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ALGEBRAICALLY CONSTRUCTIBLE FUNCTIONS

BY CUNT McCRORY AND ADAM PARUSINSKI

ABSTRACT. - An algebraic version of Kashiwara and Schapira's calculus of constructible functions is used to
describe local topological properties of real algebraic sets, including Akbulut and King's numerical conditions for
a stratified set of dimension three to be algebraic. These properties, which include generalizations of the invariants
modulo 4, 8, and 16 of Coste and Kurdyka, are defined using the link operator on the ring of constructible functions.

RESUME. - On propose une version algebrique reelle du formalisme des fonctions constructibles au sens de
Kashiwara et Schapira. On demontre plusieurs proprietes fondamentales de ces fonctions, en particulier Ie fait que
les fonctions algebriquements constructibles sont preservees par la moitie de Foperateur de link. Ce dernier resultat
implique plusieurs proprietes topologiques locales des ensembles algebriques reels, en particulier les conditions
d'Akbulut et King en dimension 3 et les conditions modulo 4, 8 et 16, de Coste et Kurdyka.

In 1970 Sullivan [Su] proved that if X is a real analytic set and x G X, then the
Euler characteristic of the link of x in X is even. Ten years later, Benedetti and Dedo
[BD], and independently Akbulut and King [AK1], proved that Sullivan's condition gives
a topological characterization of real algebraic sets of dimension less than or equal to
two. Using their theory of resolution towers, Akbulut and King introduced a finite set of
local "characteristic numbers" of a stratified space X of dimension three, such that X is
homeomorphic to a real algebraic set if and only if all of these numbers vanish [AK2].

In 1992 Coste and Kurdyka [CK] proved that if Y is an irreducible algebraic subset of the
algebraic set X and x (E V, then the Euler characteristic of the link of Y in X at x, which is
even by Sullivan's theorem, is generically constant mod 4. They also introduced invariants
mod 2^ for chains of k strata, and they showed how to recover the Akbulut-King numbers
from their mod 4 and mod 8 invariants. The Coste-Kurdyka invariants were generalized
and given a simpler description in [MP] using complexification and monodromy.

We introduce a new approach to the Akbulut-King numbers and their generalizations
which is motivated by the theory of Stiefel-Whitney homology classes, as was Sullivan's
original theorem. We use the ring of constructible functions on X, which has been
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528 C. MCCRORY AND A. PARUSINSKI

systematically developed by Kashiwara and Schapira [KS] [Sch] in the subanalytic setting
and by Viro [V]. Their calculus of constructible functions includes the fundamental
operations of duality and pushforward, which correspond to standard operations in sheaf
theory.

Our primary object of study is the ring of algebraically constructible functions on the
real algebraic set X. We say that the function ^ : X -^ I and the stratification S of
X are compatible if (p is constant on each stratum of S. If X is a complex algebraic
set, then (p is said to be complex algebraically constructible if there exists a complex
algebraic stratification S of X which is compatible with (p. The pushforward of a complex
algebraically constructible function by a complex algebraic map is complex algebraically
constructible.

For real algebraic sets the situation is more complicated. By an algebraic stratification
of the real algebraic set X, we mean a stratification S of X with strata of the form Y \ Y\
where Y and V are algebraic sets. Thus the strata are not necessarily connected. If X is a
real algebraic set and (p : X —> Z, let us say that ^ is strongly algebraically constructible if
there is an algebraic stratification S of X which is compatible with (/?. The pushforward of a
strongly algebraically constructible function by an algebraic map is not necessarily strongly
algebraically constructible. (Consider for example (p = /*IR, where / : 1R -^ R, f{x) = x2.
Then (p(x) = 2 if x > 0, (^(0) = 1, and (p{x) = 0 if x < 0.) On the other hand, we
say that ^ is semialgebraically constructible if there is a semialgebraic stratification of X
which is compatible with (p. The pushforward of a semialgebraically constructible function
by a continuous semialgebraic map is semialgebraically constructible. But information
about the algebraic structure of X is lost by passing to the ring of semialgebraically
constructible functions.

To solve this dilemma we adopt a definition of algebraic constructibility which is not
solely in terms of compatibility with a stratification. If X is a real algebraic set, we
say that (p : X —>• Z is algebraically constructible if (p is the pushforward of a strongly
algebraically constructible function by an algebraic map. It follows that the pushforward
of an algebraically constructible function is algebraically constructible; however, not every
semialgebraically constructible function is algebraically constructible. (For example let
X = H and let (p(x) = 1 if x > 0, ^p{x) = 0 if x < 0.) We detect the difference
between algebraically constructible functions and semialgebraically constructible functions
by means of the topological link operator A on the ring of semialgebraically constructible
functions. The link operator generalizes the link of a point in a space, and it is related to
the Kashiwara-Schapira duality operator D by D(p = (p — A(p.

Our main results are the following. Using resolution of singularities, we prove that if (p
is an algebraically constructible function then |A(^ is algebraically constructible, and in
particular |,A(^ is integer-valued. Another proof of this statement, which does not use the
resolution of singularities, has been given recently in [PS]. Then we give a new description
of the Akbulut-King numbers in terms of the operator A = jA, and we prove that if X
is a semialgebraic set of dimension less than or equal to three, then X is homeomorphic
to an algebraic set if and only if all of the functions obtained from lx by the arithmetic
operations +,-,*, together with the operator A, are integer-valued.
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ALGEBRAICALLY CONSTRUCTIBLE FUNCTIONS 529

We prove the basic properties of (semi algebraically) constructible functions in section
1. We derive some properties of constructible functions ip which are self-dual (D^p = (p)
or anti-self-dual (D^p = —(^). If ^ is compatible with a stratification S which has only
even (resp. odd) dimensional strata, then (/? is self-dual (resp. anti-self-dual). If (^ is
self-dual (resp. anti-self-dual), then the Stiefel-Whitney homology classes [FM] satisfy
(3wi(^p) = Wz_i((^) for i even (resp. odd), where f3 is the Bockstein homomorphism.

In section 2 we introduce algebraically constructible functions, and we give examples of
functions which are constructible but not algebraically constructible, and functions which
are algebraically constructible but not strongly algebraically constructible. We prove that if
(p is algebraically constructible then A((^) is algebraically constructible. Also we show that
the specialization of an algebraically constructible function is algebraically constructible.
We prove that if <p is a constructible function on an algebraic set of dimension d, then
2^ is algebraically constructible.

A constructible function ̂  is Euler if the function A((/?) is integer-valued. By a completely
Euler function we mean a constructible function <p such that all the functions obtained from
(/? by means of the arithmetic operations +, —, * and the operator A are integer-valued. In
section 3 we analyze such functions in low dimensions. We give computable conditions to
determine whether a constructible function (p is completely Euler, in the case that (^ has
support of dimension less than or equal to 2, and to determine whether lx is completely
Euler, in the case that X has dimension less than or equal to 3.

In section 4 we apply the preceding results to the topology of real algebraic sets.
We give a new proof of our theorem [MP] concerning the iterates of the relative link
operator AyX for Y an algebraic subset of X: If Xi , . . . ,X/c is an ordered collection
of algebraic subsets of X, then ^ = Aj^ • t • Aj^ljc is divisible by 2k, and if Y is an
irreducible algebraic subset of X, then ^ is generically constant mod 2fc+l on V. We give
a new description of Akbulut and King's necessary and sufficient conditions for a compact
semialgebraic set X of dimension three to be homeomorphic to an algebraic set. We prove
that X satisfies the Akbulut-King conditions if and only if lx is completely Euler. We
give a similar description of Akbulut and King's conditions for a stratified semialgebraic
set to be homeomorphic to a stratified real algebraic set, by a homeomorphism which
preserves the strata.

In section 5 we introduce Nash constructible functions, and we show that a closed
semialgebraic set S is symmetric by arcs [Ku] if and only if Is is Nash constructible.

An appendix contains proofs of some elementary foundational results.
For the definitions and properties of real algebraic and semialgebraic sets and maps,

and semialgebraic stratifications, we refer the reader to [BR]. We will always assume that
semialgebraic maps are continuous. By a real algebraic set we mean the locus of zeros
of a finite set of polynomial functions on R71.

1. Constructible functions

Let X be a real algebraic set. A function (p : X -^ Z is called (semialgebraically)
constructible if it admits a presentation as a finite sum

(L:L) ^ = y^m.ix,,
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



530 C. MCCRORY AND A. PARUSINSKI

where for each %, X, is a semialgebraic subset of X, lx, is the characteristic function of
Xi, and mi is an integer. Denote by F(X) the ring of constructible functions on X, with
the usual operations of addition and multiplication. The presentation (1.1) is not unique,
but one can always find a presentation with all X, closed in X. In what follows, unless
otherwise stated, we always assume that the Xi are closed. If the support of (p is compact,
then we may choose all Xi compact. Then the Euler integral of y is defined as

/-E^iX{Xi

By additivity of the Euler characteristic, the Euler integral does not depend on the
presentation (1.1) of (p, provided all Xi are compact. Suppose V is a semialgebraic subset
of X such that the intersection of Y with the support of (p is compact. Then by L (p we
mean the Euler integral of the restriction of (p to V.

Let / : X —^ Y be a (continuous) semialgebraic map of real algebraic sets. If ^ e F(V),
the inverse image, or pullback, of ^ by / is defined by

r^(x) = wcr)),
and /*^ is a constructible function on X.

Assume that f \ X —> Y restricted to the support of y? G F(JC) is proper. Then the
direct image, or pushforward, j^ G F(V) is given by the formula

fMy) = IJ fj*^w = \ (p'
^f-^y)

Suppose that X is embedded in R/". Then we define the link of (p as the constructible
function on X given by

A^p(x) = (p,
Js{x^

where e > 0 is sufficiently small, and S(x,e) denotes the ^-sphere centered at x. The
function A(p is independent of the embedding of X in R". This follows from the fact that the
link of a point in a semialgebraic set is well-defined up to semialgebraic homeomorphism
(cf. the Appendix). The duality operator D on constructible functions, introduced by
Kashiwara and Schapira in [KS], satisfies

Dtp = (p — A(^,

which is equivalent to formula (2.7) of [Sch].

1.2. PROPOSITION
(i) D(D^) = ̂

(ii) f.D = Df^
(iii) {g o /)„ = g^ o f^.

^ SERIE - TOME 30 - 1997 - N° 4



ALGEBRAICALLY CONSTRUCTIBLE FUNCTIONS 531

Proof. - (i)-(iii) are proved in [Sch] using the corresponding operations on constructible
sheaves. For a different proof see the Appendix below. D

1.3. COROLLARY
(i) A o A = 2A,

(ii) /,A = A/,,
(iii) f A^p = 0.

Proof. - (i)-(ii) are clear. If the support of (p is compact then (iii) follows from (ii).
Indeed, let / : X —^ P be a constant map to a one point space P. Then

/>A^=/.A^P)=A/^(P)=0,

since the link of any constructible function on P vanishes. In general we need only the
compactness of the support of A(p for (iii) since this case reduces to the previous one
by (i). D

A constructible function <p is called self-dual if Dip = (p, or equivalently A(^ = 0.
Similarly, (p is anti-self-dual if Dip = —y?, or equivalently f^ = 0, where ^l<p = (p + D^p.

We say that (p G F(X) is Euler if A^p(x) is even for all x G X. Clearly every self-dual
and every anti-self-dual function is Euler. On the other hand, every Euler function admits
a canonical decomposition into self-dual and anti-self-dual parts,

(1.4) (p = ^l(p + Ay?,

where A == |A and Q = |0. By (ii) of Proposition 1.2 the direct image of a function
which is Euler (resp. self-dual, anti-self-dual) is Euler (resp. self-dual, anti-self-dual). Note
that whether a constructible function is Euler it depends only on its reduction modulo 2.
This is no longer true for self-dual or anti-self-dual functions.

We list here some more consequences of Proposition 1.2 which we use in the sequel:

D o A = -A o D, D o n = -floD
(1.5) ^ ~ ^ ^ . . . . . .

A o A = A , no0=n, A o n = Q o A = 0 .

Let 5 be a semialgebraic stratification of X. We say that S is locally trivial if X
as a stratified set can be topologically trivialized locally along each stratum of S. For
instance every Whitney stratification is locally trivial. Also a semialgebraic triangulation
of X gives rise to a locally trivial stratification of X by taking open simplices as strata.
We say that (/? e F(X) and S are compatible if y? is locally constant on strata of <S.
For each constructible function (p G F(X) there exist a Whitney stratification of X and
a triangulation of X that are compatible with (p.

Although Proposition 1.2 is elementary, it carries a nontrivial information. For instance,
(i) of Proposition 1.2 implies the well-known fact that the links of points in complex
algebraic sets have Euler characteristic zero. Actually we can show a more general fact:

1.6. PROPOSITION. - Let (p be a constructible function on X compatible mth a locally
trivial stratification S. Then if all strata of S are of even (resp. odd) dimension then ^p is
self-dual (resp. anti-self-dual).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



532 C. MCCRORY AND A. PARUSINSKI

In particular if all strata of S are of odd dimension and the support of (/? is compact
then f (^ = 0.

Proof. - We show the even-dimensional case. The proof is by induction on the dimension
of the support suppy?. First note that the proposition holds generically on supp^. Indeed
the geometric links of a single stratum are odd-dimensional spheres and have zero Euler
characteristic.

Next, by the assumption on local topological triviality, S is also compatible with A(^.
But, by our previous observation, the dimension of suppA^ is strictly smaller than the
dimension of supp(^. Hence by inductive hypothesis the statement holds for A(^; that is,
AA(^ = 0, which by virtue of (i) of Corollary 1.3 implies A^ = 0. This completes the
proof of the even-dimensional case.

The proof in the odd-dimensional case is similar and uses ^ instead of A. The last
statement follows from Corollary 1.3 (iii). D

In contrast to the direct image, the inverse image does not have good functorial properties.
In particular, it commutes neither with the duality operator nor with the link operator. The
following proposition, which we prove in the Appendix, shows that the restriction to a
generic slice and the duality operator anticommute.

1.7. PROPOSITION. - Let h : X -^ R be semialgebraic and let ^ G F(^). Let (^ denote
the restriction of(p to the fibre Xi = h'1^). Then for generic t G R we have

{D^=-D^ (A(^),=^ (^),=A(^. D

Let / : X —> R be semialgebraic, and let x G XQ = /^(D). Fix a local semialgebraic
embedding (X^x) C (R^O). Then we define the positive, resp. negative, Milnor fibre
of / at x by

F^x)=B^e)nf-\6)^
F^x)=B^e)nf-\-8)^

where B(0, e) is the ball of radius e centered at 0 and 0 < 8 < e < 1.
Let (p G F(X). We define the positive (resp. negative) specialisation of ^ with respect

to / by
(^)(rr) = { ^

J F + ( X )fFj{x}

(^)Cr) = I
Jf

( ^ f ^ ) [ X ) = / (^.
JF^X)

Both specializations are well-defined, and they are constructible functions supported in XQ.
If Y is a closed semialgebraic subset of X, then there exists, at least locally, a non-

negative semialgebraic function / : X —» R such that Y = /"^O). For instance, if X is
a subset of B^ then we may take / to be the distance to Y. If x G V, then by the link
along Y at x, denoted Ik^Y; Z), we mean the positive Milnor fibre of / at x. If ^ is a
constructible function on X, by the link of(p along Y we mean the positive specialization
of ip with respect to /, denoted by Ayy?.

4e SERIE - TOME 30 - 1997 - N° 4



ALGEBRAICALLY CONSTRUCTIBLE FUNCTIONS 533

The link of X at x € X, which we denote by lk(a;; X), is well-defined up to semialgebraic
homeomorphism, as proven in [CK, Prop. 1] using [SY]. A similar argument using [H]
shows that the link of X along Y at x is well-defined up to a semialgebraic homeomorphism.
A sheaf-theoretic construction of [DS], see also [MP, Remark 2], shows that the cohomology
of lk.r(y; X\ with coefficents in any semialgebraically constructible sheaf, is well-defined.
This construction shows that the Euler characteristic of the link is a topological invariant,
which we also prove by elementary means in the Appendix.

We note also the the Milnor fibres of / : X —> R are special cases of the link construction
since (^^)(^) = lk,(y;X±), where X+ = /-^[O.oo), Z- = .T^-oo.O].

1.8. PROPOSITION. - Let f : X —^ R be semialgebraic and continuous. Let (p G F(X).
Then ^~^^p + ^ f ^ p does not depend on f but only on Y = f~l(0) and equals

Ay(^ = ^\Y - D({Dy)\y) = A((^|y) - A((A(^)|y) + (A(^)|y.

Proof. - If one replaces f by f2 one gets ^t^ + ^ J ^ P = Ayy?. The formula is shown
in the Appendix. D

1.9. COROLLARY. - Let f '. X —>• R be semialgebraic and continuous and let (p E F(X).
Let Y = f^W. Then

Ay 0 D =- —D 0 Ay, Ay 0 A = f^ 0 Ay, f^y 0 A = A 0 Ay,

and similar formulas hold if we replace Ay by ^+ or ^ r .

Proof. - The formulas for Ay follow immediately from Propostion 1.8. The case
of the specializations ^+ or ^ r can be reduced to the link Ay by replacing X by
X+ = .T^O.oo) or X- = /-^-oo.O]. D

Let X be an algebraic subset of the nonsingular real algebraic set M. In [FM] there is
defined for each (p E F(X) the conormal cycle A^*^), which is a Legendrian cycle in
ST*M, the cotangent ray space of M. The Euler integral of (p can be computed from the
conormal cycle by a generalization of the Gauss-Bonnet theorem, and the duality operator
on constructible functions corresponds to the action of the antipodal map (multiplication
by —1 in the fibres) on the conormal cycle.

Fu and McCrory show that, for each i = 0 ,1 ,2 , . . . , there exists a unique additive natural
transformation Wi from Zs-valued compactly supported Euler constructible functions to
mod 2 homology, such that if X is nonsingular and purely d-dimensional, then w^(ljc) is
Poincare dual to the classical cohomology Stiefel-Whitney class wd~^(X). For (p G F(X),
the class w,(^) E Hi(X',Z-^) is the %th Stiefel-Whitney class of (p . Clearly the Stiefel-
Whitney classes can be defined for a Z-valued constructible function (p by first taking
the reduction mod 2 of (p. However by doing that one loses some information-for
instance at the level of Zs coefficients one cannot distinguish self-dual and anti-self-dual
functions. Instead one may follow the construction of [FM], which uses conormal cycles.
In particular one gets the following proposition, which generalizes the well-known fact
that for a manifold M of pure dimension n, Wn-2k-i(M) can be defined over Z; this
is implied by the fact that Wn-2k-i(M) is the image of Wn-2k{M) by the Bockstein
homomorphism (3 : H^-^MM -> ^n-2fc-i(M; Z^) (cf. [HT]).
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534 C. MCCRORY AND A. PARUSINSKI

1.10. PROPOSITION. - Let X be a real algebraic set, and let (p G F(X). I f ( p is self-dual,
then the odd dimensional Stiefel-Whitney classes w^k-i^) are the images of the even
dimensional Stiefel-Whitney classes w^W by the Bockstein homomorphism.

If(p is anti-self-dual then the even dimensional Stiefel-Whitney classes are the images of
the odd dimensional Stiefel-Whitney classes by the Bockstein homomorphism.

Proof. - Let (p be an Euler constructible function on X. Embed X as an algebraic subset
of the smooth n-dimensional algebraic set M. Then for i > 0, the %th Stiefel-Whitney
class of (p is defined in [FM 4.6] by

^(^-(TrxMIPA^)]^'-1-1),

where P N * ( ( p ) is the projectivized conormal cycle in PT*M, 7 is the mod 2 Euler
class of the tautological line bundle on PT*M, TT : PT*M —^ M is the projection,
^x '• TT'^X) —> X is its restriction, and [P7V*(^)] is the mod 2 homology class of
PN^ip) in TT-^X).

The proof that PTV*((^) is a cycle mod 2 [FM, 4.5] hinges on the fact that y? is Euler if
and only if a*7V*(^) =. N * ( y ) (mod 2). That proof shows that if a*7V*((/?) = A^((^),
then P^V*((^) lifts to a cycle with integer coefficients, and hence ^[PA^*^)] = 0. Now

a^*(^) = (-l)^*^),

where a : 5T*M -^ 5T*M is the antipodal involution [FM, 3.12]. Suppose that the
constructible function (p is self-dual (D^p = ^p). If we choose the embedding X C M so
that n = dimM is even, then a*7V*(^) == TV* ((/?), and hence /?[P7V*((^)] = 0. Therefore
we have

(3w^) = /?(7rx)*([P^*(^)] - 77^-^-l)
=(7^x)*/?([P^*(^)]-7n-^-l)
=(7^x)*([P^*(^)]-/37n-^-l)

_ f(7rx)*([P^*(^)] - 7n-^) n - z - 1 odd

l(7Tx)*([P^V*(^)] ^0) n - ^ - 1 even

{ w^-i(^) % even

0 i odd.
Here we use elementary properties of the Bockstein:

(3(x ̂  u) = {f3x ̂  u) + (x ̂  /3u),

l3(u ̂  v) = ((3u — v) + (u ̂  l3v).

The second equation implies that if 7 is 1-dimensional, then /^^ = 7^ if k is odd,
and /^^ = 0 if k is even. (Recall that f3{^) = 72.)

On the other hand, if y? is anti-self-dual (D(p = -y?), we choose M so that n = dimM
is odd. Again a*A^*(y?) = A^*(y?), and the above computation shows that

f^-i(^) % odd(3wiW = <
t U % even,

as desired. D
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ALGEBRAICALLY CONSTRUCTIBLE FUNCTIONS 535

2. Algebraically constructible functions

Let X be a real algebraic set. In this section we define and investigate the notion
of an algebraically constructible function on X. Of course by a simple analogy to the
semialgebraic case one can define an algebraically constructible function as one admitting a
presentation (1.1) with all Xi algebraic subsets of X. Unfortunately this class of functions is
not preserved by such elementary operations as duality or direct image by regular mappings.
In this paper we propose to call a different class of functions algebraically constructible.
Namely, a function ip : X —> Z will be called algebraically constructible if there exists
a finite collection of algebraic sets Zi and regular proper morphisms fi '. Zi —> X such
that (p admits a presentation as a finite sum

(2.1) (^^mj^l^,

where mi are integers. We denote by A(X) the ring of algebraically constructible functions
on X. The functions which admit a presentation (1.1) with Xi algebraic will be called
strongly algebraically constructible. We note that these two sets of functions on X
coincide if we reduce the coefficients mi modulo 2. This follows easily from the following
well-known result.

2.2. LEMMA. - Let f : Z —^ X be a regular morphism of real algebraic sets, and
suppose that X is irreducible. Then there exists a proper algebraic subset Y C X such
that x(f~l{x)) ls constant modulo 2 on X \Y.

Proof. - See, for instance, [AK2, Proposition 2.3.2]. D
The rings F(X), A(X), and of strongly algebraically constructible functions are all

different if dim(X) > 0. Here are some examples.

2.3. EXAMPLES. -
(i) Let X = R. The constructible function (/? € F(R) is strongly algebraically

constructible if and only if ^ is generically constant. On the other hand, (p G A(R)
if and only if (p is Euler or, equivalently in this case, (^ is generically constant mod 2.

(ii) Let P2 == Pj^ be the real projective plane with homogeneous coordinates (x : y : z).
Let / : P2 -^ R2 be given by f(x : y : z) = (^ ̂  ̂ 2, ̂  +^2). Then the image of
/ is the triangle A with vertices (0,0), (1,0), and (0,1). The pushforward />,(lp2) is an
algebraically constructible function on R2 which equals 4 inside A, 2 on its sides, 1 at
the vertices, and 0 in the complement of A.

(iii) Let (^ € F(R2) equal twice the characteristic function of the closed first quadrant.
Since (p is even, it is Euler. We show in Remark 2.7 below that ^ is not algebraically
constructible.

(iv) Let / be a regular function on X. Then the sign of / is an algebraically constructible
function on X. Indeed, let X = {(x, t) G X x R | f(x) = t2}. Then sgn/ = TT*!^ - lx.
Actually, the signs of regular functions generate the ring A(X), as shown in [PS].

It is clear from the definition that the ring A(X) of algebraically constructible functions
is preserved by the direct image by proper regular maps. It is also easy to see that A(X)
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536 C. MCCRORY AND A. PARUSINSKI

is preserved by the inverse image. We shall show below that A(X) is also preserved
by the other standard operations on constructible functions such as duality, link, and
specialization. To show this we need the following lemma, which is a consequence of
resolution of singularities.

2.4. LEMMA. - Let (p G A(X). Then there exists a presentation (2.1) of (p with all Zi
nonsingular and pure-dimensional.

Proof. - It is sufficient to find such a presentation for (p = lz with Z irreducible. We
proceed by induction on dim(Z). By resolution of singularities there exists a proper regular
morphism a : Z — Z with the following properties: Z is irreducible, nonsingular, and
of pure dimension, and there is a proper algebraic subset S G Z such that a induces an
isomorphism between Z \ a~1^) and Z \ S. Let S = a-^S). Then dim(S) < dim(Z)
and dim(S) < dim(Z). Finally

lz = cr*l^ + (Is - ̂ *1^),

and the second summand admits the required presentation by the inductive assumption.
This ends the proof. D

The next two results are consequences of Lemma 2.4 and Proposition 1.2.

2.5. THEOREM. - Let (p G A(X). Then (p is Euler and A(p G A(X). Hence f2(^ and D(p
are also algebraically constructible.

Proof. - Let (p = ̂ mif^lz, be a presentation given by Lemma 2.4. Then each Zi is
nonsingular and of pure dimension, and either Al^ = 1̂  if dimZi is odd or Al^ = 0
if dimZi is even. Hence by Corollary 1.3 (ii),

A(p = A^mJ^l^ = ̂ mJ^Al^ = ̂  mj^l^,

where the latter sum is only over odd-dimensional Zi. D

2.6. THEOREM. - Let y be an algebraically constructible function on X and let f : X -^ R
be a regular morphism. Then ̂ ^ and ^ r ( p are algebraically constructible functions on X.

Proof. _- Let X C X x R be the algebraic set defined by X = {{x,t) | f(x]^= t2}.
Let TT : X — ^ X denote the standard projection and let (/? = ^p o TT, / = f o TT : X —^ R.
We identify /^(O) with XQ = f~\0).

Take x E XQ. Then the positive Milnor fibre F^(x) is the disjoint union of two copies
of F^(x) and the negative Milnor fibre F^ is empty. Hence, by Proposition 1.8,

^ = j(^+ ̂ ) = jAxo^ = A(^o) - A((A(?)|xo) + (A^)|xo.

The function given by the latter expression is algebraically constructible by
Theorem 2.5. D

Note that the first part of Theorem 2.5, that is (p is Euler, is equivalent to Sullivan's
observation that the links of points in real algebraic sets have even Euler characteristic. On
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the other hand, the assertion that A(^ e A(X) is muchstronger. It gives further restrictions
for a function to be algebraically constructible that are of "greater depth". Let us consider
the simplest possible example. On X = R the algebraically constructible functions are
exactly those constructible functions that are Euler, see Example 2.3 (i). This is no longer
true on R2. To see this let us justify the claim of Example 2.3 (iv).

2.7. Remark. - Let (p = 2 • IQ, where Q C R is the closed first quadrant. Since ^p is
even, it is also Euler. Let Y C R2 denote the x-axis. Then (A(^)|y(a;) equals 1 for x > 0
and 0 for x < 0. Consequently (A(^)|y is not algebraically constructible and hence, by
Theorem 2.5, neither is (/?.

On the other hand, all constructible functions on R2 which are divisible by 4 are
algebraically constructible (by the following Theorem). This gives a clear limit to the
depth of information carried by algebraically constructible functions. In general we have
the following nontrivial fact.

2.8. THEOREM. - Let X be an algebraic set of dimension d. Then

2dF{X) C A(X)

Proof. - Let S C X be a semialgebraic subset of X. We show by induction on
d = dimX that 2dls is algebraically constructible. We suppose that X is irreducible.

Up to a set of dimension < d, the set S is a finite union of basic open semialgebraic
sets; that is, sets of the form

[ x ^ X | g^(x) >0,...,^(rr) > 0},

where the ^'s are polynomials on R71 [BCR, 2.7.1]. Since a finite intersection of basic
open sets is still basic, for the inductive step it suffices to consider S basic and open. Then,
by [BCR, Theoreme 7.7.8], there exist polynomials / i , . . . , fd such that

u = u{h.... Jd) = [x e x | f,{x) > o,..., Ux) > 0}

is contained in S and dim(5' \ U} < d. Hence, by the inductive assumption, it suffices to
show 2dlu G A(X). Let X C X x R^ be given by

X = {(rr, t i , . . . td) € X x R^ | f,(x) = t 2 , . . . , fd(x) = t2}.

Let TT : X —> X denote the standard projection. Then Y = {/i(7r(f)) = • • • = = /^(7r(f)) =
0} is an algebraic subset of X. In particular, l ^ v p is algebraically constructible, and so is

7T*1^ = ̂ lu

as required. D

2.9. DEFINITION. - A constructible function (p (respectively a set T of constructible
functions) is completely Euler if all constructible functions obtained from (p (resp. from
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the functions in T) by means of the arithmetic operations +,-,*, and the operator A,
are integer valued.

In particular Theorem 2.5 implies that every algebraically constructible function is
completely Euler. We shall study some consequences of this fact in section 4.

The following result is an immediate consequence of Theorem 2.8. In the next section
we give an alternative purely topological proof of a slightly more general statement
(Proposition 3.1).

2.10. COROLLARY. - Letip G F{X) be divisible by 2dimx. Then ̂  is completely Euler. D

3. Completely Euler functions

In this section we study the completely Euler functions in low dimensions. In particular
we show how to decide in a systematic way whether a constructible function is completely
Euler. In the next section we show that the characterization of completely Euler functions
obtained in this way is equivalent to some combinatorial conditions discovered by Akbulut
and King [AK2].

If X is a semialgebraic set, we denote by Ax the ideal of F(X) consisting of all (p
such that for each positive integer fc, dimsupp((/? (mod 2k)) < fc; that is to say, y? is
divisible by 2k in the complement of a subset of dimension < k. If X is an algebraic set
then by Theorem 2.8 all functions in Ax are algebraically constructible. In particular they
are also completely Euler, which is also a consequence of the following.

3.1. PROPOSITION. - Ax is preserved by A.

Proof. - We proceed by induction on d = dimX. Let ^ G Ax, and let S be a
semialgebraic stratification of X compatible with (p. Denote by X^"1 the (d - l)-skeleton
of <?, that is the union of strata of dimension < d. Then ^ = (lx - Ij^-i)^ is divisible
by 2^ and hence both A^ and 0^ are divisible by 2d~l. And either A'0 for d even, or f2'0
for d odd, has support in X^"1. In both cases A'0 == ^ - ̂  e Ax-

On the other hand y\xd-l = (Ix^-1)^ ls m A^-i and hence satisfies the inductive
assumption. Therefore Ay? = A'0 + A((p\xd-l) ^ ^x, as required. D

Fix a constructible function ^ (or a set of functions 7') on X. We denote by A{(/?} (or
A.F, respectively) the set of functions, which in general may not be integer-valued, obtained
from ip (resp. 7) by means of the arithmetic operations + , — , * , and the operator A. Let S
be a topologically trivial semialgebraic stratification compatible with y?. Let F^(Jf) be the
subring ofF(X) consisting of functions compatible with <?, and let As = A^nFs(X). By
Proposition 3.1, As is preserved by A and hence As is completely Euler. Consequently,
in order to determine whether (p is completely Euler we may work in F^(X) modulo As',
that is to say, whether (p is completely Euler is determined by its values mod 2k on strata
of dimension k. In particular, since S is finite there are finitely many conditions to check.

We begin with some elementary observations. First note that whether (p is Euler depends
only on the reduction of (p modulo 2. Morever, since all positive powers of (p are
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congruent mod 2,

(3.2) y?= y?2 =E y?3 = • • • (mod 2),

and if one of them is Euler so are all the others.
Let dim supp^ ^ 1. Then whether y? is completely Euler is determined by its values

modulo 2. Assume that y? is Euler. Then by (3.2) all the powers of y? are also Euler.
Moreover, by dimension assumption, flip has finite support and so belongs to As- Hence
A{y?} modulo As contains at most one element, namely the class of y?. This shows the
following result.

3.3. LEMMA. - ydimsuppy? <_ 1 then y? is completely Euler if and only if^p is Euler. D
Note also that dimsuppAljc < dimX (for dimX even) or dimsuppOljc < dimX

(for dimX odd). Hence the following observation will allow a reduction of dimension.

3.4. LEMMA. - lx is completely Euler if and only ifix is Euler and Klx (or equivalently
^11 x ) 1s completely Euler. In particular, if dim X < 2 then lx is completely Euler if and
only if lx is Euler.

Proof. - The first statement is obvious since multiplication by lx acts trivially on
A{lx}. Suppose that dimX ^ 2. Then dimsuppAlx < 1. If lx is Euler, so is Alx,
since A o A == A. So the second statement follows from Lemma 3.3. D

On the other hand there exist Euler constructible functions y? with dim suppy? = 2 which
are not completely Euler (see Example 3.13 below). Let us consider this case in detail.
We assume y? is Euler and, as before, determine A{y?} modulo As, in particular modulo
4. The algebra of powers y?, y? 2 , . . . , modulo 4, is generated (additively) by y?, y?2, y?3. By
(3.2) all these powers are Euler. The supports of Ay?^, k = 1,2,3, are contained in X1,
that is the union of strata of dimension ^ 1. Hence, again modulo As, A{y?} is generated
additively by the products of the following functions:

y?, Ay?, Ay?2, Ay?3.

Moreover, all such products except the powers of y? are supported in X1 and hence it
suffices to consider their values mod 2. Consequently, by (3.2) only the following products
matter:

(3.5) ^a(A^)b(A^2)c(A^3)d,

where a, 6, c, d = 0 or 1 , and b + c + d > 0. Moreover, Ay?, Ay?2, Ay?3 are automatically
Euler. Thus we have the following result.

3.6. PROPOSITION. - Tfdimsuppy? < 2, then y? is completely Euler if and only if y? is
Euler and all 11 functions supported in the one dimensional set X1 and given by (3.5) with
a, 6, c, d = 0 or 1, a + b + c + d > 2, are Euler. D

Suppose dimX < 3. By Lemma 3.4, Proposition 3.6 applied to y? = ^llx gives a
criterion for lx to be completely Euler. Since in this case Ay? = Af21^ = 0 , whether y?
is completely Euler is determined by the products

(3.7) yp^Ay?2)^3)0
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with a,b,c == 0 or 1. Six of these products, for b + c > 0, have support in X1. The
functions A(p2 and A^3 are automatically Euler. Consequently we have the following.

3.8. PROPOSITION. - If dim X < 3, then lx is completely Euler if and only ifix is Euler
and the following functions supported in X1 are Euler:

(3.9) (^(A^2), (^(A^3), (A(^)(A^3), ^(A(^)(A^3),

where (p = ^lx- D

The conditions given by Proposition 3.8 can be expressed in an equivalent way in terms
of characteristic sets. For every 8 = ((^o^i^) ^ (^2)3 define

Xs = [x G X | (^) = ^o, A^2(rr) = ^, A^3^) = ̂  (mod 2)}

Note that the Xg are disjoint, not necessarily closed, and of dimension ^ 1 if 6^ / 0 or
^2 / 0. The supports of the functions of (3.7), considered modulo 2, are unions of the
sets Xg. In particular the six functions of (3.7) with b + c > 0 correspond to the six set
Xs with ^i 1=. 0 or ^ ^ 0:

suppsA^2 = JCm U Xno U JCon U Zoic,
supp2A(^3 = Xin U Xioi U Xon U JCooi,

^ ^^ supp2^(A(^2) = JCin U Ziio,
supp2^(A(^3) = Xin U Zioi,
supp2(A^2)(A^3) = JCm U ^011,
supp2^(A^2)(A^3) = JCm,

where by supp2 we mean the support modulo 2. Thus Proposition 3.8 can be reformulated
as follows.

3.87. PROPOSITION. - If dim X < 3, then lx is completely Euler if and only if it is Euler
and the subsets Xin,JCioi,-Xoii^iio of X1 are Euler. D

3.11. Remark. - If X is Euler then supp2A(^2 and supp2A(^3 are Euler. Therefore we
may choose in Proposition 3.8' another family of four characteristic sets Xg, provided that
if these sets are Euler then all the sets Xs are Euler. For instance, ^111, ̂ 101, ̂ 001^110
is such a family, which we use in the next section.

Recall that we have fixed a stratification S of X. Let X^ denote the z-skeleton of S and
suppose, in addition, that all skeleta of S are Euler. We may apply the above method to
obtain a stratified version of Proposition 3.8 that is a characterisation of those S such that
the family {l^z | i = 0,1,2,3} is completely Euler.

3.12. PROPOSITION. - Let S be a locally topologically trivial stratification of a
semialgebraic set X, dimX < 3. Then the family {Ixz | i = 0,1,2,3} of characteristic
functions of the skeleta ofS is completely Euler if and only if all l^z are Euler and one
of the following equivalent conditions holds:
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(i) The following 12 functions supported in X1 are Euler:

(^Ixi, ^{A^CA^Y^IX^^

where ^ = Olx, a ,6,c ,d = 0 or 1, and we consider only d == 0, a + & + c > 2, and
d = l , a + 6 + c > 0 .

(ii) The following 12 characteristic sets contained in X1 are Euler:

X^ = [x G X | ̂ (rr) = ^o, A^(^) = (5i, A(^) = 8^ Alx^ = 0 (mod 2)},
for (5= (1,1,1), (1,0,1), (0,1,1), (1,1,0),
X^ = {x G X | ̂ (x) = So, A^{x) EE 8^ K^{x) EE 8^ Al^ =- 1 (mod 2)},

for 8^ (0,0,0), and
X' = [x (E Xi | (^OT) = 1, K^{x) = A^(x) = Alx2 = 0 (mod 2)}.

Prw/. -
First note that the family {Ijo I i = 0,1,2,3} is completely Euler if and only if

{(^,lx2,lxi} is completely Euler. The latter family is supported in X2, so we work
modulo 4. By repeating the arguments of the proofs of Propositions 3.6 and 3.8, we see
that {(^, 1x2, Ixi} is completely Euler if and only if the functions

^{K^\K^}c{Klx^d^}e.

a, b, c, d, e = 0 or 1, are Euler. The supports of A(^2, A(^3, and Alx^ are contained in X1,
so if 6 + c + d > 0 we may forget the last factor.

Since A(^2, A(^3, and Alx^ are automatically Euler, we are left with exactly the 12
functions of condition (i).

The equivalence of (i) and (ii) can be shown in exactly the same way as
Proposition 3.8'. D

3.13. EXAMPLES. - Let X be Akbulut and King's first published example of an Euler
space which is not homeomorphic to a real algebraic set [Ki, Example, p. 647]. Recall that
X is the suspension of the algebraic set Y shown in Figure 3 (loc. cit, p. 646). Let A be
the suspension of the figure eight, with suspension points a, a'; let B be the suspension
of three points, with suspension points b, b'\ let C be an arc with endpoints c, c'. The
space V is obtained from the disjoint union of A, B, C, by identifying a' with &, b' with
c, and c1 with a. (Note that there is a mistake in the picture of Y in [BR, p. 181.]) In fact
V is homeomorphic to an algebraic set in projective 3-space, the union of the umbrella
wx2 = yz2 and the circle x = 0, (y - I)2 + z2 = w2. The support of ^ = flix is of
dimension 2 and (p is Euler, but ^ is not completely Euler. In fact (^(A(^2) is not Euler,
which is exactly the reason that X is not homeomorphic to an algebraic set.
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4. Topology of real algebraic sets

Let X be a triangulable topological space such that the one point compactification of
X is also triangulable. By a theorem of Sullivan [Su], a necessary condition for X to be
homeomorphic to a real algebraic set is that X is mod 2 Euler space; that is, the Euler
characteristic of the link of every point of X is even. By [AK1], [BD] this condition is
also sufficient if dim X <^ 2, but this is no longer true if dim X == 3. In this case necessary
and sufficient topological conditions were given by Akbulut and King [AK2], and then
reinterpreted by Coste and Kurdyka [C], [CK]. More restrictions on the Euler characteristic
of links of real algebraic sets were given in [C], [CK], and [MP]. We show below that all
these conditions are simple consequences of Theorem 2.5.

It will be convenient for us to proceed using the language of semialgebraic geometry.
Alternatively, one could use Euclidean simplicial complexes or subanalytic sets.

Let X be an algebraic subset of R71. Let Y C X be closed and semialgebraic, and
let Z C X be semialgebraic. Choose a nonnegative continuous semialgebraic function
/ : X —^ R defining V; that is, Y = /^(O). Recall from section 1 that by the link
lkp(Y;Z) of Y in Z at p G Y we mean the positive Milnor fibre of f\z at p. Such
a link can be understood as a generalization of the link considered in [Cl, [CK], which
was only defined at generic points of Y. In particular the Coste-Kurdyka link has the
same homotopy type as ours; see [MP, §2.3] for details. In what follows we use only the
Euler characteristic of the link, that is, the operator Ay introduced in section 1. In [C]
Michel Coste made important observations on the behaviour modulo 4, 8, and 16, of the
Euler characteristic of links of real algebraic subsets. These results are special cases of
the following general statement.

4.1. THEOREM [MP, Theorem 2]. - Let Xi, . . . ,Xk be algebraic subsets of X. Then
(p == Ajci • . • ^Xk lx is always divisible by 2k. Moreover, let Y be an irreducible algebraic
subset of X. Then there exists a proper algebraic subset Y ' C Y such that for all
x , x ' C Y\Y/

^p(x) EE ^{x') (mod 2^).

Proof. - ( p / ^ is algebraically constructible-and, in particular, integer-valued-by
Proposition 1.8 and Theorem 2.5. The second part of the statement follows from
Lemma 2.2. D

In [C], Theorem 4.1 was shown only for k = 1,2,3, and under special assumptions.
In particular, it was assumed that X-^ C ' ' • C Xjc and dim X = dim Xk + 1 = • • • = =
dimXi +fc. This dimensional assumption was first dropped in [CK, Theorem 1'] for k = 1.
The proof of Theorem 4.1 presented here is different from the proof in [MP], which was
based on the relation between complex monodromy and complex conjugation.

In [C] and [CK] the authors show how to use Theorem 4.1 to recover Akbulut and King's
combinatorial conditions [AK2, 7.1.1] characterizing real algebraic sets of dimension < 3.
We show below that it is even more natural to look at these conditions as consequences
of Theorem 2.5.
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4.2. THEOREM. - Let X be a semialgebraic subset of IU1 with dim X < 3. Then X
satisfies the Akbulut-King conditions if and only ifix is completely Euler.

Thus the main result of [AK2] can be rephrased as follows: If dimX < 3, X is
homeomorphic to a real algebraic set if and only if lx is completely Euler. In particular,
Theorem 2.5 shows the necessity of the Akbulut-King conditions (cf. Remark A.7 of the
Appendix).

To prove Theorem 4.2, we first recall the Akbulut-King conditions, using the approach
of [C], [CK]. Then we apply the results of section 3.

Let X be a semialgebraic subset of R71, dimX < 3. We suppose that X is Euler, and
we fix a locally trivial semialgebraic stratification S of X. Let Co(X) be the union of the
1-skeleton X1 and those strata T of dimension 2 such that for x 6 T,

x(lk.(T; X)) = Arix^) = 0 (mod 4).

Equivalently we may say that we include in Go(X) those two-dimensional strata T such
that Qlx = 1 (mod 2) on T. Let (p = Olx. Then in the complement of X1,

(4.3) ^=Elco(x) (mod 2), (p2 = lco(x) (mod 4).

4.4. LEMMA. - Co(X) is Euler in the complement of X°. Moreover, for each stratum S
of dimension 1 and p € S,

X(lk^(5; Go(X))) = Aslcow(^) = ̂ \P) (mod 4).

Proof. - Fix a stratum S of dimension 1 and let p be a generic point of S. Let N be a
transverse slice to S at p. Denote by X' a small neighbourhood of p in N D X, and set
C' = X' n Co(X). Then by Proposition 1.7,

(^[x' = Alx'.

This shows (p\x' is Euler nearp and hence, by (4.3), so is Ic/. Hence, again by Proposition
1.7, Co(X) is Euler near p. If we apply the same arguments to (p2 we get the last equality
of the statement. D

Given S and p G S as above, following [C] and [CK] we consider the number

A^ Co(X), X) = x(lkp(5; X) \ 1^(5; Go(X))) - x(lkp(5; X)) + x(lkp(5; Co(X))).

Note that, as follows from Lemma 4.5 below, Ap(5\ Co(X), X) does not depend on p but
only on S (actually in the notation of [C] it equals —A(5', Co(X), X)). Here we follow the
notation of [MP], where it is shown that the number Ap(5',C7o(X),X) has the following
geometric interpretation. Let 5, resp. Co(X), be given in a neighbourhood ofp as the zero
set of a continuous nonnegative semialgebraic function /, resp. g. Then, following [MP],
we define the iterated link lkp(5,Co(X);X) as the iterated Milnor fibre

1^(5, Co(X); X) = B{p^ e) n /-^i) H g-\8,)^
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where 0 < ^2 < <?i < e. As shown in [MP, §3.4], \(S,Co(X),X) is the Euler
characteristic of \kp(S,Co(X)',X). Hence [MP, §3.5] shows that

^(S^Co(X)^X) = x(lkp(^Co(X);X)) = A5(Aco(x)lx)(p).

4.5. LEMMA.

A^Co(X),X) = 0(lc,(x)Alx)(ri.

/n particular,

Ap(5, Co(X),^) EE 4A(^2 + ̂ (p) (mod 8)

Proof. - We use again a transverse slice TV to S at p and Proposition 1.7. Let X' = NnX,
C ' = JV n Co(X), as before. If p is a generic point of 5, for instance S is a stratum of
a Whitney stratification of X near p, then

A5(Aco(x)lx)(p) = A(Ac/l^)(p).

By Proposition 1.8 the expression above can be written in terms of the link operator A and
the characteristic functions of lc' and lx/, after simplification A(Ac (/lx /) = A(lc/01^).
Hence the first formula of the lemma follows again from Proposition 1.7, since we have
to exchange A and 0 when taking the slice. To show the second formula we use (4.3):

n(lcowAljO == 4Q(^2 - ̂ 3) = 4A((^2 + ̂ 3) + 4(<^2 + (^3) (mod 8),

which gives the formula since (p2 + (p3 is even. D

Proof of Theorem 4.2. - Given a 1-dimesional stratum S of X, the Akbulut-King invariant

(^(^1(^(5)) € (Z^)3

is defined as follows (see [C], [CK]):

^o(S) = ̂ (lkp(5, C7o(X); X)) (mod 2)
^o(5) + e,(S) + 62<5) = ̂ (lk^(5;^)) (mod 2)

^2(5) = jx(lkp(5; Co(X))) (mod 2),

where p can be any point of S. Given (a,6,c) e (Zs)3, define the characteristic set
£ahc{X) as the union of the 0-skeleton X0 and those one-dimensional strata S such that
(eo(S),e,(S)^(S)) = (a^c).

Now for every x C X we define

eo(x) = A(^2 + c^3)^) (mod 2)
(4-6) ^(^^A^3^) (mod 2)

£^{x) = (^(.r) + Ay?2^) (mod 2),
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where ^p = Qlx. If (a,6,c) ^ (0,0,0), (0,0,1) then {x € X \ (eo(x),e^{x),e2(x)) =
(a,b,c)} is of dimension ^ 1 and hence by Lemmas 4.4 and 4.5,

^abcW = X ° U { x € ̂  | (£0(^1(^2^)) = (a.b.c)}.

In particular, for these (a, 6, c) the set £abcW is independent of the choice of stratification
(up to a finite set, since we may always add some point strata).

Note that (eo(x),£^x),e^x)) equals (0,0,0), resp. (0,0,1), for nonsingular points of
X, resp. nonsingular points of Co(X). In [AK2], the characteristic sets corresponding
to (1,1,1), (0,1,0), (1,0,0), (1,1,0) are denoted by Z^X\ Zi(X), Z^X\ Z^(X)
respectively. It is shown in [AK2, 7.1.1] that X is homeomorphic to an algebraic set
if and only if X is Euler and ZoW, Z^X\ Z^(X), Z^(X) are Euler. Now the
theorem follows from Proposition 3.8' and Remark 3.11 since, in the notation of section
3, 8o(x) = £o(x) + £i0r) + e^x\ 8^x) = eo(x) + e^x), and S^x) = e^(x). Hence
Zo(X) = Xioi, ^i(X) = Xni, Z^X) = Xno, and Z^X) = Xooi. D

In [AK2, Theorem 7.1.2] the authors also give a stratified version of their characterization
of real algebraic sets of dimension < 3 which involves 12 characteristic sets Zi(X),
i = 0 , . . . . 11. Again we show that these combinatorial conditions follow from Theorem
2.5 and section 3.

4.7. THEOREM. - Let S be a locally topologically trivial semmialgebraic stratification
of the semialgebraic set X, with dim X <_ 3, such that all the skeletons X^ of S are
Euler. Then the characteristic sets Zi(X), i = 0 , . . . , 11, are Euler if and only if the family
{l^z | i = 0,1,2,3} is completely Euler.

The proof is similar to that of Theorem 4.2. We just sketch the main points.
First we recall briefly the construction of Z^(X), i = 0 , . . . , 11, again following ideas of

[C] and [CK]. It is important to note that this time the characteristic sets will depend on
the stratification S of X. Let Co(X) be defined as above and let C7i(X) be the union of
X1 and the remaining 2-dimensional strata T; that is, those strata T such that f21x = 0
(mod 2) on T. Given a 1-dimensional stratum S we define

63(5)=jx(lkp(5;Gi(X))) (mod 2),

where p can be any point of 5'. The following lemma shows that e^{S) is well-defined.

4.8. LEMMA. - The set C^(X) is Euler in the complement of X°. Moreover, for each
stratum S of dimension 1 and p G S,

02(8) + 6s(5) = ^(l^)b) (mod 2).

Proof. - The set Ci(X) is Euler because so are Co(Z), X2 = Co(X) U Ci(X), and
X1 = Co(X) n C7i(X). The last statement of the lemma follows from

e2(S)+e^S)=^x^p^X2))=^lx^p) (mod 2). D

Proof of Theorem 4.7. - Given (a,&,c,d) e (Z2)4, define the characteristic
set £abcdW as the union of X° and those 1-dimensional strata S such that
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(£o{S),e^S),£^S),e3(S)) = (a,6,c,d). (We follow here the notation of [AK2, §7.1].)
It is easy to check that

SabcdW = X ° U [x G X1 | {£Q{x\e^x\£^x\£^x}={a^c^d)},

where £o(x), e^{x), e^x) are given by (4.6), and e^(x) = e'z(x) + A(lx^)(x) (mod 2).
The characteristic sets Zi{X\ i = 0 , . . . , 11, are unions of some of the sets SabcdW- The
interested reader may consult [AK2, §7.1] for their definitions. The important property of
the Z i ' s is that they are Euler if and only if all the sets £abcd{^) are Euler, as follows
from Lemma 7.1.6 toe. cit. On the other hand, it is easy to see by Proposition 3.12 that all
the sets £abcd{X) are Euler if and only if the family {l^i \ i = 0,1,2,3} is completely
Euler. This completes the proof.

Note also that Proposition 3.12 explains why we need only 12 conditions out of 16. D

5. Nash constructible functions and Arc-symmetric sets

We present a variation of our notion of algebraically constructible functions.
Let X be a real algebraic set. A constructible function (p G F(^0 is called Nash

constructible if it admits a presentation as a finite sum

^ = ̂ ^Jz*1^,

where for each z, mi is an integer, Ti is a connected component of an algebraic set
Zi, and fi : Zi —^ X is proper and regular. By the same arguments as in Section 2,
one shows that the family of Nash constructible functions is preserved by the inverse
image by a regular map, the direct image by a proper regular map, duality, and A. Hence
not all constructible functions are Nash constructible. On the other hand, there are Nash
constructible functions which are not algebraically constructible. Consider for instance the
following classical example. Let X C R2 be the curve defined by y2 = (x - l)x(x + 1).
Then X is irreducible and nonsingular and consists of two connected components Xi,
i == 1,2. Moreover, the Zariski closure of either of these components is X itself. Hence
by Lemma 2.2 the characteristic functions lx, are not algebraically constructible, though
they are clearly Nash constructible.

Note that Lemma 2.2 does not hold any longer if we merely assume that Z is a
component of a real algebraic set, so this lemma cannot be applied to study Nash
constructible functions. Instead one can use the following general statement.

5.1. PROPOSITION. - Let f : Z —^ X be a proper analytic mapping of real analytic spaces,
and suppose that X is connected and nonsingular. Then ')({f~l(x)) is generically constant
mod 2; i.e., there exists a subanalytic subset Y C X such that dimY < dimX and, for
all x , x ' € X\Y,

xU~\^=x{f~\x'}} (mod 2).

Moreover, if Z, X and f are semialgebraic, then Y can be chosen to be semialgebraic.
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Proof. - By [Su] Z is an Euler space. Let ip = f^lz' Then (p is a subanalytically
constructible function in the sense of [KS] and [Sch]. Since, by loc. cit., f^D = Df^, it
follows that (p is an Euler function; that is, Ay? = /*Alz attains only even values. Now
the proposition follows from the following lemma.

5.2. LEMMA. - Let X be a connected real analytic manifold and let (p be a subanalytically
constructible Euler function on X. Then (p is generically constant mod 2.

Proof. - X admits a subanalytic triangulation such that (^ is constant on open simplices.
Let Ai, As be two simplices of dimension n = dimX such that Ai2 = Ai D Aa is
a simplex of dimension n - 1. Let p be a point in the interior of Ai2 and denote by
01,02,012 the values of ^ on the interiors of Ai, A2, and Ai2 respectively. Then by
definition of the link operator, ^(p) = 01 + 02 + (1 + (-l^X^ - 01 - 02). Thus if
A(^(p) is even then 01 = 02 (mod 2). D

5.3. DEFINITION. - Let X be a real algebraic set. A semialgebraic subset S of X is
called arc-symmetric (or symmetric by arcs) if, for every analytic arc 7 : (-1,1) —> X,
^7((-1,0)) C S then^-1^1)) C S.

Every arc-symmetric semialgebraic set is closed in X. The notion of arc-symmetric sets
was introduced by Kurdyka; in many ways these sets resemble algebraic subsets, but they
form a much wider class (cf. [Ku]). It is interesting to note that they can be studied using
the techniques introduced in this paper.

5.4. PROPOSITION. - Let S be a closed semialgebraic subset of an algebraic set X. Then
Is is Nash constructible if and only if S is arc-symmetric.

5.5. COROLLARY. - Every arc-symmetric semialgebraic set S is Euler and Is is completely
Euler. D

5.6. COROLLARY. - Every arc-symmetric semialgebraic set of dimension <^ 3 is
homeomorphic to an algebraic set. D

Proof of 5 A. - Let Is = E^-A*^ be Nash constructible. Let 7 : (-1,1) -^ X
be an analytic arc in X such that 7((-1,0)) C S. Then by Lemma 5.1, X^1^^)))
is generically constant mod 2 on (-1,1). Hence so is Is. This gives, for S closed,
7((-1,1)) C 5, as required.

Conversely, let S be an arc-symmetric semialgebraic subset of X. We show by induction
on n = dimS that Is is Nash constructible. We may assume that X is the smallest
algebraic set containing 5; that is, X is the Zariski closure of S. Then dim S == dimX.
Let a : X —^ X be a resolution of singularities of X. Then a is an isomorphism over
X \ S, where S is an algebraic subset of X, and both S and S = cr-^S) are of dimension
smaller than n. Let Xi , . . . , Xs be the connected components of X of dimension n, and
let S be the union of those Xi such that

a (X, )n(5 \S)^0 .

Then, since S is arc-symmetric, by an argument of Kurdyka [Ku, Theoreme 2.6],

a{S) C S.
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Hence
1.5' = IS\E + l^ns = ̂ Is — a^snS + 1-s'ns-

The first two summands are Nash constructible by definition, and the latter is Nash
constructible by the inductive hypothesis, since clearly S D E is arc-symmetric. D

APPENDIX

Proofs of some properties of constructible functions

In this section we present elementary proofs of some basic properties of semialgebraically
constructible functions. These proofs use either stratifications or triangulations of
semialgebraic sets (see [L] for references). We believe our arguments are well-known
to specialists, and we do not claim any originality (cf. [Sch, Remark 3.5]).

Let X be a closed semialgebraic set and let x e X. By [CK, Prop. 1] the link lk(^; X)
is well-defined up to semialgebraic homeomorphism. The Euler characteristic of the link
is a topological invariant of the germ (X,x). Indeed, X is locally contractible and hence

(A.I) xW^X))=l-x(X^X\{x}).

Similarly let Y be a compact semialgebraic subset of X. Then the quotient space X/Y
has a natural structure as a semialgebraic set and we may define the link of Y in X,
by lk(V;X) = lk(*;X/Y), where * denotes the class of Y in X / Y . If Y C R71 is
compact and semialgebraic, and not necessarily contained in X, then by \k(Y',X) we
mean lk(V H X; X). By the above, ^(lk(V; X)) is also a topological invariant of the pair
(X,V); this also follows from the following corollary of [MP, Lemma 1]:

(A.2) xW; X)) = x(V n X) + x{X \ Y) - xW = x(Y n X) - x(X, X \ Y).

Let / : Z —^ X be a proper semialgebraic map and let Y be a compact subset of X. In
what follows we often use the following consequence of the definition of the link:

f-lW^X))=l^f-l(Y^Z).

Recall that the additivity of Euler characteristic,

(A.3) x{x u x') = xW + x(x') - x{x n x'\

allowed us to define in section 1 the Euler integral of the semialgebraically constructible
function y? C F(X), provided (p has compact support. Here are some other elementary
consequences of (A.3).

A.4. LEMMA. - Let X and Y be closed semialgebraic subsets of R71 and suppose that
Y is compact. Then

(A.4.1) x(W'^X))= /Alx .
JY
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Let f : Z —^ X be a semialgebraic map, and let (p C F(Z) have compact support. Then

(A.4.2) ff^=f^

Let x € X and let (p G F(X). Then for e > 0 sufficiently small,

(A.4.3) / ^=^).
JB,

where B^ is the closed ball of radius e centered at x.

Proof. - The right hand side of (A.2) is additive with respect to X for Y fixed and
additive with respect to Y for X fixed. By (A.2) so is ^(lk(Y;X)). On the other hand,
the right hand side of (A.4.1) is also additive with respect to both X and Y. Hence, by
the triangulability of semialgebraic sets, it suffices to verify (A.4.1) for X and Y simplices
such that X D Y is their common face. In this case the verification is straightforward.
This shows (A.4.1).

To show (A.4.2) we may assume that Z is compact and (p = lz. We may assume
also that, up to a semialgebraic homeomorphism, X is equal to a simplex A and / is
topologically trivial with fibre F over the interior of A. Let Y = 9A, and let Z ' == /"^(V).
Since / is topologically trivial over lk(y;X),

xWf^z))=x(F)xW^x))^
which, by (A.2) and the inductive assumption on dimX, gives

f^=x(Z)

=x(zf)^x(z\zf)-x{W^z))
= / f^ + X(F)W \ Y) - x(lk(V; X)))

JY

= I f^^x(F){xW-x(Y))
JY

= j ly/^+ y lx\y/*^

=//..,
as required. This shows (A.4.2).

It suffices to show (A.4.3) for (p = lx and in this case (A.4.3) follows from the local
contractibilty of X. D

Proof of Proposition 1.2. - To show (i) we note that D is additive, i.e. D(^p + '0) =
Dip + DIJ). Therefore it suffices to verify (i) for (p = 1 ,̂ where A is a simplex. In this
case the verification is straightforward.
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Let / : X —> X' be proper semialgebraic, x e X'\ and Y = /^(x). Then by (A.4.1),

/*(Alx)(.r) = ( Klx = XW'^X)) = xU-'W^X')))
JY

= I f^x=Wlx)(x).
J\^{x,X'}

Hence /*A = A/^, which implies (ii) of Propostion 1.2.

Statement (iii) follows from (A.4.2). Indeed, let Z^X-^Y and let y e Y. Then
by (A.4.2),

(9°f)^(y)= I ^= I f^=9^(f^)(y). n
^(^o/)-1^) •A?-1^)

Proof of Proposition 1.7. - Let h : X -^ R be semialgebraic. Then A is locally
topologically trivial over the complement of a finite subset of R. By [H] we may assume
that this trivialization is semialgebraic. In particular for x C X in a generic fibre Xf of h,
the link lk(a;;X) is the suspension of lk(a;;Xi). This gives

(A.5) x(lk(^X))=2-x(lk(^X,)).

This, in particular, shows Propostion 1.7. Note also that, by virtue of (A.I), we may use
any topological trivialization of h (not necessaily semialgebraic) to establish (A.5). D

Suppose, in addition, that h : X —^ R is proper and let Co < ci be generic values of
h. Let Xco,ci = ^[co^ci]. Then by (A.5)

(A.6) Al^ = (Alx)lx^ + (lx, - (Alx)lxJ + (lx, - (Alx)kJ.

Proof of Proposition 1.8. - Let V C X C R/1 and fix x C X. Let (^ e F(X). Let B^
denote a small closed ball centered at x and 5^ = QB^. By (A.6)

AHaJ = (A(^)IB, - (A(^)|^ + ̂ k,

and hence by (A.4.1) and (A.4.3)

Ay(^)= / A(^|BJ
jynBe

= / [(A^|^-(A^|^+^k]
^ynBe

= A^(x) - A((A^)|y)(.r) + A(^|y)(^)

if x e y, and Ay^x) = 0 otherwise. This shows Proposition 1.8. D

A.7. Remark (Topological invariance of the link operator and the Euler integral). - Let
h : X' —^ X be a homeomorphism (not necessarily semialgebraic) of semialgebraic sets.
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Let (p € F(X) be such that y/ = (/? o h G F(X'). Let V C X be a compact semialgebraic
subset such that Y 1 = ̂ (Y) is also semialgebraic. Then

(A^)ofa=A(^), ( ^p= ( ^
JY JY'

Indeed, it suffices to show that there exist closed semialgebraic sets X, C X such that
h^^Xi) are semialgebraic subsets of X' and

^= y^^ix,»
Here is a canonical construction of such sets X,. First we note that y? is semialgebraically
constructible if and only if all the sets (^(m), m G Z, are semialgebraic and all but
finitely many of them are empty. Let (pm = ^l^-i(m)- ^en clearly

(A.8) (^=^(^.
m

Let y = (^^(m). Then ly can be canonically decomposed

(A.9) ly = IF, - IF, + 1^ - • • • ̂  1F^

where Fi D F^ D • • • D F^ are closed semialgebraic in Y. The sequence of F^s is
constructed recursively as follows (cf. [K, §12]): Vo = Y, Fi = Y;_i, V, = F, \ Y,-!,
% = 1,2,... . Clearly all the Fi are closed and semialgebraic, and the sequence terminates
since dimFi < dimF,_i. Now (A.8), together with (A.9) applied to each set (^(m),
gives the required canonical decomposition of ^p.
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