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DETERMINISTIC CHARACTERIZATION OF VIABILITY
FOR STOCHASTIC DIFFERENTIAL EQUATION
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2,3

Abstract. In this paper, using direct and inverse images for fractional stochastic tangent sets, we
establish the deterministic necessary and sufficient conditions which control that the solution of a given
stochastic differential equation driven by the fractional Brownian motion evolves in some particular
sets K. As a consequence, a comparison theorem is obtained.
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1. Introduction

The viability (weakly invariant) problem of a set K for a differential equation is to find necessary and sufficient
conditions such that for any starting point in K, the differential equation has at least one solution evolving
in K. If all solutions of the differential equation satisfy the K-viable property, we call that the subset is invariant
(strong invariant) for the equation.

Nagumo gave a criterion of the viability in terms of contingent sets in 1942. The Nagumo theorem states
that: if f : K = K̄ ⊂ R

m → R
m is a bounded and continuous function, then K is viable for the differential

equation
x′(t) = f(x(t)), x(0) = x0 ∈ K

if and only if, ∀ x ∈ K and ∀ p, a normal vector at K in x, we have

〈f(x), p〉 ≤ 0.

The important tools in studying the viability problem are the notions of tangent sets and contingent sets.
Aubin and Da Prato firstly used the stochastic contingent sets to characterize the viability and invariance for
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the stochastic differential equations (SDEs) of a closed and convex subset in [1]. Milian generalized Aubin and
Da Prato’s result to arbitrary subsets which can be time-dependent and random in [9].

Another approach was developed by Buckdahn et al. in [3–6]. The main points of their work consist in proving
that the viability property for SDE and also backward SDE holds true if and only if the square of the distance to
the constraint sets is a viscosity supersolution (subsolution) of the associated Hamilton-Jacobi-Bellman equation.

A general result on the existence and uniqueness of the solution for multidimensional, time dependent, SDEs
driven by fBm with Hurst parameter H > 1/2 was given by Nualart and Rascanu in [11], using the techniques
of the classical fractional calculus. Moreover, Ciotir and Rascanu proved a type of Nagumo Theorem on viability
property of closed bounded subsets for the SDE driven by fBm in [7].

Criterions for the viability and invariance of closed bounded subsets expressed by stochastic contingent sets
given in [7] are general, but their conditions are very hard to check, even for the particular case. Using the ideas
of [7], our paper will give easier checkable conditions for general SDEs driven by fBm for some particular sets K.
As a very important application of our results, a comparison theorem for the SDEs driven by fBm is obtained.

In fact, from [7], we give the extension of the result concerning stochastic tangent sets to direct images and
inverse images which was studied by Aubin and Da Prato in [1], to the following stochastic differential equation
driven by fractional Brownian motion, P-a.s. ω ∈ Ω,

Xt,x
s = x +

∫ s

t

b(r, Xt,x
r )dr +

∫ s

t

σ(r, Xt,x
r )dBH

r , s ∈ [t, T ],

where

• BH =
{
BH

t , t ≥ 0
}

is a k-dimensional fBm with Hurst parameter 1/2 < H < 1, and the integral with respect
to BH is a pathwise Riemann-Stieltjes integral;

• b(t, x) : [0, T ]× R
d→R

d and σ(t, x) : [0, T ]× R
d→ R

d×k are continuous functions.

In the case of one-dimensional fBm, we derive explicit criteria for the solution of this equation to remain in
some particular sets K i.e., under which it holds that for all t ∈ [0, T ] and for all x ∈ K,

Xt,x
s ∈ K a.s. ω ∈ Ω, ∀s ∈ [t, T ].

Similarly to [1], the characterization of viability of K is obtained through the study of the direct and inverse
images for fractional stochastic tangent sets. Using our main Theorem 3.5, we get the conditions on b and σ
such that some particular sets K are viable.

Now we explain how the paper is organized. In the second section, we recall some classical definitions and
assumptions on the coefficients. We also recall the main results from [7], which we will use later. In Section 3,
we introduce the notion of direct and inverse images corresponding to SDE driven by fBm and give our main
results. Section 4 is devoted to give the deterministic characterization of viability conditions for some particular
set constraints. In Section 5, as an application, a comparison theorem is proved.

2. Preliminaries

Consider the following stochastic equation on R
d

Xs = X0 +
∫ s

0

b(r, Xr)dr +
∫ s

0

σ(r, Xr)dBH
r , s ∈ [0, T ], (2.1)

where,

• BH =
{
BH

t , t ≥ 0
}

is a k-dimensional fBm defined on a complete probability space (Ω,F , P), with Hurst
parameter 1/2 < H < 1, and the integral with respect to BH is a pathwise Riemann–Stieltjes integral;
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• X0 is a d-dimensional random variable;
• b : [0, T ]× R

d→R
d, σ : [0, T ]× R

d→ R
d×k are continuous functions.

Remark 2.1. The fractional Brownian motion has the following properties:
For every 0 < ε < H and T > 0, there exists a positive random variable ηε,T such that E(|ηε,T |p)

< ∞, for all p ∈ [1,∞) and for all s, t ∈ [0, T ],

|BH(t) − BH(s)| ≤ ηε,T |t − s|H−ε, a.s.

From Proposition 1.7.1, [2] (see also [8]), we know that for every t0 ∈ [0, +∞),

P

⎧⎪⎨
⎪⎩lim sup

t→t0,
t≥t0

∣∣∣BH(t) − BH(t0)
t − t0

∣∣∣ = +∞

⎫⎪⎬
⎪⎭ = 1. (2.2)

Using the same method, we can prove that

P

⎧⎪⎨
⎪⎩lim sup

t→t0,
t≥t0

BH(t) − BH(t0)
t − t0

= +∞

⎫⎪⎬
⎪⎭ = P

⎧⎨
⎩lim inf

t→t0,
t≥t0

BH(t) − BH(t0)
t − t0

= −∞
⎫⎬
⎭ =

1
2
· (2.3)

2.1. Assumptions and notations

For the coefficients appearing in equation (2.1), we make the following assumptions (as in [7]):

(H1) σ(t, x) is differentiable with respect to x, and there exist β, δ, M0, 0 < β, δ ≤ 1 and, for ∀R > 0, there
exists a constant MR > 0 such that for all t ∈ [0, T ],

(Hσ) :

{
(i) |σ(t, x) − σ(s, y)| ≤ M0

(|t − s|β + |x − y|) , ∀x, y ∈ R
d,

(ii) |∇xσ(t, y) −∇xσ(s, z)| ≤ MR

(|t − s|β + |y − z|δ) , ∀ |y| , |z| ≤ R,

where ∇xσ(t, x) = (∇xσi,j(t, x))i=1,d,j=1,k and

|∇xσ(t, x)|2 =
d∑

l=1

d∑
i=1

k∑
j=1

|∂xl
σi,j(t, x)|2.

From (i), we can deduce that for all x ∈ R
d

|σ(t, x)| ≤ |σ(0, 0)| + M0(|t|β + |x|) ≤ M0,T (1 + |x|),

where M0,T = |σ(0, 0)| + M0 + M0T .
Let

α0 = min
{

β,
δ

1 + δ

}
·

(H2) There exist μ ∈ (1 − α0, 1], L0 and, for ∀R ≥ 0, there exists a constant LR > 0 such that ∀t ∈ [0, T ] ,

(Hb) :

{
(i) |b(r, x) − b(s, y)| ≤ LR (|r − s|μ + |x − y|) , ∀ |x| , |y| ≤ R,

(ii) |b(t, x)| ≤ L0(1 + |x|), ∀x ∈ R
d.

Finally, we introduce some notations.
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Given A = (ai,j)d×k and y = (yi)d×1, d, k ∈ N
∗. we denote |A|2 =

∑
i,j

|ai,j |2 and |y| =
∑
i

|yi|2. Let t ∈ [0, T ]

be fixed. Denote by

• Wα,∞(t, T ; Rd), 0 < α < 1, the space of functions f : [t, T ] → R
d which are continuous and

‖f‖α,∞;[t,T ] := sup
s∈[t,T ]

(
|f(s)| +

∫ s

t

|f (s) − f (r)|
(s − r)α+1 dr

)
< ∞.

• W̃ 1−α,∞(t, T ; Rd), 0 < α < 1/2, the space of continuous functions g : [t, T ] → R
d such that

‖g‖W̃ 1−α,∞(t,T ;Rd) := |g (t)| + sup
t<r<s<T

( |g(s) − g(r)|
(s − r)1−α

+
∫ s

r

|g(y) − g(r)|
(y − r)2−α

dy

)
< ∞.

• Cμ([t, T ]; Rd), 0 < μ < 1, the space of μ-Hölder continuous functions f : [t, T ] → R
d, with the norm

‖f‖μ;[t,T ] = sup
s∈[t,T ]

|f(s)| + sup
t≤r<s≤T

|f (s) − f (r)|
(s − r)μ < ∞.

• Wα,1(t, T ; Rd) the space of measurable functions f such that

‖f‖α,1;[t,T ] :=
∫ T

t

[ |f(s)|
(s − t)α +

∫ s

t

|f(s) − f(y)|
(s − y)α+1

dy

]
ds < ∞,

and we have
Wα,∞(t, T ; Rd) ⊂ Wα,1(t, T ; Rd).

2.2. Generalized Stieltjes integral

Denoting

Λα(g; [t, T ]) :=
1

Γ (1 − α)
sup

t<r<s<T

∣∣(D1−α
s− gs−

)
(r)
∣∣

where
Γ (α) =

∫ ∞

0

sα−1e−sds

and

(D1−α
s− gs−)(r) =

eiπ(1−α)

Γ (α)

(
g(s) − g(r)
(s − r)1−α

+ (1 − α)
∫ s

r

g(r) − g(y)
(y − r)2−α

dy

)
1(t,s)(r),

it follows that (see [10, 11])

Λα(g; [t, T ]) ≤ 1
Γ (1 − α)Γ (α)

‖g‖W̃ 1−α,∞(t,T ;Rd) .

Also it’s obvious that
Λα(g; [t, T ]) ≤ Λα(g; [0, T ]) (:= Λα(g)) .

Definition 2.2. Let 0 < α < 1/2. We assume f ∈ Wα,1(t, T ; Rd×k) and g ∈ W̃ 1−α,∞(t, T ; Rk), then the
generalized Stieltjes integral is defined by∫ s

t

f (r) dg (r) := (−1)α
∫ s

t

(
Dα

t+f
)
(r)
(
D1−α

s− gs−
)
(r) dr,
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where

(Dα
t+f)(r) =

1
Γ (1 − α)

(
f(r)

(r − t)α
+ α

∫ r

t

f(r) − f(y)
(r − y)α+1

dy

)
1(t,T )(r).

The integral
∫ s

t

f(r)dg(r) exists for all s ∈ [t, T ] and

∣∣∣∣∣
∫ T

t

f(r)dg(r)

∣∣∣∣∣ ≤ sup
t≤r<s≤T

|(D1−α
s− gs−)(r)|

∫ T

t

|(Dα
t+f)(s)ds|

≤ Λα(g; [t, T ]) ‖f‖α,1;[t,T ].

Remark 2.3. It is known that when H ∈ (1/2, 1) and 1 − H < α < 1/2, the random variable

G = Λα(BH) =
1

Γ (1 − α)
sup

t<s<r<T
|(D1−α

r− Br−)(s)|

has moments of all order. Therefore if u = {ut, t ∈ [0, T ]} is a stochastic process and its trajectories belong to

Wα,1(t, T ; Rd), with 1 − H < α < 1/2, the integral
∫ T

0

usdBH
s has the meaning in the sense of Definition 2.2

and it follows ∣∣∣∫ T

0

usdBH
s

∣∣∣ ≤ G‖u‖α,1,

which means that the stochastic integral from (2.1) is a pathwise Riemann–Stieltjes integral.

Nualart and Rascanu proved in [11] that under the assumptions (H1) and (H2) , with β > 1 − H and
δ > 1/H − 1, the SDE

Xt,ξ
s = ξ +

∫ s

t

b(r, Xt,ξ
r )dr +

∫ s

t

σ
(
r, Xt,ξ

r

)
dBH

r , s ∈ [t, T ] ,

has a unique solution Xt,ξ ∈ L0
(
Ω,F , P ; Wα,∞(t, T ; Rd)

)
, for all α ∈ (1 − H, α0) . Moreover, for P-almost all

ω ∈ Ω, Xt,ξ
· (ω) ∈ C1−α

(
0, T ; Rd

)
.

2.3. Fractional viability

Following [7], we recall the notion of the viability property for SDE driven by fBm. We also present the
characterization theorem for the viability property.

Consider the stochastic differential equation driven by fBm BH with Hurst parameter 1/2 < H < 1,

Xt,x
s = x +

∫ s

t

b(r, Xt,x
r )dr +

∫ s

t

σ(r, Xt,x
r )dBH

r , s ∈ [t, T ]. (2.4)

Definition 2.4. Let K = {K(t) : t ∈ [0, T ]} be a family of subsets of R
d. We say that K is viable (weakly

invariant) for equation (2.4) if, for every t ∈ [0, T ] and from every starting point x ∈ K(t), there exists at least
one of its solutions {Xt,x

s : s ∈ [t, T ]} which satisfies

Xt,x
s (ω) ∈ K(s) for all s ∈ [t, T ], a.s. ω ∈ Ω.

Definition 2.5. The family K is invariant (strong invariant) for equation (2.4) if, starting at every time t ∈ [0, T ]
and from every point x ∈ K(t), all solutions {Xt,x

s : s ∈ [t, T ]} of (2.4) satisfy

Xt,x
s (ω) ∈ K(s) for all s ∈ [t, T ], a.s. ω ∈ Ω.
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Remark 2.6. In the case that the equation has a unique solution, viability is equivalent to invariance.

Suppose that the mappings b and σ satisfy (H1) and (H2).

Definition 2.7. Let t ∈ [0, T ] and x ∈ K (t) . Let 1/2 < 1 − α < H.
The (1 − α)-fractional BH -contingent set to K (t) in x is the set of the pairs (u, v) ∈ R

d × R
d×k, such that

there exist a random variable h̄ = h̄t,x > 0 and a stochastic process Q = Qt,x : Ω × [t, t + h̄
]→ R

d, and for any
R > 0 with |x| ≤ R, there exist two random variables HR, H̃R > 0, depending only on R, LR, M0,T , M0, L0,
T , α, β, Λα

(
BH
)
) and a constant γ = γR(α, β) ∈ (0, 1) such that for all s, τ ∈ [t, t + h̄], P-a.s.

|Q (s) − Q (τ)| ≤ HR |s − τ |1−α , |Q (s)| ≤ H̃R |s − t|1+γ

and
x + (s − t)u + v

[
BH

s − BH
t

]
+ Q (s) ∈ K (s) .

Definition 2.8. Let t ∈ [0, T ] and x ∈ K(t). Let 1/2 < 1 − α < H.
The (1 − α)-fractional BH -tangent set to K(t) in x, denoted by SK(t)(t, x), is the set of the pairs (u, v) ∈

R
d × R

d×k, such that there exist a random variable h̄ = h̄t,x > 0 and two stochastic processes

U = U t,x : Ω × [t, T ] → R
d, U(t) = 0,

V = V t,x : Ω × [t, T ] → R
d×k, V (t) = 0

(2.5)

and for every R > 0 with |x| ≤ R, there exist two random variables DR, D̃R > 0, depending only on R, LR,
M0,T , M0, L0, T , α, β, Λα

(
BH
)
), such that for all s, τ ∈ [t, t + h̄

]
, P-a.s.

|U (s) − U (τ)| ≤ DR |s − τ |1−α
, |V (s) − V (τ)| ≤ D̃R |s − τ |min{β,1−α} (2.6)

and
x +

∫ s

t

(u + U(r))dr +
∫ s

t

(v + V (r))dBH
r ∈ K(s).

Remark 2.9. The definition of Sϕ(K(t))(t, ϕ(x)) is similar to SK(t)(t, x), we only change the condition

x +
∫ s

t

(u + U(r))dr +
∫ s

t

(v + V (r))dBH
r ∈ K(s),

to the following form

ϕ(x) +
∫ s

t

(u + U(r))dr +
∫ s

t

(v + V (r))dBH
r ∈ ϕ(K(s)).

Now we recall the main result of [7] concerning the stochastic viability.

Theorem 2.10. Let K = {K (t) : t ∈ [0, T ]}, K (t) = K (t) ⊂ R
d. Assume that (H1) and (H2) are satisfied

with 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let max {1 − H, 1 − μ} < α < α0. Then the following assertions are

equivalent:

(I) K is viable for the fractional SDE (2.4), i.e., for all t ∈ [0, T ] and for all x ∈ K (t) there exists a solution
Xt,x (ω, ·) ∈ C1−α

(
[t, T ] ; Rd

)
of (2.4) such that

Xt,x
s ∈ K (s) , ∀ s ∈ [t, T ] ;

(II) for all t ∈ [0, T ], x ∈ K (t) , (b (t, x) , σ (t, x)) is (1 − α)-fractional BH-contingent to K (t) in x;
(III) for all t ∈ [0, T ], x ∈ K(t), (b (t, x) , σ (t, x)) is (1 − α)-fractional BH-tangent to K(t) in x.
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Remark 2.11. The assertion (III) is given in [7] only for the deterministic case, i.e. using g ∈ W̃ 1−α,∞(t, T ; Rd)
instead of BH . Using the same method as in [7] to prove (II), we can derive (III).

Moreover, it follows:

Corollary 2.12. Assume that (H1) and (H2) are satisfied with 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let

max {1 − H, 1 − μ} < α < α0, if K ⊂ R
d is independent of t, the following assertions are equivalent:

(j) K is viable with respect to the fractional SDE (2.4);
(jj) for all t ∈ [0, T ], x ∈ ∂K, (b (t, x) , σ (t, x)) is (1 − α)-fractional BH-contingent to K in x;
(jjj) for all t ∈ [0, T ], x ∈ ∂K, (b (t, x) , σ (t, x)) is (1 − α)-fractional BH -tangent to K in x.

Proof. Since K is independent of t, from Theorem 2.10, it’s obvious that (j) ⇒ (jj) ⇒ (jjj). It is sufficient to
prove (jjj) ⇒ (j).

Let t ∈ [0, T ] and x ∈ K \ ∂K be chosen arbitrary. Since Xt,x is continuous, there exists a random variable
h̄, such that for all s ∈ [t, t + h̄],

Xt,x
s = x +

∫ s

t

b(r, Xt,x
r )dr +

∫ s

t

σ(r, Xt,x
r )dBH

r ∈ K,

which can be written as

Xt,x
s = x +

∫ s

t

[b(t, x) + U(r)]dr +
∫ s

t

[σ(t, x) + V (r)]dBH
r ∈ K,

where

U(r) = b(r, Xt,x
r ) − b(t, x), V (r) = σ(r, Xt,x

r ) − σ(t, x).

Clearly (b (t, x) , σ (t, x)) is (1 − α)-fractional BH -tangent to K in x. From (jjj), taking into account that K is
independent of t, we obtain (III). �

3. Stochastic tangent sets to direct and inverse images

Firstly, we give the following auxiliary lemma,

Lemma 3.1. Given two stochastic processes U = U t,x, V = V t,x satisfying (2.5), (2.6). Then for all t ≤ τ ≤
s ≤ t + h̄,

(a)
∣∣∣∣
∫ s

τ

U(r)dr

∣∣∣∣ ≤ DR (s − t)1−α (s − τ),

(b)
∣∣∣∣
∫ s

τ

V (r)dBH
r

∣∣∣∣ ≤ CR(α, β)D̃RΛα(BH)(s − t)min{β,1−α} (s − τ)1−α
,

where CR(α, β) depends only on R, α, and β.

Proof. (a)

∣∣∣∣
∫ s

τ

U(r)dr

∣∣∣∣ =
∣∣∣∣
∫ s

τ

[U(r) − U(t)]dr

∣∣∣∣ ≤ DR

∣∣∣∣
∫ s

τ

(r − t)1−αdr

∣∣∣∣ ≤ DR(s − t)1−α(s − τ),
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(b)

∣∣∣∣
∫ s

τ

V (r)dBH
r

∣∣∣∣ =
∣∣∣∣
∫ s

τ

[V (r) − V (t)]dBH
r

∣∣∣∣
≤ Λα(BH)‖V ‖α,1;[τ,s]

≤ Λα(BH)
∫ s

τ

[ |V (r) − V (t)|
(r − τ)α +

∫ r

τ

|V (r) − V (y)|
(r − y)α+1

dy

]
dr

≤ D̃RΛα(BH)
∫ s

τ

[
(r − t)min{β,1−α}

(r − τ)α +
∫ r

τ

(r − y)min{β,1−α}

(r − y)α+1
dy

]
dr

≤ D̃RΛα(BH)
[ 1
1 − α

(s − t)min{β,1−α} (s − τ)1−α

+
∫ s

τ

∫ r

τ

(r − y)min{β−α,1−2α}−1dydr
]

≤ CR(α, β)D̃RΛα(BH)(s − t)min{β,1−α} (s − τ)1−α . �

Remark 3.2. From (a) and (b), we see that for τ = t,

(a′)
∣∣∣∣
∫ s

t

U(r)dr

∣∣∣∣ ≤ DR (s − t)2−α
,

(b′)
∣∣∣∣
∫ s

t

V (r)dBH
r

∣∣∣∣ ≤ CR(α, β)D̃RΛα(BH)(s − t)1+min{β−α,1−2α}.

The following theorem will give the extension to the fBM framework of the result concerning stochastic
tangent sets to direct images which was studied by Aubin and Da Prato, [1].

Theorem 3.3. Assume that (H1) and (H2) are satisfied with 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let α, α0

be such that max {1 − H, 1 − μ} < α < α0. Let K (t) = K (t) ⊂ R
d, t ∈ [0, T ], SK(t)(t, x) be (1 − α)-fractional

BH -tangent set to K in x and ϕ be a C2 map from R
d to R

m with a bounded second derivative. If

(b(t, x), σ(t, x)) ∈ SK(t)(t, x)

then
(ϕ′(x)b(t, x), ϕ′(x)σ(t, x)) ∈ Sϕ(K(t))(t, ϕ(x)).

Proof. Since (b(t, x), σ(t, x)) ∈ SK(t)(t, x), there exist a random variable h̄ = h̄t,x > 0 and, for all R > 0, two
stochastic processes satisfying (2.5), (2.6) for all s ∈ [t, t + h̄

]
, and x ∈ R

d with |x| ≤ R,

x +
∫ s

t

(b(t, x) + U(r))dr +
∫ s

t

(σ(t, x) + V (r))dBH (r) ∈ K(s).

Define

ηs = x +
∫ s

t

(b(t, x) + U(r))dr +
∫ s

t

(σ(t, x) + V (r))dBH (r).

From Lemma 3.1 and the (H − ε) Hölder continuous property of fractional Brownian motion, it follows that for
all s, τ ∈ [t, t + h̄

]
,

|ηs − ητ | ≤ ζ(s − τ)1−α.
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According to the fractional Itô formula (see [10], Rem. 2.7.4), we know that for all s ∈ [t, t + h̄
]

ϕ

(
x +

∫ s

t

(b(t, x) + U(r))dr +
∫ s

t

(σ(t, x) + V (r))dBH (r)
)

= ϕ(x) +
∫ s

t

[ϕ′(ηr)(b(t, x) + U(r))]dr +
∫ s

t

[ϕ′(ηr)(σ(t, x) + V (r))]dBH (r)

= ϕ(x) +
∫ s

t

[ϕ′(x)b(t, x) + U1(r)]dr +
∫ s

t

[ϕ′(x)σ(t, x) + V1(r)]dBH(r),

where

U1(r) = ϕ′(ηr)U(r) + (ϕ′(ηr) − ϕ′(x))b(t, x),
V1(r) = ϕ′(ηr)V (r) + (ϕ′(ηr) − ϕ′(x))σ(t, x).

Then

ϕ(x) +
∫ s

t

[ϕ′(x)b(t, x) + U1(r)]dr +
∫ s

t

[ϕ′(x)σ(t, x) + V1(r)]dBH(r)

=ϕ

(
x +

∫ s

t

(b(t, x) + U(r))dr +
∫ s

t

(σ(t, x) + V (r))dBH (r)
)

∈ ϕ(K(s)), (3.1)

and
U1(t) = 0, V1(t) = 0.

For all s, τ ∈ [t, t + h̄
]

and for every R > 0 and |x| ≤ R, using the Lipschitz continuity of ϕ′ and (H2), we
obtain that

|U1(s) − U1(τ)| ≤ |ϕ′(ητ )||U(s) − U(τ)| + (|U(s)| + |b(t, x)|)|ϕ′(ηs) − ϕ′(ητ )|
≤ θ1|s − τ |1−α + θ2|ηs − ητ | ≤ θ|s − τ |1−α,

similarly we can prove that
|V1(s) − V1(τ)| ≤ θ̃|s − τ |min{β,1−α},

where the Hölder constants θ, θ̃ are random variables which depend only on R, LR, M0,T , M0, L0, T , α, β,
Λα

(
BH
)
.

We conclude from (3.1) that

(ϕ′(x)b(t, x), ϕ′(x)σ(t, x)) ∈ Sϕ(K(t))(t, ϕ(x)). �

We can also give the extension of the result concerning stochastic tangent sets to inverse images to the fBM
form.

We introduce a space H of the functions ϕ : R
d → R

m of class C2, with a bounded and Lipschitz continuous
second derivative and moreover there exist aϕ < bϕ and M > 0, L > 0, such that for all aϕ ≤ |x| ≤ bϕ, the
matrix ϕ′(x) = d

dxϕ(x) = ∇xϕ(x) ∈ R
m×d has a right inverse denoted by ϕ′(x)+ satisfying

(1)
∣∣[ϕ′(x)+]′

∣∣ ≤ M,

(2)
∣∣[ϕ′(x)+]′ − [ϕ′(y)+]′

∣∣ ≤ L|x − y|,
where we use the notations [ϕ′(x)+]′ = d

dx [( d
dxϕ(x))+] = ∇x[(∇xϕ(x))+].

Lemma 3.4. Given two stochastic processes U = U t,x, V = V t,x satisfying (2.5), (2.6) with d = m, and ϕ ∈ H,
let

f(r, y) = ϕ′(y)+ [U(r) − (ϕ′(y) − ϕ′(x))b(t, x)] ,

g(r, y) = ϕ′(y)+ [V (r) − (ϕ′(y) − ϕ′(x))σ(t, x)] .
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Assume that (H1) and (H2) are satisfied with 1/2 < H < 1, 1 − H < β, δ > 1−H
H , then for α ∈

(1 − H, α0) and for every δ0 > 0, there exists a random variable h̄1 = h̄t,x
1 , such that for aϕ + 2δ0

≤ |x| ≤ bϕ − 2δ0 and P-a.s. ω ∈ Ω, the following stochastic differential equation

ξs = x +
∫ s

t

(b(t, x) + f(r, ξr))dr +
∫ s

t

(σ(t, x) + g(r, ξr))dBH(r), s ∈ [t, t + h̄1],

has a unique solution ξ· (ω) ∈ L0
(
Ω,F , P ; Wα,∞(t, T ; Rd)

)
. Moreover ξ· (ω) ∈ C1−α

(
t, t + h̄1; Rd

)
, P-a.s.

Proof. Applying the partition of unity theorem from [12], page 61, we see that for every δ0 > 0, there exists a
function α(x) ∈ C∞(Rd) such that α(x) = 1 for aϕ + δ0 ≤ |x| ≤ bϕ − δ0 and α(x) = 0 for |x| ≥ bϕ or |x| ≤ aϕ,
then we define

f̃(t, y) = α(y)f(t, y) =

⎧⎪⎨
⎪⎩

f(t, y), aϕ + δ0 ≤ |y| ≤ bϕ − δ0,

α(y)f(t, y) aϕ ≤ |y| ≤ aϕ + δ0, or bϕ − δ0 ≤ |y| ≤ bϕ,

0, |y| ≥ bϕ, or |y| ≤ aϕ.

We define g̃(t, y) by the same method, then we consider the following equation

ξ̃s = x +
∫ s

t

(b(t, x) + f̃(r, ξ̃r))dr +
∫ s

t

(σ(t, x) + g̃(r, ξ̃r))dBH(r), s ∈ [t, t + h̄]. (3.2)

Since ϕ ∈ H and U = U t,x, V = V t,x satisfy (2.5), (2.6) with d = m, we can verify that for α ∈ (1 − H, α0) ,
f̃(t, y), and g̃(t, y) satisfy the conditions of (H1), (H2) from [11], where M0, MR, L0, LR depend on ω. Hence
for all α ∈ (1 − H, α0), equation (3.2) has a unique solution ξ̃· (ω) ∈ L0

(
Ω,F , P ; Wα,∞(t, T ; Rd)

)
and moreover

ξ̃· (ω) ∈ C1−α
(
t, t + h̄; Rd

)
, P-a.s. Since aϕ +2δ0 ≤ |x| ≤ bϕ −2δ0, there exists a random variable h̄1 = h̄t,x

1 such
that aϕ + δ0 ≤ |ξ̃| ≤ bϕ − δ0, P-a.s. Then for s ∈ [t, t + h̄1], (3.2) becomes to

ξ̃s = x +
∫ s

t

(b(t, x) + f(r, ξ̃r))dr +
∫ s

t

(σ(t, x) + g(r, ξ̃r))dBH(r), s ∈ [t, t + h̄1], P − a.s.

Taking ξs = ξ̃s, s ∈ [t, t + h̄1], together with the uniqueness of ξ̃s, the proof is completed. �

Theorem 3.5. Assume that (H1) and (H2) are satisfied with 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Set

max {1 − H, 1 − μ} < α < α0. Let K (t) = K (t) ⊂ R
d, t ∈ [0, T ] and ϕ ∈ H. Then for all x ∈ R

d with
aϕ < |x| < bϕ,

(b(t, x), σ(t, x)) ∈ Sϕ−1(ϕ(K(t)))(t, x)

if and only if
(ϕ′(x)b(t, x), ϕ′(x)σ(t, x)) ∈ Sϕ(K(t))(t, ϕ(x)).

Proof. It is sufficient to prove that if (ϕ′(x)b(t, x), ϕ′(x)σ(t, x)) ∈ Sϕ(K(t))(t, ϕ(x)), then (b(t, x), σ(t, x)) ∈
Sϕ−1(ϕ(K(t)))(t, x).

Since
(ϕ′(x)b(t, x), ϕ′(x)σ(t, x)) ∈ Sϕ(K(t))(t, ϕ(x)),

for x ∈ K(t), there exist a random variable h̄ = h̄t,x > 0 and two stochastic processes U1 and V1 satisfy-
ing (2.5), (2.6) with d = m, and for all s ∈ [t, t + h̄

]
, for every R > 0 with |x| ≤ R,

ϕ(x) +
∫ s

t

(ϕ′(x)b(t, x) + U1(r))dr +
∫ s

t

(ϕ′(x)σ(t, x) + V1(r))dBH(r) ∈ ϕ(K(s)).
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Let

f(r, y) = ϕ′(y)+ [U1(r) − (ϕ′(y) − ϕ′(x))b(t, x)] ,
g(r, y) = ϕ′(y)+ [V1(r) − (ϕ′(y) − ϕ′(x))σ(t, x)] ,

where ϕ′(y)+ is the right inverse of ϕ′(y). By Lemma 3.4, for every δ0 > 0 and aϕ + 2δ0 ≤ |x| ≤ bϕ − 2δ0, there
exists a random variable h̄1 such that for P-a.s. ω ∈ Ω, the following SDE

ξs = x +
∫ s

t

(b(t, x) + f(r, ξr))dr +
∫ s

t

(σ(t, x) + g(r, ξr))dBH(r), s ∈ [t, t + h̄1],

has a unique solution ξ· (ω). Taking

U(r) = ϕ′(ξr)+ [U1(r) − (ϕ′(ξr) − ϕ′(x))b(t, x)] ,
V (r) = ϕ′(ξr)+ [V1(r) − (ϕ′(ξr) − ϕ′(x))σ(t, x)] ,

for r ∈ [t, t + h̄1] and U(r) = U(t + h̄1), V (r) = V (t + h̄1) for r ∈ [t + h̄1, T ]. We deduce that

U(t) = 0, V (t) = 0.

Since ϕ ∈ H and ξ· (ω) ∈ C1−α
(
t, t + h̄1; Rd

)
, from (H1) and (H2), it follows that

|U (s) − U (τ)| ≤ θ |s − τ |1−α
, |V (s) − V (τ)| ≤ θ̃ |s − τ |min{β,1−α}

, ∀s, τ ∈ [t, t + h̄1].

According to the fractional Itô formula, we know for all s ∈ [t, t + h̄1

]
that

ϕ

(
x +

∫ s

t

(b(t, x) + U(r))dr +
∫ s

t

(σ(t, x) + V (r))dBH (r)
)

=ϕ(x) +
∫ s

t

(ϕ′(x)b(t, x) + U1(r))dr +
∫ s

t

(ϕ′(x)σ(t, x) + V1(r))dBH (r) ∈ ϕ(K(s)).

which means that
(b(t, x), σ(t, x)) ∈ Sϕ−1(ϕ(K(t)))(t, x). �

4. Applications to deterministic characterization of viability

Using Theorem 3.5, if K takes some particular forms and BH is one-dimensional, we will get determinis-
tic sufficient and necessary conditions for viability which can be checked more easily. Firstly we prove some
preliminary results.

Lemma 4.1. Assume that (H1) and (H2) are satisfied with k = 1, 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let

max {1 − H, 1 − μ} < α < α0 and K = {x ∈ R
d; r ≤ |x| ≤ R}. Then for all x, such that |x| = R,

(b(t, x), σ(t, x)) ∈ SK(t, x) if and only if 〈x, b(t, x)〉 ≤ 0, 〈x, σ(t, x)〉 = 0,

and for all x, such that |x| = r,

(b(t, x), σ(t, x)) ∈ SK(t, x) if and only if 〈x, b(t, x)〉 ≥ 0, 〈x, σ(t, x)〉 = 0.

Proof. Taking ϕ(x) = |x|2, for R/4 ≤ |x| ≤ 4R, we have

ϕ′(x)+ =
x

2|x|2 ·
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We can verify that ϕ ∈ H with aϕ = R/4, bϕ = 4R. For |x| = R, we know that aϕ < |x| < bϕ. We have also
similar discussion with respect to |x| = r. By Theorem 3.5, Lemma 4.1 is reduced to the following equivalence:

For all x such that |x| = R

(〈2x, b(t, x)〉, 〈2x, σ(t, x)〉) ∈ Sϕ(K)(t, |x|2) ⇔ 〈x, b(t, x)〉 ≤ 0, 〈x, σ(t, x)〉 = 0.

For all x, such that |x| = r,

(〈2x, b(t, x)〉, 〈2x, σ(t, x)〉) ∈ Sϕ(K)(t, |x|2) ⇔ 〈x, b(t, x)〉 ≥ 0, 〈x, σ(t, x)〉 = 0.

It’s convenient to prove only the case: |x| = R, the other one is similar.

Necessary. If 〈x, b(t, x)〉 ≤ 0, 〈x, σ(t, x)〉 = 0, taking U(r) ≡ 0, V (r) ≡ 0, we can choose h̄ small enough, such
that ∀s ∈ [t, t + h̄],

r2 ≤ |x|2 +
∫ s

t

(〈2x, b(t, x)〉 + U(y))dy +
∫ s

t

(〈2x, σ(t, x)〉 + V (y))dBH(y) ≤ R2.

This means that (〈2x, b(t, x)〉, 〈2x, σ(t, x)〉) ∈ Sϕ(K)(t, |x|2).
Sufficient. Since (〈2x, b(t, x)〉, 〈2x, σ(t, x)〉) ∈ Sϕ(K)(t, |x|2), there exist a random variable h̄ =

h̄t,x > 0, and two stochastic processes satisfying (2.5), (2.6) with d = 1, k = 1, and for all s ∈ [
t, t + h̄

]
,

for |x| ≤ R,

r2 ≤ |x|2 +
∫ s

t

(〈2x, b(t, x)〉 + U(y))dy +
∫ s

t

(〈2x, σ(t, x)〉 + V (y))dBH(y) ≤ R2.

Since |x| = R, it follows that

〈2x, b(t, x)〉(s − t) + 〈2x, σ(t, x)〉(BH (s) − BH(t)) +
∫ s

t

U(y)dy +
∫ s

t

V (y)dBH(y) ≤ 0. (4.1)

By (2.3), there exists Ω0 ⊂ Ω with P(Ω0) = 1/2, such that for each ω0 ∈ Ω0, (4.1) is satisfied and there is a
sequence t ≤ sn = sn(ω0) ≤ t + h̄(ω0), sn ↘ t, such that

lim
sn↘t

BH
sn

(ω0) − BH
t (ω0)

sn − t
= +∞. (4.2)

Then we conclude that

〈2x, σ(t, x)〉B
H
ω0

(sn) − BH
ω0

(t)
sn − t

+
[∫ sn

t

U(y)dy +
∫ sn

t

V (y)dBH
ω0

(y)
]

1
sn − t

≤ −〈2x, b(t, x)〉. (4.3)

By Lemma 3.1 [∫ sn

t

U(y)dy +
∫ sn

t

V (y)dBH
ω0

(y)
]

1
sn − t

→ 0,

recalling (4.2), yields
〈x, σ(t, x)〉 ≤ 0.

Similarly we can prove that 〈x, σ(t, x)〉 ≥ 0, choosing ω′
0 and a sequence t ≤ rn = rn(ω′

0) ≤ t + h̄(ω′
0), rn ↘ t,

such that lim
rn↘t

BH
rn

(ω′
0)−BH

t (ω′
0)

rn−t = −∞. Consequently,

〈x, σ(t, x)〉 = 0.
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Then from (4.3), we deduce that

〈2x, b(t, x)〉 +
[∫ s

t

U(y)dy +
∫ s

t

V (y)dBH(y)
]

1
s − t

≤ 0.

Let s → t. Via Lemma 3.1, it follows that
〈x, b(t, x)〉 ≤ 0. �

As particular cases, we have the following two corollaries

Corollary 4.2. Assume that (H1) and (H2) are satisfied with k = 1, 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let

max {1 − H, 1 − μ} < α < α0 and K = {x ∈ R
d; |x| = 1} (the unit sphere). Then for all x ∈ K,

(b(t, x), σ(t, x)) ∈ SK(t, x) if and only if 〈x, b(t, x)〉 = 0, 〈x, σ(t, x)〉 = 0.

Corollary 4.3. Assume that (H1) and (H2) are satisfied with k = 1, 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let

max {1 − H, 1 − μ} < α < α0 and K = {x ∈ R
d; |x| ≤ 1} (the unit ball). Then for all x, such that |x| = 1,

(b(t, x), σ(t, x)) ∈ SK(t, x) if and only if 〈x, b(t, x)〉 ≤ 0, 〈x, σ(t, x)〉 = 0.

As it is shown in Corollary 2.12, if we want to get conditions for the viability of K, we only need to consider
the starting point x ∈ ∂K. Then, from Corollaries 4.2 and 4.3, we have respectively the following two results.

Proposition 4.4. Let (H1), (H2) be satisfied with k = 1, 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let

max {1 − H, 1 − μ} < α < α0 and K be the unit sphere. Then, the following assertions are equivalent:

(I) K is viable for the fractional SDE (2.4);
(II) for all t ∈ [0, T ] and all x ∈ K,

〈x, b(t, x)〉 = 0, 〈x, σ(t, x)〉 = 0.

Proposition 4.5. Let (H1), (H2) be satisfied with k = 1, 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let

max {1 − H, 1 − μ} < α < α0 and K be the unit ball. Then the following assertions are equivalent:

(I) K is viable for the fractional SDE (2.4);
(II) for all t ∈ [0, T ] and all |x| = 1,

〈x, b(t, x)〉 ≤ 0, 〈x, σ(t, x)〉 = 0.

As a consequence of Theorem 3.5, we have the following

Corollary 4.6. Considering the one-dimensional SDE,

Xs = x +
∫ s

t

b(r, Xr)dr +
∫ s

t

σ (r, Xr) dBH
r , s ∈ [t, T ] .

Suppose that (H1) and (H2) are satisfied with k = 1. Then, for any t ∈ [0, T ] and every x ≥ 0, the above
equation has a positive solution if and only if

b(t, 0) ≥ 0, σ(t, 0) = 0, ∀t ∈ [0, T ].

Proof. Taking ϕ(x) = x and K = [0, +∞). Analysis similar to that in the proof of Lemma 4.1 shows that
(b(t, 0), σ(t, 0)) ∈ SK(t, 0) if and only if b(t, 0) ≥ 0, σ(t, 0) = 0. Considering Corollary 2.12, we get our
result. �

Another interesting application is the comparison of the solution theorem.
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5. Comparison theorem

Corollary 5.1. Considering the linear two-dimensional decoupled system,⎧⎪⎪⎨
⎪⎪⎩

Xt,x
s = x +

∫ s

t

(f(r)Xt,x
r + f1(r))dr +

∫ s

t

(g(r)Xt,x
r + g1(r))dBH

r , s ∈ [t, T ]

Y t,y
s = y +

∫ s

t

(f(r)Y t,y
r + f2(r))dr +

∫ s

t

(g(r)Y t,y
r + g2(r))dBH

r , s ∈ [t, T ]

where BH is one-dimensional, f(r), f1(r), g(r), g1(r) are Lipschitz functions.
Then the two assertions are equivalent:

• for any t ∈ [0, T ] and every x ≤ y : Xt,x
s ≤ Y t,y

s , ∀s ∈ [t, T ];
• f1(t) ≤ f2(t), g1(t) = g2(t), ∀t ∈ [0, T ].

Proof. Setting Zt,z
s = Y t,y

s − Xt,x
s , z = y − x ≥ 0, we can change our problem to an equivalent form:

for any t ∈ [0, T ] and every z ≥ 0, the solution Zt,z
s ≥ 0

⇐⇒ f1(t) ≤ f2(t), g1(t) = g2(t), ∀t ∈ [0, T ].

Using Corollary 4.6, the proof is completed. �

In general case, we can prove

Theorem 5.2 (comparison theorem). Considering the two-dimensional decoupled system⎧⎪⎪⎨
⎪⎪⎩

Xt,x
s = x +

∫ s

t

(b1(r, Xt,x
r ))dr +

∫ s

t

(σ1(r, Xt,x
r ))dBH

r , s ∈ [t, T ],

Y t,y
s = y +

∫ s

t

(b2(r, Y t,y
r ))dr +

∫ s

t

(σ2(r, Y t,y
r ))dBH

r , s ∈ [t, T ],

where (H1) and (H2) are satisfied with k = 1, 1/2 < H < 1, 1 − H < β, δ > 1−H
H . Let max {1 − H, 1 − μ} <

α < α0, then the two assertions are equivalent:

• for any t ∈ [0, T ] and every x ≤ y : Xt,x
s ≤ Y t,y

s , ∀s ∈ [t, T ];
• b1(t, z) ≤ b2(t, z), σ1(t, z) = σ2(t, z), ∀t ∈ [0, T ], ∀z ∈ R.

Proof. We write the two-dimensional decoupled system in the following form

Zt,z
s = z +

∫ s

t

(b(r, Zt,z
r ))dr +

∫ s

t

(σ(r, Zt,z
r ))dBH

r , s ∈ [t, T ],

where

Zt,z
s =

(
Xt,x

s

Y t,y
s

)
, z =

(
x

y

)
, b(r, Zt,z

r ) =
(

b1(r, Xt,x
r )

b2(r, Y
t,y
r )

)
, σ(r, Zt,z

r ) =
(

σ1(r, Xt,x
r )

σ2(r, Y
t,y
r )

)
.

Taking ϕ(z) = ϕ(x, y) = y − x, then for every z ∈ R
2, ϕ′(z) = (−1, 1), and

ϕ′(z)+ =
1
2

(−1
1

)
·

Consequently ϕ ∈ H. Setting K = {(xy) | y − x ≥ 0}, we know that ϕ(K) = R
+ and ϕ−1(ϕ(K)) = K. By

Theorem 3.5 and Corollary 2.12, the viability of K is equivalent to

(ϕ′(z)b(t, z), ϕ′(z)σ(t, z)) ∈ SR+(t, ϕ(z)), ∀ t ∈ [0, T ], ∀ z =
(

x

y

)
∈ ∂K =

{(
x

y

)
: x = y

}
,
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that is
(b2(t, x) − b1(t, x), σ2(t, x) − σ1(t, x)) ∈ SR+(t, 0).

Now following the same calculus as in Lemma 4.1, we have

SR+(t, 0) =
{
(u, v) ∈ R

2 : u(s − t) + v(BH
s − BH

t )

+
∫ s

t

U(y)dy +
∫ s

t

V (y)dBH
y ≥ 0, ∀s ∈ [t, t + h̄]

}
=
{
(u, 0) ∈ R

2 : u ≥ 0
}

,

which complete the proof. �

Remark 5.3. We can consider the following control problem: find two control stochastic processes u and v
such that the state X driven by the system

Xs = X0 +
∫ s

0

[b(r, Xr) + u(r)]dr +
∫ s

0

[σ(r, Xr) + v(r)]dBH
r , s ∈ [0, T ],

evolves in given constraint closed set K. We ask moreover that the controls are in some feedback forms. As an
example:

Let K = {x ∈ R
d : |x| ≤ R}, where R is a fixed positive constant, and ΠK : R

d → K, ΠK (x) = x
|x| (|x| ∧ R)

the projector operator on K. Find bounded feedback control processes u and v of the form u(t) = αΠK (X(t))
and v(t) = g(t, X(t))ΠK (X(t)) such that

|Xx,u,v
s | ≤ R, ∀ s ∈ [0, T ], ∀ |x| ≤ R.

By Corollary 4.3 such controls exist taking

α ≤ − 1
R2

sup
|x|=R, t∈[0,T ]

〈x, b(t, x)〉 and g(t, x) = − 1
R2

〈ΠK (x) , σ(t, ΠK (x))〉 .
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