn −A1hnzn +

(
0

hθ
nA

1+ l
2

hn
ψn

)∥∥∥∥∥
2

Xhn

=
(
1 + |ωn|2l

) ∥∥∥∥iωnzn − Ãl,hnzn −
(

0
BhnB

∗
hn
ψn

)∥∥∥∥
2

Xhn

≤ 2
(
1 + |ωn|2l

)(∥∥∥iωnzn − Ãl,hnzn

∥∥∥2

Xhn

+
∥∥BhnB

∗
hn
ψn

∥∥2
)

≤ C
(
1 + |ωn|2l

)(∥∥∥iωnzn − Ãl,hnzn

∥∥∥2

Xhn

+
∥∥B∗

hn
ψn

∥∥2

U

)
→ 0,

by (4.7) and (4.8). Therefore

(
1 + |ωn|2l

)∥∥∥∥∥iωnzn −A1hnzn +

(
0

hθ
nA

1+ l
2

hn
ψn

)∥∥∥∥∥
2

Xhn

→ 0. (4.11)

We can now prove (4.9). If l = 0, then by Lemma 4.3 below there exists n0 ∈ N such that the sequence (|ωn|)n≥n0

is bounded away from zero. Hence, we may write


(
iωnzn −A1hnzn +

(
0

hθ
nA

1+ l
2

hn
ψn

)
, 1

ωn

(
ϕn

−ψn

))
Xhn

=
((

ϕn

ψn

)
,

(
ϕn

−ψn

))
Xhn

= a(ϕn, ϕn) − ‖ψn‖2
Vhn

and so, by (4.11) and (4.6), we have

lim
n→∞(a(ϕn, ϕn) − ‖ψn‖2

Vhn
) = 0.

This relation and (4.6) lead to (4.9). �

Lemma 4.3. Assume that (4.6) and (4.7) hold. Then there exists n0 ∈ N such that the sequence (|ωn|)n≥n0 is
uniformly bounded away from zero.

Proof. By a contradiction argument, we show that the sequence (ωn)n contains no subsequence converging to
zero. Namely suppose that such a subsequence exists. For the sake of simplicity, we still denote it by (ωn)n.
Hence (4.11) implies that

−A1hnzn +

(
0

hθ
nA

1+ l
2

hn
ψn

)
=

(
−(1 + hθ

n)−1(I + hθ
nA

l
2
hn

)ψn

(1 + hθ
n)−1(I + hθ

nA
l
2
hn

)Ahnϕn + hθ
nA

1+ l
2

hn
ψn

)
→ 0 in Xhn . (4.12)
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Taking the inner product of first component in (4.12) with ψn, we get

(
1 + hθ

n

)−1
a
((
I + hθ

nA
l
2
hn

)
ψn, ψn

)
=

(
1 + hθ

n

)−1 (
a (ψn, ψn) + hθ

na
l (ψn, ψn)

) → 0.

As hn ≤ h∗, then, by (4.8), we get ∥∥∥A 1
2
hn
ψn

∥∥∥2

= a(ψn, ψn) → 0. (4.13)

The convergence of the first component in (4.12) implies that

∥∥∥A 1
2
hn

(
I + hθ

nA
l
2
hn

)
ψn

∥∥∥2

→ 0.

Therefore, (4.13) yields

hθ
nA

(1+l)
2

hn
ψn → 0 in H. (4.14)

The second component in (4.12) and the fact that α‖x‖2 ≤ ‖A 1
2
hx‖2 = a(x, x) for all x ∈ Vh imply that

(
1 + hθ

n

)−1
(
I + hθ

nA
l
2
hn

)
A

1
2
hn
ϕn + hθ

nA
1+l
2

hn
ψn → 0 in H,

which, by (4.14), yields (
1 + hθ

n

)−1
(
I + hθ

nA
l
2
hn

)
A

1
2
hn
ϕn → 0 in H.

Thus, as hn ≤ h∗, we get
a(ϕn, ϕn) → 0.

This above relation and (4.13) contradict (4.6). �

According to the above lemma, we note that the coefficient 1 + |ωn|2l becomes equivalent to |ωn|2l. Now, we
introduce the operator D1hn defined by

D1hn =
(

0 I
−Ahn 0

)
.

Note that A1hn = (1 + hθ
n)−1(I + hθ

nA
l
2
hn

)D1hn . We then use the following spectral basis of the operator D1hn .
Namely, we extend the definitions of λk, hn and of ϕk, hn for k ∈ {−1, . . . ,−N(hn)} by setting λk, hn = −λ−k, hn

and ϕk, hn = ϕ−k, hn . Then an orthonormal basis of Xhn formed by the eigenvectors of D1hn is given by

Ψk, hn =
1√
2

(− i
λk, hn

ϕk, hn

ϕk, hn

)
, 0 < |k| ≤ N(hn), (4.15)

of associated eigenvalue iλk, hn , that is to say

D1hnΨk, hn = iλk, hnΨk, hn .

Consequently, for all n ∈ N, there exist complex coefficients (cnk )0<|k|≤N(hn) such that

zn =
∑

0<|k|≤N(hn)

cnkΨk, hn . (4.16)

The normalization condition (4.6) implies that ∑
0<|k|≤N(hn)

|cnk |2 = 1.



866 F. ABDALLAH ET AL.

Let ε be the constant from Proposition 2.4 (if l = 0, we recover the condition from Prop. 2.1). For any n ∈ N,
we define

Ml(hn) = max
{
k ∈ {1, . . . , N(hn)}

∣∣∣∣hθ
n(λk)2 ≤ ε

λl
k

}
, (4.17)

if hθ
n(λ1)2 ≤ ε

λl
1

and Ml(hn) = 0 otherwise.

Lemma 4.4. Suppose that the sequences (hn), (ωn), (zn) satisfy (4.6) and (4.7). Then, we have

ψn =
1√
2

N(hn)∑
k=1

(
cnk + cn−k

)
ϕk, hn , (4.18)

∑
Ml(hn)<k≤N(hn)

|ωn|2l ∣∣cnk + cn−k

∣∣2 → 0, (4.19)

and ∑
0<|k|≤Ml(hn)

|ωn|2l
∣∣∣ωn − (

1 + hθ
n

)−1
(
λk, hn + hθ

nλ
1+l
k, hn

)∣∣∣2 |cnk |2 → 0. (4.20)

Proof. Relation (4.18) follows directly by taking the second component in (4.16) and by using (4.15) and the
fact that ϕk, h = ϕ−k, h.

On the other hand, we use (4.16) and the fact that Ψk, hn is an eigenvector of D1hn associated with eigenvalue
iλk, hn to obtain for all ψ̃hn ∈ Xhn(
iωnzn −A1hnzn, ψ̃hn

)
Xhn

=
∑

0<|k|≤N(hn)

i
(
ωn − (

1 + hθ
n

)−1
(
λk, hn + hθ

nλ
1+l
k, hn

))
cnk

(
Ψk, hn , ψ̃hn

)
Xhn

. (4.21)

From (4.8) and (4.18), it follows that

|ωn|2l
hθ

na
l(ψn, ψn) =

1
2

N(hn)∑
k=1

hθ
nλ

2+l
k, hn

|ωn|2l ∣∣cnk + cn−k

∣∣2 → 0. (4.22)

As we have λk ≤ λk, hn for all k ∈ {1, . . . , N(hn)} and by the definition (4.17), we obtain (4.19).
By (2.9), we have

hθ
nλ

2
k, hn

≤ hθ
n(λk + (Chθ

nλ
2
k)2)2 ≤ 2hθ

nλ
2
k + 2C4hθ

n(hθ
nλ

2
k)4 ≤ C

ε

λl
k

+ C
ε4

λ4l
k

≤ C′ ε
λl

k

(4.23)

for hθ
n(λk)2 ≤ ε

λl
k

. So, by using (4.22) and again (2.9), there exists a constant C independent of hn such that

h2θ
n

Ml(hn)∑
k=1

λ4+2l
k, hn

|ωn|2l ∣∣cnk + cn−k

∣∣2 ≤ C

Ml(hn)∑
k=1

εhθ
nλ

2+l
k, hn

|ωn|2l ∣∣cnk + cn−k

∣∣2

≤ Cε

Ml(hn)∑
k=1

hθ
nλ

2+l
k, hn

|ωn|2l ∣∣cnk + cn−k

∣∣2 → 0.

(4.24)

We also have for all ψ̃hn ∈ Xhn((
0

hθ
nA

1+ l
2

hn
ψn

)
, ψ̃hn

)
Xhn

=
∑

0<|k|≤N(hn)

hθ
n

2
λ2+l

k, hn
(cnk + cn−k)

(
Ψk, hn , ψ̃hn

)
Xhn

(4.25)
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because l is even. Relations (4.24) and (4.25) imply that for all ψ̃hn ∈ Xhn

|ωn|l
⎛
⎝
(

0

hθ
nA

1+ l
2

hn
ψn

)
−

∑
Ml(hn)<|k|≤N(hn)

hθ
n

2
λ2+l

k, hn
(cnk + cn−k)Ψk, hn , ψ̃hn

⎞
⎠

Xhn

→ 0.

So, we obtain with (4.11), (4.21) and the above relation, for all ψ̃hn ∈ Xhn , that the inner product in Xhn

of ψ̃hn with ∑
0<|k|≤N(hn)

i |ωn|l
(
ωn − (

1 + hθ
n

)−1
(
λk, hn + hθ

nλ
1+l
k, hn

))
cnkΨk, hn

+
∑

Ml(hn)<|k|≤N(hn)

hθ
n

2 |ωn|l λ2+l
k, hn

(
cnk + cn−k

)
Ψk, hn

tends to zero. Taking ψ̃hn ∈ Xhn to be equal to the same above relation and as the family (Ψk, hn) is orthogonal,
the above relation implies (4.20). �

5. Proof of Theorem 1.2

We use the results of the previous section with l = 0 and set, for shortness, Ãh := Ã0,h and M(hn) := M0(hn).

Proof of Theorem 1.2. This proof is based on Theorem 3.1. First, for all h ∈ (0, h∗), the family (etÃh) forms
a contraction semigroup. The family (Ãh) satisfies the condition i) in Theorem 3.1 owing to Lemma 4.1. To
show that the family (Ãh) also satisfies the condition ii) in Theorem 3.1, we use a contradiction argument.

Let (hn)n, (ωn)n and zn =
(
ϕn

ψn

)
∈ D(Ãhn) be three sequences satisfying (4.6) and (4.7). Notice that for

km ∈ Ak, we have
λkm,hn − λkm−1+lm−1−1,hn ≥ λkm − λkm−1+lm−1−1 − cε

= λkm − λkm−1 − cε ≥ γ′0 − cε

≥ γ′
0
2 =: γ′

for ε ≤ γ′
0

2c by (2.8) and (2.9). We now introduce the set

F =

{
n ∈ N

∣∣∃k(n) ∈ {1, . . . ,M}, ∃km(n) ∈ Ak(n),
∣∣km(n)

∣∣ ≤M(hn) and

∣∣km(n)+k(n)−1 + lm(n)+k(n)−1

∣∣ ≤ N(hn) such that
∣∣ωn − λkm(n), hn

∣∣ < γ′

2

}
· (5.1)

We distinguish two cases.

First case. The set F is infinite. Then, without loss of generality, we can suppose that F = N (otherwise we
take a subsequence of (ωn)). Then, by reducing the value of γ′ if needed, we can assume that for all n ∈ N, we
have that for all km ∈ Ak′ , k′ = 1, . . . ,M with m 
= m(n),

∣∣ωn − λkm+j+l, hn

∣∣ ≥ γ′

2
, ∀j = 0, . . . , k′ − 1, ∀l = 0, . . . , lm+j − 1.

By using (4.20), we obtain that

M∑
k=1

∑
km ∈ Ak

m 
= m(n)

k−1∑
j=0

lm+j−1∑
l = 0

0 < |km+j + lm+j − 1| ≤M(hn)

∣∣∣cnkm+j+l

∣∣∣2 → 0. (5.2)
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Define now

ψ̃n =
1√
2

k(n)−1∑
j=0

lm(n)+j−1∑
l=0

cnkm(n)+j+lϕkm(n)+j+l, hn . (5.3)

We have, by (4.18),

ψn =
1√
2

M∑
k=1

∑
km∈Ak

k−1∑
j = 0

1 ≤ km+j + l ≤ N(hn)

lm+j−1∑
l=0

(cnkm+j+l + cn−(km+j+l))ϕkm+j+l, hn ,

and so, by (5.2) and (4.19), we obtain ∥∥∥ψ̃n − ψn

∥∥∥ → 0. (5.4)

Thus, since (‖B∗
h‖L(Vh, U))h∈(0, h∗) is bounded, we deduce that∥∥∥B∗

hn
(ψ̃n − ψn)

∥∥∥
U
→ 0.

The above relation and (4.8) imply that ∥∥∥B∗
hn
ψ̃n

∥∥∥
U
→ 0. (5.5)

But ∥∥∥B∗
hn
ψ̃n

∥∥∥
U

= 1√
2

∥∥∥∥∥∥
k(n)−1∑

j=0

lm(n)+j−1∑
l=0

cnkm(n)+j+lB
∗
hn
ϕkm(n)+j+l, hn

∥∥∥∥∥∥
U

= 1√
2

∥∥(B∗
hn
ϕkm(n), hn · · · B∗

hn
ϕkm(n)+k(n)−1+lm(n)+k(n)−1−1, hn)C

∥∥
U

= 1√
2

∥∥( 1 · · · 1)Φkm(n), hnC
∥∥

U
,

where C = ( ckm(n) · · · ckm(n)+lm(n)−1 ckm(n)+1 · · · ckm(n)+k(n)−1+lm(n)+k(n)−1−1)T . So, we have

∥∥∥B∗
hn
ψ̃n

∥∥∥
U

= 1√
2

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

1 1 · · · 1
0 0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎠Φkm(n), hnC

∥∥∥∥∥∥∥∥
U, 2

.

We now use Lemma 1.1 to have∥∥∥B∗
hn
ψ̃n

∥∥∥
U
≥ c

∥∥∥B−1
km(n)

Φkm(n), hnC
∥∥∥

U, 2
for n large enough

≥ cα ‖C‖2 by Proposition 2.1.
(5.6)

Gathering (5.3)–(5.6), we obtain that ψ̃n → 0 in H. Therefore, by (5.4), ψn → 0, which contradicts (4.9).

Second case. the set F is finite. Then, we can assume, without loss of generality, that F is empty (otherwise
we take off the finite number of (ωn)), i.e., that for all n ∈ N, we have that

|ωn − λk, hn | ≥
γ′

2
if 0 < |k| ≤M(hn).

Thus, by (4.20) and the above relation, we obtain that∑
0<|k|≤M(hn)

|cnk |2 → 0.

Therefore, by (4.18), (4.19) and the above relation, we have ψn → 0 in H, which contradicts (4.9).
In conclusion, the family (Ãh) satisfies the condition (ii) in Theorem 3.1 and so the family of systems (1.9)

is uniformly exponentially stable. �
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6. Proof of Theorem 1.6

Here we use the results of Section 4 with l > 0 and l even. Without loss of generality, we may assume that
0 < h < h∗ = 1.
Proof of Theorem 1.6 and of (3.2) This proof is based on Theorem 3.8. First, for all h ∈ (0, h∗), (etÃl,h) forms
a family of contraction semigroups and the family (Ãl,h)h satisfies (3.1). To apply the results of Theorem 3.8,
the family (Ãl,h) must also satisfy condition i) of Theorem 3.8 with α = 2l and condition (3.2) or equivalently
condition (4.5). We again use a contradiction argument to prove this last condition. Let (hn)n, (ωn)n and

zn =
(
ϕn

ψn

)
∈ Xh be three sequences satisfying (4.6) and (4.7). Notice that for km ∈ Ak, we have

λkm,h − λkm−1+lm−1−1,h ≥ λkm − λkm−1+lm−1−1 − cε
λ2l

km−1

≥ λkm − λkm−1 − cε
λ2l

k1

≥ γ′0 − cε
λ2l

k1

≥ γ′
0
2 =: γ′

for ε ≤ γ′
0λ2l

k1
2c by (2.8), (2.9) and because λkm ≥ λk1 > 0. We introduce the set F2 like

F2 =

{
n ∈ N

∣∣∃k(n) ∈ {1, . . . ,M}, ∃km(n) ∈ Ak(n),
∣∣km(n)

∣∣ ≤Ml(hn) and

∣∣km(n)+k(n)−1 + lm(n)+k(n)−1

∣∣ ≤ N(hn) such that
∣∣∣ωn − (1 + hθ

n)−1(λkm(n), hn + hθ
nλ

1+l
km(n), hn

)
∣∣∣ < γ′

4

}
· (6.1)

We distinguish two cases.
First case. the set F2 is infinite. Then, without loss of generality, we can suppose that F2 = N (otherwise we
take a subsequence of (ωn)n). Then, by reducing the value of γ′ if needed, we can assume that for all n ∈ N, we
have that for all km ∈ Ak′ , k′ = 1, . . . ,M with m 
= m(n), and for all |km+j + l| ≤Ml(hn)∣∣∣ωn − (

1 + hθ
n

)−1
(
λkm+j+l, hn + hθ

nλ
1+l
km+j+l, hn

)∣∣∣ ≥ γ′

8
, ∀j = 0, . . . , k′ − 1, ∀l = 0, . . . , lm+j − 1. (6.2)

Indeed, similar to (4.23), we have∣∣∣ωn − (
1 + hθ

n

)−1
(
λkm+j+l, hn + hθ

nλ
1+l
km+j+l, hn

)∣∣∣ ≥ (
1 + hθ

n

)−1 ∣∣λkm+j+l, hn − λkm(n), hn

∣∣
−
∣∣∣ωn − (

1 + hθ
n

)−1
(
λkm(n), hn + hθ

nλ
1+l
km(n), hn

)∣∣∣
− (

1 + hθ
n

)−1
(
hθ

nλ
1+l
km(n), hn

+ hθ
nλ

1+l
km+j+l, hn

)
≥ γ′

2
− γ′

4
− 2Cε
λk1

·

So choose again ε ≤ γ′λk1

16C
to get (6.2). By using (4.20), we obtain that

M∑
k=1

∑
km ∈ Ak

m 
= m(n)

k−1∑
j=0

lm+j−1∑
l = 0

0 < |km+j + lm+j − 1| ≤Ml(hn)

|ωn|2l
∣∣∣cnkm+j+l

∣∣∣2 → 0. (6.3)

Define now

ψ̃n =
1√
2

k(n)−1∑
j=0

lm(n)+j−1∑
l=0

cnkm(n)+j+lϕkm(n)+j+l, hn . (6.4)
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We have, by (4.18),

ψn =
1√
2

M∑
k=1

∑
km∈Ak

k−1∑
j = 0

1 ≤ km+j + l ≤ N(hn)

lm+j−1∑
l=0

(
cnkm+j+l + cn−(km+j+l)

)
ϕkm+j+l, hn ,

and so, by (6.3) and (4.19), we obtain
|ωn|l

∥∥∥ψ̃n − ψn

∥∥∥ → 0. (6.5)

Thus, since (‖B∗
h‖L(Vh, U))h∈(0, h∗) is bounded, we deduce that

|ωn|l
∥∥∥B∗

hn
(ψ̃n − ψn)

∥∥∥
U
→ 0.

The above relation and (4.8) imply that
|ωn|l

∥∥∥B∗
hn
ψ̃n

∥∥∥
U
→ 0. (6.6)

But

|ωn|l
∥∥∥B∗

hn
ψ̃n

∥∥∥
U

= |ωn|l√
2

∥∥∥∥∥∥
k(n)−1∑

j=0

lm(n)+j−1∑
l=0

cnkm(n)+j+lB
∗
hn
ϕkm(n)+j+l, hn

∥∥∥∥∥∥
U

= |ωn|l√
2

∥∥(B∗
hn
ϕkm(n), hn · · · B∗

hn
ϕkm(n)+k(n)−1+lm(n)+k(n)−1−1, hn)C

∥∥
U

= |ωn|l√
2

∥∥( 1 · · · 1)Φkm(n), hnC
∥∥

U
,

where C = ( ckm(n) · · · ckm(n)+lm(n)−1 ckm(n)+1 · · · ckm(n)+k(n)−1+lm(n)+k(n)−1−1)T . So, we have

|ωn|l
∥∥∥B∗

hn
ψ̃n

∥∥∥
U

= |ωn|l√
2

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

1 1 · · · 1
0 0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎠Φkm(n), hnC

∥∥∥∥∥∥∥∥
U, 2

.

We now use Lemma 1.1 to have

|ωn|l
∥∥∥B∗

hn
ψ̃n

∥∥∥
U
≥ c |ωn|l

∥∥∥B−1
km(n)

Φkm(n), hnC
∥∥∥

U, 2
for n large enough

≥ c α|ωn|l
λl

km(n)

‖C‖2 by Proposition 2.4.

But, ωn verifies
∣∣∣ωn − (1 + hθ

n)−1(λkm(n), hn + hθ
nλ

1+l
km(n), hn

)
∣∣∣ < γ′

4 by definition (6.1) of F2, thus |ωn| ≥ (1 +

hθ
n)−1(λkm(n), hn + hθ

nλ
1+l
km(n), hn

) − γ′

4 ≥ 1
2λkm(n), hn − γ′

4 . Therefore, we have

|ωn|l
∥∥∥B∗

hn
ψ̃n

∥∥∥
U
≥ cα

2l

(
λkm(n), hn − γ′

2

)l

λl
km(n)

‖C‖2

≥ cα

22l

λl
km(n), hn

λl
km(n)

‖C‖2 for n large enough

≥ cα

22l
‖C‖2 by (2.8).

(6.7)

Gathering (6.4)–(6.7), we obtain that ψ̃n → 0 in H. Therefore, by (6.5), ψn → 0, which contradicts (4.9).
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Second case. the set F2 is finite. We proceed similar to the proof of the second case of Theorem 1.2.
In conclusion, the family (Ãl,h) satisfies (4.5); i.e., the condition (i) in Theorem 3.8 with α = 2l when l is

even and property (3.2) of Section 3.2.

7. A convergence result

Here we want to prove that the solution ωh of the discrete problem (1.14) tends to the solution ω of the
continuous problem (1.1) in X := V ×H as h goes to zero and if the discrete initial data are well chosen. This
is obtained with the help of a general version of the Trotter–Kato Theorem proved in [23] that is appropriated
when the approximated semi-groups are defined in proper subspaces of the limit one. The basic idea is that
the convergence of the semi-groups is equivalent to the convergence of the resolvent, hence we prove such a
convergence result for the resolvents.

Before going on we recall that (1.1) is equivalent to

ż(t) = Ãz(t) in X, z(0) = (ω0, ω1)
,

where z(t) = (ω(t), ω̇(t))
 and

Ã

(
u
v

)
=

(
v
−Au−BB∗v

)
=

(
0 I
−A −BB∗

)(
u
v

)
.

It is easy to check that Ã with domain D(Ã) = D(A) × V is a maximal dissipative operator in X , equipped
with the inner product

(
(u, v)
, (u∗, v∗)


)
X

= a (u, u∗) + (v, v∗) ∀(u, v)
, (u∗, v∗)
 ∈ X.

Moreover, Ã has no eigenvalues on the imaginary axis. We will denote by T (t), t ≥ 0 the strongly continuous
semi-group of contractions generated by Ã.

Let us start with some preliminary results.

Lemma 7.1. Let l ∈ N, l ≥ 2. If f ∈ V = D(A
1
2 ), then

‖(1 + hθ)(I + hθA
l
2
h )−1πhf − πhf‖H ≤ Ch

θ
l ‖f‖V , (7.1)

for some C > 0.

Proof. We write

πhf =
N(h)∑
k=1

fkϕk,h,

with fk ∈ C. Hence

vh = (1 + hθ)(I + hθA
l
2
h )−1πhf,

can be written

vh =
N(h)∑
k=1

vkϕk,h,
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with vk = (1 + hθ)(1 + hθλl
k,h)−1fk. Consequently we have

‖vh − πhf‖2
H =

N(h)∑
k=1

|fk|2
(
(1 + hθ)(1 + hθλl

k,h)−1 − 1
)2

= h2θ

N(h)∑
k=1

|fk|2
(

1 − λl
k,h

1 + hθλl
k,h

)2

≤ ch2θ

N(h)∑
k=1

|fk|2
λ2l

k,h

(1 + hθλl
k,h)2

≤ ch2θ

N(h)∑
k=1

λ2
k,h|fk|2(g(λk,h))2

for some c > 0 independent of h, where the function g : [0,∞) �→ R is given by g(λ) =
λl−1

(1 + hθλl)
. As the

maximum of g is attained at λ0 > 0 given by

hθλl
0 = l − 1,

we get that

‖vh − πhf‖2
H ≤ cc22h

2θ
l

N(h)∑
k=1

|fk|2λ2
k,h

since λ0 = c1h
− θ

l and g(λ0) = c2h
− θ(l−1)

l with c1, c2 two positive constants independent of h. This proves the
first estimate since

N(h)∑
k=1

|fk|2λ2
k,h = ‖A 1

2
hπhf‖2

H = a(πhf, πhf) ≤ a(f, f) = ‖A 1
2 f‖2

H . �

Corollary 7.2. Let l ∈ N, l ≥ 2, then for any fh ∈ Vh we have

‖(1 + hθ)(I + hθA
l
2
h )−1fh − fh‖D(A

− 1
2

h )
≤ Ch

θ
l ‖fh‖H , (7.2)

for some C > 0.

Proof. As in the previous lemma, we have

‖(1 + hθ)(I + hθA
l
2
h )−1fh − fh‖2

D(A
− 1

2
h )

= ‖A− 1
2

h

(
(1 + hθ)(I + hθA

l
2
h )−1fh − fh

)
‖2

H

= h2θ

N(h)∑
k=1

λ−2
k,h|fk|2

(
1 − λl

k,h

1 + hθλl
k,h

)2

≤ ch2θ

N(h)∑
k=1

|fk|2(g(λk,h))2,

when

fh =
N(h)∑
k=1

fkϕk,h.

We then conclude as before. �
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Lemma 7.3. Let l ∈ N, l ≥ 2 and let f ∈ D(A), then

hθ‖A1+ l
2

h (I + hθA
l
2
h )−2πhf‖D(A

− 1
2

h )
≤ Ch

θ
l ‖f‖D(A), (7.3)

for some C > 0.

Proof. We easily see that

h2θ‖A1+ l
2

h (I + hθA
l
2
h )−2πhf‖2

D(A
−1

2
h )

= h2θ‖A− 1
2

h A
1+ l

2
h (I + hθA

l
2
h )−2πhf‖2

H

= h2θ

N(h)∑
k=1

|fk|2
λ2l+2

k,h

(1 + hθλl
k,h)4

≤ h2θ

N(h)∑
k=1

|fk|2λ4
k,h(g(λk,h))2,

and we conclude as before. �

Lemma 7.4. Let l ∈ N, l ≥ 2 and let f ∈ V , then

‖(1 + hθ)(I + hθA
l
2
h )−1BhB

∗
h(1 + hθ)(I + hθA

l
2
h )−1πhf −BhB

∗
hπhf‖D(A

−1
2

h )
≤ Ch

θ
l ‖f‖V , (7.4)

for some C > 0.

Proof. As in Lemma 7.1, we set

vh = (1 + hθ)(I + hθA
l
2
h )−1πhf.

First, we notice that
‖BhB

∗
h(vh − πhf)‖H ≤ C‖vh − πhf‖H ,

and by Lemma 7.1 we get
‖BhB

∗
h(vh − πhf)‖H ≤ Ch

θ
l ‖f‖V .

Second, by Corollary 7.2, we have

‖(1 + hθ)(I + hθA
l
2
h )−1BhB

∗
hvh −BhB

∗
hvh‖D(A

− 1
2

h )
≤ Ch

θ
l ‖BhB

∗
hvh‖H

≤ Ch
θ
l (‖BhB

∗
h(vh − πhf)‖H + ‖BhB

∗
hπhf‖H)

≤ Ch
θ
l ‖f‖V ,

where we use the fact that ‖πhf‖H ≤ c‖πhf‖V ≤ c‖f‖V . The conclusion follows from the two above esti-
mates. �

Theorem 7.5. If z = (f, g)
 ∈ D(A) ×D(A), then

‖(Ãl,h)−1(πhf, πhg)
 − Ã−1(f, g)
‖X → 0 as h→ 0.

Proof. By the definition of Ãl,h and Ã, we have

(uh, vh)
 = (Ãl,h)−1(πhf, πhg)
,
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and
(u, v)
 = Ã−1(f, g)
,

if and only if⎧⎪⎨
⎪⎩
vh = (1 + hθ)

(
I + hθA

l
2
h

)−1

πhf

−Ahuh = (1 + hθ)
(
I + hθA

l
2
h

)−1 (
hθA

1+ l
2

h +BhB
∗
h

)
vh + (1 + hθ)

(
I + hθA

l
2
h

)−1

πhg,

and {
v = f
−Au = BB∗v + g.

Therefore, we can write
−Ahuh = πhg +BhB

∗
hπhf + rh,

where rh ∈ Vh is given by

rh =(1 + hθ)
(
I + hθA

l
2
h

)−1

πhg − πhg

+ (1 + hθ)hθ
(
I + hθA

l
2
h

)−1

A
1+ l

2
h vh

+ (1 + hθ)
(
I + hθA

l
2
h

)−1

BhB
∗
hvh −BhB

∗
hπhf.

By the previous Lemmas, rh satisfies

‖rh‖D(A
− 1

2
h

)
≤ Ch

θ
l ‖(f, g)
‖D(A)×V . (7.5)

Therefore, uh ∈ Vh can be seen as the unique solution of

a(uh, wh) = −(πhg, wh) − (BhB
∗
hπhf, wh) − 〈rh;wh〉 ∀wh ∈ Vh, (7.6)

where 〈; 〉 denotes the dual product in D(A− 1
2

h ). Since u ∈ V is solution of

a(u,w) = −(g, w) − (BB∗f, w) ∀w ∈ V,

we get (recalling that Vh ⊂ V )

a(u,wh) = −(g, wh) − (BB∗f, wh) ∀wh ∈ Vh.

Hence, taking the difference of this identity with (7.6), we obtain

a(u− uh, wh) = (πhg − g, wh) + (B∗(πhf − f), B∗wh)U + 〈rh;wh〉 ∀wh ∈ Vh.

Consequently, taking wh = πhu− uh, we get

a(u− uh, u− uh) = a(u − uh, u− πhu) + a(u− uh, πhu− uh)
= a(u − uh, u− πhu) + (πhg − g, πhu− uh)

+ (B∗(πhf − f), B∗(πhu− uh))U + 〈rh;πhu− uh〉.
Hence, by Cauchy-Schwarz’s inequality and the boundedness of B∗, we obtain

‖u− uh‖2
V = a(u− uh, u− uh)
≤ ‖u− uh‖V ‖u− πhu‖V + C(‖πhg − g‖H + ‖πhf − f‖H + ‖rh‖D(A

− 1
2

h )
)‖πhu− uh‖V .
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Now, using the triangle inequality, we get

‖u− uh‖2
V ≤C

(
(‖u− πhu‖V + ‖πhg − g‖H + ‖πhf − f‖H + ‖rh‖D(A

− 1
2

h
)
)‖u− uh‖V

+ (‖πhg − g‖H + ‖πhf − f‖H + ‖rh‖D(A
− 1

2
h )

)‖u− πhu‖V

)
.

Hence, by Young’s inequality, we arrive at

‖u− uh‖2
V ≤C

(
‖u− πhu‖2

V + ‖πhg − g‖2
H + ‖πhf − f‖2

H + ‖rh‖2

D(A
− 1

2
h

)

+ (‖πhg − g‖H + ‖πhf − f‖H + ‖rh‖D(A
− 1

2
h )

)‖u− πhu‖V

)
.

The estimates (1.5), (1.6), and (7.5) then yield

‖u− uh‖2
V ≤C

(
h2θ‖u‖2

D(A) + h4θ‖f‖2
D(A) + h4θ‖g‖2

D(A) + h
2θ
l ‖(f, g)
‖2

D(A)×V (7.7)

+ (h2θ‖f‖D(A) + h2θ‖g‖D(A) + h
θ
l ‖(f, g)
‖D(A)×V )hθ‖u‖D(A)

)
.

For v − vh, we notice that

v − vh = f − (1 + hθ)(I + hθA
l
2
h )−1πhf = f − πhf + πhf − (1 + hθ)(I + hθA

l
2
h )−1πhf,

and we conclude that it tends to zero in H due to the estimate (1.5) and Lemma 7.1. �

Corollary 7.6. If z = (f, g)
 ∈ V ×H, recalling that jh is the projection from H into Vh, we have

‖(Ãl,h)−1(πhf, jhg)
 − Ã−1(f, g)
‖X → 0 as h→ 0.

Proof. First for z = (f, g)
 ∈ D(A) ×D(A), then

‖(Ãl,h)−1(πhf, jhg)
 − Ã−1(f, g)
‖X ≤ ‖(Ãl,h)−1(πhf, πhg)
 − Ã−1(f, g)
‖X

+ ‖(Ãl,h)−1(0, jhg − πhg)
‖X .

The first term of this right-hand side tends to zero as h goes to zero by the previous Theorem. On the other
hand for the second term, as Ãl,h satisfies (3.2) (see Sect. 6), there exists C > 0 (independent of h) such that
for all h < h∗

‖(Ãl,h)−1(0, jhg − πhg)
‖X ≤ C‖jhg − πhg‖H .

Hence, by the triangle inequality and the property ‖g − jhg‖H ≤ ‖g − πhg‖H (as jh in the projection on Vh in
H), we get

‖(Ãl,h)−1(0, jhg − πhg)
‖X ≤ 2C‖g − πhg‖H .

By the estimate (1.6), we then conclude that this second term tends also to zero as h goes to zero.
If z = (f, g)
 is only in V ×H , then for an arbitrary ε > 0, we use the density of D(A) × D(A) into V ×H

to get (F,G)
 ∈ D(A) ×D(A) such that

‖(f, g)
 − (F,G)
‖X ≤ ε.

Now, by the triangle inequality, we have

‖(Ãl,h)−1(πhf, jhg)
 − Ã−1(f, g)
‖X ≤‖(Ãl,h)−1(πh(f − F ), jh(g −G))
‖X

+ ‖Ã−1(f − F, g −G)
‖X

+ ‖(Ãl,h)−1(πhF, jhG)
 − Ã−1(F,G)
‖X .
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By the first step, there exists hε small enough such that

‖(Ãl,h)−1(πhF, jhG)
 − Ã−1(F,G)
‖X ≤ ε, ∀0 < h < hε.

For the second term, by the boundedness of Ã−1, we may write

‖Ã−1(f − F, g −G)
‖X ≤ C‖(f − F, g −G)
‖X ≤ Cε.

Finally for the first term, using the property (3.2) and the fact that πh (resp. jh) is a projection from V (resp.
from H) into Vh, we get for all h < h∗

‖(Ãl,h)−1(πh(f − F ), jh(g −G))
‖X ≤ C‖(πh(f − F ), jh(g −G))
‖X ≤ C‖(f − F, g −G)
‖X ≤ Cε.

All together we have obtained that

‖(Ãl,h)−1(πhf, jhg)
 − Ã−1(f, g)
‖X ≤ (1 + 2C)ε, ∀0 < h < min{hε, h
∗}.

This proves the result. �

We are now ready to state the convergence result.

Theorem 7.7. If (ω0, ω1)
 ∈ V ×H, then

‖Tl,h(t)(πhω0, jhω1)
 − T (t)(ω0, ω1)
‖X → 0 as h→ 0. (7.8)

Proof. We use Theorem 2.1 of [23] with X = Z = V ×H , Xn = Vh × Vh, and Pn : X → Xn defined by

Pn(f, g)
 = (πhf, jhg)
, ∀(f, g)
 ∈ X,

and En = P ∗
n that is here the canonical injection of Vh×Vh into V ×H . The Assumptions (A1) and (A3) of [23]

are trivially satisfied, while the assumption (A2) is a consequence of (1.5), (1.6) and the density of D(A)×D(A)
into V ×H .

Since Corollary 7.6 shows that point (a) of Theorem 2.1 of [23] holds, we conclude that point (b) of this
Theorem, namely (7.8), holds. �

8. Examples

8.1. Two coupled wave equations

We consider the following system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt(x, t) − uxx(x, t) + αy(x, t) + β(x)ut(x, t) = 0 in (0, 1) × R+,

ytt(x, t) − yxx(x, t) + αu(x, t) + γ(x)yt(x, t) = 0 in (0, 1) × R+,

u(0, t) = u(1, t) = y(0, t) = y(1, t) = 0 ∀t > 0,
u(·, 0) = u0, ut(·, 0) = u1, y(·, 0) = y0, yt(·, 0) = y1 in (0, 1),

(8.1)

when α ∈ R such that α > 0 is small enough (see below), β(.) and γ(.) are two non-negative bounded functions
such that β(x) ≥ β > 0 for x ∈ Iβ ⊆ (0, 1) and γ(x) ≥ γ > 0 for x ∈ Iγ ⊆ (0, 1) where Iβ and Iγ are two open
sets such that their measures do not vanish simultaneously. Hence, (8.1) is written in the form (1.1) with the
following choices: Take H = L2(0, 1)2, the operator B as follows:

Bω =
√
β(.)

(
u
0

)
+
√
γ(.)

(
0
y

)
, (8.2)
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when ω =
(
u
y

)
, which is a bounded operator from H into itself (i.e. U = H) and the operator A defined by

D(A) = V ∩H2(0, 1)2,

when V = H1
0 (0, 1)2 and

Aω =
(−uxx + αy
−yxx + αu

)
.

If α is small enough, namely if α < π2, this operator A is a positive selfadjoint operator in H , since it is the
Friedrichs extension of the triple (H,V, a), where the sesquilinear form a is defined by

a(ω, ω∗) =
∫ 1

0

(ux(u∗)x + yx(y∗)x + αyu∗ + αuy∗) dx, ∀ω =
(
u
y

)
, ω∗ =

(
u∗
y∗

)
∈ V.

Indeed a is clearly a continuous symmetric sesquilinear form on V and is coercive if α < π2 due to Poincaré’s
inequality ∫ 1

0

|ux|2 dx ≥ π2

∫ 1

0

|u|2 dx, ∀u ∈ H1
0 (0, 1).

Furthermore, A has a compact resolvent since D(A) is compactly embedded into H .

Let us now check that the generalized gap condition (1.7) and the Assumptions (1.10) or (1.13) are satisfied
for our system (8.1). We start by the determination of the spectrum of the operator A. Hence we are looking
for ω = (u, y)
 ∈ V ∩H2(0, 1)2 different from 0 and λ2 > 0 solution of

−uxx + αy = λ2u in (0, 1),
−yxx + αu = λ2y in (0, 1).

If such a pair exists, we can set

s =
u+ y

2
, d =

u− y

2
,

and notice that s and d belong to H1
0 (0, 1) ∩H2(0, 1) and are solution of

−sxx + αs = λ2s in (0, 1),
−dxx − αd = λ2d in (0, 1).

Hence s (resp. d) is an eigenvector of the Laplace operator − d
dx2 with Dirichlet boundary condition of

eigenvalue λ2 − α (resp. λ2 + α). A first choice is then to have for all k ∈ N∗: λ2 = k2π2 + α, s = sin(kπ·) and
d = 0. Coming back to (u, y), we find (since u = s+ d and y = s− d) a sequence of eigenvalues λ2

+,k = k2π2 +α
of associated eigenvector

ω+,k = (sin(kπ·), sin(kπ·)).
Note that each eigenvalue is simple and that ω+,k is of norm 1 in H .

A second choice is to take for all k ∈ N∗: λ2 = k2π2 − α (which is meaningful since α < π2), s = 0 and
d = sin(kπ·). Again coming back to (u, y), we find a sequence of eigenvalues λ2

−,k = k2π2 − α of associated
eigenvector

ω−,k = (sin(kπ·),− sin(kπ·)).
As before each eigenvalue is simple and ω−,k is of norm 1 in H .

Now we remark that the sequence {ω+,k}k∈N∗ ∪ {ω−,k}k∈N∗ is an orthonormal basis of H (because ω+,k +
ω−,k = 2(sin(kπ·), 0) and ω+,k − ω−,k = 2(0, sin(kπ·))) and therefore we have found all possible eigenvectors
of A. We have then shown that the spectrum of A is given by

Sp(A) = {λ2
+,k}k∈N∗ ∪ {λ2

−,k}k∈N∗ ,

and that each eigenvalue is simple (because the assumption α < π2 implies that k2π2 + α < (k + 1)2π2 − α).
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We now need to estimate the distance between the consecutive eigenvalues of A1/2. We have two different
cases to consider:

1. For all k ∈ N∗, we need to look at the distance between λ+,k and λ−,k. Since

λ+,k − λ−,k =
√
k2π2 + α−

√
k2π2 − α =

2α√
k2π2 + α+

√
k2π2 − α

,

we see that this distance goes to zero as k goes to infinity.
2. For all k ∈ N∗, we look at the distance between λ+,k and λ−,k+1. Here we have

λ−,k+1 − λ+,k =
√

(k + 1)2π2 − α−
√
k2π2 + α =

2kπ2 + π2 − 2α√
(k + 1)2π2 − α+

√
k2π2 + α

,

which tends to π as k goes to infinity.
This shows that the generalized gap condition (1.7) is satisfied with M = 2. With the terminology of Section 1,

we see that A1 = ∅ and A2 = N∗.
In order to check (1.10) or (1.13), for all k ∈ N∗, we set

αk = λ+,k − λ−,k,

that behaves like k−1 or equivalently like λ−1
−,k. We further need to use the matrix (see Lem. 1.1)

B−1
k =

(
1 1
0 αk

)
,

as well as the matrix Φk which here takes the form

Φk =
(
B∗ω−,k 0

0 B∗ω+,k

)
.

Hence for all C = (c1, c2)
 ∈ R2, we have

B−1
k ΦkC =

(
c1B

∗ω−,k + c2B
∗ω+,k

αkc2B
∗ω+,k

)
,

and consequently

‖B−1
k ΦkC‖2

U,2 = ‖c1B∗ω−,k + c2B
∗ω+,k‖2

2 + |αk|2|c2|2‖B∗ω+,k‖2
2

= |c1 + c2|2
∫ 1

0

β(x) sin2(kπx)dx + |c2 − c1|2
∫ 1

0

γ(x) sin2(kπx)dx

+|αk|2|c2|2
∫ 1

0

(β(x) + γ(x)) sin2(kπx)dx.

We have two different cases to consider:

First case. Iβ 
= ∅ and Iγ 
= ∅.
In this case, we have

‖B−1
k ΦkC‖2

U,2 ≥ min {β, γ}min

{∫
Iβ

sin2(kπx)dx,
∫

Iγ

sin2(kπx)dx

}(
(c1 + c2)2 + (c2 − c1)2

)

= 2 min {β, γ}min

{∫
Iβ

sin2(kπx)dx,
∫

Iγ

sin2(kπx)dx

}
(c21 + c22)
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and hence (1.10) holds since min

{∫
Iβ

sin2(kπx)dx,
∫

Iγ

sin2(kπx)dx

}
is uniformly bounded from below. Indeed,

as Iγ 
= ∅, there exists a ∈ (0, 1) and ε > 0 such that (a, a+ ε) ⊂ Iγ , and therefore∫
Iγ

sin2(kπx)dx ≥ ε

2
+

1
4kπ

(sin(2kπa) − sin(2kπ(a+ ε))) ≥ ε

2
− 1

2kπ
≥ ε

4
,

for k ≥ 2
επ

· On the other hand, we clearly have

min
1≤k<

2
επ

∫
Iγ

sin2(kπx)dx > 0,

which shows that
∫

Iγ
sin2(kπx)dx is uniformly bounded from below.

Second case. Iβ = ∅ or Iγ = ∅ (but not empty together). For instance, suppose that Iβ = ∅ and Iγ 
= ∅.
As |αk| ∼ λ−1

−,k, we deduce that
‖B−1

k ΦkC‖U,2 ≥ α0λ
−1
−,k‖C‖2,

for a positive constant α0, and shows that (1.13) holds with l = 1.
As stated before, in the first case the system (8.1) is exponentially stable, while in the second case (8.1) is

polynomially stable. We refer to Theorem 2.4 of [3] or to [1, 29] for the proof of these results.

As approximated space Vh, we use the standard one based on P1 finite elements. More precisely, for N ∈ N

and h = 1
N+1 , we define the points xj = jh, j = 0, 1, . . . , N + 1. The space Vh is the linear span of the family

of hat functions (ei, ej)i,j∈{1,...,N} such that

ej(x) =
[
1 − |x− xj |

h

]+

, for j = 1, . . . , N.

Then, we define the operators Ah and Bh by (1.2) and (1.4). It is well-known (see [12]) that the operator A and
the space Vh satisfy conditions (1.5) and (1.6) with θ = 1.

Consequently, in the first case (Iβ 
= ∅ and Iγ 
= ∅), we can apply Theorem 1.2 and thus the family of
systems (1.9) is uniformly exponentially stable, in the sense that there exist constantsM, α, h∗ > 0 (independent
of h, u0h, u1h, y0h, y1h) such that for all h ∈ (0, h∗):

‖ω̇h(t)‖2 + a(ωh(t), ωh(t)) ≤Me−αt(‖ω1h‖2 + a(ω0h, ω0h)), ∀t ≥ 0,

where ωh = (uh, yh), and ω0h = (u0h, y0h) ∈ Vh (resp. ω1h = (u1h, y1h) ∈ Vh) is an approximation of ω0 =
(u0, y0) (resp. ω1 = (u1, y1)).

In the second case (Iβ = ∅ and Iγ 
= ∅), we can apply Theorem 1.6 with l = 2 and thus the family of
systems (1.14) is uniformly polynomially stable, in the sense that, there exist constants C, h∗ > 0 (independent
of h, u0h, u1h, y0h, y1h) such that for all h ∈ (0, h∗):

∥∥(I + hAh)−1ω̇h(t)
∥∥2

+ a(ωh(t), ωh(t)) ≤ C√
t
‖(ω0h, ω1h)‖2

D(Ã2,h)
∀t > 0, (8.3)

where Ã2,h is given as in (4.1) with l = 2, θ = 1, and the the graph norm ‖ · ‖D(Ã2,h) is defined by

‖(ω0h, ω1h)‖2
D(Ã2,h)

= ‖(ω0h, ω1h)‖2
Xh

+ ‖Ã2,h(ω0h, ω1h)‖2
Xh
.
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8.2. Two boundary coupled wave equations

We consider the following system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt − uxx = 0 in (0, 1) × R+,
ytt − yxx + βyt = 0 in (0, 1) × R+,
u(0, t) = y(0, t) = 0 ∀t > 0,
yx(1, t) = αu(1, t) ∀t > 0,
ux(1, t) = αy(1, t) ∀t > 0,
u(·, 0) = 0, ut(·, 0) = u1, y(·, 0) = 0, yt(·, 0) = y1 in (0, 1),

(8.4)

when α, β ∈ R with β > 0 and α > 0 small enough (see below). Hence it is written in the form (1.1) with the
following choices: take H = L2(0, 1)2, the operator B as follows:

Bω =
√
β

(
0
y

)
,

when ω =
(
u
y

)
, which is a bounded operator from H into itself (i.e. U = H) and the operator A defined by

D(A) =
{
(u, y) ∈ V ∩H2(0, 1)2 : yx(1) = αu(1); ux(1) = αy(1)

}
when V =

{
ω ∈ H1(0, 1)2 : ω(0) = 0

}
and

Aω =
(−uxx

−yxx

)
.

If α is small enough, namely if α < 1, this operator A is a positive selfadjoint operator in H , since it is the
Friedrichs extension of the triple (H,V, a), where the sesquilinear form a is defined by

a(ω, ω∗) =
∫ 1

0

(ux(u∗)x + yx(y∗)x) dx − αu(1)y∗(1) − αu∗(1)y(1), ∀ω =
(
u
y

)
, ω∗ =

(
u∗
y∗

)
∈ V.

Indeed a is clearly a continuous symmetric sesquilinear form on V and is coercive if α < 1 due to the trace
theorem

u(1)2 ≤
∫ 1

0

|ux|2 dx, ∀u ∈ V.

In addition to that, the operator A admits a compact resolvent as D(A) is compactly embedded in H .
Let us now check that the generalized gap condition (1.7) and the Assumption (1.13) are satisfied for our

system (8.4). We start by the determination of the spectrum of the operator A. Hence we are looking for
ω = (u, y)
 ∈ D(A) different from 0 and λ2 > 0 solution of

−uxx = λ2u in (0, 1),
−yxx = λ2y in (0, 1).

Then

u(x) = a sin(λx) in (0, 1),
y(x) = b sin(λx) in (0, 1).

The coupling condition in (8.4) gives {
aλ cosλ = αb sinλ
bλ cosλ = αa sinλ.
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Since it is not possible to have sinλ = 0 (otherwise a = b = 0), we obtain

a =
bλ cosλ
α sinλ

, (8.5)

and then
tanλ = ±λ

α
, (8.6)

because b 
= 0 (otherwise u = y = 0).
We then have two sequences of eigenvalues defined by

λ−,k =
π

2
+ kπ − ε−,k

with limk→+∞ ε−,k = 0 and ε−,k > 0 for all k ∈ N, and

λ+,k =
π

2
+ kπ + ε+,k

with limk→+∞ ε+,k = 0 and ε+,k > 0 for all k ∈ N. Moreover as λ−,k and λ+,k satisfies (8.6), we can verify that

ε−,k = arctan
(

α

λ−,k

)
and ε+,k = arctan

(
α

λ+,k

)
·

By (8.5) and (8.6), the eigenvector associated with the eigenvalue λ+,k is given by

ω+,k = b+,k sin(λ+,k·)(−1, 1)T ,

and the eigenvector associated with the eigenvalue λ−,k is given by

ω−,k = b−,k sin(λ−,k·)(1, 1)T ,

where b+,k, b−,k are chosen to normalize the eigenvectors.
Since we have found all possible eigenvectors of A, we have shown that the spectrum of A is given by

Sp(A) = {λ2
+,k}k∈N∗ ∪ {λ2

−,k}k∈N∗ ,

and that each eigenvalue is simple.
We again need to estimate the distance between the consecutive eigenvalues of A1/2 and as before we consider

two different cases:

1. For all k ∈ N∗, we need to look at the distance between λ+,k and λ−,k. Since

λ+,k − λ−,k = ε+,k + ε−,k = arctan
(

α

λ+,k

)
+ arctan

(
α

λ−,k

)
,

we see that this distance goes to zero as k goes to infinity.
2. For all k ∈ N∗, we look at the distance between λ+,k and λ−,k+1. Here we have

λ−,k+1 − λ+,k = π − (ε+,k + ε−,k+1),

which tends to π as k goes to infinity.
This shows that the generalized gap condition (1.7) is satisfied with M = 2.
In order to check (1.13), for all k ∈ N∗, we set

αk = λ+,k − λ−,k,
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that behaves like k−1 or equivalently like λ−1
−,k. As in the previous subsection for all C = (c1, c2)
 ∈ R2, we have

B−1
k ΦkC =

(
c1B

∗ω−,k + c2B
∗ω+,k

αkc2B
∗ω+,k

)
,

and consequently
‖B−1

k ΦkC‖2
U,2 = ‖c1B∗ω−,k + c2B

∗ω+,k‖2
H + |αk|2|c2|2‖B∗ω+,k‖2

H

= β

∫ 1

0

(b−,kc1 sin(λ−,kx) + b+,kc2 sin(λ+,kx))
2 dx

+β|αk|2|c2|2b2+,k

∫ 1

0

sin2(λ+,kx)dx.

By using Young’s inequality with ε > 0 and the fact that the eigenvectors are normalized (by the choice of b±,k),
we obtain

‖B−1
k ΦkC‖2

U,2 ≥ β

(
1 − 1

ε

)
c21b

2
−,k

∫ 1

0

sin2(λ−,kx)dx + β (1 − ε) c22b
2
+,k

∫ 1

0

sin2(λ+,kx)dx

+β|αk|2|c2|2b2+,k

∫ 1

0

sin2(λ+,kx)dx

=
β

2

((
1 − 1

ε

)
c21 +

(
1 + α2

k − ε
)
c22

)
.

We then take ε = 1 + α2
k/2, which implies

1 + α2
k − ε =

α2
k

2
and 1 − 1

ε
>
α2

k

4
,

(since α2
k < 2). Consequently

‖B−1
k ΦkC‖2

U,2 ≥ β

8
α2

k(c21 + c22).

As |αk| ∼ λ−1
−,k, we deduce that

‖B−1
k ΦkC‖U,2 ≥ α0λ

−1
−,k‖C‖2,

for a positive constant α0, and shows that (1.13) holds with l = 1.

We construct the space Vh like in the previous subsection, i.e. it is the span of (ei, ej)i,j∈{1,...,N+1}, that still
satisfies (1.5) and (1.6) with θ = 1.

Consequently, we can apply Theorem 1.6 with l = 2 and thus the family of systems (1.14) is uniformly
polynomially stable, in the sense that the estimate (8.3) holds.

8.3. A more general wave type system

We consider the following more general system: let ω = (ω1, · · · , ωN )T be a solution of⎧⎪⎪⎨
⎪⎪⎩

ωtt − ωxx +Mω +BB∗ωt = 0 in (0, 1)N × R+,

ω(0, t) = ω(1, t) = 0 ∀t > 0,

ω(·, 0) = ω(0), ωt(·, 0) = ω(1) in (0, 1)N ,

(8.7)

where M ∈ MN (R) is symmetric and such that A0 +M is positive definite in H = L2(0, 1)N , when A0 is the
operator of domain D(A0) = H1

0 (0, 1)N ∩H2(0, 1)N and such that A0u = −uxx, for all u ∈ D(A0); B ∈ L(U, H),
with U a complex Hilbert space.
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Hence it is written in the form (1.1) with the self-adjoint positive operator A defined by A = A0 + M
and D(A) = D(A0) = V ∩ H2(0, 1)N , when V = H1

0 (0, 1)N . We remark that A admits a compact resolvent
since D(A) is compactly embedded into H .

As M is symmetric, M can be diagonalized by an orthogonal matrix, i.e. there exist a real orthogonal
matrix O and a diagonal matrix D such that OTMO = D. We denote by di (i = 1, · · · , N) the coefficients of
the diagonal matrix D.

We start by the determination of the spectrum of the operator A. Hence we are looking for ω ∈ V ∩H2(0, 1)N

different from 0 and λ2 > 0 solution of
−ωxx +Mω = λ2ω.

If we denote by U = OTω, then U = (u1, · · · , uN )T satisfies

−Uxx +DU = λ2U,

which is equivalent to

− d2

dx2
ui = (λ2 − di)ui, in (0, 1), ∀i = 1, · · · , N.

Hence there exists ci ∈ C such that

ui =
√

2ci sin(kπ.), λ2
i,k = k2π2 + di, i = 1, · · · , N.

Therefore we have found N families of eigenvectors and eigenvalues:

Ui,k =
√

2fi sin(kπ.), λ2
i,k = k2π2 + di, i = 1, · · · , N,

where (fi)i∈{1,··· ,N} is the canonical basis of CN . Coming back to the initial eigenvalue problem, we have N
families of eigenvectors given by

ωi,k = OUi,k, i = 1, · · · , N, (8.8)

and the spectrum of A is given by

Sp(A) = {λ2
1,k}k∈N∗ ∪ · · · ∪ {λ2

N,k}k∈N∗ .

For simplicity we now assume that all di are different and, for instance that

d1 < d2 < · · · < dN .

We still estimate the distance between the consecutive eigenvalues of A1/2:

1. For all k ∈ N∗, we need to look at the distance between λi,k and λj,k (i 
= j). Since

λi,k − λj,k =
√
k2π2 + di −

√
k2π2 + dj =

di − dj√
k2π2 + di +

√
k2π2 + dj

,

we see that this distance goes to zero as k goes to infinity.
2. For all k ∈ N∗, we look at the distance between λN,k and λ1,k+1. Here we have

λ1,k+1 − λN,k =
√

(k + 1)2π2 + d1 −
√
k2π2 + dN =

2kπ2 + π2 + d1 − dN√
(k + 1)2π2 + d1 +

√
k2π2 + dN

,

which tends to π as k goes to infinity.
This shows that the generalized gap condition (1.7) is satisfied with M = N . With the terminology of

Section 1, we see that A1 = · · · = AN−1 = ∅ and AN = N∗. Hence, for N > 1, our previous results will allow to
obtain stability results for system (8.7).



884 F. ABDALLAH ET AL.

If the eigenvalues are simple (a necessary condition is that all di are different), then in order to verify (1.10)
or (1.13), we have to bound from below

∥∥B−1
k ΦkC

∥∥2

U,2
with C = (c1, · · · , cN ) ∈ RN , B−1

k defined in Lemma 1.1
and Φk given by

Φk =

⎛
⎜⎝
B∗ω1,k · · · 0

...
. . .

...
0 · · · B∗ωN,k

⎞
⎟⎠.

Such a lower bound can only be made on some particular examples.

Note that, if N = 2, B is defined by (8.2) and

M = α

(
0 1
1 0

)

with α > 0, then we are back to the setting of Section 8.1. Indeed M is symmetric with A0 +M positive definite
for α small enough, and diagonalized by the orthogonal matrix

O =
1√
2

(−1 1
1 1

)(
with D = α

(−1 0
0 1

))
.

We then finish this subsection by considering another example. Take N = 3 and

B

⎛
⎝ω1

ω2

ω3

⎞
⎠ =

√
β

⎛
⎝ω1

0
0

⎞
⎠ +

√
γ

⎛
⎝ 0
ω2

0

⎞
⎠ +

√
δ

⎛
⎝0

0
ω3

⎞
⎠,

with non negative real numbers β, γ, δ, which is a bounded operator from H into itself (i.e. U = H). We chose
the matrix M defined by

M = α

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, α > 0

which is obviously symmetric. As previously we can verify that A0+M is positive definite if α < π2/2. Moreover
M can be diagonalized by the orthogonal matrix

O =
1
2

⎛
⎝ 1

√
2 1

−√
2 0

√
2

1 −√
2 1

⎞
⎠,

into

D =

⎛
⎝−√

2α 0 0
0 0 0
0 0

√
2α

⎞
⎠.

Then the spectrum of A = A0 +M is given by

Sp(A) = {k2π2 −
√

2α}k∈N∗ ∪ {k2π2}k∈N∗ ∪ {k2π2 +
√

2α}k∈N∗ ,

and the eigenvalues are simple (because the assumption α < π2/2 implies that k2π2 +
√

2α < (k+1)2π2−√
2α).

Moreover, as we have shown previously, the generalized gap condition (1.7) is satisfied with M = 3. Thanks
to (8.8) the normalized eigenvectors are given by

ω1,k =
1√
2

⎛
⎝ 1

−√
2

1

⎞
⎠ sin(kπ·), ω2,k =

1√
2

⎛
⎝

√
2

0
−√

2

⎞
⎠ sin(kπ·), ω3,k =

1√
2

⎛
⎝ 1√

2
1

⎞
⎠ sin(kπ·).
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We set
α

(1,2)
k = λ2,k − λ1,k, α

(1,3)
k = λ3,k − λ1,k, α

(2,3)
k = λ3,k − λ2,k.

Therefore, for all C = (c1, c2, c3)T ∈ R3, we have

∥∥B−1
k ΦkC

∥∥2

U,2
=

∥∥∥∥∥∥
⎛
⎝1 1 1

0 α(1,2)
k α

(1,3)
k

0 0 α
(1,3)
k α

(2,3)
k

⎞
⎠
⎛
⎝B∗ω1,k 0 0

0 B∗ω2,k 0
0 0 B∗ω3,k

⎞
⎠
⎛
⎝ c1
c2
c3

⎞
⎠
∥∥∥∥∥∥

2

U,2

= ‖c1B∗ω1,k + c2B
∗ω2,k + c3B

∗ω3,k‖2
H +

∥∥∥c2α(1,2)
k B∗ω2,k + c3α

(1,3)
k B∗ω3,k

∥∥∥2

H

+ |c3|2
∣∣∣α(1,3)

k α
(2,3)
k

∣∣∣2 ‖B∗ω3,k‖2
H .

After some calculations, we obtain

∥∥B−1
k ΦkC

∥∥2

U,2
=
β

4

(
c1 +

√
2c2 + c3

)2

+
γ

2
(c3 − c1)

2 +
δ

4

(
c1 −

√
2c2 + c3

)2

+
β

4

(√
2α(1,2)

k c2 + α
(1,3)
k c3

)2

+
γ

2

∣∣∣c3α(1,3)
k

∣∣∣2 +
δ

2

(
−
√

2α(1,2)
k c2 + α

(1,3)
k c3

)2

+
|c3|2

2

∣∣∣α(1,3)
k α

(2,3)
k

∣∣∣2 (β + δ

2
+ γ

)
·

Hence different decay results can be obtained for system (8.7) according to the values of β, γ and δ.
First if β, γ, δ > 0, then we have ∥∥B−1

k ΦkC
∥∥2

U,2
≥ C(c21 + c22 + c23)

for C > 0, which shows that (1.10) holds and therefore system (8.7) is exponentially stable.
Second if γ = 0 and β, δ > 0, we have

∥∥B−1
k ΦkC

∥∥2

U,2
≥ min{β,δ}

4

(
2c21 + 4c22 + 2c23 + 4c1c3 + min

{
α

(1,2)
k , α

(1,3)
k

}2

(4c22 + 2c23)

+ min
{
α

(1,3)
k , α

(2,3)
k

}4

c23

)

≥ min{β,δ}
4

((
2 − 2

ε

)
c21 + 4

(
1 + min

{
α

(1,2)
k , α

(1,3)
k

}2
)
c22

+
(

2 − 2ε+ 2 min
{
α

(1,2)
k , α

(1,3)
k

}2
)
c23

)
,

by Young’s inequality with ε > 0. We then take ε = 1 + min
{
α

(1,2)
k , α

(1,3)
k

}2

/2, which implies

2 − 2
ε
>

min
{
α

(1,2)
k , α

(1,3)
k

}2

2
, 2 − 2ε+ 2 min

{
α

(1,2)
k , α

(1,3)
k

}2

= min
{
α

(1,2)
k , α

(1,3)
k

}2

,

if k is large enough. Consequently if k is large enough, we have obtained that

∥∥B−1
k ΦkC

∥∥2

U,2
≥ min{β,δ}

4

(
min

{
α

(1,2)
k ,α

(1,3)
k

}2

2 c21 + 4 min
{
α

(1,2)
k , α

(1,3)
k

}2

c22 + min
{
α

(1,2)
k , α

(1,3)
k

}2

c23

)

≥ min{β,δ}
8 min

{
α

(1,2)
k , α

(1,3)
k

}2 (
c21 + c22 + c23

)
,

which shows that (1.13) holds with l = 1, since min
{
α

(1,2)
k , α

(1,3)
k

}2

∼ λ−2
1,k.
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We construct the space Vh like in the previous subsection, i.e. it is the span of (ei, ej , ek)i,j,k∈{1,...,N}, that
still satisfies (1.5) and (1.6) with θ = 1.

Consequently, in the first case (β, γ, δ > 0), we can apply Theorem 1.2 and thus the family of systems (1.9)
is uniformly exponentially stable. In the second case (β, δ > 0 and γ = 0), we can apply Theorem 1.6 with l = 2
and thus the family of systems (1.14) is uniformly polynomially stable, in the sense that (8.3) holds.
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