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ASYMPTOTIC STABILITY OF STATIONARY SOLUTIONS
TO THE DRIFT-DIFFUSION MODEL IN THE WHOLE SPACE

Ryo Kobayashi1,2, Masakazu Yamamoto3 and Shuichi Kawashima4

Abstract. We study the initial value problem for the drift-diffusion model arising in semiconductor
device simulation and plasma physics. We show that the corresponding stationary problem in the
whole space R

n admits a unique stationary solution in a general situation. Moreover, it is proved that
when n ≥ 3, a unique solution to the initial value problem exists globally in time and converges to
the corresponding stationary solution as time tends to infinity, provided that the amplitude of the
stationary solution and the initial perturbation are suitably small. Also, we show the sharp decay
estimate for the perturbation. The stability proof is based on the time weighted Lp energy method.
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1. Introduction

We study the following drift-diffusion model arising in semiconductor device simulation and plasma physics:
⎧⎪⎪⎨
⎪⎪⎩

ut −Δu+ ∇ · (u∇ψ) = 0, (1.1a)

vt −Δv −∇ · (v∇ψ) = 0, (1.1b)

−Δψ = −(u− v) + g(x), (1.1c)

with the initial conditions
u(x, 0) = u0(x), v(x, 0) = v0(x). (1.2)

Here u = u(x, t) and v = v(x, t) denote the electron and the hole densities, respectively, in the semiconductor,
while ψ = ψ(x, t) is the electric potential and g = g(x) is the impurity doping profile.
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The initial value problem (1.1), (1.2) in the whole space R
n was considered by Kurokiba and Ogawa in [12].

They showed the global existence of solutions for nonnegative initial data (u0, v0)(x) and for g(x) in Lp spaces.
Asymptotic behavior for t → ∞ of these global solutions was studied in [1, 10] in a special situation where
g(x) = 0. We know that these global solutions decay to zero in Lp norm at the rate t−(n/2)(1−1/p) as t → ∞,
provided that the initial data are in L1 ∩ L∞. For the details, we refer the reader to [1, 10].

Our drift-diffusion model (1.1) is a parabolic-elliptic system. Similar parabolic-elliptic systems also appear in
other models, such as an astrophysical model (a model of gravitating particles) and a model of chemotaxis (see,
for example, [3, 5, 9, 20] and references therein). For mathematical theory of those models, we refer the reader
to [2–4,15, 17] and references therein.

In this paper we study (1.1), (1.2) for g(x) satisfying

g(x) → g∞

as |x| → ∞, where g∞ is a real constant state. For the initial data, we assume that u0(x) → u∞ and v0(x) → v∞
as |x| → ∞, where u∞ and v∞ are nonnegative constants. In order to discuss the asymptotic behavior of solutions
to (1.1), (1.2) in this situation, we need to study the corresponding stationary problem in the whole space R

n:
⎧⎪⎪⎨
⎪⎪⎩

−Δu+ ∇ · (u∇ψ) = 0, (1.3a)

−Δv −∇ · (v∇ψ) = 0, (1.3b)

−Δψ = −(u− v) + g(x), (1.3c)

with the requirements
u(x) → u∞, v(x) → v∞, ψ(x) → 0

as |x| → ∞, where u∞ and v∞ are the above nonnegative constants. It is also assumed that the derivatives of
our stationary solutions tend to zero as |x| → ∞. In this situation we must have

−(u∞ − v∞) + g∞ = 0. (1.4)

The stationary problems for (1.3) in a bounded domain Ω with natural boundary conditions on ∂Ω were
considered in many papers. It is well known that these stationary problems admit unique solutions in the space
L2(Ω) or Lp(Ω). Moreover, these stationary solutions are asymptotically stable in the sense that the time-
dependent solutions to the corresponding initial-boundary value problem for (1.1) converge to these stationary
solutions exponentially as t→ ∞. See, for example, [1, 14].

Our stationary equations (1.3) in the whole space R
n can be reduced to a single equation. This can be verified

as follows. We rewrite the first equation (1.3a) as ∇· (eψ∇(ue−ψ)) = 0. We multiply this equation by ue−ψ−u∞
and integrate over R

n. This gives ue−ψ = u∞. Similarly, we get from (1.3b) that veψ = v∞. Consequently, we
have

u = u∞eψ, v = v∞e−ψ. (1.5)

Substituting these relations in (1.3c) and subtracting (1.4), we obtain

−Δψ = −u∞(eψ − 1) − v∞(1 − e−ψ) + g(x) − g∞. (1.6)

This is the reduced stationary equation in which u∞ and v∞ can be considered as nonnegative parameters of
the problem.

In this paper we first show the existence and uniqueness of stationary solutions to (1.6) with u∞, v∞ > 0
in the whole space R

n. This is an improvement on our previous result obtained in [11] under the restrictions
u∞ = v∞ > 0 and g∞ = 0. As in [11], our existence proof is based on a fixed point theorem of the Leray-
Schauder type (called the Browder-Potter fixed point theorem [18]). A crucial point of the proof is to derive the
a priori estimate of stationary solutions and this can be done by using the weighted Lp energy method.
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The second purpose of this paper is to show the asymptotic stability of the above stationary solution when
n ≥ 3. We prove that a unique solution to the initial value problem (1.1), (1.2) exists globally in time and
converges to the corresponding stationary solution as t → ∞, provided that the amplitude of the stationary
solution and the initial perturbation are suitably small. This stability result is based on the Lp energy method.
Moreover, by employing the time weighted Lp energy method (which is a modification of the one used in [8,10]),
we obtain the rate of convergence toward the stationary solution. When the initial perturbation is in L2 ∩ Lq
for q with 2 ≤ q < n, the convergence rate obtained in Lp norm is t−(n/2)(1/2−1/p) for 2 ≤ p ≤ q and this rate is
just equal to the optimal Lp-L2 decay rate for the heat equation (see Thm. 4.3). On the other hand, we could
not prove such a sharp decay estimate for n ≤ q < ∞ and n ≤ p ≤ q (see Thm. 4.5). This provides a striking
contrast to the corresponding result for g(x) = 0 in [10]. Our result may suggest that p = n is the critical
exponent in showing the optimal decay in Lp for our problem.

This paper consists of five sections. In Section 2, we introduce several inequalities which are used in this
paper. We show the existence and uniqueness of stationary solutions in Section 3. In Section 4, we discuss the
asymptotic stability of stationary solutions in Lp (2 ≤ p < ∞). Finally in Section 5, we consider the decay of
the derivative of perturbations in order to derive the asymptotic stability of stationary solutions in L∞.

Notations. For x = (x1, . . . , xn) ∈ R
n, we denote by ∂xi the differentiation with respect to xi. Also, for a

nonnegative integer k, ∂kx denotes the totality of all the k-th order differentiations with respect to x ∈ R
n. The

symbols ∇ = ∂x = (∂x1 , . . . , ∂xn) and Δ =
∑n
i=1 ∂

2
xi

denote the gradient and the Laplacian in the n-dimensional
space, respectively.

For 1 ≤ p ≤ ∞, Lp = Lp(Rn) denotes the usual Lebesgue space on R
n with the norm ‖ · ‖Lp . Let s

be a nonnegative integer. Then the corresponding Sobolev space W s,p = W s,p(Rn) is defined by W s,p =
{f ∈ Lp; ∂kxf ∈ Lp for k ≤ s}. When p = 2, we write Hs = W s,2. For α ∈ R, Lpα = Lpα(Rn) denotes the
weighted Lp space on R

n, which consists of functions f satisfying (1 + |x|)αf ∈ Lp, equipped with the norm
‖f‖Lp

α
= ‖(1 + |x|)αf‖Lp . In particular, for 1 ≤ p <∞, we have

‖f‖Lp
α

=
(∫

Rn

(1 + |x|)αp|f(x)|pdx
)1/p

.

The corresponding weighted Sobolev space W s,p
α = W s,p

α (Rn) is defined as W s,p
α = {f ∈ Lpα; ∂kxf ∈ Lpα for

k ≤ s}. We write Hs
α = W s,2

α for p = 2.
In this paper, various positive constants are denoted by C or c without confusion.

2. Preliminaries

In this section we give several preliminary inequalities used in the paper. First, we consider the Poisson
equation

−Δψ = f. (2.1)

The corresponding fundamental solution K(x) is given by

K(x) =

⎧⎨
⎩

1
(n−2)|Sn−1| |x|−(n−2) (n ≥ 3),

1
2π log |x| (n = 2),

where |Sn−1| = 2πn/2/Γ(n/2) is the surface integral of the (n− 1)-dimensional unit ball. Then the solution to
(2.1) is given formally as ψ(x) = (K ∗ f)(x) so that we have formally

∇ψ(x) = (∇K ∗ f)(x). (2.2)
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In this paper we always define the gradient of the solution to the Poisson equation (2.1) by the formula (2.2).
Then, applying Hardy-Littlewood-Sobolev inequality, we have:

Lemma 2.1 (special Hardy-Littlewood-Sobolev inequality ([19, 21]). Let n ≥ 2, 1 < r < n and 1/r∗ =
1/r − 1/n. If ψ is a solution to the Poisson equation (2.1), then we have

‖∇ψ‖Lr∗ ≤ C‖f‖Lr . (2.3)

Also we have the following elliptic estimate in the weighted space Lpα.

Lemma 2.2 ([6, 13]). Let n ≥ 1, 1 < p <∞ and −n/p < α < n(1 − 1/p). Then, for ψ ∈ L1
loc with Δψ ∈ Lpα,

we have
‖∂2
xψ‖Lp

α
≤ C‖Δψ‖Lp

α
. (2.4)

Next, we list up several interpolation inequalities which are frequently used in this paper.

Lemma 2.3 (Gagliardo-Nirenberg inequality [16]). Let n ≥ 1. Let 1 ≤ p, q, r ≤ ∞, and let k be a positive
integer. Then for any integer j with 0 ≤ j < k, we have

‖∂jxu‖Lp ≤ C‖∂kxu‖aLq‖u‖1−a
Lr , (2.5)

where
1
p

=
j

n
+ a

(
1
q
− k

n

)
+ (1 − a)

1
r

for a satisfying j/k ≤ a ≤ 1; there are the following exceptional cases:

(i) if j = 0, qk < n and r = ∞, then we made the additional assumption that either u(x) → 0 as |x| → ∞ or
u ∈ Lq

′
for some 0 < q′ <∞;

(ii) if 1 < r <∞, and k − j − n/r is a nonnegative integer, then (2.5) holds only for a satisfying j/k ≤ a < 1.

As a special case of (2.5), we have the following estimate for n ≥ 2 and 1 < r < n:

‖u‖Lr∗ ≤ C‖∂xu‖Lr , (2.6)

where 1/r∗ = 1/r − 1/n.

Lemma 2.4 ([7, 8]). Let n ≥ 1. Then we have

‖u‖Lp ≤ C‖∇(|u|p/2)‖2γ/(1+γp)
L2 ‖u‖1/(1+γp)

Lq (2.7)

for 2 ≤ p <∞ and 1 ≤ q ≤ p, where γ = (n/2)(1/q − 1/p).

Lemma 2.5 ([8]). Let n ≥ 1. Then we have

‖∂u‖Lp ≤ C‖∂(|∂u|p/2)‖2/(p+2)
L2 ‖u‖2/(p+2)

Lp (2.8)

for 2 ≤ p <∞ and
‖∂u‖p/2Lp ≤ C‖∂(|∂u|p/2)‖1−2/p

L2 ‖∂(|u|p/2)‖2/p
L2

for p = 2 and 4 ≤ p <∞, where ∂ = ∂xi for i = 1, . . . , n.
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3. Stationary solutions

We study the stationary equation (1.6), i.e.,

−Δψ = −u∞(eψ − 1) − v∞(1 − e−ψ) + g̃(x) (3.1)

in the whole space R
n, where g̃(x) = g(x) − g∞; g(x) is a given function, and u∞, v∞ and g∞ are constants

satisfying u∞, v∞ > 0 and (1.4). It is known from [11] that this equation has a unique solution in the special
case where u∞ = v∞ > 0 and g∞ = 0. Here we prove the existence and uniqueness of solutions to (3.1) without
this restriction. We put

F [ψ] = u∞(eψ − 1) + v∞(1 − e−ψ) (3.2)

and rewrite (3.1) as
−Δψ + F [ψ] = g̃(x). (3.3)

First, similarly to [11], we show the uniqueness of solutions.

Theorem 3.1 (uniqueness). Let u∞ > 0 and v∞ > 0. Let n ≥ 1 and 2 ≤ p < ∞, and suppose that g̃ ∈ Lp.
Then the solutions to equation (3.1) are unique in the space W 1,p ∩ L∞.

Proof. Equation (3.3) is rewritten as
−Δψ + a1ψ +G[ψ] = g̃(x),

where a1 = 2
√
u∞v∞ and

G[ψ] = F [ψ] − a1ψ = u∞(eψ − 1) + v∞(1 − e−ψ) − 2
√
u∞v∞ψ. (3.4)

We notice that G satisfies (a − b)(G[a] −G[b]) ≥ 0 for all a, b ∈ R since the inequality G′[a] ≥ 0 holds. Let ψ1

and ψ2 be solutions to (3.1). Then the difference ψ = ψ1 − ψ2 satisfies the equation

−Δψ + a1ψ + (G[ψ1] −G[ψ2]) = 0. (3.5)

We multiply (3.5) by |ψ|p−2ψ to obtain

a1|ψ|p + c0|∇(|ψ|p/2)|2 + |ψ|p−2(ψ1 − ψ2)(G[ψ1] −G[ψ2]) −∇ · (|ψ|p−2ψ∇ψ) = 0,

where c0 = 4(p− 1)/p2. Integrating over R
n and noting that (ψ1 − ψ2)(G[ψ1] −G[ψ2]) ≥ 0, we have

‖ψ‖pLp + ‖∇(|ψ|p/2)‖2
L2 ≤ 0,

which shows that ψ = 0. This completes the proof. �

Next, similarly to [11], we prove the existence of solutions to (3.1) by applying the fixed point theorem of the
Leray-Schauder type (called the Browder-Potter fixed point theorem [18]). For lower dimensional case 1 ≤ n ≤ 3,
we have the following existence theorem in the weighted L2 spaces.

Theorem 3.2 (existence). Let u∞ > 0 and v∞ > 0. Let 1 ≤ n ≤ 3 and α > 0, and suppose that g̃ ∈ L2
α. Then

equation (3.1) has a unique solution ψ ∈ H2
α (⊂ L∞

α ) such that

‖ψ‖H2
α
≤ C‖g̃‖L2

α
. (3.6)

Moreover, if g̃ ∈ Hs
α for an integer s ≥ 1, then the solution verifies the additional regularity ψ ∈ Hs+2

α .

For higher dimensional case n ≥ 2, we have a similar existence theorem in the weighted Lp spaces with
n < p <∞.
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Theorem 3.3 (existence). Let u∞ > 0 and v∞ > 0. Let n ≥ 2, n < p < ∞ and α > 0, and suppose that
g̃ ∈ Lpα. Then equation (3.1) has a unique solution ψ ∈W 1,p

α (⊂ L∞
α ) with ∇(|∂xψ|p/2) ∈ L2

αp/2 such that

‖ψ‖p
W 1,p

α
+ ‖∇(|∂xψ|p/2)‖2

L2
αp/2

≤ C‖g̃‖p
Lp

α
. (3.7)

Moreover, if g̃ ∈ W s,p
α for an integer s ≥ 1, then the solution verifies the additional regularity ψ ∈W s+1,p

α with
∇(|∂s+1

x ψ|p/2) ∈ L2
αp/2.

Remark 3.4. When g̃ ∈ L2
α∩Lpα in the above theorems, the solution ψ is inH2

α∩W 1,p
α with ∇(|∂xψ|p/2) ∈ L2

αp/2

and satisfies the estimates (3.6) and (3.7). Moreover, we have the regularity ∂2
xψ ∈ Lpα′ , where 0 ≤ α′ ≤ α and

α′ < n(1 − 1/p); this regularity follows from the fact that Δψ ∈ Lpα and the estimate (2.4).

These existence theorems can be proved by the same method employed in [11] where the special case u∞ =
v∞ > 0, g∞ = 0 is treated. So we will only give the outline of the proof. As in [11], we use the following fixed
point theorem of the Leray-Schauder type.

Theorem 3.5 (Browder-Potter [18]). Let X be a Banach space and let S be a closed convex subset of X. Let
Φλ(ψ) = Φ(ψ, λ) be a continuous mapping of (ψ, λ) ∈ S × [0, 1] into a compact subset of X, with the following
properties:

(i) Φ0(∂S) ⊂ S;
(ii) for each λ ∈ [0, 1], Φλ has no fixed point on ∂S.

Then the mapping Φ1 has a fixed point in S.

Let Xp be a Banach space defined by Xp = Lpα/2 ∩ L∞
α/2 with the norm

‖ · ‖Xp = ‖ · ‖Lp
α/2

+ ‖ · ‖L∞
α/2
.

We take X = X2 and X = Xp with n < p <∞ to prove Theorems 3.2 and 3.3, respectively. We choose a closed
convex subset S as S = {ψ ∈ Xp ; ‖ψ‖Xp ≤ M}, where M is a suitably large number. We need to define the
corresponding mapping to apply the above fixed point theorem. For this purpose, we rewrite (3.1) as

−Δψ + (u∞ + v∞)ψ = −H [ψ] + g̃, (3.8)

where H [ψ] is the nolinear part of F [ψ] in (3.2) and is given by

H [ψ] =F [ψ] − (u∞ + v∞)ψ

=u∞(eψ − 1) + v∞(1 − e−ψ) − (u∞ + v∞)ψ. (3.9)

We introduce a parameter λ ∈ [0, 1] and modify the equation (3.8) as

−Δψ + (u∞ + v∞)ψ = λ(−H [ψ] + g̃). (3.10)

This equation can be transformed to

ψ = λ{−Δ+ (u∞ + v∞)}−1(−H [ψ] + g̃).

The desired mapping Φλ(ψ) is then defined as

Φλ(ψ) := λ{−Δ+ (u∞ + v∞)}−1(−H [ψ] + g̃),

so that our solution ψ to equation (3.1) can be obtained as a fixed point of the mapping Φ1, that is, ψ = Φ1(ψ).
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Let 0 ≤ β < α. Then we see that the imbedding H2
α ⊂ L2

β∩L∞
β is compact for 1 ≤ n ≤ 3. Also, the imbedding

W 1,p
α ⊂ Lpβ ∩ L∞

β is compact for n ≥ 2 and n < p < ∞. Therefore, as in [11], we can verify that our Φλ is
a continuous mapping of (ψ, λ) ∈ S × [0, 1] into a compact subset of X , where X and S are defined above.
Also, our Φλ satisfies the first condition of Theorem 3.5 because of Φ0 = 0. To check the second condition of
Theorem 3.5, we will show the a priori estimate of solutions to (3.10) given in Proposition 3.6 below. Once
this is done, our Φλ satisfies the second condition of Theorem 3.5 for S with suitably large M . Consequently,
Theorem 3.5 is applicable to our problem and we have a fixed point ψ ∈ S of the mapping Φ1. This fixed point ψ
is a desired stationary solution stated in Theorems 3.2 and 3.3. For the details, we refer the reader to [11].

Therefore, for the proof of Theorems 3.2 and 3.3, it suffices to show the following a priori estimate of solutions
to equation (3.10).

Proposition 3.6. Let u∞ > 0, v∞ > 0 and λ ∈ [0, 1]. Let n ≥ 1, 2 ≤ p < ∞ and β ≥ 0, and suppose that
g̃ ∈ Lpβ. Let ψ be a solution to the nonlinear equation (3.10) such that ψ ∈ Lpβ/2∩L∞

β/2. Then we have ψ ∈W 1,p
β

and ∇(|∂xψ|p/2) ∈ L2
βp/2. Moreover, the solution satisfies the a priori estimate

‖ψ‖p
W 1,p

β

+ ‖∇(|∂xψ|p/2)‖2
L2

βp/2
≤ Cλp‖g̃‖p

Lp
β
, (3.11)

where C is a positive constant independent of λ.

Proof. Let g̃ ∈ Lpβ and let ψ ∈ Lpβ/2 ∩ L∞
β/2 be a solution to the equation (3.10). We have from (3.9) that

|H [ψ]| ≤ (1/2)(u∞ + v∞)|ψ|2e|ψ|. Therefore H [ψ] is in Lpβ and satisfies

‖H [ψ]‖Lp
β
≤ (1/2)(u∞ + v∞)‖ψ‖L∞

β/2
‖ψ‖Lp

β/2
e‖ψ‖L∞ .

Consequently, we see that the right hand side of (3.10) belongs to Lpβ. Therefore, in the same way as in [11], we
conclude that ψ ∈W 1,p

β and ∇(|∂xψ|p/2) ∈ L2
βp/2.

To prove the a priori estimate (3.11), we employ the weighted Lp energy method developed in [11]. The proof
is divided into two parts.
Step 1. Let 2 ≤ p <∞ and β ≥ 0. We first show that

‖ψ‖p
Lp

β
+ ‖∇(|ψ|p/2)‖2

L2
βp/2

≤ Cλp‖g̃‖p
Lp

β
, (3.12)

where C is a positive constant independent of λ. To prove this, we rewrite the equation (3.10) as

−Δψ + aλψ + λG[ψ] = λg̃, (3.13)

where
aλ = λa1 + (1 − λ)a0, a0 = u∞ + v∞, a1 = 2

√
u∞v∞,

and G[ψ] is defined in (3.4). Notice that aλ ≥ a1 > 0. We multiply (3.13) by |ψ|p−2ψ and obtain

c0|∇(|ψ|p/2)|2 + aλ|ψ|p + λ|ψ|p−2ψG[ψ] −∇ · (|ψ|p−2ψ∇ψ) = λ|ψ|p−2ψg̃,

where c0 = 4(p− 1)/p2. Furthermore, multiplying by (1 + |x|)βp, we have

c0(1 + |x|)βp|∇(|ψ|p/2)|2 + aλ(1 + |x|)βp(|ψ|p + λ|ψ|p−2ψG[ψ]
)

−∇ · ((1 + |x|)βp|ψ|p−2ψ∇ψ)
+ βp(1 + |x|)βp−1|x|−1x · |ψ|p−2ψ∇ψ = λ(1 + |x|)βp|ψ|p−2ψg̃.

Integrating this equality over R
n and using ψG[ψ] ≥ 0, we have

aλ‖ψ‖pLp
β

+ c0‖∇(|ψ|p/2)‖2
L2

βp/2
≤ A1 +A2, (3.14)
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where
A1 = βp

∫
Rn

(1 + |x|)βp−1|ψ|p−1|∇ψ| dx, A2 = λ

∫
Rn

(1 + |x|)βp|ψ|p−1|g̃| dx. (3.15)

We estimate the right hand side of (3.14). For the term A1, we have

A1 = (β/2)
∫

Rn

(1 + |x|)βp−1|ψ|p/2|∇(|ψ|p/2)| dx

≤ (β/2)‖ψ‖p/2
Lp

β
‖∇(|ψ|p/2)‖L2

βp/2−1
≤ ε‖ψ‖p

Lp
β

+ β2Cε‖∇(|ψ|p/2)‖2
L2

βp/2−1

for any ε > 0, where Cε is a positive constant depending on ε but not on β. Similarly, we can estimate the
term A2 as

A2 ≤ λ‖ψ‖p−1
Lp

β
‖g̃‖Lp

β
≤ ε‖ψ‖p

Lp
β

+ Cελ
p‖g̃‖p

Lp
β

for any ε > 0, where Cε is a positive constant depending on ε but not on β. Substituting these estimates in (3.14)
and taking ε > 0 suitably small, we obtain

‖ψ‖p
Lp

β
+ ‖∇(|ψ|p/2)‖2

L2
βp/2

≤ Cλp‖g̃‖p
Lp

β
+ β2C‖∇(|ψ|p/2)‖2

L2
βp/2−1

. (3.16)

This proves (3.12) for β = 0. Also, (3.16) together with (3.12) for β = 0 gives (3.12) for 0 < βp ≤ 2. Repeating
this procedure, we conclude that (3.12) holds true for any β ≥ 0.
Step 2. Next we show that

‖∂xψ‖pLp
β

+ ‖∇(|∂xψ|p/2)‖2
L2

βp/2
≤ Cλp‖g̃‖p

Lp
β
, (3.17)

where C is a positive constant independent of λ. To prove this, we differentiate (3.13) with respect to xi
(i = 1, . . . , n), obtaining

−Δψi + aλψi + λ∂xiG[ψ] = λ∂xi g̃, (3.18)

where we put ψi = ∂xiψ. We multiply (3.18) by |ψi|p−2ψi to get

c0|∇(|ψi|p/2)|2 + aλ|ψi|p + λ|ψi|p−2ψi∂xiG[ψ]

−∇ · (|ψi|p−2ψi∇ψi) = λ∂xi(|ψi|p−2ψig̃) − λ(p− 1)|ψi|p−2∂xiψig̃,

where c0 = 4(p− 1)/p2. Furthermore, multiplying by (1 + |x|)βp, we have

c0(1 + |x|)βp|∇(|ψi|p/2)|2 + (1 + |x|)βp(aλ|ψi|p + λ|ψi|p−2ψi∂xiG[ψ]
)

−∇ · ((1 + |x|)βp|ψi|p−2ψi∇ψi
)

+ βp(1 + |x|)βp−1|x|−1x · |ψi|p−2ψi∇ψi
= λ∂xi

(
(1 + |x|)βp|ψi|p−2ψig̃

) − λβp(1 + |x|)βp−1|x|−1xi|ψi|p−2ψig̃ − λ(p− 1)(1 + |x|)βp|ψi|p−2∂xiψig̃.

Integrating this equality over R
n and noting that ψi∂xiG[ψ] = G′[ψ]|ψi|2 ≥ 0, we obtain

aλ‖ψi‖pLp
β

+ c0‖∇(|ψi|p/2)‖2
L2

βp/2
≤ B1 +B2 +B3, (3.19)

where

B1 = βp

∫
Rn

(1 + |x|)βp−1|ψi|p−1|∇ψi| dx,

B2 = λβp

∫
Rn

(1 + |x|)βp−1|ψi|p−1|g̃| dx,

B3 = λ(p− 1)
∫

Rn

(1 + |x|)βp|ψi|p−2|∂xiψi| |g̃| dx.
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We estimate the right hand side of (3.19). The term B1 is just the same as A1 in (3.15), so that we have

B1 ≤ ε‖ψi‖pLp
β

+ β2Cε‖∇(|ψi|p/2)‖2
L2

βp/2−1

for any ε > 0, where Cε is a positive constant depending on ε but not on β. For the term B2, we have

B2 ≤ λβp‖ψi‖p−1
Lp

β
‖g̃‖Lp

β−1
≤ ε‖ψi‖pLp

β
+ Cελ

pβp‖g̃‖p
Lp

β−1

for any ε > 0, where Cε is a positive constant depending on ε but not on β. On the other hand, we can estimate
the term B3 as

B3 = λ(2/p)(p− 1)
∫

Rn

(1 + |x|)βp|ψi|p/2−1|∂xi(|ψi|p/2)| |g̃| dx

≤ λ(2/p)(p− 1)‖ψi‖p/2−1

Lp
β

‖∂xi(|ψi|p/2)‖L2
βp/2

‖g̃‖Lp
β

≤ ε
(‖ψi‖pLp

β
+ ‖∇(|ψi|p/2)‖2

L2
βp/2

)
+ Cελ

p‖g̃‖p
Lp

β

for any ε > 0, where Cε is a positive constant depending on ε but not on β. Here we have used the Hölder
inequality with (p− 2)/2p+ 1/2 + 1/p = 1. Substituting all these estimates in (3.19) and taking ε > 0 suitably
small, we obtain

‖∂xψ‖pLp
β

+ ‖∇(|∂xψ|p/2)‖2
L2

βp/2
≤ Cλp(1+βp)‖g̃‖p

Lp
β

+ β2C‖∇(|∂xψ|p/2)‖2
L2

βp/2−1
.

This gives (3.17) for β = 0 and hence for any β ≥ 0.
Now, the desired estimate (3.11) follows from (3.12) and (3.17), and therefore the proof of Proposition 3.6 is

complete. �

4. Asymptotic stability

In this section we discuss the asymptotic stability of stationary solutions to the drift-diffusion model in
R
n with n ≥ 3. We denote by (ū, v̄, ψ̄)(x) the stationary solution constructed in Theorems 3.2 and 3.3 for

g̃ ∈ L2
α ∩ Lq0α with q0 > n and α > 0. This stationary solution satisfies the estimates

‖(ū− u∞, v̄ − v∞, ψ̄)‖W 1,r ≤ C‖g̃‖ for 2 ≤ r ≤ ∞,

‖(ū− u∞, v̄ − v∞, ψ̄)‖W 2,p ≤ C‖g̃‖ for 2 ≤ p ≤ q0, (4.1)

provided that
‖g̃‖ := ‖g̃‖L2 + ‖g̃‖Lq0 (4.2)

is bounded by a constant C. In fact, it follows from (3.6) and (3.7) that ‖ψ̄‖W 1,p ≤ C‖g̃‖ for 2 ≤ p ≤ q0. Since
q0 > n, this together with (2.5) shows that ‖ψ̄‖L∞ ≤ C‖g̃‖. Therefore, by virtue of equation (3.1), we know
that ‖Δψ̄‖Lp ≤ C‖g̃‖ and hence ‖∂2

xψ̄‖Lp ≤ C‖g̃‖ for 2 ≤ p ≤ q0 by (2.4) (see also [19]). Consequently, we
have ‖ψ̄‖W 2,p ≤ C‖g̃‖ for 2 ≤ p ≤ q0, which together with (1.5) shows that ‖(ū− u∞, v̄− v∞)‖W 2,p ≤ C‖g̃‖ for
2 ≤ p ≤ q0. Thus we have proved the second estimate in (4.1). Also, this combined with (2.5) yields the first
estimate in (4.1).

Now we look for solutions to the nonstationary problem (1.1), (1.2) in the form

(u, v, ψ) = (ū, v̄, ψ̄)(x) + (w, z, φ)(x, t),
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where (ū, v̄, ψ̄) is the above stationary solution and (w, z, φ) denotes the corresponding perturbation. The
problem is then reduced to ⎧⎪⎨

⎪⎩
wt −Δw + u∞Δφ = −∇ · f1 −∇ · (w∇φ), (4.3a)
zt −Δz − v∞Δφ = ∇ · f2 + ∇ · (z∇φ), (4.3b)
−Δφ = −(w − z), (4.3c)

w(x, 0) = w0(x), z(x, 0) = z0(x), (4.4)

where w0 = u0 − ū, z0 = v0 − v̄ and

f1 = w∇ψ̄ + (ū− u∞)∇φ, f2 = z∇ψ̄ + (v̄ − v∞)∇φ. (4.5)

First we show the global existence and uniform Lp estimate of solutions to the problem (4.3), (4.4).

Theorem 4.1 (global existence). Let n ≥ 3 and q1 ≤ q < ∞, where q1 = max{2, n/2}. Let (ū, v̄, ψ̄) be
the stationary solution satisfying (4.1). Suppose that the initial data (w0, z0) are in L2 ∩ Lq and put E0 =
‖(w0, z0)‖L2 + ‖(w0, z0)‖Lq . If E0 + ‖g̃‖ is suitably small (‖g̃‖ is defined in (4.2)), then the problem (4.3), (4.4)
has a unique global solution (w, z, φ) which satisfies the following uniform Lp estimate:

‖(w, z)(t)‖pLp +
∫ t

0

‖∇(|(w, z)|p/2)(τ)‖2
L2 + ‖(w − z)(τ)‖pLp dτ ≤ CEp0 (4.6)

for p = 2 and q1 ≤ p ≤ q. In particular, we have ‖(w, z)(t)‖Lp ≤ CE0 for each p with 2 ≤ p ≤ q.

The local existence of solutions to the problem (4.3), (4.4) can be proved by the standard method (cf. [12]).
Therefore, for the proof of Theorem 4.1, it suffices to show the a priori estimate of solutions to the prob-
lem (4.3), (4.4). We use the following notations.

Ep(t) = sup
0≤τ≤t

‖(w, z)(τ)‖Lp ,

Dp(t)p =
∫ t

0

‖∇(|(w, z)|p/2)(τ)‖2
L2 + ‖(w − z)(τ)‖pLp dτ,

where 2 ≤ p <∞. Our a priori estimate is then given as follows.

Proposition 4.2 (a priori Lp estimate). Let n ≥ 3 and q1 ≤ q <∞, where q1 is the same as in Theorem 4.1.
Let (ū, v̄, ψ̄) be the stationary solution satisfying (4.1) and let (w, z, φ) be a solution to the problem (4.3), (4.4)
corresponding to the initial data (w0, z0) ∈ L2 ∩ Lq. If E0 + ‖g̃‖ in Theorem 4.1 is suitably small, then the
solution (w, z, φ) satisfies the following a priori Lp estimate:

(Ep +Dp)(t) ≤ CE0 (4.7)

for p = 2 and q1 ≤ p ≤ q.

Proof. Let n ≥ 3. The proof is based on the Lp energy method employed in [8]. We divide the proof into four
parts.
Step 1. Let 2 ≤ p ≤ q. We derive the Lp energy inequality for the problem (4.3), (4.4). We multiply (4.3a)
by |w|p−2w. A straightforward computation gives

1
p

(|w|p)
t
+ c0|∇(|w|p/2)|2 + u∞|w|p−2w(w − z) −∇ · (|w|p−2w∇w)

= −∇ · (|w|p−2wf1 + |w|p∇φ)
+ (p− 1)

(|w|p−2∇w · f1 + |w|p−2w∇w · ∇φ)
, (4.8)
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where c0 = 4(p− 1)/p2. Here we have used (4.3c). We integrate (4.8) over R
n to obtain

1
p

d
dt

‖w‖pLp + c0‖∇(|w|p/2)‖2
L2 + u∞

∫
Rn

|w|p−2w(w − z) dx ≤ (p− 1)(I + J), (4.9)

where we put

I =
∫

Rn

|w|p−2|∇w| |f1| dx, J =
∫

Rn

|w|p−1|∇w| |∇φ| dx. (4.10)

It follows from (4.5) that I ≤ I1 + I2 with

I1 =
∫

Rn

|∇ψ̄| |w|p−1|∇w| dx, I2 =
∫

Rn

|ū− u∞| |w|p−2|∇w| |∇φ| dx. (4.11)

We integrate (4.9) with respect to t. This yields

‖w(t)‖pLp +
∫ t

0

‖∇(|w|p/2)(τ)‖2
L2 dτ +

∫ t

0

∫
Rn

|w|p−2w(w − z)(τ) dxdτ ≤ C‖w0‖pLp +C

∫ t

0

(I + J)(τ) dτ, (4.12)

where we have used u∞ > 0. We have a similar energy inequality also for z.

Step 2. Let q1 ≤ p ≤ q. We show the following Lp energy inequality:

(Ep +Dp)(t)p ≤ CEp0 + C‖g̃‖(E2 +D2 +Dp)(t)p + C(Ep +D2 +Dp)(t)p+1. (4.13)

We use (4.12). First, applying the Hölder inequality with 1/n+ 1/2∗ + 1/2 = 1 (where 1/2∗ = 1/2 − 1/n) and
using (2.6), we estimate the term I1 as

I1 = (2/p)
∫

Rn

|∇ψ̄| |w|p/2|∇(|w|p/2)| dx

≤ C‖∇ψ̄‖Ln‖(|w|p/2)‖L2∗‖∇(|w|p/2)‖L2 ≤ C‖g̃‖ ‖∇(|w|p/2)‖2
L2 . (4.14)

Thus we obtain ∫ t

0

I1(τ) dτ ≤ C‖g̃‖
∫ t

0

‖∇(|w|p/2)(τ)‖2
L2 dτ ≤ C‖g̃‖Dp(t)p.

Next we estimate the term I2. We determine r with 1 < r < n and 2 < r < p such that

1
r

=
θ

2
+

1 − θ

p
, θ =

2
n
· (4.15)

For this choice of r, we see that 1/n+(1−2/p)/2∗+1/2+1/r∗ = 1, where 1/2∗ = 1/2−1/n and 1/r∗ = 1/r−1/n.
Applying the Hölder inequality with this relation and using (2.6) and (2.3), we have

I2 = (2/p)
∫

Rn

|ū− u∞| |w|(p/2)(1−2/p)|∇(|w|p/2)| |∇φ| dx

≤ C‖ū− u∞‖Ln‖(|w|p/2)‖1−2/p

L2∗ ‖∇(|w|p/2)‖L2‖∇φ‖Lr∗

≤ C‖g̃‖ ‖∇(|w|p/2)‖2(1−1/p)
L2 ‖w − z‖Lr

≤ C‖g̃‖ ‖∇(|w|p/2)‖2(1−1/p)
L2 ‖w − z‖θL2‖w − z‖1−θ

Lp , (4.16)
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where we have used the interpolation in Lr with the relation (4.15). Consequently, we obtain
∫ t

0

I2(τ) dτ ≤ C‖g̃‖E2(t)θ(1−2/p)

∫ t

0

‖w − z‖2θ/p
L2 ‖∇(|w|p/2)‖2(1−1/p)

L2 ‖w − z‖1−θ
Lp dτ

≤ C‖g̃‖E2(t)θ(1−2/p)D2(t)2θ/pDp(t)(p−1)+(1−θ) ≤ C‖g̃‖(E2 +D2 +Dp)(t)p,

where we used the Hölder inequality with θ/p+ (1 − 1/p) + (1 − θ)/p = 1.
Finally, we estimate the term J . To this end, we choose r and λ with 1 < r < n, 2 ≤ r ≤ p and 0 ≤ λ < 1

such that
λ

2
+

1 − λ

2∗
+

1
2

+
1
r∗

= 1,
1
r

=
λ

2
+

1 − λ

p
, (4.17)

where 1/2∗ = 1/2 − 1/n and 1/r∗ = 1/r − 1/n. This choice is possible because we have 1/r = 2/n− λ/n and
λ = 2(2p− n)/((n+ 2)p− 2n) < 1; here we used the restriction p ≥ n/2. Then, applying the Hölder inequality
with the first relation in (4.17) and using (2.6) and (2.3), we have

J = (2/p)
∫

Rn

|w|λp/2|w|(1−λ)p/2|∇(|w|p/2)| |∇φ| dx

≤ C‖(|w|p/2)‖λL2‖(|w|p/2)‖1−λ
L2∗ ‖∇(|w|p/2)‖L2‖∇φ‖Lr∗

≤ C‖w‖λp/2Lp ‖∇(|w|p/2)‖2−λ
L2 ‖w − z‖Lr

≤ C‖w‖λp/2Lp ‖∇(|w|p/2)‖2−λ
L2 ‖w − z‖λL2‖w − z‖1−λ

Lp , (4.18)

where we have used the interpolation in Lr with the second relation in (4.17). Consequently, we obtain
∫ t

0

J(τ) dτ ≤ CEp(t)λp/2+(1−λ)

∫ t

0

‖∇(|w|p/2)‖2−λ
L2 ‖w − z‖λL2 dτ

≤ CEp(t)λp/2+(1−λ)Dp(t)(2−λ)p/2D2(t)λ ≤ C(Ep +D2 +Dp)(t)p+1,

where we used the Hölder inequality with (2 − λ)/2 + λ/2 = 1.
Now, substituting all these estimates into (4.12), we arrive at

‖w(t)‖pLp +
∫ t

0

‖∇(|w|p/2)(τ)‖2
L2 dτ +

∫ t

0

∫
Rn

|w|p−2w(w − z)(τ) dxdτ

≤ CEp0 + C‖g̃‖(E2 +D2 +Dp)(t)p + C(Ep +D2 +Dp)(t)p+1.

Similarly, for z, we have

‖z(t)‖pLp +
∫ t

0

‖∇(|z|p/2)(τ)‖2
L2 dτ −

∫ t

0

∫
Rn

|z|p−2z(w − z)(τ) dxdτ

≤ CEp0 + C‖g̃‖(E2 +D2 +Dp)(t)p + C(Ep +D2 +Dp)(t)p+1.

Adding these two inequalities and using the fact that |w− z|p ≤ 2p−2(|w|p−2w− |z|p−2z)(w− z), we obtain the
desired estimate (4.13).
Step 3. We show the following L2 energy inequality:

(E2 +D2)(t)2 ≤ CE2
0 + C‖g̃‖D2(t)2 + C(E2 + Ep +D2)(t)3, (4.19)

where q1 ≤ p ≤ q. We use (4.12) with p = 2:

‖w(t)‖2
L2 +

∫ t

0

‖∇w(τ)‖2
L2 dτ +

∫ t

0

∫
Rn

w(w − z)(τ) dxdτ ≤ C‖w0‖2
L2 + C

∫ t

0

(I + J)(τ) dτ, (4.20)
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where I and J are defined by (4.10) with p = 2. The term I1 in (4.11) with p = 2 is estimated just in the same
way as before. In fact, we have I1 ≤ C‖g̃‖ ‖∇w‖2

L2 and

∫ t

0

I1(τ) dτ ≤ C‖g̃‖
∫ t

0

‖∇w‖2
L2 dτ ≤ C‖g̃‖D2(t)2.

On the other hand, applying the Hölder inequality with 1/n+ 1/2 + 1/2∗ = 1 and using (2.3), we can estimate
I2 in (4.11) with p = 2 as

I2 =
∫

Rn

|ū− u∞| |∇w| |∇φ| dx
≤ C‖ū− u∞‖Ln‖∇w‖L2‖∇φ‖L2∗ ≤ C‖g̃‖ ‖∇w‖L2‖w − z‖L2,

which is a simpler version of (4.16). Thus we obtain

∫ t

0

I2(τ) dτ ≤ C‖g̃‖
∫ t

0

‖∇w‖L2‖w − z‖L2 dτ ≤ C‖g̃‖D2(t)2.

To estimate the term J in (4.10) with p = 2, we choose r and λ just in the same way as in (4.17) for q1 ≤ p ≤ q.
Then the term J is estimated as in (4.18) and we obtain

J ≤ C‖w‖λL2‖∇w‖2−λ
L2 ‖w − z‖λL2‖w − z‖1−λ

Lp .

Consequently, we have

∫ t

0

J(τ) dτ ≤ CE2(t)λEp(t)1−λ
∫ t

0

‖∇w‖2−λ
L2 ‖w − z‖λL2 dτ ≤ CE2(t)λEp(t)1−λD2(t)2 ≤ C(E2 + Ep +D2)(t)3.

Now, substituting all these estimates in (4.20), we have

‖w(t)‖2
L2 +

∫ t

0

‖∇w(τ)‖2
L2 dτ +

∫ t

0

∫
Rn

w(w − z) dxdτ ≤ CE2
0 + C‖g̃‖D2(t)2 + C(E2 + Ep +D2)(t)3.

Similarly, for z, we have

‖z(t)‖2
L2 +

∫ t

0

‖∇z(τ)‖2
L2 dτ −

∫ t

0

∫
Rn

z(w − z) dxdτ ≤ CE2
0 + C‖g̃‖D2(t)2 + C(E2 + Ep +D2)(t)3.

Adding these two inequalities, we obtain the desired estimate (4.19).

Step 4. Finally, we combine (4.13) and (4.19) to obtain

X(t) ≤ CE0 + C(‖g̃‖1/2 + ‖g̃‖1/p)X(t) + CX(t)3/2 + CX(t)1+1/p,

where we put X = E2 +Ep +D2 +Dp. This inequality can be solved as X(t) ≤ CE0, provided that E0 + ‖g̃‖ is
suitably small. Thus we conclude that (E2 + Ep +D2 +Dp)(t) ≤ CE0, which gives the desired estimate (4.7).
This completes the proof of Proposition 4.2. �

Next we discuss the asymptotic stability of the stationary solution satisfying (4.1). We show the following
decay estimate in Lp for p < n.
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Theorem 4.3 (Lp decay estimate for p < n). Let n ≥ 3 and q1 ≤ q < n, where q1 = max(2, n/2). Let
(w, z, φ) be the global solution to the problem (4.3), (4.4) which is constructed in Theorem 4.1 for the initial
data (w0, z0) ∈ L2 ∩ Lq. If E0 + ‖g̃‖ in Theorem 4.1 is suitably small, then we have

‖(w, z)(t)‖Lp ≤ CE0(1 + t)−γ (4.21)

for each p with 2 ≤ p ≤ q, where γ = (n/2)(1/2 − 1/p). Moreover, we have

‖∇φ(t)‖Lp′ ≤ CE0(1 + t)−γ
′+1/2 (4.22)

for each p′ with 2∗ ≤ p′ ≤ q∗, where γ′ = (n/2)(1/2 − 1/p′), 1/2∗ = 1/2 − 1/n and 1/q∗ = 1/q − 1/n.

Remark 4.4. The decay estimate (4.21) for 2 ≤ p < n is just the same as the optimal Lp-L2 decay estimate
for the linear heat equation.

To prove Theorem 4.3, we introduce the following time weighted Lp norms:

Ep,β(t) = sup
0≤τ≤t

(1 + τ)β‖(w, z)(τ)‖Lp ,

Dp,β(t)p =
∫ t

0

(1 + τ)βp(‖∇(|(w, z)|p/2)(τ)‖2
L2 + ‖(w − z)(τ)‖pLp) dτ,

where 2 ≤ p <∞ and β ≥ 0.

Proof of Theorem 4.3. Let n ≥ 3 and q1 ≤ q < n. By applying the time weighted Lp energy method employed
in [8, 10], we show that

(Ep,β +Dp,β)(t)p ≤ CEp0 (1 + t)(β−γ)p + C(E0 + ‖g̃‖)(Dp,β + Ep,β)(t)p (4.23)

for each p with q1 ≤ p ≤ q and for β > γ, where γ = (n/2)(1/2 − 1/p). To prove (4.23), we multiply (4.9) by
(1 + t)βp and integrate the resulting inequality with respect to t. This yields

(1 + t)βp‖w(t)‖pLp +
∫ t

0

(1 + τ)βp‖∇(|w|p/2)(τ)‖2
L2 dτ +

∫ t

0

(1 + τ)βp
∫

Rn

|w|p−2w(w − z) dxdτ

≤ C‖w0‖pLp + C

∫ t

0

(1 + τ)βp−1‖w(τ)‖pLp dτ + C

∫ t

0

(1 + τ)βp(I + J)(τ) dτ. (4.24)

First we estimate the second term on the right hand side of (4.24). Applying (2.7) with q = 2 and the Young
inequality with γp/(1 + γp) + 1/(1 + γp) = 1, we obtain

C

∫ t

0

(1 + τ)βp−1‖w(τ)‖pLp dτ ≤ C

∫ t

0

(1 + τ)βp−1‖∇(|w|p/2)(τ)‖2γp/(1+γp)
L2 ‖w(τ)‖p/(1+γp)L2 dτ

≤ δ

∫ t

0

(1 + τ)βp‖∇(|w|p/2)(τ)‖2
L2 dτ + Cδ

∫ t

0

(1 + τ)(β−γ)p−1‖w(τ)‖pL2 dτ

≤ δ

∫ t

0

(1 + τ)βp‖∇(|w|p/2)(τ)‖2
L2 dτ + CδE

p
0 (1 + t)(β−γ)p (4.25)

for any δ > 0 and β > γ, where γ = (n/2)(1/2 − 1/p), and Cδ is a positive constant depending on δ. Here we
have used ‖w(t)‖L2 ≤ CE0 which is due to (4.6) with p = 2.

On the other hand, for the term I1, we have (4.14). Therefore the corresponding integral can be simply
estimated as ∫ t

0

(1 + τ)βpI1(τ) dτ ≤ C‖g̃‖
∫ t

0

(1 + τ)βp‖∇(|w|p/2)‖2
L2 dτ ≤ C‖g̃‖Dp,β(t)p. (4.26)
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To estimate the integral for I2, we determine s by

1
s

+
1 − 2/p

2∗
+

1
2

+
1
p∗

= 1, (4.27)

where 1/2∗ = 1/2− 1/n and 1/p∗ = 1/p− 1/n; here we used the restriction p < n. Notice that s = np/2(p− 1)
and s > 2. Then, applying the Hölder inequality with the relation (4.27) and using (2.6) and (2.3), similarly as
in (4.16), we obtain

I2 = (2/p)
∫

Rn

|ū− u∞| |w|(p/2)(1−2/p)|∇(|w|p/2)| |∇φ| dx

≤ C‖ū− u∞‖Ls‖(|w|p/2)‖1−2/p

L2∗ ‖∇(|w|p/2)‖L2‖∇φ‖Lp∗

≤ C‖g̃‖ ‖∇(|w|p/2)‖2(1−1/p)
L2 ‖w − z‖Lp. (4.28)

Consequently, we have
∫ t

0

(1 + τ)βpI2(τ) dτ ≤ C‖g̃‖
∫ t

0

(1 + τ)βp‖∇(|w|p/2)‖2(1−1/p)
L2 ‖w − z‖Lp dτ ≤ C‖g̃‖Dp,β(t)p.

Finally, we estimate the integral for J . By using (4.18), we obtain

∫ t

0

(1 + τ)βpJ(τ) dτ ≤ C

∫ t

0

(1 + τ)βp‖w‖λp/2Lp ‖∇(|w|p/2)‖2−λ
L2 ‖w − z‖λL2‖w − z‖1−λ

Lp dτ

≤ CEp(t)1−λEp,β(t)λp/2
∫ t

0

(1 + τ)βp(1−λ/2)‖∇(|w|p/2)‖2(1−λ/2)
L2 ‖w − z‖λL2 dτ

≤ CEp(t)1−λEp,β(t)λp/2Dp,β(t)(1−λ/2)pD2(t)λ

≤ C(Ep +D2)(t)(Ep,β +Dp,β)(t)p ≤ CE0(Ep,β +Dp,β)(t)p, (4.29)

where we have used the Hölder inequality with (1 − λ/2) + λ/2 = 1 and the estimate (4.6).
Substituting all these estimates in (4.24) and taking δ > 0 in (4.25) suitably small, we arrive at the inequality

(1 + t)βp‖w(t)‖pLp +
∫ t

0

(1 + τ)βp‖∇(|w|p/2)(τ)‖2
L2 dτ +

∫ t

0

(1 + τ)βp
∫

Rn

|w|p−2w(w − z) dxdτ

≤ CEp0 (1 + t)(β−γ)p + C(E0 + ‖g̃‖)(Ep,β +Dp,β)(t)p

for β > γ, where γ = (n/2)(1/2 − 1/p). Similarly, for z, we have

(1 + t)βp‖z(t)‖pLp +
∫ t

0

(1 + τ)βp‖∇(|z|p/2)(τ)‖2
L2 dτ −

∫ t

0

(1 + τ)βp
∫

Rn

|z|p−2z(w − z) dxdτ

≤ CEp0 (1 + t)(β−γ)p + C(E0 + ‖g̃‖)(Ep,β +Dp,β)(t)p.

Adding these two inequalities, we reach the desired estimate (4.23).
Now we assume that E0 + ‖g̃‖ is suitably small. Then (4.23) gives

(Ep,β +Dp,β)(t) ≤ CE0(1 + t)β−γ (4.30)

for q1 ≤ p ≤ q and β > γ, where γ = (n/2)(1/2 − 1/p). In particular, we have

‖(w, z)(t)‖Lp ≤ CE0(1 + t)−γp (4.31)
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for q1 ≤ p ≤ q, where we put γp = (n/2)(1/2 − 1/p). Also, we have ‖(w, z)(t)‖L2 ≤ CE0 by (4.6), which shows
that (4.31) holds true also for p = 2. Therefore, applying the interpolation in Lp with 1/p = (1 − θ)/2 + θ/q
(0 ≤ θ ≤ 1) and using (4.31) with p = 2 and p = q, we find that (4.31) holds true for each p with 2 ≤ p ≤ q.
This proves the decay estimate (4.21).

Finally, we show (4.22). Let 2 ≤ p ≤ q and determine p′ by 1/p′ = 1/p− 1/n. Notice that the range of p′ is
2∗ ≤ p′ ≤ q∗. Using (2.3) and (4.21), we obtain

‖∇φ(t)‖Lp′ ≤ C‖(w − z)(t)‖Lp ≤ CE0(1 + t)−γ = CE0(1 + t)−γ
′+1/2,

where γ = (n/2)(1/2 − 1/p) and γ′ = (n/2)(1/2− 1/p′); here we have used the relation γ = γ′ − 1/2. Thus we
have proved (4.22). This completes the proof of Theorem 4.3. �

When p ≥ n, we have the following Lp decay estimate in a weaker sense.

Theorem 4.5 (Lp decay estimate for p ≥ n). Let n ≥ 3 and n ≤ q <∞. Let (w, z, φ) be the global solution to
the problem (4.3), (4.4) which is constructed in Theorem 4.1 for the initial data (w0, z0) ∈ L2 ∩Lq. If E0 + ‖g̃‖
in Theorem 4.1 is suitably small, then we have the decay estimate (4.21) for each p with 2 ≤ p < n. Moreover,
for any small ε > 0, we have

‖(w, z)(t)‖Lp ≤ CεE0(1 + t)−γn+ε (4.32)

for each p with n ≤ p ≤ q, where γn = (n/2)(1/2 − 1/n), and Cε is a positive constant depending on ε.
Concerning ∇φ, we have the decay estimate (4.22) for each p′ with 2∗ ≤ p′ <∞, where 1/2∗ = 1/2 − 1/n.

As a simple corollary of Theorem 4.5, we have:

Corollary 4.6 (L∞ decay estimate for ∇φ). Assume the same conditions as in Theorem 4.5 for n < q < ∞.
Then, for any small ε > 0, we have

‖∇φ(t)‖L∞ ≤ CεE0(1 + t)−γn+ε, (4.33)

where γn = (n/2)(1/2− 1/n), and Cε is a constant depending on ε.

The L∞ decay estimate (4.33) is verified as follows. We have ‖∇φ(t)‖Lp′ ≤ CE0(1+t)−γ
′+1/2 for 2∗ ≤ p′ <∞,

where γ′ = (n/2)(1/2−1/p′). We choose p′ = n/2ε such that p′ > n. For this choice of p′, we see that γ′ = n/4−ε
and hence −γ′ + 1/2 = −γn + ε, where γn = (n/2)(1/2 − 1/n). Thus we have

‖∇φ(t)‖Lp′ ≤ CεE0(1 + t)−γn+ε, (4.34)

where p′ = n/2ε > n. Also it follows from (4.3c) and (4.32) that ‖Δφ(t)‖Lp ≤ CεE0(1+ t)−γn+ε, which together
with (2.4) gives

‖∂2
xφ(t)‖Lp ≤ CεE0(1 + t)−γn+ε, (4.35)

where n < p ≤ q. On the other hand, as a simple version of the Gagliardo-Nirenberg inequality (2.5), we have

‖u‖L∞ ≤ Cε‖∂xu‖θLp‖u‖1−θ
Lp′ , (4.36)

where 0 = θ(1/p− 1/n) + (1 − θ)/p′. Substituting (4.34) and (4.35) into (4.36) for u = ∇φ, we get the desired
decay estimate (4.33).

Proof of Theorem 4.5. Let n ≤ p ≤ q. It suffices to show the decay estimate (4.32). We use the time weighted
Lp energy inequality (4.24) which is valid even for n ≤ p ≤ q. The second term on the right hand side of (4.24)
was already estimated in (4.25). In fact, we have

C

∫ t

0

(1 + τ)βp−1‖w(τ)‖pLp dτ ≤ δ

∫ t

0

(1 + τ)βp‖∇(|w|p/2)(τ)‖2
L2 dτ + CδE

p
0 (1 + t)(β−γn)p (4.37)
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for any δ > 0 and β > γn, where γn = (n/2)(1/2 − 1/n), and Cδ is a positive constant depending on δ. Also,
the estimates (4.26) for I1 and (4.29) for J are valid for n ≤ p ≤ q.

To estimate the term I2, we put ρ = n/(1 + 2ε), where ε > 0 is so small that 2 ≤ ρ < n. For this choice of ρ,
we determine s by

1
s

+
1 − 2/p

2∗
+

1
2

+
1
ρ∗

= 1, (4.38)

where 1/2∗ = 1/2 − 1/n and 1/ρ∗ = 1/ρ − 1/n. We see that 1/s = (2/n)(1 − 2ε)/2 + (1 − 2/n)/p and hence
2 < s < p. Also we find that γρ = γn − ε, where γρ = (n/2)(1/2 − 1/ρ) and γn = (n/2)(1/2 − 1/n). Now,
similarly as in (4.28), we apply the Hölder inequality with the relation (4.38). Then, using (2.6) and (2.3), we
obtain

I2 ≤ C‖ū− u∞‖Ls‖(|w|p/2)‖1−2/p

L2∗ ‖∇(|w|p/2)‖L2‖∇φ‖Lρ∗

≤ Cε‖g̃‖ ‖∇(|w|p/2)‖2(1−1/p)
L2 ‖w − z‖Lρ,

where Cε is a positive constant depending on ε. Consequently, we have

∫ t

0

(1 + τ)βpI2(τ) dτ ≤ Cε‖g̃‖Eρ,β(t)1−ρ/p
∫ t

0

(1 + τ)βp(1−1/p)+βρ/p‖∇(|w|p/2)‖2(1−1/p)
L2 ‖w − z‖ρ/pLρ dτ

≤ Cε‖g̃‖Eρ,β(t)1−ρ/pDp,β(t)p−1Dρ,β(t)ρ/p

≤ C‖g̃‖Dp,β(t)p + Cε‖g̃‖(Eρ,β +Dρ,β)(t)p

≤ C‖g̃‖Dp,β(t)p + Cε‖g̃‖Ep0 (1 + t)(β−γn+ε)p (4.39)

for β > γρ, where γρ = (n/2)(1/2 − 1/ρ) and γn = (n/2)(1/2 − 1/n). Here we have used the Hölder inequality
with (1 − 1/p) + 1/p = 1 and the estimate (4.30) with p = ρ, i.e., (Eρ,β + Dρ,β)(t) ≤ Cε(1 + t)β−γρ with the
relation γρ = γn − ε.

Substituting these estimates into (4.24) and taking δ > 0 in (4.37) suitably small, we obtain

(1 + t)βp‖w(t)‖pLp +
∫ t

0

(1 + τ)βp‖∇(|w|p/2)(τ)‖2
L2 dτ +

∫ t

0

(1 + τ)βp
∫

Rn

|w|p−2w(w − z) dxdτ

≤ Cε(1 + ‖g̃‖)Ep0 (1 + t)(β−γn+ε)p + C(E0 + ‖g̃‖)(Ep,β +Dp,β)(t)p

for n ≤ p ≤ q and β > γn, where γn = (n/2)(1/2− 1/n). Similarly, for z, we have

(1 + t)βp‖z(t)‖pLp +
∫ t

0

(1 + τ)βp‖∇(|z|p/2)(τ)‖2
L2 dτ −

∫ t

0

(1 + τ)βp
∫

Rn

|z|p−2z(w − z) dxdτ

≤ Cε(1 + ‖g̃‖)Ep0 (1 + t)(β−γn+ε)p + C(E0 + ‖g̃‖)(Ep,β +Dp,β)(t)p.

Adding these two inequalities, we arrive at

(Ep,β +Dp,β)(t)p ≤ Cε(1 + ‖g̃‖)Ep0 (1 + t)(β−γn+ε)p + C(E0 + ‖g̃‖)(Ep,β +Dp,β)(t)p

for n ≤ p ≤ q and β > γn. This gives

(Ep,β +Dp,β)(t) ≤ CεE0(1 + t)β−γn+ε (4.40)

for n ≤ p ≤ q and β > γn, provided that E0 + ‖g̃‖ is suitably small, where γn = (n/2)(1/2 − 1/n). Thus we
have the desired decay estimate (4.32). This completes the proof of Theorem 4.5. �
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Finally in this section, we make a modification of the time weighted energy estimates (4.30) and (4.40), which
will be used in the next section. We introduce

Ẽp,β(t) = sup
0≤τ≤t

τβ‖(w, z)(τ)‖Lp ,

D̃p,β(t)p =
∫ t

0

τβp(‖∇(|(w, z)|p/2)(τ)‖2
L2 + ‖(w − z)(τ)‖pLp) dτ.

When q1 ≤ q < n, we have
(Ẽp,β + D̃p,β)(t) ≤ CE0t

β(1 + t)−γ (4.41)

for p = 2 and q1 ≤ p ≤ q and for β > γ, where γ = (n/2)(1/2 − 1/p); this is a modification of (4.30). On the
other hand, if n ≤ q <∞, we have (4.41) for p = 2 and q1 ≤ p < n and for β > γ. Also, for any ε > 0, we have

(Ẽp,β + D̃p,β)(t) ≤ CεE0t
β(1 + t)−γn+ε (4.42)

for n ≤ p ≤ q and β > γn, where γn = (n/2)(1/2 − 1/n); this is a modification of (4.40). These estimates are
verified as follows. By using the uniform energy estimate (4.6), we have τ β‖(w, z)(τ)‖Lp ≤ CE0t

β for 0 ≤ τ ≤ t.
Also, using the time weighted energy estimate (4.30), we have τ β‖(w, z)(τ)‖Lp ≤ Ep,β(t) ≤ CE0(1 + t)β−γ for
0 ≤ τ ≤ t. Combining these two estimates, we obtain Ẽp,β(t) ≤ CE0t

β(1 + t)−γ . The other estimates in (4.41)
and (4.42) can be shown in the same way.

5. Decay estimates for derivatives

In this section we show the decay estimates for derivatives of solutions by using the time weighted Lp energy
method again. When p < n, we have the following Lp decay estimate for the derivatives.

Theorem 5.1 (Lp decay estimates for p < n). Let n ≥ 3 and q2 ≤ q < n, where q2 = 1 + n/2. Let
(w, z, φ) be the global solution to the problem (4.3), (4.4) which is constructed in Theorem 4.1 for the initial
data (w0, z0) ∈ L2 ∩ Lq. If E0 + ‖g̃‖ in Theorem 4.1 is suitably small, then we have

‖∂x(w, z)(t)‖Lp ≤ CE0(1 + t−1/2)(1 + t)−γ (5.1)

for each p with 2 ≤ p ≤ q, where γ = (n/2)(1/2 − 1/p). Moreover, we have

‖∂2
xφ(t)‖Lp′ ≤ CE0(1 + t−1/2)(1 + t)−γ

′+1/2 (5.2)

for each p′ with 2∗ ≤ p′ ≤ q∗, where γ′ = (n/2)(1/2 − 1/p′), 1/2∗ = 1/2 − 1/n and 1/q∗ = 1/q − 1/n.

In order to prove Theorem 5.1, we introduce the following time weighted norms:

Ėp,β(t) = sup
0≤τ≤t

τ β‖∂x(w, z)(τ)‖Lp ,

Ḋp,β(t)p =
∫ t

0

τ βp(‖∇(|∂x(w, z)|p/2)(τ)‖2
L2 + ‖∂x(w − z)(τ)‖pLp) dτ.

Proof of Theorem 5.1. Let n ≥ 3. As in the proof of Proposition 4.2, we divide our proof into four parts.

Step 1. Let 2 ≤ p ≤ q. We derive the time weighted Lp energy inequality for derivatives of solutions to the
problem (4.3), (4.4). We differentiate (4.3a) with respect to xi to obtain

wi,t −Δwi + u∞Δφi = −∂xi

(∇ · f1 + ∇ · (w∇φ)
)
, (5.3)
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where we simply wrote as wi = ∂xiw, zi = ∂xiz and φi = ∂xiφ for i = 1, . . . , n. We multiply (5.3) by |wi|p−2wi.
This gives

1
p

(|wi|p)t +c0|∇(|wi|p/2)|2 + u∞|wi|p−2wi(wi − zi) −∇ · (|wi|p−2wi∇wi)
= −∂xi

(|wi|p−2wi∇ · f1 + |wi|p−2wi∇ · (w∇φ)
)

+(p− 1)
(|wi|p−2∂xiwi∇ · f1 + |wi|p−2∂xiwi∇ · (w∇φ)

)
, (5.4)

where c0 = 4(p− 1)/p2. Here we used (4.3c). We integrate (5.4) over R
n, obtaining

1
p

d
dt

‖wi‖pLp + c0‖∇(|wi|p/2)‖2
L2 + u∞

∫
Rn

|wi|p−2wi(wi − zi) dx ≤ (p− 1)(I ′ + J ′), (5.5)

where

I ′ =
∫

Rn

|wi|p−2|∂xiwi||∇ · f1| dx, J ′ =
∫

Rn

|wi|p−2|∂xiwi||∇ · (w∇φ)| dx. (5.6)

It follows from (4.5) that I ′ ≤ ∑4
j=1 I

′
j and J ′ ≤ J ′

1 + J ′
2, where

I ′1 =
∫

Rn

|∇ψ̄| |∇w| |wi|p−2|∂xiwi| dx, I ′2 =
∫

Rn

|Δψ̄| |w| |wi|p−2|∂xiwi| dx,

I ′3 =
∫

Rn

|∇ū| |wi|p−2|∂xiwi| |∇φ| dx, I ′4 =
∫

Rn

|ū− u∞| |wi|p−2|∂xiwi| |w − z| dx,

J ′
1 =

∫
Rn

|∇w| |wi|p−2|∂xiwi| |∇φ| dx, J ′
2 =

∫
Rn

|w| |wi|p−2|∂xiwi| |w − z| dx. (5.7)

Here we again used (4.3c). We multiply (5.5) by tβp, where β > 0 is a suitably large number which will be
specified later, and integrate the resulting equation with respect to t. This yields

tβp‖wi(t)‖pLp +
∫ t

0

τ βp‖∇(|wi|p/2)(τ)‖2
L2 dτ +

∫ t

0

τ βp
∫

Rn

|wi|p−2wi(wi − zi) dxdτ

≤ C

∫ t

0

τ βp−1‖wi(τ)‖pLp dτ + C

∫ t

0

τ βp(I ′ + J ′)(τ) dτ. (5.8)

We have a similar energy inequality also for zi.

Step 2. Let q2 ≤ p ≤ q. We show the following time weighted Lp energy estimate:

(Ėp,β + Ḋp,β)(t) ≤ CE0t
β(1 + t−1/2)(1 + t)−γ (5.9)

for β > γ + 1/2, where γ = (n/2)(1/2 − 1/p). This gives the desired decay estimate (5.1) for q2 ≤ p ≤ q. To
prove (5.9), we need to estimate the right hand side of (5.8). For the first term, by applying the estimate (2.8)
and the Young inequality with p/(p+ 2) + 2/(p+ 2) = 1, we obtain

C

∫ t

0

τ βp−1‖wi(τ)‖pLp dτ ≤ C

∫ t

0

τ βp−1‖∇(|wi|p/2)(τ)‖2p/(p+2)
L2 ‖w(τ)‖2p/(p+2)

Lp dτ

≤ δ

∫ t

0

τ βp‖∇(|wi|p/2)(τ)‖2
L2 dτ + Cδ

∫ t

0

τ (β−1/2)p−1‖w(τ)‖pLp dτ

≤ δ

∫ t

0

τ βp‖∇(|wi|p/2)(τ)‖2
L2 dτ + CδE

p
0 t

(β−1/2)p(1 + t)−γp (5.10)
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for any δ > 0 and β > γ + 1/2, where γ = (n/2)(1/2 − 1/p), and Cδ is a positive constant depending on
δ. Here we have used ‖w(t)‖Lp ≤ CE0(1 + t)−γ in (4.21) and the inequality

∫ t
0 τ

(β−1/2)p−1(1 + τ)−γpdτ ≤
Ct(β−1/2)p(1 + t)−γp for β > γ + 1/2.

Next we estimate the integral for I ′ which is divided into four terms in (5.7). We see that the term I ′1 is
similar to I1 in (4.11). Therefore, applying the Hölder inequality with 1/n+ 1/2∗ + 1/2 = 1 and using (2.6), we
have

I ′1 ≤ C

∫
Rn

|∇ψ̄| |∂xw|p/2|∇(|∂xw|p/2)| dx

≤ C‖∇ψ̄‖Ln‖(|∂xw|p/2)‖L2∗‖∇(|∂xw|p/2)‖L2 ≤ C‖g̃‖ ‖∇(|∂xw|p/2)‖2
L2 .

Thus we obtain ∫ t

0

τ βpI ′1(τ) dτ ≤ C‖g̃‖
∫ t

0

τ βp‖∇(|∂xw|p/2)‖2
L2 dτ ≤ C‖g̃‖Ḋp,β(t)p. (5.11)

Similarly, applying the Hölder inequality with 1/n+ (2/p)/2∗ + (1− 2/p)/2∗ + 1/2 = 1 and using (2.6), we can
estimate the term I ′2 as

I ′2 ≤ C

∫
Rn

|Δψ̄| |w|(p/2)(2/p)|∂xw|(p/2)(1−2/p)|∇(|∂xw|p/2)| dx

≤ C‖Δψ̄‖Ln‖(|w|p/2)‖2/p

L2∗‖(|∂xw|p/2)‖1−2/p

L2∗ ‖∇(|∂xw|p/2)‖L2

≤ C‖g̃‖ ‖∇(|w|p/2)‖2/p
L2 ‖∇(|∂xw|p/2)‖2(1−1/p)

L2 .

Consequently, we obtain

∫ t

0

τ βpI ′2(τ) dτ ≤ C‖g̃‖
∫ t

0

τ βp‖∇(|w|p/2)‖2/p
L2 ‖∇(|∂xw|p/2)‖2(1−1/p)

L2 dτ

≤ C‖g̃‖D̃p,β(t)Ḋp,β(t)p−1 ≤ C‖g̃‖Ḋp,β(t)p + C‖g̃‖Ep0 tβp(1 + t)−γp (5.12)

for β > γ, where γ = (n/2)(1/2 − 1/p). Here we have used the Hölder inequality with 1/p+ (p− 1)/p = 1 and
the estimate D̃p,β(t) ≤ CE0t

β(1 + t)−γ in (4.41).
On the other hand, to estimate the term I ′3 which is similar to I2 in (4.11), we determine s with s > 2 by the

relation 1/s+ (1 − 2/p)/2∗ + 1/2 + 1/p∗ = 1 in (4.27). Then, applying the Hölder inequality with this relation
and using (2.6) and (2.3), we obtain

I ′3 ≤ C

∫
Rn

|∇ū| |∂xw|(p/2)(1−2/p)|∇(|∂xw|p/2)| |∇φ| dx

≤ C‖∇ū‖Ls‖(|∂xw|p/2)‖1−2/p

L2∗ ‖∇(|∂xw|p/2)‖L2‖∇φ‖Lp∗

≤ C‖g̃‖ ‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖w − z‖Lp. (5.13)

Consequently, we have

∫ t

0

τ βpI ′3(τ) dτ ≤ C‖g̃‖
∫ t

0

τ βp‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖w − z‖Lp dτ

≤ C‖g̃‖Ḋp,β(t)p−1D̃p,β(t) ≤ C‖g̃‖Ḋp,β(t)p + C‖g̃‖Ep0 tβp(1 + t)−γp
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for β > γ, where we used the Hölder inequality with (p− 1)/p+1/p = 1 and (4.41). Also, the term I ′4 is treated
similarly. In fact, applying the Hölder inequality with the relation 1/s+ (1− 2/p)/2∗ +1/2+ 1/p∗ = 1 in (4.27)
and using (2.6), we obtain

I ′4 ≤ C

∫
Rn

|ū− u∞| |∂xw|(p/2)(1−2/p)|∇(|∂xw|p/2)| |w − z| dx

≤ C‖ū− u∞‖Ls‖(|∂xw|p/2)‖1−2/p

L2∗ ‖∇(|∂xw|p/2)‖L2‖w − z‖Lp∗

≤ C‖g̃‖ ‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖∂x(w − z)‖Lp. (5.14)

Consequently, we have
∫ t

0

τ βpI ′4(τ) dτ ≤ C‖g̃‖
∫ t

0

τ βp‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖∂x(w − z)‖Lp dτ ≤ C‖g̃‖Ḋp,β(t)p.

Finally, we estimate the integral for J ′ which is divided into two terms in (5.7). We see that the term J ′
1

is similar to J in (4.10). Therefore, to estimate J ′
1, we determine r and λ by the relations in (4.17); here the

restriction p ≥ n/2 is used. Then, applying the Hölder inequality with λ/2+(1−λ)/2∗+1/2+1/r∗ = 1 in (4.17)
and using (2.6) and (2.3), we have

J ′
1 ≤ C

∫
Rn

|∂xw|λp/2|∂xw|(1−λ)p/2|∇(|∂xw|p/2)| |∇φ| dx

≤ C‖(|∂xw|p/2)‖λL2‖(|∂xw|p/2)‖1−λ
L2∗ ‖∇(|∂xw|p/2)‖L2‖∇φ‖Lr∗

≤ C‖∂xw‖λp/2Lp ‖∇(|∂xw|p/2)‖2−λ
L2 ‖w − z‖λL2‖w − z‖1−λ

Lp , (5.15)

where we have used the interpolation in Lr with the relation 1/r = λ/2 + (1 − λ)/p in (4.17). Consequently, in
the same way as in (4.29), we obtain

∫ t

0

τ βpJ ′
1(τ) dτ ≤ C

∫ t

0

τ βp‖∂xw‖λp/2Lp ‖∇(|∂xw|p/2)‖2−λ
L2 ‖w − z‖λL2‖w − z‖1−λ

Lp dτ

≤ CEp(t)1−λĖp,β(t)λp/2
∫ t

0

τ βp(1−λ/2)‖∇(|∂xw|p/2)‖2(1−λ/2)
L2 ‖w − z‖λL2 dτ

≤ CEp(t)1−λĖp,β(t)λp/2Ḋp,β(t)(1−λ/2)pD2(t)λ ≤ CE0(Ėp,β + Ḋp,β)(t)p, (5.16)

where we used the Hölder inequality with (2 − λ)/2 + λ/2 = 1 and (4.6).
On the other hand, the term J ′

2 is similar to I ′4. So we determine s by the relation 1/s+(1− 2/p)/2∗+1/2+
1/p∗ = 1 in (4.27). This s satisfies 2 < s ≤ p for q2 ≤ p < n; the restriction p ≥ q2 = n/2+1 is used here. Then,
applying the Hölder inequality with the relation in (4.27) and using (2.6), we obtain

J ′
2 ≤ C

∫
Rn

|w| |∂xw|(p/2)(1−2/p)|∇(|∂xw|p/2)| |w − z| dx

≤ C‖w‖Ls‖(|∂xw|p/2)‖1−2/p

L2∗ ‖∇(|∂xw|p/2)‖L2‖w − z‖Lp∗

≤ C‖w‖Ls‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖∂x(w − z)‖Lp. (5.17)

Consequently, we have
∫ t

0

τ βpJ ′
2(τ) dτ ≤ CEs(t)

∫ t

0

τ βp‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖∂x(w − z)‖Lp dτ

≤ CEs(t)Ḋp,β(t)p ≤ CE0Ḋp,β(t)p,

where we used (4.6).
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Substituting all these estimates in (5.8) and taking δ > 0 in (5.10) suitably small, we arrive at the inequality

tβp‖∂xw(t)‖pLp +
∫ t

0

τ βp‖∇(|∂xw|p/2)(τ)‖2
L2 dτ +

∫ t

0

τ βp
∫

Rn

|∂xw|p−2∂x(w − z) dxdτ

≤ C(1 + ‖g̃‖)Ep0 tβp(1 + t−p/2)(1 + t)−γp + C(E0 + ‖g̃‖)(Ėp,β + Ḋp,β)(t)p

for β > γ+1/2, where γ = (n/2)(1/2− 1/p). We have the corresponding energy inequality also for ∂xz. Adding
these two inequalities, we obtain

(Ėp,β + Ḋp,β)(t)p ≤ C(1 + ‖g̃‖)Ep0 tβp(1 + t−p/2)(1 + t)−γp + C(E0 + ‖g̃‖)(Ėp,β + Ḋp,β)(t)p,

where q2 ≤ p ≤ q, β > γ + 1/2 and γ = (n/2)(1/2 − 1/n). This gives the desired estimate (5.9) for suitably
small E0 + ‖g̃‖.
Step 3. We show that the time weighted energy estimate (5.9) holds true also for p = 2. Namely, we show
that

(Ė2,β + Ḋ2,β)(t) ≤ CE0t
β(1 + t−1/2) (5.18)

for β > 1/2. This gives the estimate (5.1) for p = 2. To prove (5.18), we need to estimate the right hand side
of (5.8) for p = 2, in which I ′ and J ′ are given in (5.6) with p = 2. We see that the estimate (5.10) is useful for
p = 2. Also, all the estimates for I ′1, . . . , I ′4 in Step 2 are valid even for p = 2. To estimate the term J ′

1 for p = 2,
we again use r and λ determined by (4.17), where p ≥ n/2. Then we can modify the estimate (5.15) in Step 2
as

J ′
1 ≤ C‖∂xw‖λL2‖∇∂xw‖2−λ

L2 ‖w − z‖λL2‖w − z‖1−λ
Lp . (5.19)

Consequently, as a modification of (5.16), we have
∫ t

0

τ 2βJ ′
1(τ) dτ ≤ CEp(t)1−λĖ2,β(t)λ

∫ t

0

τ 2β(1−λ/2)‖∇∂xw‖2(1−λ/2)
L2 ‖w − z‖λL2 dτ

≤ CEp(t)1−λĖ2,β(t)λḊ2,β(t)2−λD2(t)λ ≤ CE0(Ė2,β + Ḋ2,β)(t)2, (5.20)

where we used the Hölder inequality with (2 − λ)/2 + λ/2 = 1 and (4.6).
Finally, we estimate the term J ′

2 for p = 2. We also use r and λ in (4.17), and then define s by

1
s

=
λ

2
+

1 − λ

2∗
· (5.21)

We find that this s satisfies 2 < s < n for p2 ≤ p < n. Therefore the first relation λ/2+(1−λ)/2∗+1/2+1/r∗ = 1
in (4.17) is rewritten as 1/s∗ + 1/2 + 1/r = 1, where s∗ = 1/s− 1/n. Applying the Hölder inequality with this
last relation and using (2.6), we have

J ′
2 ≤ C

∫
Rn

|w| |∇∂xw| |w − z| dx
≤ C‖w‖Ls∗‖∇∂xw‖L2‖w − z‖Lr ≤ C‖∂xw‖Ls‖∇∂xw‖L2‖w − z‖Lr .

Moreover, using the interpolation in Ls with the relation (5.21), we have ‖∂xw‖Ls ≤ ‖∂xw‖λL2‖∂xw‖1−λ
L2∗ ≤

C‖∂xw‖λL2‖∇∂xw‖1−λ
L2 , where we used (2.6). Similarly, using the interpolation with 1/r = λ/2 + (1 − λ)/p

in (4.17), we have ‖w − z‖Lr ≤ ‖w − z‖λL2‖w − z‖1−λ
Lp . Consequently, we obtain

J ′
2 ≤ C‖∂xw‖λL2‖∇∂xw‖1−λ

L2 ‖∇∂xw‖L2‖w − z‖λL2‖w − z‖1−λ
Lp ,

which is just the same as (5.19). Therefore, just in the same way as in (5.20), we get
∫ t

0

τ 2βJ ′
2(τ) dτ ≤ CE0(Ė2,β + Ḋ2,β)(t)2.
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Substituting all these estimates in (5.8) for p = 2, we arrive at the inequality

t 2β‖∂xw(t)‖pLp +
∫ t

0

τ 2β‖∇∂xw)(τ)‖2
L2 dτ +

∫ t

0

τ 2β

∫
Rn

∂x(w − z) dxdτ

≤ C(1 + ‖g̃‖)E2
0t

2β(1 + t−1) + C(E0 + ‖g̃‖)(Ė2,β + Ḋ2,β)(t)2

for β > 1/2. Combining this estimate with the corresponding inequality for ∂xz, we obtain

(Ė2,β + Ḋ2,β)(t)2 ≤ C(1 + ‖g̃‖)E2
0t

2β(1 + t−1) + C(E0 + ‖g̃‖)(Ė2,β + Ḋ2,β)(t)2

for β > 1/2, which gives the desired estimate (5.18) for suitably small E0 + ‖g̃‖.
Step 4. Finally, we show the decay estimate (5.2). Let 1/p′ = 1/p − 1/n for 2 ≤ p ≤ q. Then we see that
2∗ ≤ p′ ≤ q∗. We have from (4.3c) that −Δ(∂xφ) = −∂x(w − z). Therefore, using (2.3) and (5.1), we obtain

‖∂2
xφ(t)‖Lp′ ≤ C‖∂x(w − z)(t)‖Lp ≤ CE0(1 + t−1/2)(1 + t)−γ = CE0(1 + t−1/2)(1 + t)−γ

′+1/2,

where γ = (n/2)(1/2 − 1/p) and γ′ = (n/2)(1/2 − 1/p′); here we have used the relation γ = γ′ − 1/2. This
shows (5.2) and therefore the proof of Theorem 5.1 is complete. �

When p ≥ n, we have the following Lp decay estimate in a weaker sense for the derivatives of solutions.

Theorem 5.2 (Lp decay estimates for p ≥ n). Let n ≥ 3 and n ≤ q <∞. Let (w, z, φ) be the global solution to
the problem (4.3), (4.4) which is constructed in Theorem 4.1 for the initial data (w0, z0) ∈ L2 ∩Lq. If E0 + ‖g̃‖
in Theorem 4.1 is suitably small, then we have the decay estimate (5.1) for each p with 2 ≤ p < n. Moreover,
for any small ε > 0, we have

‖∂x(w, z)(t)‖Lp ≤ CεE0(1 + t−1/2)(1 + t)−γn+ε (5.22)

for each p with n ≤ p ≤ q, where γn = (n/2)(1/2 − 1/n), and Cε is a constant depending on ε. Also we have
the decay estimate (5.2) for ∂2

xφ for each p′ with 2∗ ≤ p′ <∞, where 1/2∗ = 1/2 − 1/n.

As a simple corollary of Theorems 4.5 and 5.2, we have the following L∞ decay estimate for (w, z).

Corollary 5.3 (L∞ decay estimate for (w, z)). Assume the same conditions as in Theorem 5.2 for n < q <∞.
Then, for any small ε > 0, we have

‖(w, z)(t)‖L∞ ≤ CεE0(1 + t−n/2q)(1 + t)−γn+ε,

‖∂2
xφ(t)‖L∞ ≤ CεE0(1 + t−n/2q)(1 + t)−γn+ε, (5.23)

where γn = (n/2)(1/2− 1/n), and Cε is a constant depending on ε.

The L∞ decay estimate for (w, z) in (5.23) is easily obtained by using the decay estimates (4.32) and (5.22)
for p = q together with the Gagliardo-Nirenberg inequality (2.5) in the form ‖u‖L∞ ≤ C‖∂xu‖θLq‖u‖1−θ

Lq , where
θ = n/q and q > n. To show the L∞ decay estimate for ∂2

xφ, we recall the estimate (4.35). Also, we have
from (4.3c) and (5.22) that ‖Δ∂xφ(t)‖Lp ≤ CεE0(1 + t−1/2)(1 + t)−γn+ε. Therefore, applying (2.4), we get

‖∂3
xφ(t)‖Lp ≤ CεE0(1 + t−1/2)(1 + t)−γn+ε

where n < p ≤ q. Now the desired L∞ decay estimate for ∂2
xφ in (5.23) follows from the same Gagliardo-

Nirenberg inequality.
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Proof of Theorem 5.2. Let n ≤ p ≤ q. It suffices to prove the decay estimate (5.22). We use the time weighted
Lp energy inequality (5.8) for p ≥ n. For the second term on the right hand side of (5.8), using (4.32) instead
of (4.21), we can modify (5.10) as

C

∫ t

0

τ βp−1‖wi(τ)‖pLp dτ ≤ δ

∫ t

0

τ βp‖∇(|wi|p/2)(τ)‖2
L2 dτ + Cε,δE

p
0 t

(β−1/2)p(1 + t)−(γn−ε)p (5.24)

for δ > 0 and β > γn + 1/2, where γn = (n/2)(1/2 − 1/n), and Cε,δ is a constant depending on (ε, δ). On the
other hand, we see that the estimates (5.11) for I ′1 and (5.16) for J ′

1 are valid even for p ≥ n. Also, using (4.42)
instead of (4.41), we can modify (5.12) for I ′2 as

∫ t

0

τ βpI ′2(τ) dτ ≤ C‖g̃‖Ḋp,β(t)p + Cε‖g̃‖Ep0 tβp(1 + t)−(γn−ε)p

for β > γn.
To estimate the term I ′3 for p ≥ n, we put ρ = n/(1 + 2ε) for small ε > 0 and determine s by the relation

1/s+ (1 − 2/p)/2∗ + 1/2 + 1/ρ∗ = 1 in (4.38). Then, applying the Hölder inequality with this relation, we can
modify (5.13) as

I ′3 ≤ Cε‖g̃‖ ‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖w − z‖Lρ.

Consequently, we can compute similarly as in (4.39) and obtain
∫ t

0

τ βpI ′3(τ) dτ ≤ Cε‖g̃‖Ẽρ,β(t)1−ρ/p
∫ t

0

τ βp(1−1/p)+βρ/p‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖w − z‖ρ/pLρ dτ

≤ Cε‖g̃‖Ẽρ,β(t)1−ρ/pḊp,β(t)p−1D̃ρ,β(t)ρ/p

≤ C‖g̃‖Ḋp,β(t)p + Cε‖g̃‖Ep0 tβp(1 + t)−(γn−ε)p

for β > γn, where we used (4.42). The term I ′4 is estimated similarly. In fact, using ρ and s in (4.38), we can
modify (5.14) as

I ′4 ≤ Cε‖g̃‖ ‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖∂x(w − z)‖Lρ. (5.25)

Consequently, similarly as in (4.39), we obtain
∫ t

0

τ βpI ′4(τ) dτ ≤ Cε‖g̃‖Ėρ,β(t)1−ρ/p
∫ t

0

τ βp(1−1/p)+βρ/p‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖∂x(w − z)‖ρ/pLρ dτ

≤ Cε‖g̃‖Ėρ,β(t)1−ρ/pḊp,β(t)p−1Ḋρ,β(t)ρ/p

≤ C‖g̃‖Ḋp,β(t)p + Cε‖g̃‖Ep0 tβp(1 + t)−(γn−ε)p (5.26)

for β > γn, where we used (5.9) for p = ρ. To estimate J ′
2 for p ≥ n, we again use ρ and s in (4.38). Then we

can modify (5.17) as
J ′

2 ≤ Cε‖w‖Ls‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖∂x(w − z)‖Lρ ,

which is similar to (5.25). Therefore, using the same computation as in (5.26), we have
∫ t

0

τ βpJ ′
2(τ) dτ ≤ CεEs(t)Ėρ,β(t)1−ρ/p

∫ t

0

τ βp(1−1/p)+βρ/p‖∇(|∂xw|p/2)‖2(1−1/p)
L2 ‖∂x(w − z)‖ρ/pLρ dτ

≤ CεEs(t)Ėρ,β(t)1−ρ/pḊp,β(t)p−1Ḋρ,β(t)ρ/p

≤ CE0Ḋp,β(t)p + CεE
p+1
0 tβp(1 + t)−(γn−ε)p

for β > γn, where we used (4.6) and (5.9) for p = ρ.
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Substituting all these estimates in (5.8) and taking δ > 0 in (5.24) suitably small, we arrive at the inequality

tβp‖∂xw(t)‖pLp +
∫ t

0

τ βp‖∇(|∂xw|p/2)(τ)‖2
L2 dτ +

∫ t

0

τ βp
∫

Rn

|∂xw|p−2∂x(w − z) dxdτ

≤ Cε(1 + E0 + ‖g̃‖)Ep0 tβp(1 + t−p/2)(1 + t)−(γn−ε)p + C(E0 + ‖g̃‖)(Ėp,β + Ḋp,β)(t)p

for β > γn + 1/2, where γn = (n/2)(1/2 − 1/n). Combining this estimate with the corresponding energy
inequality for ∂xz, we obtain

(Ėp,β + Ḋp,β)(t)p ≤ Cε(1 + E0 + ‖g̃‖)Ep0 tβp(1 + t−p/2)(1 + t)−(γn−ε)p + C(E0 + ‖g̃‖)(Ėp,β + Ḋp,β)(t)p,

where n ≤ p ≤ q, β > γn+1/2 and γn = (n/2)(1/2−1/n). This gives (Ėp,β + Ḋp,β)(t) ≤ CεE0t
β(1+ t−1/2)(1+

t)−γn+ε, provided that E0 +‖g̃‖ is suitably small. Thus we get the desired decay estimate (5.22). This completes
the proof of Theorem 5.2. �
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