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NASH EQUILIBRIA FOR A MODEL OF TRAFFIC FLOW
WITH SEVERAL GROUPS OF DRIVERS

Alberto Bressan1 and Ke Han1

Abstract. Traffic flow is modeled by a conservation law describing the density of cars. It is assumed
that each driver chooses his own departure time in order to minimize the sum of a departure and
an arrival cost. There are N groups of drivers, The i-th group consists of κi drivers, sharing the same
departure and arrival costs ϕi(t), ψi(t). For any given population sizes κ1, . . . , κn, we prove the existence
of a Nash equilibrium solution, where no driver can lower his own total cost by choosing a different
departure time. The possible non-uniqueness, and a characterization of this Nash equilibrium solution,
are also discussed.
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1. Introduction

Consider a model of traffic flow where n groups of drivers travel along a freeway, from a location A (say, a
residential neighborhood) to a location B (the city center). Each driver seeks to optimize his departure time,
given a cost for starting early, and a cost for arriving late. Different groups have different departure and arrival
costs. For example, there may be three groups: drivers in the first group need to arrive at destination by 8:00
am., those in the second group need to arrive by 9:00 am., while drivers in the third group can arrive at any
time between 9:00 and 12:00, and simply wish to minimize the time spent on the road.

Following the classical papers [13, 14], traffic flow will be modeled by the conservation law

ρt + [ρ v(ρ)]x = 0. (1.1)

Here ρ = ρ(t, x) is the density of cars, while v(ρ) is their speed. In our model, a basic assumption is that drivers
of different groups are distinguished only by their costs, not by the vehicles they drive. In other words, the speed
v(·) as a function of traffic density is the same for all groups. Calling ρi = ρi(t, x) the density of drivers of the
i-th group, the scalar function ρ = ρ1 + · · · + ρn provides an entropy solution to the conservation law (1.1).

Aim of this paper is to study Nash equilibria. These are solutions where no single driver can lower his own
cost by changing his own departure time. In the case n = 1, where all drivers share the same cost, the existence,
uniqueness, and a characterization of Nash solutions were recently established in [2].
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The main features of the general case n ≥ 2, and the new results proved in the present paper, can be
summarized as follows.

• A solution to the traffic flow problem with n groups of drivers can be determined by assigning a scalar
density ρ = ρ(t, x), satisfying the conservation law (1.1), together with a “prioritizing function”. Among the
first β drivers who have departed within a given time t, this function specifies how many belong to the first
group, how many to the second group, etc.;

• for any n-tuple of costs c = (c1, . . . , cn), there exists at least one Nash equilibrium solution where all
drivers of the i-th group share the same total cost ci. The corresponding density function ρ in (1.1) is
uniquely determined by c. However, for the same n-tuple of costs (c1, . . . , cn), there can be several different
decompositions ρ = ρ1 + · · · + ρn, yielding different Nash equilibria. In general, the map

c �→ κ(c) .=
{

(κ1, . . . , κn); κi
.=

∫
ρi(t, x) dx is the the total number

of i-drivers in some Nash solution with costs (c1, . . . , cn)
} (1.2)

is a multivalued function. On the other hand, the map c �→ κ1 + · · · + κn is always single valued;
• the multifunction c �→ κ(c) ⊂ R

n in (1.2) has closed graph and nonempty, compact, convex values. Relying on
Cellina’s approximate selection theorem [3], a topological argument shows that

⋃
c∈Rn κ(c) = R

n
+. Otherwise

stated, for every n-tuple (κ1, . . . , κn) with κi ≥ 0 for each i, there exists a vector c = (c1, . . . , cn) of costs
and a Nash equilibrium solution where the total number of drivers of the i-th group is κi and each i-driver
pays the same total cost ci. When n ≥ 2 this solution may not be unique.

In our model, x ∈ [0, R] is the space variable, describing a point along the road. A solution of (1.1) is determined
by assigning the incoming flow

ρ(0, t) v(ρ(0, t)) = ū(t) (1.3)

at the entrance of the freeway. As remarked in [2], it is more convenient to switch the roles of the independent
variables t, x, and rewrite the boundary value problem (1.1), (1.3) as a Cauchy problem for the flux of cars
u = ρv(ρ), namely

ux + f(u)t = 0, u(t, 0) = ū(t). (1.4)

Here u �→ f(u) = ρ is defined as a partial inverse of the map ρ �→ ρ v(ρ) = u, as in Figure 1.
The remainder of the paper is organized as follows. In Section 2 we clarify all the assumptions and state the

main result. Section 3 is devoted to the analysis of Nash equilibria for a given vector of costs (c1, . . . , cn), while
in Section 4 we prove the existence of an equilibrium solution for given population sizes (κ1, . . . , κn).

For a general introduction to scalar conservation laws and the Lax formula we refer to [11, 12, 15]. A short
introduction to control theory and Hamilton-Jacobi equations can be found in [4]. All the basic results on set-
valued functions, including Cellina’s approximate selection theorem, can be found in [1]. Various optimization
problems for traffic flow, based on the Lighthill-Whitham conservation law model, have been considered in [7–10].
For an introduction to differential games and for recent applications to traffic flow on networks we refer to [5]
and [6], respectively.

2. Statement of the main results

Consider the conservation law

ut + f(u)x = 0 (t, x) ∈ [0, T ]. (2.1)

In our traffic model, after interchanging the roles of the variables, x will denote time while t ∈ [0, T ] describes
points along a highway of total length T . The dependent variable u = u(t, x) denotes the traffic flow at time
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Figure 1. Left: the function ρ �→ ρ v(ρ) describing the flux of cars. Middle: the function f , implicitly
defined by f(ρv(ρ)) = ρ and extended according to (2.2). Right: the Legendre transform f∗.

x across the point t on the highway. In the Lighthill-Whitham model one has u = ρv(ρ), where ρ is the density
of cars while v(ρ) is the speed of cars (see Fig. 1). The function u �→ f(u) = ρ is obtained by inverting the
function ρ �→ ρv(ρ) = u, over the interval [0, ρ∗] where ∂

∂ρ [ρv(ρ)] ≥ 0. As in [2], we extend f to a function
f : R �→ R ∪ {+∞}, by setting (see Fig. 1)

f(u) .=
{
f ′(0+)u if u < 0,
+∞ if u > M.

(2.2)

Introducing the integral function

U(t, x) .=
∫ x

−∞
u(t, s) ds, (2.3)

the conservation law (2.1) can be equivalently written as a Hamilton-Jacobi equation

Ut + f(Ux) = 0. (2.4)

Throughout the following, f denotes the flux function extended to the entire real line as in (2.2), while

f∗(p) .= max
u

{pu− f(u)} (2.5)

is the Legendre transform of f . In our model, U(t, x) describes the total number of cars that have crossed the
point t along the highway during the time interval ] −∞, x].

As initial data we shall consider any non-decreasing, function Q : R �→ R
+, with

Q(−∞) = 0, Q(+∞) = κ < +∞. (2.6)

Here Q(x) describes the total number of drivers that have initiated their journey (possibly joining a queue at
the entrance of the highway, if there is any) at time ≤ x.

Notice that Q is continuous except for countably many times x. To fix the ideas, we shall consider the left-
continuous version where Q(x) = Q(x−) coincides with its left limit at every x. When needed, we shall denote
by Q(x+) = limy→x+Q(y) the right limit of Q at x.

For a given Q(·), consider the Lipschitz continuous function

U(x) .= inf
{
Q(y) +M(x− y); y ≤ x

}
≤ Q(x). (2.7)
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The difference Q(x) − U(x) can be interpreted as the length of the queue at the entrance of the highway at
time x, while U(x) denotes the total number of drivers that have actually departed (after clearing the queue)
up to time x.

For t > 0, the entropy-admissible solution to the Cauchy problem (2.4), (2.7) is provided by the Lax formula:

U(t, x) = min
{
t f∗

(
x− y

t

)
+ U(y); y ∈ R

}
= min

{
t f∗

(
x− y

t

)
+Q(y); y ∈ R

}
. (2.8)

Observe that the last two expressions in (2.8) are equal because (f∗)′(p) ≤ M for all p, and (f∗)′(p) → M as
p→ +∞. Moreover, U(0+, x) = U(x).

As in [2], we consider a cost ϕ(x) for early departure and a cost ψ(x) for late arrival. The basic assumptions
will be:

(A1) The flux function f : [0,M ] �→ R is continuous. Moreover, it is twice continuously differentiable on the
open interval ]0, M [ and satisfies f(0) = 0, together with

f ′(u) ≥ b1 > 0, f ′′(u) ≥ b2 > 0 for 0 < u < M, lim
u→M−

f ′(u) = +∞. (2.9)

(A2) The cost functionals ϕ, ψ are locally Lipschitz continuous and satisfy⎧⎨⎩ϕ′(x) ≤ −δ0 < 0,

ψ(x) ≥ 0, ψ′(x) ≥ 0,

⎧⎪⎨⎪⎩
lim

x→−∞ϕ(x) = +∞,

lim
x→+∞

(
ϕ(x) + ψ(x)

)
= +∞.

(2.10)

According to (A2), the cost for early departure is decreasing in time, while cost for late arrival is increasing.
The assumption that these costs tend to infinity as t→ ±∞ coincides with common sense and guarantees that
in an equilibrium solution the departure rate is compactly supported.

Given an initial data Q(·) as in (2.6), for β ∈ [0, κ[ we define the points xq(β), xd(β), and xa(β) by setting⎧⎪⎪⎪⎨⎪⎪⎪⎩
xq(β) = max{x ∈ R; Q(x) ≤ β},

xd(β) = max{x ∈ R; U(0+, x) ≤ β},

xa(β) = max{x ∈ R; U(T, x) ≤ β}.

(2.11)

In the application to traffic flow, β is a Lagrangian variable labeling a particular driver. In this case, xq(β)
accounts for the time where this driver joins the queue, xd(β) is the actual departure time and xa(β) is the
arrival time. We observe that, for all except countably many β, the points xq(β) and xa(β) are uniquely
determined by the relations

Q(xq(β)) ≤ β ≤ Q(xq(β)+), U(T, xa(β)) = β. (2.12)

It will be convenient to introduce the function

h(s) .= −Tf∗
(
− s

T

)
, (2.13)

where f∗ is the Legendre transform of f , as in (2.5). For a.e. β the arrival time xa(β) can also be characterized
as

xa(β) = inf
{
x; Q(y) ≥ β + h(y − x) for all y ≤ x

}
. (2.14)

Defining the constant

μ =
[length of the highway]

[maximum speed]
= T f ′(0), (2.15)
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for a driver that departs at an arbitrary time x we define the arrival time as

A(x) .= max
{
x+ μ, sup

β<Q(x)

xa(β)
}
. (2.16)

According to (2.16), if there is no traffic at all, then the total time needed for the trip is μ. On the other hand,
if the driver starting at time x encounters traffic, his arrival time will be the supremum among the arrival times
of all cars departed earlier.

The following definition was introduced in [2].

Definition 2.1. We say that a bounded, nondecreasing initial data Q(·) satisfying (2.6) yields a Nash solution
of the Cauchy problem (2.4)–(2.7) with initial and terminal cost functions ϕ, ψ if there exists a constant c such
that:

(i) for almost every β ∈ [0, κ] one has
ϕ(xq(β)) + ψ(xa(β)) = c; (2.17)

(ii) for all x ∈ R, there holds
ϕ(x) + ψ(A(x)) ≥ c. (2.18)

In connection with the traffic model, condition (i) states that all drivers bear the same cost c. Condition (ii)
says that, regardless of the starting time x, no one can achieve a cost < c.

Next, assume that there are different groups of drivers that need to reach destination at different times. For
i = 1, . . . , n we thus consider cost functions ϕi(x), ψi(x), all satisfying the assumptions (A2). We seek Nash
equilibrium solutions in this more general situation.

Let Q1(·), . . . , Qn(·) describe the departure distributions of the various groups of drivers. In other words,
Qi(x) is the total number of drivers of the i-th group that have started their journey (possibly joining the
queue at the entrance of the highway) within time x. We assume that all these functions are left continuous
and non-decreasing, with

Qi(−∞) = 0, Qi(+∞) = κi. (2.19)

For i = 1, . . . , n, the value κi ≥ 0 accounts for the total number of drivers of the i-th group.
We will define a solution (U1, . . . , Un)(t, x) to the traffic flow problem, corresponding to the above departure

pattern. Here Ui(t, x) describes the total number of drivers of the i-th group that have crossed the point t on
the highway within time x. Setting

Q(x) .=
n∑

i=1

Qi(x), U(t, x) .=
n∑

i=1

Ui(t, x), (2.20)

it is clear that the function U should provide an admissible solution to equation (2.4) with initial data Q(·).
This implies that the function U is uniquely determined by the Lax formula (2.8). In general, however, that this
is not enough to uniquely determine the components Ui. For example, if Qi and Qj both have a jump at x = x0,
this means that at the same instant of time x0 a positive amount of drivers join the queue, both from the i-th
and from the j-th group. Different solutions can then be obtained, depending on the priority that we assign to
drivers in each group. To resolve this issue, we consider a family of nondecreasing functions Bi : [0, κ] �→ [0, κi]
with the following properties:

n∑
i=1

Bi(β) = β for all β ∈ [0, κ], (2.21)

Bi(Q(x)) = Qi(x) for all x ∈ R, i ∈ {1, . . . , n}. (2.22)
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Remark 2.2. Given the left continuous functions Q1, . . . , Qn as in (2.19), an n-tuple of functions Bi satis-
fying the above properties can be constricted as follows. Consider the left-continuous, nondecreasing function
x �→ Q(x) .=

∑
iQi(x) ∈ [0, κ]. If β = Q(x) for some x, we then define

Bi(β) = Qi(x).

On the other hand, if Q(x) < β ≤ Q(x+), we define

Bi(β) .= Qi(x) +
β −Q(x)

Q(x+) −Q(x)

[
Qi(x+) −Qi(x)

]
.

It is now easy to check that both conditions (2.21)–(2.22) are satisfied.

Given an initial data Q(·) as in (2.6) and the prioritizing functions Bi : [0, κ] �→ [0, κi], the functions Ui

in (2.20) are now uniquely determined by the formulas

Ui(t, x) = Bi(U(t, x)). (2.23)

Here, for t > 0,

U(t, x) = min
{
t f∗

(
x− y

t

)
+Q(y); y ∈ R

}
(2.24)

is the solution of (2.4) with initial data Q(·), computed by the Lax formula.

We wish to introduce a concept of Nash equilibrium solution, extending Definition 2.1 to the case of several
groups of drivers with different costs. Toward this goal, we first need to determine the starting time (possibly
joining the queue at the entrance of the highway) and the arrival time of each driver in the i-th group. Let
ζ ∈ [0, κi] label this particular driver. We then define⎧⎨⎩ xq

i (ζ) = max{x ∈ R; Qi(x) ≤ ζ},

xa
i (ζ) = max{x ∈ R; Ui(T, x) ≤ ζ}.

(2.25)

Notice that, for all but countably many ζ, these values are uniquely determined by the relations

Qi(x
q
i (ζ)) ≤ ζ ≤ Qi(x

q
i (ζ)+), Ui(T, xa

i (ζ)) = ζ. (2.26)

Definition 2.3. Consider a left continuous, nondecreasing initial dataQ(·) as in (2.6), and let Bi : [0, κ] �→ [0, κi]
be non-decreasing, surjective maps satisfying (2.21).

We say that the starting distribution Q(·) together with the prioritizing functions B1, . . . ,Bn yield a Nash
equilibrium solution to the traffic flow problem with cost functions ϕi, ψi if there exist constants c1, . . . , cn such
that, for i = 1, . . . , n, the following holds.
(i) For almost every ζ ∈ [0, κi] one has

ϕi(x
q
i (ζ)) + ψi(xa

i (ζ)) = ci; (2.27)

(ii) for all x ∈ R, one has
ϕi(x) + ψi(A(x)) ≥ ci. (2.28)

Here x �→ A(x) is the function in (2.16), describing the arrival time of a driver starting at time x. According to
(i), every driver of the i-th group pays the same cost ci, while by (ii) he cannot decrease this cost by choosing
any other starting time. We can now state our main result of existence of Nash equilibria.

Theorem 2.4. Let the flux function f satisfy (A1), and let the cost functions ϕi, ψi for the various groups
of drivers satisfy (A2), for every i ∈ {1, . . . , n}. Then, for every n-tuple (κ1, . . . , κn) of non-negative numbers
there exists a Nash equilibrium solution, where κi is the total number of drivers of the i-th group.
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3. Nash equilibria with given costs

As a first step toward the proof of Theorem 2.4, given constants c1, . . . , cn, in this section we construct a
Nash equilibrium solution where all drivers of the i-th group pay the same cost ci.

Let x �→ Λi(x) be the map implicitly defined by

ϕi(Λi(x)) + ψi(x) = ci. (3.1)

In other words, if an i-driver arrives at destination at time x, in order to pay a total cost ci he must depart
at time Λi(x). The assumption (A2) implies that the maps Λi : R �→ R are well defined, locally Lipschitz
continuous, and nondecreasing.

We now consider an auxiliary problem where all drivers have the same starting and arrival costs, namely

ϕ(x) .= −x, ψ(x) .= min
i=1,...,n

Λi(x). (3.2)

Lemma 3.1. Let the flux function f satisfy (A1), and assume that each pair of cost functions (ϕi, ψi),
i = 1, . . . , n satisfies (A2). Then the Hamilton-Jacobi equation (2.4) has a unique Nash equilibrium solution
corresponding to the cost functions ϕ, ψ in (3.2), where all drivers pay zero total cost.

Proof. In the case all drivers have the same starting and arrival costs, under the assumptions (A1)–(A2) the
existence and uniqueness of the Nash equilibrium solution were established by Theorem 3 in [2]. We remark
that the functions ϕ, ψ in (3.2) may not satisfy all the assumptions stated in (A2). However, all the arguments
used in the original proof in [2] remain valid. Indeed,

• since every map x �→ Λi(x) is locally Lipschitz continuous and nondecreasing, the same is true for the map
ψ in (3.2);

• since the Nash equilibrium is not affected if we add a constant to the cost functions, in the proof of the
existence theorem, the condition ψ ≥ 0 can be easily replaced by the assumption ψ is bounded below.

To establish a lower bound on ψ = mini{Λi(x)} we proceed as follows. If Λi(x)) ≤ 0, from the inequalities

ci ≥ ci − ψi(x) = ϕi(Λi(x)) ≥ ϕi(0) − δ0 · Λi(x)

we deduce

Λi(x) ≥ ϕi(0) − ci
δ0

.= ai. (3.3)

Therefore,
ψ(x) ≥ a

.= min {a1, . . . , an}; (3.4)

• in the proof of Theorem 3, the assumption limx→+∞(ϕ(x) + ψ(x)) = +∞ is only used to show that all
departures must occur within some a-priori bounded interval of time. Therefore, all the arguments in the
proof remain valid if we can show that there exists an interval [a, b] such that

x /∈ [a, b] =⇒ ψ(x) > x. (3.5)

If all couples (ϕi, ψi) satisfy the assumptions (A2), we can choose a as in (3.4). We then choose b > a large
enough so that ϕi(x) + ψi(x) ≥ ci for all x > b. This yields (3.5). �

We recall that initial data for the Nash equilibrium solution admits the representation

Q∗(x) = sup {Q(x); Q ∈ Q0}, (3.6)
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where Q0 is the family of all nondecreasing maps Q(·) as in (2.6), such that the corresponding solution U
in (2.8), (2.11) satisfies

ϕ(xq(β)) + ψ(xa(β)) ≤ 0 for a.e. β ∈ [0, Q(+∞)].

Otherwise stated, Q should be the initial data for a solution U of (2.4) where a.e. driver has a total cost ≤ 0.

Next, let U = U(t, x) be the unique Nash equilibrium solution of (2.4) with costs (3.2). We will show that
every Nash equilibrium solution of the problem for several groups of drivers with costs ϕi, ψi can be obtained
as follows. Consider the unit simplex

Δ
.=

{
(θ1, . . . , θn);

n∑
i=1

θi = 1, θi ≥ 0 for all i
}
. (3.7)

Let Θ be the family of all measurable maps

x �→ θ(x) = (θ1(x), . . . , θn(x)) ∈ Δ

such that
θi(x) = 0 whenever Λi(x) > min

j=1,...,n
Λj(x). (3.8)

Let κ .= U(T, +∞). For each map θ ∈ Θ, define the prioritizing functions Bθ
i (·) as follows. For all but countably

many β ∈ [0, κ], there exists a unique arrival time xa = xa(β) such that U(T, xa) = β. We then set

Bθ
i (β) .=

∫ xa(β)

−∞
θi(x)Ux(T, x) dx. (3.9)

Since all functions Bθ
i are Lipschitz continuous with Lipschitz constant 1, they can be uniquely extended to

the entire interval [0, κ] by continuity. It can be easily checked that the functions Bθ
i are nondecreasing and

satisfy (2.21). We then define

κθ
i

.= Bθ
i (κ), Qθ

i (x)
.= Bθ

i

(
Q(x)

)
, Uθ

i (t, x) .= Bθ
i

(
U(t, x)

)
.

This clearly yields

n∑
i=1

Qθ
i (x) =

n∑
i=1

Bθ
i (Q(x)) = Q(x),

n∑
i=1

Uθ
i (t, x) =

n∑
i=1

Bθ
i (U(t, x)) = U(t, x).

Theorem 3.2. Let the flux function f satisfy (A1), and assume that each pair of cost functions (ϕi, ψi),
i = 1, . . . , n satisfies (A2). Let U = U(t, x) be the unique Nash solution constructed in Lemma 3.1, with initial
data Q(·), and let Θ be the set of all measurable maps θ : R �→ Δ satisfying (3.8). Then the following holds.

(i) For every θ ∈ Θ, the initial data Q(·) together with the prioritizing functions Bθ
i defined at (3.9) provides a

Nash equilibrium solution to the traffic flow problem with costs ϕi, ψi;
(ii) if the starting distribution Q̃(·) together with the prioritizing functions B̃i provide a Nash equilibrium solution

with costs c = (c1, . . . , cn), then Q̃ = Q and there exists θ ∈ Θ such that B̃i = Bθ
i for each i = 1, . . . , n.

Proof.
1. To prove (i), fix any θ ∈ Θ and j ∈ {1, . . . n}. Since the functions

x �→ U(T, x), β �→ Bθ
j (β), x �→ Uθ

j (T, x) = Bθ
j (U(T, x))
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are all continuous and non-decreasing, for all but countably many ζ ∈ [0, κθ
j ] the following holds. The point

xa
j (ζ) is uniquely determined by the equation

Uθ
j (T, xa

j ) = ζ, (3.10)

moreover there exists a unique value β ∈ [0, κ] such that ζ = Bθ
j (β), and the point xa(β) is uniquely determined

by the equation
U(T, xa) = β. (3.11)

The above uniqueness properties together yield

xa
j (ζ) = xa

j (Bθ
j (β)) = xa(β). (3.12)

2. We now derive a similar identity for the initial time xq when drivers join the queue. Since the functions
x �→ Q(x) and x �→ Qθ

j (x) = Bθ
j (Q(x)) are non-decreasing, for all but countably many ζ ∈ [0, κθ

j ] the following
holds. The point xq

j(ζ) is uniquely determined by the relations

Qθ
j (x

q
j) ≤ ζ ≤ Qθ

j(x
q
j+), (3.13)

moreover there exists a unique value β ∈ [0, κ] such that ζ = Bθ
j (β), and the point xq(β) is uniquely determined

by the relations
Q(xq) ≤ β ≤ Q(xq+). (3.14)

The above uniqueness properties together yield

xq
j(ζ) = xq

j(Bθ
j (β)) = xq(β). (3.15)

3. We claim that, if ζ ∈ [0, κj ] is a value for which all the uniqueness assumptions in the previous two steps
hold, then

Λj

(
xa

j (ζ)
)

= min
i=1,...,n

Λi

(
xa

j (ζ)
)
. (3.16)

Suppose that, on the contrary, Λj

(
xa

j (ζ)
)
> min

i=1,...,n
Λi

(
xa

j (ζ)
)
. By continuity there exists ε > 0 such that

Λj(y) > min
i=1,...,n

Λi(y) for all y ∈ Iε
.= [xa

j (ζ), xa
j (ζ) + ε].

By (3.8) and (3.9), no driver of the j-th group arrives during the time interval Iε. Hence Uj(T, ·) is constant on
this interval. For all y ∈ Iε we thus have

Uθ
j (T, y) = Bθ

j (U
(
T, y)

)
=

∫ y

−∞
θj(x)Ux(T, x) dx =

∫ xa
j (ζ)

−∞
θj(x)Ux(T, x) dx

=
∫ xa(β)

−∞
θj(x)Ux(T, x) dx = Bθ

j (β) = ζ.

In this case, every point y ∈ Iε provides a solution to the equation Uθ
j (T, y) = ζ. This contradicts the uniqueness

assumption on the solution of (3.10). Hence (3.16) must hold. Since the uniqueness assumptions stated in the
previous steps hold for all but countably many values of ζ, we conclude that (3.16) is satisfied for a.e. ζ ∈ [0, κi],

4. From the identities (3.12)–(3.15) it now follows

ϕ
(
xq

j(ζ)
)

+ ψ
(
xa

j (ζ)
)

= ϕ
(
xq(β)

)
+ ψ

(
xa(β)

)
= 0. (3.17)
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By (3.2) and (3.16) for a.e. ζ ∈ [0, κi] we have xq
j(ζ) = min

i=1,...,n
Λi

(
xa

j (ζ)
)

= Λj

(
xa

j (ζ)
)
. Hence

ϕj

(
xq

j(ζ)
)

+ ψj

(
xa

j (ζ)
)

= ϕj

(
Λj

(
xa

j (ζ)
)

+ ψj

(
xa

j (ζ)
)

= cj .

This proves (2.27).

5. We now prove (2.28). Assume that, on the contrary, there exists x ∈ R and an index j ∈ {1, . . . , n} such
that

ϕj(x) + ψj

(
A(x)

)
< cj .

Since ϕj is monotone decreasing, this implies x > Λj

(
A(x)

)
. Then

ϕ(x) + ψ
(
A(x)

)
< ϕ

(
Λj(A(x))

)
+ ψ

(
A(x)

)
= −Λj

(
A(x)

)
+ min

i=1,...,n
Λi

(
A(x)

) ≤ 0.

This contradicts to the fact that U(t, x) provides a solution to the Nash equilibrium problem with a single
population of drivers and costs ϕ and ψ as in (3.2). Hence (2.28) must hold.

6. In the remaining steps we prove part (ii) of the theorem. Assume that the initial distribution Q̃ together
with the prioritizing function B̃ = (B̃1, . . . , B̃n) provide a Nash equilibrium solution. We begin by proving that
Q̃(·) = Q(·). For this purpose, it suffices to prove that Q̃(·) satisfies (2.17) and (2.18), with c = 0 and costs ϕ, ψ
given by (3.2). The identity Q̃ = Q will then follow from the uniqueness of the Nash equilibrium solution for a
single group of drivers.

Let Ũ = Ũ(t, x) be the solution of (2.4) with initial data Q̃, and fix an index j ∈ {1, . . . , n}. Since B̃j :
[0, κ̃] �→ [0, κ̃j] is non-decreasing, for all except countably many values of ζ ∈ [0, κ̃j] the following holds. There
is a unique β ∈ [0, κ̃] such that ζ .= B̃j(β). Moreover, the departure and arrival times

x̃q
j(ζ) = x̃q(β), x̃a

j (ζ) = x̃a(β)

are uniquely determined by the identities

Q̃(x̃q(β)) ≤ β ≤ Q̃(x̃q(β)+), Ũ(T, x̃a(β)) = β, (3.18)

and satisfy
ϕj(x̃q(β)) + ψj(x̃a(β)) = cj .

Since Q̃, B̃ yield a Nash equilibrium, by (2.27) and (3.1) it follows that

x̃q(β) = x̃q
j (ζ) = Λj

(
x̃a

j (ζ)
)

= Λj

(
x̃a(β)

)
. (3.19)

Next, we claim that for this particular value of β one has

Λj

(
x̃a(β)

)
= min

i=1,...,n
Λi

(
x̃a(β)

)
.

Indeed, assume that there exists k ∈ {1, . . . , n} with Λk

(
x̃a(β)

)
< Λj

(
x̃a(β)

)
. Since the cost function ϕk is

continuous and strictly decreasing, choosing a starting time Λk(x̃a(β)) < y < x̃q(β) we achieve

ϕk(y) + ψk(x̃a(β)) < ϕk(Λk(x̃a(β)) + ψk(x̃a(β)) = ck.

Therefore, the total cost to a k-driver starting at time y is

ϕk

(
y) + ψk(A(y)) ≤ ϕk(y) + ψk

(
x̃a(β)

)
< ck.

This yields a contradiction with (2.28), proving our claim.
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7. We can now prove that the initial distribution Q̃ yields a Nash solution to the problem with costs ϕ, ψ as
in (3.2). Since the maps B̃i are non-decreasing and B̃1(β) + · · ·+ B̃n(β) = β for all β ∈ [0, κ̃], for a.e. β one can
find an index j such that ζ = B̃j(β) satisfies the conditions in the previous step. In this case, we have

x̃q(β) = x̃q
j(ζ) = Λj(x̃a

j (ζ)) = Λj(x̃a(β)) = min
i=1,...,n

Λi(x̃a(β)) = ψ(x̃a(β)).

Recalling that ϕ(x) = −x, for a.e. β ∈ [0, κ̃] we thus have

ϕ(x̃q(β)) + ψ(x̃a(β)) = 0.

Hence (2.17) is satisfied.
Finally, to show (2.18), assume by contradiction that there exists x ∈ R such that ϕ(x) + ψ

(
A(x)

)
< 0. By

the definition (3.2), this implies
min

i=1,...,n
Λi

(
A(x)

)
< x.

Choose an index j such that Λj

(
A(x)

)
= min

i=1,...,n
Λi

(
A(x)

)
. Since ϕj is strictly decreasing, one has

ϕj(x) + ψj

(
A(x)

)
< ϕj

(
Λj(A(x))

)
+ ψj

(
A(x)

)
= cj

against the assumption (2.28).
This completes the proof that Q̃ yields a Nash solution, in connection with the cost functions ϕ, ψ in (3.2).

By the uniqueness of the Nash solution, we conclude that Q̃(·) = Q(·).

8. Thanks to the two previous steps, we can now write Q, U and κ in place of Q̃, Ũ and κ̃. Let J ⊆ [0, κ] be
the set of all β ∈ [0, κ] such that (i) for every i = 1, . . . , n, the differential B̃′

i(β) = dB̃i/dβ at the point β is well
defined, and (ii) the arrival time xa(β) of the β-driver is uniquely determined by the equation U(T, xa) = β.

We observe that meas([0, κ] \ J) = 0. Moreover, introducing the set of arrival times

X(J) .= {xa(β); β ∈ J},

we have ∫
x/∈X(J)

Ux(T, x) dx = 0. (3.20)

We now define the measurable function θ = (θ1, . . . , θn) : [0, κ] �→ Δn by setting

θi(x)
.= B̃′

i

(
U(T, x)

)
if β = U(T, x) ∈ J, (3.21)

and choosing θ(x) ∈ Δn arbitrarily, subject only to the condition (3.8), when x /∈ X(J). For all i ∈ {1, . . . , n}
and every β ∈ J using (3.20) we obtain

Bθ
i (β) .=

∫ xa(β)

−∞
θi(x)Ux(T, x) dx =

∫ xa(β)

−∞
B̃′

i

(
U(T, x)

)
Ux(T, x) dx

=
∫ U(T, xa(β))

0

B̃′
i(s) ds =

∫ β

0

B̃′
i(s) ds = B̃i(β).

Since J is dense in [0, κ], by continuity the identity B̃i(β) = Bθ
i (β) remains valid for all β ∈ [0, κ̃]. �
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4. Nash equilibria with given population sizes

Assume that Q(·) together with the prioritizing function B = (B1, . . . ,Bn) yields a Nash equilibrium. Let
κ
.= Q(+∞) be the total number of drivers. The size of the i-th group of drivers is then κi = Bi(κ)
For a given vector c ∈ R

n, let K(c) ⊂ R
n denote the set of all n-tuples (κ1, . . . , κn) which correspond to some

Nash solution with costs c = (c1, . . . , cn). Our eventual goal is to construct a Nash equilibrium solution for a
given n-tuple (κ1, . . . , κn) describing the sizes of the various groups of drivers. This will be achieved by showing
that the multifunction c �→ K(c) is onto, i.e.⋃

c∈Rn

K(c) = R
n
+

.=
{
(κ1, . . . , κn); κi ≥ 0 for all i

}
.

The next lemma provides a key step in this direction.

Lemma 4.1. The multifunction c �→ K(c) is upper semicontinuous, with compact convex values.

Proof.
1. We first show that the multifunction has compact convex values. Fix c = (c1, . . . , cn) and let U(t, x) be

the unique Nash solution with costs ϕ, ψ as in (3.2), constructed in Lemma 3.1. By Theorem 3.2, we have the
following characterization:

K(c) =
{

(κ1, . . . , κn); κi =
∫ +∞

−∞
θi(x)Ux(T, x) dx,

(
θ1, . . . , θn

) ∈ Θ

}
. (4.1)

By Oleinik’s inequality, we have 0 ≤ Ux(T, x) ≤ L for some constant L and all x ∈ R. Therefore Ux(T, ·) ∈ L∞

and the map K : (θ1, . . . , θn) �→ (κ1, . . . , κn) defined by the integral in (4.1) is a continuous linear operator
from L1(R; Rn) into R

n. The operator K is trivially compact, because the range is finite dimensional. Since
the domain Θ defined at (3.8) is a closed convex, bounded subset of L1(R; Rn), we conclude that its image
K(c) = K(Θ) is a compact, convex subset of R

n.

2. To prove that the map c �→ K(c) is upper semicontinuous, i.e. it has closed graph, consider a sequence of
Nash equilibrium solutions corresponding to costs cν = (cν1 , . . . , cνn), ν ≥ 1. According to Definition 2.3, these
solutions are determined by an initial data Qν(·) together with the prioritizing functions: Bν

i : [0, κν] �→ [0, κν
i ],

with κν = Qν(+∞), so that the conditions (2.27)–(2.28) hold.
Assume that, for every i = 1, . . . , n,

cνi → c̄i, κν
i → κ̄i as ν → ∞.

Of course, this implies

κν =
n∑

i=1

κν
i →

n∑
i=1

κ̄i = κ̄ as ν → ∞.

We need to show that there exists a Nash equilibrium solution with costs c̄ = (c̄1, . . . , c̄n) and total population
sizes (κ̄1, . . . , κ̄n).

By (2.21), all maps Bν
i : [0, κν ] �→ R are Lipschitz continuous with constant 1. Therefore, by possibly taking

a subsequence, we can achieve the pointwise convergence Bν
i (β) → Bi(β) for all β ∈ [0, κ̄[ . This convergence

is uniform on every compact subinterval. By possibly taking a further subsequence, by Helly’s compactness
theorem we can assume that Qν(x) → Q(x) pontwise, for every x ∈ R. Clearly, Q(+∞) = κ̄.

Next, for every i ∈ {1, . . . , n} and ν ≥ 1, recall κν
i = Qν

i (+∞) and consider the functions βν
i : [0, κν

i ] �→ [0, κν]
defined as

βν
i (ζ) = min {β; Bν

i (β) = ζ}.
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Observe that this construction yields

Bν
i (βν

i (ζ)) = ζ for all ζ ∈ [0, κν
i ].

With obvious meaning of notation, we also consider the departure and arrival times

xq,ν
i (ζ) = xq,ν(βν

i (ζ)), xa,ν
i (ζ) = xa,ν(βν

i (ζ)).

Since all these functions are bounded and monotone, by possibly taking a further subsequence we can assume
the pointwise convergence

βν
i (ζ) → β̄i(ζ) for all ζ ∈ [0, κ̄i[,

xq,ν
i (ζ) → x̄q

i (ζ) = x̄q(β̄i(ζ)), xa,ν
i (ζ) → x̄a

i (ζ) = x̄a(β̄i(ζ)),

with
Bi(β̄i(ζ)) = ζ for a.e. ζ ∈ [0, κ̄i].

From the identities
ϕi(x

q,ν
i (ζ)) + ψi(x

a,ν
i (ζ)) = cνi for a.e. ζ ∈ [0, κν

i ],

letting ν → ∞ and using the continuity of ϕi, ψi we conclude

ϕi(x̄
q
i (ζ)) + ψi(x̄a

i (ζ)) = c̄i for a.e. ζ ∈ [0, κ̄i].

Hence (2.27) holds.
To complete the proof, it remains to show that

ϕi(x) + ψi

(
A(x)

) ≥ c̄i for all x ∈ R, (4.2)

where A is the arrival map corresponding to the departure distribution Q:

A(x) .= max
{
x+ μ, sup

β<Q(x)

x̄a(β)
}
. (4.3)

If (4.2) fails, by continuity we can find y ∈ R and δ > 0 such that

ϕi(y − δ) + ψi

(
A(y)

) ≤ c̄i − δ. (4.4)

We now consider the arrival maps

Aν(x) .= max
{
x+ μ, sup

β<Qν(x)

xa,ν(β)
}

(4.5)

and observe that
lim sup

ν→∞
Aν(y − δ) ≤ A(y). (4.6)

From the inequalities
ϕi(y − δ) + ψi

(
Aν(y − δ)

) ≥ cνi ,

letting ν → ∞ and using (4.6), since ϕ′
i ≤ 0 while ψ′

i ≥ 0, we conclude

ϕi(y − δ) + ψi

(
A(y)

) ≥ c̄i.

This yields a contradiction with (4.4), completing the proof. �
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In order to prove the existence of Nash equilibrium solutions to the traffic problem with given population
sizes κ̄ = (κ̄1, . . . , κ̄n), we shall use a topological argument, based on Bruwer’s fix point theorem.

In the following, we denote by {e1, . . . , en} the standard basis in R
n, and let

Δ
.=

{
x ∈ R

n; ,

n∑
i=1

ei · x ≤ 1, ei · x ≥ 0 for all i = 1, . . . , n

}
(4.7)

be the unit simplex in R
n. Moreover, we consider the vector

ē .=
n∑

i=1

ei = (1, 1, . . . , 1) ∈ R
n. (4.8)

Lemma 4.2. The multifunction c �→ K(c) satisfies the following properties.

(i) If (κ1, . . . , κn) ∈ K(c1, . . . , cn) and one of the costs satisfies

cj ≤ γ0
.= min

i=1,...,n
min
x∈R

{
ϕi(x) + ψi(x)

}
, (4.9)

then κj = 0;
(ii) For every M > 0, there exists a constant CM such that:

if
n∑

i=1

ci ≥ CM and (κ1, . . . , κn) ∈ K(c1, . . . , cn), then
n∑

i=1

κi ≥ M. (4.10)

Proof.
(i) In view of assumption (A2), γ0 is well defined real number. Since any driver starting at time x must arrive

at some time A(x) > x, the total cost to a driver of the j-th group satisfies the inequality

ϕj(x) + ψj(A(x)) > ϕj(A(x)) + ψj(A(x)) ≥ γ0 ≥ cj .

Since no j-driver can achieve a cost ≤ cj , the total number of j-drivers must be zero.

(ii) Let ũ be any solution to the conservation law (2.1) with total mass
∫
ũ(t, x) dx = M and having compact

support, say, contained in the domain [0, T ] × [a, b]. We claim that (4.10) is satisfied by choosing the constant
CM ≥ 0 large enough so that

CM ≥ n · max
i=1,...,n

{ϕi(a) + ψi(b)}. (4.11)

Indeed, assume that the vector of costs c = (c1, . . . , cn) satisfies
∑
ci ≥ CM , and let (κ1, . . . , κn) ∈ K(c).

Consider the functions Λi(·) as in (3.1). Observe that the choice of the constant CM in (4.11) yields

min
i=1,...,n

Λi(x) ≤ min
i=1,...,n

Λi(b) ≤ a for all x ∈ [a, b]. (4.12)

In view of Theorem 3.2, it suffices to prove that the Nash solution U∗, for a single group of drivers with cost
functions ϕ, ψ as in (3.2) and total cost zero, contains a total number of drivers ≥M .

We observe that, in the above solution with density ũ(t, x), every driver departs and arrives at some times
xq , xa ∈ [a, b], and pays a total cost

ϕ(xq) + ψ(xa) = −xq + min
i=1,...,n

Λi(xa) ≤ −xq + a ≤ 0.
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Figure 2. The simplexes Δ∗ = Δinner ∪Δouter, and Δγ .

Therefore, the integral function Ũ(0, x) .=
∫ x

−∞ ũ(0, y) dy is contained in the family Q0 of all departure distri-
butions where each driver bears a total cost ≤ 0.

Calling Q∗(·) the initial data for the Nash solution, the representation (3.6) now yields

κ1 + · · · + κn = Q∗(+∞) ≥ U(0,+∞) = M. �

4.1. Proof of Theorem 2.4

With the aid of the previous lemmas, we can now give a proof of Theorem 2.4. Clearly, it suffices to prove
that the upper semicontinuous, compact convex valued multifunction c �→ K(c) ⊂ R

n
+ is surjective, namely⋃

c∈Rn

K(c) = R
n
+. (4.13)

We shall argue by contradiction. Assume that, for some vector κ̄ = (κ̄1, . . . , κ̄n) ∈ R
n
+ is not contained in the

left hand side of (4.13). It is not restrictive to assume that κ̄i > 0 for every i. Indeed, in the general case we
can simply take cj = γ0 for every index j such that κ̄j = 0, and consider a lower dimensional problem.

1. Using Lemma 4.2, fix any M >
∑

i κ̄i and choose CM so that (4.10) holds. We then choose γ < γ0 and
C > CM − γ0. Consider the two n-dimensional simplexes (see Fig. 2)

Δγ
.=

{
(c1, . . . , cn);

n∑
i=1

ci ≤ C, ci ≥ γ for all i

}
, (4.14)

Δ∗ .=

{
(κ1, . . . , κn);

n∑
i=1

κi ≤ M, κi ≥ 0 for all i

}
. (4.15)
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Let Φ = (Φ1, . . . , Φn) : Δ∗ �→ Δγ be the natural affine bijection between these two simplexes:

Φi(κ1, . . . , κn) .= γ +
C − n γ

M
κi. (4.16)

2. By assumption,
κ̄ /∈

⋃
c∈Δγ

K(c). (4.17)

Since the multifunction K is upper semicontinuous and Δγ is compact, we can find r > 0 such that the ball
B(κ̄, r) does not intersect the right hand side of (4.17).

3. By Cellina’s approximate selection theorem [3], for any δ > 0 there exists a continuous map g =
(g1, . . . , gn) : Δγ �→ R

n
+ such that

Graph(g) ⊂ B
(
Graph(K), δ

)
. (4.18)

For any ε > 0, by choosing δ > 0 small enough we can achieve

ci = γ =⇒ gi(c) < ε, (4.19)

n∑
i=1

ci = C =⇒
n∑

i=1

gi(c) > M − ε, (4.20)

|g(c) − κ̄| > 3
4
r, (4.21)

for all c ∈ Δγ .

4. Consider the composed map g ◦ Φ : Δ∗ �→ R
n. We claim that, choosing η > 0 sufficiently small, the

following holds. For every boundary point p ∈ ∂Δ∗, define the nearby point

q = ηκ̄+ (1 − η)p.

Then the segment
Sp

.=
{
θ(g ◦ Φ)(q) + (1 − θ)p; θ ∈ [0, 1]

}
with endpoints p and (g ◦ Φ)(q) does not intersect the ball B(κ̄, r/2).

Indeed, given p = (p1, . . . , pn) ∈ ∂Δ∗, two cases can arise.
Case 1.

∑
i pi = M . In this case

∑
i Φi(p) = C, hence the components of g = (g1, . . . , gn) satisfy∑

i gi ◦ Φ(p) ≥ M − ε. Therefore, the segment Sp cannot intersect the ball B(κ̄, r/2) because

Sp ⊂
{
(κ1, . . . , κn);

∑
i

κi ≥M − ε
}
.

Case 2. There exists an index j ∈ {1, . . . , n} such that pj = 0. In this case, Φj(p) = γ and hence gj ◦Φ(p) < ε.
Therefore, the segment Sp cannot intersect the ball B(κ̄, r/2) because

Sp ⊂
{

(κ1, . . . , κn); κj ≤ ε
}
.
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5. Consider the decomposition Δ∗ = Δinner ∪Δouter into an inner and an outer domain, defined as

Δinner .=
{
x ∈ Δ∗; x = θκ̄+ (1 − θ)p for some p ∈ ∂Δ∗, θ ∈ ]η, 1]

}
,

Δouter .=
{
x ∈ Δ∗; x = θκ̄+ (1 − θ)p for some p ∈ ∂Δ∗, θ ∈ [0, η]

}
.

We now consider the continuous map h : Δ∗ �→ R
n, defined as follows.

• If κ ∈ Δinner, we define h(κ) .= g ◦ Φ(κ);
• if κ ∈ Δouter, then there exists a unique point p ∈ ∂Δ∗ and a unique value θ ∈ [0, 1] such that

κ = θp+ (1 − θ)q q = ηκ̄+ (1 − η)p.

In this case, we define

h(κ) .= θp+ (1 − θ)(g ◦ Φ)(q).

6. Let π∗ the radial projection onto ∂Δ∗ along rays centered at κ̄. More precisely, for x = κ̄, define π∗(x) as
the unique intersection of the ray {κ̄+ λ(x− κ̄); λ > 0} with the boundary ∂Δ∗.

By the analysis in step 4, the image h(Δ∗) does not intersect the ball B(κ̄, r/2). Therefore, the composition
κ �→ π∗ ◦ h(κ) is a continuous map from the compact simplex Δ∗ onto its boundary, such that

π∗ ◦ h(κ) = κ for all κ ∈ ∂Δ∗.

According to Brouwer’s theorem, such a continuous retraction does not exist. This contradiction proves our
theorem �

Example 4.3. To see that the map c �→ κ(c) can be multivalued, a trivial case is the following. Consider a
pair of cost functions ϕ, ψ satisfying the assumptions (A2). Choose any cost c0 ∈ R such that the problem
with a single group of drivers has a solution Q(·) with total mass κ̄, and common cost c0. Now consider the
problem with n groups of drivers, where all groups have the same starting and arrival cost ϕi = ϕ, ψi = ψ for
all i = 1, . . . , n. Then Q(·) together with a completely arbitrary prioritizing function yields a Nash equilibrium
solution. Hence, if c = (c0, c0, . . . , c0), then the set

κ(c) =
{

(κ1, . . . , κn); κi ≥ 0,
n∑

j=1

κj = κ̄

}

is a compact, convex simplex.

While the map c �→ κ(c) is generally multivalued, it seems reasonable to expect that a partial uniqueness
result should hold for the inverse map κ �→ c. This leads to the following conjecture: If κi > 0 for every
i ∈ {1, . . . , n}, then there exists a unique n-tuple c = (c1, . . . , cn) such that (κ1, . . . , κn) ∈ κ(c). In the special
case n = 1, the validity of this conjecture was proved in [2].
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