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ZERO MACH NUMBER LIMIT IN CRITICAL SPACES
FOR COMPRESSIBLE NAVIER–STOKES EQUATIONS

BY RAPHAËL DANCHIN

ABSTRACT. – We are concerned with the existence and uniqueness of local or global solutions for slightly
compressible viscous fluids in the whole space. In [6] and [7], we proved local and global well-posedness
results for initial data in critical spaces very close to the one used by H. Fujita and T. Kato for incompressible
flows (see [14]). In the present paper, we address the question of convergence to the incompressible model
(for ill-prepared initial data) when the Mach number goes to zero. When the initial data aresmallin a critical
space, we get global existence and convergence. For large initial data and a bit of additional regularity, the
slightly compressible solution is shown to exist as long as the corresponding incompressible solution does.
As a corollary, we get global existence (and uniqueness) for slightly compressible two-dimensional fluids.

 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – On étudie l’existence et l’unicité de solutions locales ou globales pour les fluides légèrement
compressibles dans l’espace entier. Dans [6] et [7], on a montré que le modèle était bien posé dans des
espaces critiques très proches de ceux utilisés par H. Fujita and T. Katopour les fluides incompressibles
(voir [14]). Dans cet article, on étudie la convergence vers le modèle incompressible (pour des données
initiales mal préparées) lorsque le nombre de Mach tend vers zéro. On obtient un résultat d’existence
et de convergence global en temps pour des donnéesinitiales petites et à régularité critique. Pour des
données grandes mais un peu plus régulières, la solution du système légèrement compressible existe aussi
longtemps que la solution incompressible correspondante. En particulier, on a existence (et unicité) globale
en dimension deux pour les fluides légèrement compressibles.

 2002 Éditions scientifiques et médicales Elsevier SAS

Introduction

The motion of a slightly compressible barotropic fluid is described by the following system:
∂tρ

ε + divρεuε = 0,

∂t(ρεuε) + div(ρεuε ⊗ uε)− µ∆uε − (λ + µ)∇divuε +
∇P

ε2
= ρεfε,

(ρε, uε)|t=0 = (ρε
0, u

ε
0).

(NSC ε)

Here ρε = ρε(t, x) ∈ R
+ and uε = uε(t, x) ∈ R

N stand for the dimensionless density and
velocity field, and the pressureP is a suitably smooth function ofρε. Unless otherwise specified,
it will always be assumed thatx belongs to the whole spaceRN (N � 2). The case of periodic
boundary conditionsx ∈ T

N will be investigated in a forthcoming paper. We denote byλ andµ

the two Lamé coefficients of the fluid, which are constant and satisfyµ > 0 andν
def= λ + 2µ > 0.

Such a condition ensures ellipticity for the operatorµ∆ + (λ + µ)∇div and is satisfied in the
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28 R. DANCHIN

physical cases (whereλ + 2µ/N ≈ 0). The initial conditions(ρε
0, u

ε
0) and the external forcefε

are given.
The system above is obtained by rewriting the compressible Navier–Stokes equations in

dimensionless form. The parameterε, called Mach number, is given byε = LT−1χ−1 whereL
andT are the typical values of length and time (before rescaling) andχ stands for the sound
speed. The rescaled densityρε is given byρ/ρ̄ whereρ is the density of the fluid and̄ρ, its
typical value. Therefore, the typical value ofρε is one. One shall further assume thatρε tends
to 1 at infinity and that the (rescaled) pressure satisfiesP ′(1) = 1. More explanations on the
derivation of the above model may be found in [17,18] or in the introduction of [25].

A large amount of literature has been devoted to the existence of solutions for(NSC ε) and
to the convergence of(ρε, uε) whenε goes to zero. Roughly, two different heuristics have been
used. The case ofwell-prepareddata which corresponds to the assumption thatρε

0 = 1 + O(ε2)
anddivu0 = O(ε) has been investigated in [21,22,24] and [18].

In the present work, we shall concentrate on the case ofill-prepared data, where it is only
assumed thatρε

0 = 1 + εbε
0 with (bε

0, u
ε
0, f

ε) uniformly bounded (in a convenient functional
space),Puε

0 tending to somev0 andPfε tending to someg when ε goes to0. 1 If we set
ρε = 1 + εbε, we are led to study

∂tb
ε +

divuε

ε
= −div(bεuε),

∂tu
ε + uε · ∇uε − µ∆uε + (λ + µ)∇divuε

1 + εbε
+

P ′(1 + εbε)
1 + εbε

∇bε

ε
= fε,

(bε, uε)|t=0 = (bε
0, u

ε
0).

(1)

One expectsuε to tend tov wherev solves the incompressible Navier–Stokes equations:
∂tv + v · ∇v − µ∆v +∇Π = g,
div v = 0,
v|t=0 = v0

which may be rewritten {
∂tv +P(v · ∇v)− µ∆v = g,
v|t=0 = v0.

(NSI )

The expected convergence however is not easy to justify rigorously. The main difficulty is that
one has to face the propagation of acoustic waves with the speedε−1, a phenomenon which does
not occur in the case of “well-prepared” data.

Nevertheless, several remarkable results have been obtained recently. First of all, for initial
data with minimal regularity assumptions, P.-L. Lions stated in [26] the existence of global
weak solutions in the energy space for compressible Navier–Stokes equations. The pressure
law considered is of typeP (ρ) = aργ with certain restrictions onγ depending on the space
dimensionN . Since then, convergence results to the incompressible model have been proved
by B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi. The case of periodic boundary
conditions has been investigated in [27], thecase of bounded domains with Dirichlet conditions
in [12] and the case of the whole space in [11]. Somelocal weak convergence results are also
available in a more general context (see [28]). Roughly, the main difference between the whole

1 Here P stands for the Leray projector on solenoidal vector fields and is defined byP def
= I −Q with

Q def
= ∆−1∇div.
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ZERO MACH NUMBER LIMIT IN CRITICAL SPACES 29

space case and the periodic case is that in the former case one can utilize the dispersion of sound
waves to get strong convergence results whereasin the latter case, the sound waves will oscillate
forever, leading only to weak convergence.

In the framework of strong periodic solutions, several recent works have to be mentioned. For
smooth initial data and no external force, it has been stated in [17] that slightly compressible
two-dimensional solutions exist for all time.The proof is based on the exponential decay of the
solutions to two-dimensional periodic incompressible Navier–Stokes equations and is unlikely
to extend in higher dimension. In [15], I. Gallagher used a semi-group method to investigate the
N -dimensional case. For sufficiently smooth data with a small incompressible part, she shows
that the life span of the slightly compressible solution tends to infinity whenε goes to zero.
She obtained besides a convergence result for the solution “filtered” by the semi-group of a
wave operator. Let us also mention a work by P. Fabrie and C. Galusinski on a simplified model
(see [13]).

From now on, we shall focus on the whole space case. The periodic case is treated in [9]. For
the sake of simplicity, we shall also assume that the data(bε

0, u
ε
0, f

ε) do not depend onε and will
be merely denoted by(b0, u0, f) (thereforev0 = Pu0 andg =Pf ). This latter assumption is not
essential but yields more concise statements for the convergence results.

If we adopt the framework of homogeneous Sobolev spaces and restrict ourselves to the case
of initial data(b0, u0) ∈ Ḣs × Ḣs′

, an interesting question is to find the lowest values ofs and
s′ for which local or global well-posedness may be proved. In other words, we aim at getting
results in spaces which arecritical in a certain sense. In view of the celebrated work by H. Fujita
and T. Kato for the incompressible model (NSI) (see [14]), one can guess that the critical space
for the velocity isḢN/2−1. Indeed, this is a critical space for (NSI). One has to recall here that
this fact is closely linked to the invariance of (NSI) (for all� > 0) by(

v0(x), f(t, x)
)
→

(
�v0(�x), �3f

(
�2t, �x

))
, v(t, x) → �v

(
�2t, �x

)
and that the norm iṅHN/2−1 is invariant by the transformationv0(x) → �v0(�x).

Therefore, investigating the invariance properties (if any) of(NSC ε) should help us to find
which space may be critical. Obviously, up to a change of the pressure lawP into �2P , system
(NSC ε) is invariant under the transformation(

ρ0(x), u0(x), f(t, x)
)
→

(
ρ0(�x), �u0(�x), �3f

(
�2t, �x

))
,(

ρ(t, x), u(t, x)
)
→

(
ρ
(
�2t, �x

)
, �u

(
�2t, �x

))
.

(2)

If we forget a while about this (first order) pressure term, we are led to consider initial data
(b0, u0) in ḢN/2 × (ḢN/2−1)N . SinceḢN/2 is not a subalgebra ofL∞, we shall actually use a

slightly smaller space, the homogeneous Besov spaceB
N/2
2,1 × (BN/2−1

2,1 )N (see the definition in

Section 1) which is also critical according to (2). Now,BN/2
2,1 is a subalgebra ofL∞.

In [7,10], we showed that(NSC 1) (and, more generally, the system of non-barotropic heat-

conducting gases) is well-posed for initial data(b0, u0) ∈ B
N/2
2,1 × (BN/2−1

2,1 )N .
Let us give a rough idea of what we proved there:
• Assuming that(b0, u0) ∈ B

N/2
2,1 × (BN/2−1

2,1 )N and that‖b0‖B
N/2
2,1

is small, we get local

existence and uniqueness of a solution.
• If moreover(b0, u0) ∈ B

N/2+α
2,1 × (BN/2+α−1

2,1 )N for someα > 0, andρ0 is bounded away
from zero, local existence and uniqueness holds with no smallness condition onb0.

For small initial data, global results are expected. However, we have to pay for the omitted
pressure term in (2). Nevertheless, if we assume that, in addition,b0 ∈ B

N/2−1
2,1 (an assumption
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30 R. DANCHIN

which concerns the low frequencies ofb0 only and does not change the required local regularity)
then global existencein the smallholds true. In [6,10], we proved:

THEOREM 0.1. – There exist two positive constants

c = c(λ,µ,N,P ) and M = M(λ,µ,N,P )

such that for all(b0, u0, f) with b0 ∈ B
N/2
2,1 ∩B

N/2−1
2,1 , u0 ∈ B

N/2−1
2,1 , f ∈ L1(R+;BN/2−1

2,1 ) and

‖b0‖B
N/2−1
2,1

+ ν‖b0‖B
N/2
2,1

+ ‖u0‖B
N/2−1
2,1

+ ‖f‖
L1(B

N/2−1
2,1 )

� c,

then system(1) (with ε = 1) has a unique global solution(b, u) ∈E
N/2
ν with moreover

‖(b, u)‖
E

N/2
ν

� M
(
‖b0‖B

N/2−1
2,1

+ ν‖b0‖B
N/2
2,1

+ ‖u0‖B
N/2−1
2,1

+ ‖f‖
L1(B

N/2−1
2,1 )

)
.

If in addition,b0 ∈ Bs
2,1, u0 ∈ Bs−1

2,1 andf ∈ L1(R+;Bs−1
2,1 ) for a s ∈ ]N/2,N/2 + 1[, then(1)

has a unique global solution(b, u)∈ E
N/2
ν ∩Es

ν .

In the above statement,Es
ν stands for a subspace of(

L2
(
R

+;Bs
2,1

)
∩Cb

(
R

+;Bs
2,1 ∩Bs−1

2,1

))
×

(
L1

(
R

+;Bs+1
2,1

)
∩Cb

(
R

+;Bs−1
2,1

))N
.

The reader is referred to Definition 2.3 below for more details.
In the present paper, we address the question of global convergence to (NSI) in the critical

functional setting described above.
Let us introduce a few notations: fors ∈ R andT > 0, we denote

F s
T

def=
(
L1

(
0, T ;Bs+1

2,1

)
∩C

(
[0, T ];Bs−1

2,1

))N
and ‖v‖F s

T
= ‖v‖L∞

T
(Bs−1

2,1 ) +µ‖v‖L∞
T

(Bs+1
2,1 ).

We shall also useF s def= (L1(R+;Bs+1
2,1 ) ∩Cb(R+;Bs−1

2,1 ))N with ‖·‖F s as above.
We can now state our global convergence theorem for small data:

THEOREM 0.2. – AssumeN = 2,3. There is a positive constantη = η(λ,µ,P ) such that if

ρε
0 = 1 + εb0 with b0 ∈ B

N/2−1
2,1 ∩B

N/2
2,1 , u0 ∈ B

N/2−1
2,1 , f ∈ L1(R+;BN/2−1

2,1 ) and

‖b0‖B
N/2−1
2,1

+ εν‖b0‖B
N/2
2,1

+ ‖u0‖B
N/2−1
2,1

+ ‖f‖
L1

T
(B

N/2−1
2,1 )

� η

for 0 < ε � ε0, then the following results hold:
1. Existence: For all ε ∈ ]0, ε0], system(NSC ε) has a unique global solution(ρε, uε) such

that(bε, uε) is uniformly bounded inEN/2
εν . System(NSI ) has a unique solutionv ∈ FN/2.

2. Convergence: DenoteΛs def=
√
−∆

s/2
.

• For any α ∈ [0,1/6], Λ−1−α(Puε − v) tends to zero in the setCb(R+ × R
N ) of

continuous and bounded functions onR
+ × R

N . If α is not zero thenΛ1−α(Puε − v)
tends to zero inL1(R+;L∞).

• For anyα ∈ ]0,1/6], Λ−αQuε tends to zero inL2(R+;L∞).
• If N = 3 and2 < p < +∞ thenΛ1/p−1bε tends to zero inLp(R+;L∞). If N = 2, then

Λ−5/6bε tends to zero inL6(R+;L∞).
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A similar statement holds forN � 4 and the speed of convergence may be given in terms of
power ofε (see the general statement in Theorem 2.4). Let us emphasize that our convergence
theorem applies to some discontinuous initial velocities and that the smallness condition is
fulfilled by some velocities withlarge modulus provided they have enough oscillations. The
reader may check that for any smooth cut-off functionχ and suitably small constantc > 0, the

functionu�
0(x) def= c�χ(x) cos(�x) satisfies‖u�

0‖B
N/2−1
2,1

� η for � � 1.

On one hand, Theorem 0.2 is optimal since it deals with data in critical spaces. On the other
hand, it cannot be applied to large data. Considering that in many cases the solution of the limit
system (NSI) may have a very long life spanT , possibly infinite, even though the initial data are
large (e.g., caseN = 2 or N = 3 axisymmetric), it seems natural that the corresponding solution
for (NSC ε) should also have a large life spanTε for smallε. Referring to some recent works in
the periodic case (see [15] and [17]) we expect a result such thatlim infε→0 Tε � T to be true.

To achieve this in the whole space case, it actually suffices to consider slightly more regular
data. In addition, we obtain global existence for smallε provided that the corresponding
incompressible solution is global. More precisely, we have

THEOREM 0.3. – Suppose thatN = 3 and that, for aα ∈ ]0,1/2[, we have

b0 ∈B
1/2
2,1 ∩B

3/2+α
2,1 , u0 ∈B

1/2
2,1 ∩B

1/2+α
2,1 and f ∈L1

(
R

+;B1/2
2,1 ∩B

1/2+α
2,1

)
.

Suppose that the incompressible system(NSI ) with initial datumPu0 and external forcePf

has a solutionv ∈ F
3/2
T0

∩F
3/2+α
T0

for a positiveT0 possibly infinite.
Then there exists a positiveε0 depending on the initial data, on the incompressible solutionv,

on the pressure lawP , and onλ, µ, andα, and such that for all0 < ε � ε0, system(1) has a
unique solution(bε, uε) in E

3/2
εν,T0

∩E
3/2+α
εν,T0

.

Moreover,Puε tends tov in F
3/2
T0

∩ F
3/2+α
T0

and(Λα−1+1/pbε,Λα−1+1/pQuε) tends to0 in
everyLp(0, T0;L∞) such that2 < p < +∞.

In the statement above, the notationEs
κ,T stands for a subspace of(

L2
(
[0, T ];Bs

2,1

)
∩C

(
[0, T ];Bs

2,1 ∩Bs−1
2,1

))
×

(
L1

(
[0, T ];Bs+1

2,1

)
∩C

(
[0, T ];Bs−1

2,1

))N

(see the details in Definition 2.3 below).
In the caseN = 2 and under the assumptions made in the theorem above (even ifα = 0 in fact),

the incompressible solution is always global and we obtain the following result (to be compared
with the corresponding one proved in the periodic setting in [17]).

THEOREM 0.4. – Let

α ∈ ]0,1/6], b0 ∈ B0
2,1 ∩B1+α

2,1 , u0 ∈ B0
2,1 ∩Bα

2,1 and f ∈L1
(
R

+;B0
2,1 ∩Bα

2,1

)
.

Then the incompressible system(NSI ) with initial datumPu0 and external forcePf has a
global solutionv ∈ F 1 ∩ F 1+α.

Moreover there exists a positiveε0 depending only on the initial data, onP , and on
the parametersλ, µ, α, and such that for all0 < ε � ε0, system(1) has a unique global
solution(bε, uε) in E1

εν ∩ E1+α
εν . The incompressible partPuε tends tov in F 1 ∩ F 1+α and

(Λα−3/4bε,Λα−3/4Quε) tends to0 in L4(0,+∞;L∞).

Remark0.5. – Whether a similar result holds true in critical spaces (that is forα = 0) is
opened. The need of additional regularity appears in many points of the proof because it provides
some decay inε.
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32 R. DANCHIN

Remark0.6. – Despite the additional regularity assumption, the statements above do hold for
a large class of discontinuous initial velocities. Let us mention that all the results which pertain
to supercritical initial data hold in the Sobolev spaces framework as well. We kept the Besov
spaces for the sake of unity.

Remark0.7. – Similar results are very likely to hold for the system of heat conductive gases
considered in [8]. No additional mathematical difficulties are expected: the arguments used in
the present paper probably suffice but the computations to be done are certainly worse.

Remark0.8. – For the sake of simplicity, we supposed that the datab0, u0 and f were
independent ofε. It goes without saying that convergence results in the same spirit may be stated
for data depending onε provided thatPuε

0 andPfε converge strongly in appropriate spaces, and
thatQuε

0, Qfε andbε
0 are uniformly bounded for smallε.

Our paper is organized as follows. In the first section, we define some functional spaces
(homogeneous and hybrid Besov spaces), recall some basic tools in paradifferential calculus and
state some tame estimates for the composition or the product. In Section 2, we give the general
statements of existence and convergence for(NSC ε) (from which Theorems 0.2, 0.3 and 0.4
easily stem). We also give the outlines of the proof to help the reader to make his way through
the technicalities of the following sections. Section 3 is devoted to the proof of the convergence
resultin the small. In Section 4, we prove estimates for the paralinearisation of(NSC ε). These
estimates combined with dispersive inequalities for the linear wave equation, will be at the root
of the proof of our existence and convergence result in the case of large data (Section 5). For
the sake of completeness, we put in Section 6 some regularity results on incompressible Navier–
Stokes equations that we did not manage to find in the huge literature devoted to the subject.
Some technical lemmas have been postponed in an appendix.

Notation. – Throughout the paper,C stands for a “harmless constant” which never depends
on ε, and we sometimes use the notationA � B as an equivalent toA � CB. The notation
A≈ B means thatA � B andB � A.

1. Homogeneous and hybrid Besov spaces

Let us first recall the definition and some basic properties ofhomogeneousBesov spaces.
They may be defined through the use of a dyadic partition of unity in Fourier variables
called homogeneous Littlewood–Paley decomposition. For that purpose, choose aϕ ∈ C∞(RN )
supported in, say,C def= {ξ ∈ R

N , 5/6 � |ξ|� 12/5} and such that∑
q∈Z

ϕ
(
2−qξ

)
= 1 if ξ 
= 0.

Denotingh = F−1ϕ, we then define the dyadic blocks as follows

∆qu
def= ϕ

(
2−qD

)
u = 2qN

∫
RN

h
(
2qy

)
u(x− y)dy, and Squ =

∑
k�q−1

∆ku.

The formal decomposition

u =
∑
q∈Z

∆qu(3)

is called homogeneous Littlewood–Paley decomposition.
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The equality (3) holds modulo polynomials: ifu ∈ S′(RN ), then
∑

q∈Z
∆qu converges

moduloP [RN ] and (3) holds inS′(RN )/P [RN ] (see [29]). Furthermore, it has nice properties
of quasi-orthogonality: with our choice ofϕ, we have

∆k∆qu≡ 0 if |k − q|� 2 and ∆k(Sq−1u∆qu)≡ 0 if |k − q|� 4.(4)

It is easy to check that

‖u‖Ḣs ≈ ‖u‖Bs
2,2

def=
(∑

q∈Z

22qs‖∆qu‖2
L2

)1/2

.

More generally, we shall use the following notation fors ∈ R, r ∈ [1,+∞[, p ∈ [1,+∞] and
u∈ S′(RN ), we set

‖u‖Bs
p,r

def=
(∑

q∈Z

(
2sq‖∆qu‖Lp

)r
)1/r

and ‖u‖Bs
p,∞

def= sup
q∈Z

2sq‖∆qu‖Lp .

We shall adopt the following definition for homogeneous Besov spaces with the third index equal
to one:

DEFINITION 1.1. – Lets ∈ R, andp ∈ [1,+∞]. Denotem = −[N/p + 1− s]. If m < 0, then
we defineBs

p,1(R
N ) as

Bs
p,1 =

{
u ∈ S′(

R
N
)
, ‖u‖Bs

p,1
< ∞ andu =

∑
q∈Z

∆qu in S′(
R

N
)}

.

If m � 0, we denote byPm[RN ] the set of polynomials of degree� m and we set

Bs
p,1 =

{
u ∈ S′(

R
N
)
/Pm

[
R

N
]
, ‖u‖Bs

p,1
< ∞ andu =

∑
q∈Z

∆qu in S′(
R

N
)
/Pm

[
R

N
]}

.

Remark. – From the above definition, it is not hard to check thatBs
2,1 ↪→ Ḣs (where↪→ means

continuous embedding) but that these two spaces are very close anyway.

From now on, the notationBs
p will stand forBs

p,1. In the case whereu is valued inR
m, the

notation‖u‖Bs
p

will stand for
∑

i ‖ui‖Bs
p
.

The following result (which shows amongst other that the definition ofBs
p is independent of

the choice ofϕ) is very useful:

LEMMA 1.2. – Let u ∈ Bs
p andψ ∈ C∞

0 (RN ) supported in the annulusC(0,R1,R2). Then
there exists a sequence(cq)q∈Z such that

∑
q cq � 1 and∥∥ψ

(
2−qD

)
u
∥∥

Lp � cq2−qs‖u‖Bs
p

for all q ∈ Z.

Conversely, suppose thatu =
∑

q uq in S′(RN ) (or in S′(RN )/Pm[RN ] if m
def= −[N/p + 1− s]

is nonnegative) with Supp ûq ⊂ 2qC(0,R1,R2), and that
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34 R. DANCHIN∑
q∈Z

2qs‖uq‖Lp = K < +∞.

Thenu ∈ Bs
p and‖u‖Bs

p
� K .

Let us now state some classical properties for these Besov spaces, the proof of which may be
found in [29] or [30].

PROPOSITION 1.3. – The following properties hold:
(i) Density: if p < +∞ and|s|� N/p thenC∞

0 is dense inBs
p.

(ii) Derivation: there exists a universal constantC such that

C−1‖u‖Bs
p

� ‖∇u‖Bs−1
p

� C‖u‖Bs
p
.

(ii) ′ Fractional derivation: let Λ def=
√
−∆ and σ ∈ R. Then the operatorΛσ is an

isomorphism fromBs
p to Bs−σ

p .

(iii) Sobolev embeddings: if p1 < p2 thenBs
p1

↪→B
s−N(1/p1−1/p2)
p2 .

(iv) Algebraic properties: for s > 0, Bs
p ∩L∞ is an algebra.

(v) Interpolation: [Bs1
p ,Bs2

p ]θ = B
θs1+(1−θ)s2
p .

(vi) Scaling properties: for all λ > 0 andu∈ Bs
p, we have

‖u(λ·)‖Bs
p
≈ λs−N/p‖u‖Bs

p
.(5)

We will make an extensive use of the spaceB
N/p
p which is a subalgebra of the setC0 of

continuous functions vanishing at infinity.
Let us state some continuity results for the product (see [30]).

PROPOSITION 1.4. – If u ∈ Bs1
p1

and v ∈ Bs2
p2

with 1 � p1 � p2 � +∞, s1 � N/p1,

s2 � N/p2 ands1 + s2 > 0 thenuv ∈ B
s1+s2−N/p1
p2 and

‖uv‖
B

s1+s2−N/p1
p2

� ‖u‖B
s1
p1
‖v‖B

s2
p2

.

If u ∈ Bs1
p1

∩ Bs2
p2

and v ∈ Bt1
p1

∩ Bt2
p2

with 1 � p1, p2 � +∞, s1, t1 � N/p1 and

s1 + t2 = s2 + t1 > Nmax (0, 1
p1

+ 1
p2

− 1) thenuv ∈B
s1+t2−N/p1
p2 and

‖uv‖
B

s1+t2−N/p1
p2

� ‖u‖B
s1
p1
‖v‖

B
t2
p2

+ ‖u‖B
s2
p2
‖v‖

B
t1
p1

.

Moreover, ifs1 = 0 andp1 = +∞ then‖u‖B0
∞

may be replaced with‖u‖L∞.

We finally need a composition lemma inBs
p (see [30]).

LEMMA 1.5. – Let s > 0, p ∈ [1,+∞] andu ∈ Bs
p ∩L∞. LetF ∈ W

[s]+2,∞
loc (RN ) such that

F (0) = 0. ThenF (u) ∈Bs
p and there exists a constantC = C(s, p,N,F,‖u‖L∞) such that

‖F (u)‖Bs
p

� C‖u‖Bs
p
.

Notation. – For any Banach spaceX , 0 < T � +∞ and1 � r � +∞, we shall denote by
Lr(0, T ;X) the set of measurable functions on]0, T [ valued in X and such that the map
t → ‖u(t)‖X belongs to the Lebesgue spaceLr(0, T ). In the caseT = +∞, we shall sometimes

4e SÉRIE– TOME 35 – 2002 –N◦ 1



ZERO MACH NUMBER LIMIT IN CRITICAL SPACES 35

denote the space above byLr(X), and by‖·‖Lr(X) the associated norm. ByC([0, T ];X) (resp.
C([0,+∞];X) or Cb(R+;X)) we mean the subset of functionsu of L∞(0, T ;X) such that the
mapt → u(t, ·) is continuous from[0, T ] (resp.R+) to X .

Remark1.6. – Foru = u(t, x) in Lr(0, T ;Bs
p), we have the following scaling property:∥∥u

(
λa·, λb·

)∥∥
Lr

T
(Bs

p)
≈ λb(s−N/p)−a/r‖u‖Lr

λaT
(Bs

p).(6)

Owing to the fact that the change of variables of Definition 2 does not really leave system (1)
invariant, the use of homogeneous spaces is not quite appropriate. For that reason, we shall
introduce somehybrid Besov spaceswhere the growth conditions satisfied by the dyadic blocks
are different for low and high frequencies. These very same spaces have been used in [6]. We
here recall their definition

DEFINITION 1.7. – Lets ∈ R, α > 0 and1 � r � +∞. We set

‖u‖
B̃s,r

α

def=
∑
q∈Z

2qs max
(
α,2−q

)1−2/r‖∆qu‖L2 .

Let m = −[N/2 + 2− 2/r − s]. We then define

B̃s,r
α

(
R

N
)
=

{
u ∈ S′(

R
N
)
, ‖u‖

B̃s,r
α

< +∞
}

if m < 0,

B̃s,r
α

(
R

N
)
=

{
u ∈ S′(

R
N
)
/Pm

(
R

N
)
, ‖u‖

B̃s,r
α

< +∞
}

if m � 0.

Notation. – We will often use the following notation:

uBF
def=

∑
q�[− log2 α]

∆qu and uHF
def=

∑
q>[− log2 α]

∆qu.

Remark1.8. – (i) We havẽBs,2
α = Bs

2 .
(ii) If r � 2 thenB̃s,r

α = B
s+2/r−1
2 ∩Bs

2 and

‖u‖
B̃s,r

α
≈ ‖u‖

B
s+2/r−1
2

+ α1−2/r‖u‖Bs
2
.(7)

If r � 2 thenB̃s,r
α = B

s+2/r−1
2 + Bs

2 and

‖u‖
B̃s,r

α
≈ ‖uBF‖B

s+2/r−1
2

+ α1−2/r‖uHF‖Bs
2
.(8)

(iii) For all λ > 0 andu ∈ B̃s,r
α , we have

‖u(λ·)‖
B̃s,r

α
≈ λs−N/2+2/r−1‖u‖

B̃s,r
λα

.(9)

Throughout the paper, we shall use some smatterings of paradifferential calculus: the
paraproduct introduced by J.-M. Bony in [1]. This is a convenient way to define a generalized
product between distributions which is continuous in many functional spaces where the usual
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product does not make sense. The paraproduct betweenu andv is given by

Tuv
def=

∑
q∈Z

Sq−1u∆qv.

We have the followingBony decomposition(modulo a polynomial):

uv = Tuv + Tvu + R(u, v) with R(u, v) def=
∑
q∈Z

∆qu∆̃qv and∆̃q = ∆q−1 + ∆q + ∆q+1.

The notationT ′
uv

def= Tuv + R(u, v) will be employed likewise.
In the following proposition, we state some continuity properties for the remainderR and

paraproductT in Besov spaces (see [30] for the proof).

PROPOSITION 1.9. – Let 1 � p1, p2 � +∞. For all s2 ∈ R ands1 � N/p1, we have

‖Tuv‖
B

s1+s2
p2

� ‖u‖B
s1
∞,∞

‖v‖B
s2
p2

.

If s1 = 0, the above inequality holds with‖u‖L∞ instead of‖u‖Bs
∞,∞

.

If (s1, s2) ∈ R
2 satisfiess1 + s2 > Nmax (0, 1

p1
+ 1

p2
− 1) then

‖R(u, v)‖
B

s1+s2−N/p1
p2

� ‖u‖B
s1
p1,∞

‖v‖B
s2
p2

.

Now, estimates of Proposition 1.4 obviously stem from Proposition 1.9.

2. Main results and sketch of the proof

2.1. The linearized system

Let us split the velocity into a divergence-free partPuε and a gradient partQuε (recall that

P def= I −∇∆−1 div andQ def= I −P). System (1) reads
∂tb

ε +
divQuε

ε
= −div(uεbε),

∂tQuε − ν∆Quε +
∇bε

ε
= Q

(
f − uε · ∇uε − εbε

1 + εbε
Auε −K(εbε)

∇bε

ε

)
,

∂tPuε − µ∆Puε = P
(

f − uε · ∇uε − εbε

1 + εbε
Auε

)
,

(10)

with K(z) def= P ′(1+z)
1+z − 1 (henceK(0) = 0) andA def= µ∆ + (λ + µ)∇div.

Observe that there is no linear coupling between the last equation and the first two so that we
expect standard results on heat equations (see Proposition 7.3) to yield a control onPuε. On the
other hand, there is a linear coupling between the first two equations. Since, in homogeneous

spaces, estimatingQuε or dε def= Λ−1 divQuε is equivalent, we are led to investigate carefully
the following mixed linear system:

∂tb + u · ∇b +
Λd

ε
= F,

∂td + u · ∇d− ν∆d− Λb

ε
= G.

(11)
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Note that we included the convection termsu · ∇b and u · ∇d in the system above (see [6]
for more explanations). Let us concentrate for a while on the caseu = 0. The matrix operator
associated to (11) reads

A(D) =
(

0 −ε−1Λ
ε−1Λ −νΛ2

)
.

A rough study of the eigenvalues makes us expect a different behaviour of (11) for low and high
frequencies. Indeed, forνε|ξ|< 2, the eigenvalues are

λ±(ξ) = −ν|ξ|2
2

(
1± i

√
4

ε2ν2|ξ|2 − 1
)

so that the linear operator is very similar (forνε|ξ| � 1) to

∂t − ν∆/2± iΛ/ε.

In contrast, forνε|ξ| > 2, we have

λ±(ξ) =−ν|ξ|2
2

(
1±

√
1− 4

ε2ν2|ξ|2

)
which means that a parabolic mode and a damped mode coexist.

Further considerations on the eigenvectors motivates the use of hybrid Besov norms (see [6]
for more details). Now, a straightforward changeof variables in Proposition 2.3 of [6], and a use
of (5), (6) and (9) yield the following result:

PROPOSITION 2.1. – Denote

V (t) =

t∫
0

‖u(τ)‖
B

N/2+1
2

dτ.

Then for any1 − N/2 < s � 1 + N/2, the following estimate holds on[0, T [ for a constant
C = C(N,s):

‖b(t)‖
B̃s,∞

εν
+ ‖d(t)‖Bs−1

2
+ ν

t∫
0

(
‖b(τ)‖

B̃s,1
εν

+ ‖d(τ)‖Bs+1
2

)
dτ

� CeCV (t)

(
‖b0‖B̃s,∞

εν
+ ‖d0‖Bs−1

2
+

t∫
0

e−CV (τ)
(
‖F (τ)‖

B̃s,∞
εν

+ ‖G(τ)‖Bs−1
2

)
dτ

)
.(12)

The above estimate lies on an energy method.This clearly “kills” the highly oscillating
properties of the low frequencies. This is quite tiresome since the “low frequencies” may be
very high whenε goes to zero and this is a well known fact that large oscillations may help us to
pass to the limit (see for example [32]).

Obviously, there is no hope of improving (12) as far as one uses estimates in spaces which
are built onL2. This motivates the use of spaces built onLp for a p > 2. We should mention
here that the investigation ofLp estimates for a system analogous to (11) (withu = 0) has been
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done in [19]. The motivation of the authors however was the study of the asymptotic behaviour
of smooth solutions of compressible Navier–Stokes equations. We do not know if these estimates
may help us to study the slightly compressible fluids.

Following B. Desjardins and E. Grenier in [11], we shall use some dispersive inequalities
for the wave equation: the so-called Strichartz estimates (see, e.g., [31,16,20] and the references
therein). Here is the statement that we need. The reader may refer to the appendix, Proposition 7.1
for a more general statement and a sketchy proof.

PROPOSITION 2.2. – Let (b, d) be a solution of the following system{
∂tb + ε−1Λd = F,
∂td− ε−1Λb = G.

(W ε)

Then for anys ∈ R and positiveT (possibly infinite), the following estimate holds

‖(b, d)‖
Lr

T
(B

s+N(1/p−1/2)+1/r
p )

� ε1/r
(
‖(b0, d0)‖Bs

2
+ ‖(F,G)‖L1

T
(Bs

2)

)
with p � 2, 2/r � min(1, (N − 1)(1/2− 1/p)) and(r, p,N) 
= (2,∞,3).

Now, we can expect Proposition 2.1 combined withestimates for the heat equation to provide
us with uniform estimates for(bε, uε), thus uniform bounds for the right-hand side of (W ε).
According to Proposition 2.2, this should give us some convergence result.

No further arguments are needed to get global convergence in the small in critical spaces, or
local convergence in the large for more regular data. In the next two sections, we shall develop
these ideas and give complete statements of our convergence results.

2.2. Global convergence in the small

Let us introduce the following notation:

DEFINITION 2.3. – For0 < T � +∞, κ > 0 ands ∈ R, we denote

Es
κ,T =

{
(b, u) ∈

(
L1

(
0, T ; B̃s,1

κ

)
∩C

(
[0, T ]; B̃s,∞

κ

))
×
(
L1

(
0, T ;Bs+1

2,1

)
∩C

(
[0, T ];Bs−1

2,1

))N}
and ‖(b, u)‖Es

κ,T
= ‖b‖

L∞
T

(B̃s,∞
κ )

+ ‖v‖L∞
T

(Bs−1
2,1 ) + ‖b‖

L1
T

(B̃s,1
κ )

+ ‖v‖L1
T

(Bs+1
2,1 ).

ForT = +∞, we will merely writeEs
κ instead ofEs

κ,∞.

In Section 3, we shall prove the following result:

THEOREM 2.4. – There exist two positive constants

η = η(N,λ,µ,P ) and M = M(N,λ,µ,P )

such that if b0 ∈ B
N/2−1
2 ∩ B

N/2
2 , u0 ∈ B

N/2−1
2 , f ∈ L1(R+;BN/2−1

2 ) satisfy (for all
0 < ε � ε0)

Cεν
0

def= ‖b0‖B
N/2−1
2

+ εν‖b0‖B
N/2
2

+ ‖u0‖B
N/2−1
2

+ ‖f‖
L1(B

N/2−1
2 )

� η(13)

then the following results hold:
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1. Existence: For all 0 < ε � ε0, system(1) has a unique solution(bε, uε) in E
N/2
εν such that

‖(bε, uε)‖
E

N/2
εν

� MCεν
0 .

System(NSI) has a(unique) solutionv ∈ FN/2 such that

‖v‖
L1(B

N/2+1
2 )

+ ‖v‖
L∞(B

N/2−1
2 )

� M
(
‖Pu0‖B

N/2−1
2

+ ‖Pf‖
L1(B

N/2−1
2 )

)
.

2. Convergence: For any α ∈ [0,1/2] if N � 4, α ∈ [0,1/2[ if N = 3 and α ∈ [0,1/6] if
N = 2, Puε tends tov in C([0,+∞];B−1−α

∞ ). Moreover,

• If N � 4: For all p ∈ [pN ,+∞] with pN
def= 2(N − 1)/(N − 3), we have

‖Puε − v‖
L1(B

N/p+1/2
p )

+ ‖Puε − v‖
L∞(B

N/p−3/2
p )

+ ‖Quε‖
L2(B

N/p−1/2
p )

+ ‖bε‖
L2(B

N/p−1/2
p )

� MCεν
0 ε1/2.

• If N = 3: For all p ∈ [2,+∞[ ,

‖Puε − v‖
L1(B

4/p+1/2
p )

+ ‖Puε − v‖
L∞(B

4/p−3/2
p )

+ ‖Quε‖
L2(B

4/p−1/2
p )

+ ‖bε‖
L2p/(p−2)(B

2/p−1/2
p )

� MCεν
0 ε1/2−1/p.

• If N = 2: For all p ∈ [2,6],

‖Puε − v‖
L1(B

5/(2p)+3/4
p )

+ ‖Puε − v‖
L∞(B

5/(2p)−5/4
p )

+ ‖Quε‖
L2(B

5/(2p)−1/4
p )

+ ‖bε‖
L4p/(p−2)(B

3/(2p)−3/4
p )

� MCεν
0 ε1/4−1/(2p).

Let us give the outlines of the proof. First, an appropriate change of variables enables us
to apply Theorem 0.1. Under the smallness assumption (13), we get a global solution(bε, uε)
in E

N/2
εν uniformly in ε. The existence of a global solution for the limit system (NSI) stems from

classical arguments. Since apparently, it has not been written out yet in the framework ofBs
2,1

spaces, we prove it in Section 6.
While, up to this point, the method still works in the periodical setting (and actually provides

us with some local weak convergence results, see Remark 3.2), our proof of global strong
convergence is specific toRN . Indeed, we shall make use of the dispersive properties of the
linear wave equation in the whole space (namely Proposition 2.2).

As expected, the uniform estimates inE
N/2
εν provide uniform bounds inL1(R+;BN/2−1

2 ) for
the right-hand side of the first two equations of (10), and forν∆Quε. Therefore, according to
Proposition 2.2,(bε,Quε) convergences to zero (inL4(R+;B−3/4

∞ ) if N = 2 and in a space very
close toL2(R+;B−1/2

∞ ) if N = 3). Next, routine computations based on standard estimates for
the heat equation (see Proposition 7.3) allow us to getPuε → v in a suitable functional space.
Then we can interpolate with the uniform estimates and get a result of convergence for stronger
norms.

2.3. Convergence in the large

Let us state the complete result we get in any dimensionN � 2:

THEOREM 2.5. – Suppose thatb0 ∈ B
N/2−1
2 ∩ B

N/2+α
2 , u0 ∈ B

N/2−1
2 ∩ B

N/2−1+α
2 and

f ∈ L1(R+;BN/2−1
2 ∩ B

N/2−1+α
2 ) for a α ∈ ]0,1/2] if N � 4, α ∈ ]0,1/2[ if N = 3 and
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40 R. DANCHIN

α ∈ ]0,1/6] if N = 2. Suppose that the incompressible system(NSI) with initial datumPu0

and external forcePf has a solutionv ∈ F
N/2
T0

∩F
N/2+α
T0

for a positiveT0 possibly infinite. Let

V
def= ‖v‖

F
N/2
T0

∩F
N/2+α

T0

and

X0 def= ‖b0‖B
N/2−1
2 ∩B

N/2+α
2

+ ‖Qu0‖B
N/2−1
2 ∩B

N/2−1+α
2

+ ‖Qf‖
L1(B

N/2−1
2 ∩B

N/2−1+α
2 )

.

Then there exists a positiveε0 depending only onα, λ, µ, P, V and X0 and such that for
all 0 < ε � ε0, system(1) has a unique solution(bε, uε) in E

N/2
εν,T0

∩ E
N/2+α
εν,T0

. Moreover,Puε

tends tov in F
N/2
T0

∩ F
N/2+α
T0

and(bε,Quε) tends to0 in L2(0, T0;B
α−1/2
∞ ) if N � 4, in every

Lp(0, T0;B
α−1+1/p
∞ ) with p > 2 if N = 3 and inL4(0, T0;B

α−3/4
∞ ) if N = 2. More precisely,

the following bounds hold for a constantC = C(N,µ,λ,α,P,V,X0):

‖(bε, uε)‖
E

N/2
εν,T0

∩E
N/2+α

εν,T0

� C,

‖Puε − v‖
F

N/2
T0

∩F
N/2+α

T0

� Cε2α/(2+N+2α),

‖(bε,Quε)‖
L2

T
(B

α−1/2
∞ )

� Cε1/2 if N � 4,

‖(bε,Quε)‖
Lp

T
(B

α−1+1/p
∞ )

� Cε1/p if N = 3 andp > 2,

‖(bε,Quε)‖
L4

T
(B

α−3/4
∞ )

� Cε1/4 if N = 2.

In the caseN = 2, one can chooseT0 = +∞ and the constantsε0 and C depend onv only
through the norm of Pu(0) in B

N/2−1
2 ∩ B

N/2−1+α
2 , and of Pf in L1(R+;

B
N/2−1
2 ∩B

N/2−1+α
2 ).

Sketchy proof. –To avoid the technicalities as much as possible, we shall consider only the
caseN = 3 andα = 1/2 and further assume that the endpoint(r, p,N) = (2,∞,3) is allowed in
Proposition 2.2. We refer to Section 5for a rigorous and complete proof.

The existence of a solution for(NSC ε) on a small time interval (which may depend onε) is
ensured by Theorem 0.2 in [7] regardless of the size of the data: the only assumption that we
need is that1 + εb0 be bounded away from zero. SinceB

N/2
2 ↪→ L∞, this is certainly true forε

small enough.
In the four first steps of the proof, we are given two timesT and T0 (possibly infinite)

such that0 < T � T0. We shall suppose that(bε, uε) is a solution of (1) belonging to

ET
def= E

3/2
εν,T ∩E2

εν,T , and that the limit system has a solutionv ∈ FT0

def= F
3/2
T0

∩F 2
T0

.
In the first step of the proof, we shall apply the Strichartz estimates (namely Proposi-

tion 2.2) to the first two equations of (10). AsB0
∞ ↪→ L∞, if we assume that the endpoint

(r, p,N) = (2,∞,3) is allowed, we get a bound inL2(0, T ;L∞) for ε−1/2(bε,Quε) in terms
of the norm of(bε, uε) in ET .

In the second step, we derivea priori bounds forε−β(Puε − v) (for a suitableβ > 0) in terms
of ‖(bε, uε)‖ET

and‖v‖FT
. These bounds may be obtained as a by-product of estimates for the

heat equation with first order terms (see Proposition 7.4). Some paradifferential calculus enables
us to use the decay inε for (bε,Quε).

The trickiest part (third step) consists in stating a control for(bε, uε) in ET , in terms ofv
and initial data. According to step 2,Puε ≈ v so that the main difficulty lies in the control
of (bε,Quε). Applying inequality (12) fails because a termexp(C‖∇uε‖

L1
T

(B
N/2
2 )

) and thus

exp(C‖∇Quε‖
L1

T
(B

N/2
2 )

) appears in the right-hand side of the estimate. There is no way of
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preventing this term to increase too much for smallε. On the other hand, step one gives us
a bound forε−1/2Quε in L2(0, T ;L∞), and, since the solution belongs toET , we also have
|D|3/2Quε ∈ L1(0, T ;L∞). An obvious interpolation yields a control inL6/5(0, T ;L∞) for
ε−1/6∇Quε. Clearly, we are done if the exponential factor in Proposition 2.1 may be replaced
with exp‖∇u‖

L
6/5
T

(L∞)
. To this end, we replace the convection termsu · ∇b andu · ∇d by the

paraproductsTuj ∂jb andTuj ∂jd (see the definition in Section 1).
Slight modifications of the proof of Proposition 2.1 show that for the new linear system

∂tb + Tuj ∂jb +
Λd

ε
= F,

∂td + Tuj ∂jd− ν∆d− Λb

ε
= G,

(LPH ε)

we have estimates analogous to (12) where the exponential factor has been replaced with
exp‖∇u‖L1

T
(L∞). We then use the rough estimate

‖∇Quε‖L1
T

(L∞) � T 1/6‖∇Quε‖
L

6/5
T

(L∞)
� C(εT )1/6‖(bε, uε)‖E .

Assuming that we control‖(bε, uε)‖ET
and thatT is finite, the exponential factor can be made as

close of1 as desired whenε tends to zero. Actually, a judicious use of Young inequality enables
us to replace theL1

T (L∞) norms for∇uε with Lr
T (L∞) norms for any finiter > 1 (plus some

other terms which turn out to be nice, see Proposition 4.1 below). Therefore the caseT = +∞
may be handled as well.

From this point, the end of the existence and convergence proof is standard. We use a bootstrap
argument (fourth step) to close the estimates of the first three steps and a continuity argument
(last step) completes the proof.�

3. Global well-posedness and convergence for small data

This part is devoted to the proof of Theorem 2.4. Throughout the proof, we drop the exponents
ε to simplify the notations.

First step: Existence of a global solution for (NSC ε) and uniform estimates

Let us make the following change of functions:

c(t, x) def= εb
(
ε2t, εx

)
, v(t, x) def= εu

(
ε2t, εx

)
and f̄(t, x) def= ε3f

(
ε2t, εx

)
.

Then(b, u) solves (1) if and only if(c, v) solves
∂tc + div v = −div(cv),

∂tv + v · ∇v − µ∆v + (λ + µ)∇div v

1 + c
+

P ′(1 + c)
1 + c

∇c = f̄ ,

(c, v)|t=0 = (c0, v0).

(14)

According to Theorem 2.5 of [6], there exist two positive constantsη = η(N,λ,µ,P ) and

M = M(N,λ,µ,P ) such that (14) has a solution(c, v) in E
N/2
ν as soon as

‖c0‖B̃
N/2,∞
ν

+ ‖v0‖B
N/2−1
2

+ ‖f̄‖
L1(B

N/2−1
2 )

� η.
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We moreover have the estimate

‖(c, v)‖
E

N/2
ν

� M
(
‖c0‖B̃

N/2,∞
ν

+ ‖v0‖B
N/2−1
2

+ ‖f̄‖
L1(B

N/2−1
2 )

)
.

Using (5), (6) and (9), we easily gather that

‖c0‖B̃
N/2,∞
ν

+ ‖v0‖B
N/2−1
2

+ ‖f̄‖
L1(B

N/2−1
2 )

= ‖b0‖B̃
N/2,∞
εν

+ ‖u0‖B
N/2−1
2

+ ‖f‖
L1(B

N/2−1
2 )

and

‖(c, v)‖
E

N/2
ν

= ‖(b, u)‖
E

N/2
εν

.

Second step: Existence of a global solution for (NSI)

See Proposition 6.1.

Third step: Convergence of bε and Quε to zero

The main result of this step is given in the following lemma:

LEMMA 3.1. – LetCεν
0 be defined as in(13). The solution(b, u) defined in step1 satisfies

• If N � 4: For all pN � p � +∞, ‖(b,Qu)‖
L2(B

N/p−1/2
p )

� Cεν
0 ε1/2.

• If N = 3: For all 2 � p < +∞, ‖(b,Qu)‖
L2p/(p−2)(B

2/p−1/2
p )

� Cεν
0 ε1/2−1/p.

• If N = 2: For all 2 � p � +∞, ‖(b,Qu)‖
L4p/(p−2)(B

3/(2p)−3/4
p )

� Cεν
0 ε1/4−1/(2p).

Proof. –The starting point is the dispersive inequality given in Proposition 2.2 for(W ε).
Indeed, denotingd

def= Λ−1 divQu, we have
∂tb + ε−1Λd = F,
∂td− ε−1Λb = G,
(b, d)|t=0 =

(
b0,Λ−1 divQu0

)(15)

with F
def= −div(bu) andG

def= ν∆d−Λ−1 div(u · ∇u + εb
1+εbAu + K(εb)∇b

ε + f).
Remark thatQu = −∇Λ−1d so that estimatingQu or d is equivalent (up to an irrelevant

constant). On the other hand, if we apply Proposition 2.2 withs = N/2− 1 andr = 2 if N � 4,
or 2 � p < +∞ andr = 2p/(p− 2) if N = 3, or 2 � p � +∞ andr = 4p/(p− 2) if N = 2, we
readily obtain the estimates of Lemma 3.1 provided that

‖(F,G)‖
L1(B

N/2−1
2 )

� Cεν
0 .

This easily stems from the uniform estimates of step one. Let us just treat the case of the non-
linear terms inF andG which is perhaps not entirely obvious. According to Proposition 1.4,
Lemma 1.5 and (7) we have, for small enoughη � 1,

‖F‖
L1(B

N/2−1
2 )

� ‖b‖
L2(B

N/2
2 )

‖u‖
L2(B

N/2
2 )

� Cεν
0 ,

‖u · ∇u‖
L1(B

N/2−1
2 )

� ‖u‖
L2(B

N/2
2 )

‖∇u‖
L2(B

N/2−1
2 )

� Cεν
0 ,
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1 + εb
Au

∥∥∥∥
L1(B

N/2−1
2 )

� ε‖b‖
L∞(B

N/2
2 )

‖Au‖
L1(B

N/2−1
2 )

,

� ν−1‖b‖
L∞(B̃

N/2,∞
εν )

‖u‖
L1(B

N/2+1
2 )

,

� Cεν
0 ,∥∥∥∥K(εb)∇b

ε

∥∥∥∥
L1(B

N/2−1
2 )

� ‖b‖
L2(B

N/2
2 )

‖∇b‖
L2(B

N/2−1
2 )

� Cεν
0 .

Last step: Convergence of the incompressible part

Let w
def= Pu− v. Applying Leray projector to the second equation of (1) and subtracting

(NSI) from it yields the following equation forw:{
∂tw − µ∆w = H,
w|t=0 = 0,

(16)

with H
def= −P(w · ∇v)−P(u · ∇w) −P(Qu · ∇v)−P(u · ∇Qu)−P( εb

1+εbAu).
Let us first treat the caseN � 4 which is the easiest to handle. We are going to prove that, for

pN � p � +∞,

Yp
def= ‖w‖

L1(B
N/p+1/2
p )

+ ‖w‖
L∞(B

N/p−3/2
p )

� Cεν
0 ε1/2.(17)

According to Proposition 7.3, we have

Yp � ‖H‖
L1(B

N/p−3/2
p )

.(18)

Thanks to Proposition 1.4 and to the estimates of steps 1, 2 and 3, we gather

‖P(w · ∇v)‖
L1(B

N/p−3/2
p )

� ‖∇v‖
L2(B

N/2−1
2 )

‖w‖
L2(B

N/p−1/2
p )

,

‖P(u · ∇w)‖
L1(B

N/p−3/2
p )

� ‖u‖
L2(B

N/2
2 )

‖∇w‖
L2(B

N/p−3/2
p )

,

‖P(Qu · ∇v)‖
L1(B

N/p−3/2
p )

� ‖∇v‖
L2(B

N/2−1
2 )

‖Qu‖
L2(B

N/p−1/2
p )

,

� (Cεν
0 )2ε1/2,

‖P(u · ∇Qu)‖
L1(B

N/p−3/2
p )

� ‖u‖
L2(B

N/2
2 )

‖∇Qu‖
L2(B

N/p−3/2
2 )

,

� (Cεν
0 )2ε1/2.

Note that all the above estimates are justified sinceN/2+N/p−3/2> 0 for anyp � +∞ when

N � 4. Thanks to the embeddingBN/2−3/2
2 ↪→B

N/p−3/2
p and to (7), we also have∥∥∥∥P(

εb

1 + εb
Au

)∥∥∥∥
L1(B

N/p−3/2
p )

�
∥∥∥∥ εb

1 + εb
Au

∥∥∥∥
L1(B

N/2−3/2
2 )

,

� ‖εb‖
L4(B

N/2
2 )

‖Au‖
L4/3(B

N/2−3/2
2 )

,

� ε1/2‖b‖
L4(B̃

N/2,4
εν )

‖u‖
L4/3(B

N/2+1/2
2 )

,

�
(
Cεν

0

)2
ε1/2.
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Plugging all the above estimates in (18), we gather

Yp � C
((

Cεν
0

)2
ε1/2 +

(
‖u‖

L2(B
N/2
2 )

+ ‖v‖
L2(B

N/2
2 )

)
Yp

)
,

� CCεν
0 ε1/2 + CηYp,

so that we can conclude to (17) provided that the constantη has been chosen small enough. Let
us remark that, in particular,Pu tends tov in L1(R+;B1/2

∞ )∩C([0,+∞];B−3/2
∞ ). Interpolating

with the estimates of step one (and using some embeddings), we see that convergence actually
holds inL1(R+;B1−α

∞ )∩C([0,+∞];B−1−α
∞ ) for all α ∈ ]0,1/2].

In fact, one can even prove thatPu tends to0 in C([0,+∞];B−1
∞ ). Indeed, according

to (10) and using arguments similar to those of step two, one can prove thatPu solves a heat
equation with right-hand side uniformly bounded inL1(BN/2−1

2 ) (thus inL1(B−1
∞ )) for smallε.

According to Proposition 7.3, this implies that∑
q∈Z

2−q‖∆qPu‖L∞(R+×RN ) � C < +∞ uniformly in ε.

Since each∆qPu tends to∆qv in C([0,+∞];B−3/2
∞ ), thus also inC([0,+∞];B−1

∞ ), we can
conclude by Lebesgue theorem, thatPu tends tov in C([0,+∞];B−1

∞ ).
In the caseN = 2,3, Proposition 2.2 does not provide us with estimates forε−1/2Qu in

L2(R+;BN/p−1/2
p ). On the other hand, one can interpolate the following estimate foru

‖u‖
L1(B

N/2+1
2 )

� Cεν
0(19)

given by step one, with the dispersive inequalities of Lemma 3.1. This still gives us some decay
in ε.

Let us first treat the caseN = 3. Use the following interpolation for2 � q � +∞

L2
(
R

+;B(14−q)/(2q+4)
(q+2)/2

)
=

[
L1

(
R

+;B5/2
2

)
;L2q/(q−2)

(
R

+;B−1/2+2/q
q

)]
2/(q+2)

.

Make the change of parameterp = (q + 2)/2. Thanks to Lemma 3.1 and estimate (19), we
conclude that

‖Qu‖
L2(B

4/p−1/2
p )

� Cεν
0 ε1/2−1/p for all 2 � p < +∞.(20)

Let us prove thatw tends to zero in the spaceL1(R+;B4/p+1/2
p ) ∩ C(R+;B4/p−3/2

p )
(2 � p < +∞). More precisely, we want to prove that

Yp
def= ‖w‖

L1(B
4/p+1/2
p )

+ ‖w‖
L∞(B

4/p−3/2
p )

� Cεν
0 ε1/2−1/p.(21)

According to Proposition 1.4 and to theestimates of steps 1, 2 and 3, we have

‖P(w · ∇v)‖
L1(B

4/p−3/2
p )

� ‖∇v‖
L2(B

1/2
2 )

‖w‖
L2(B

4/p−1/2
p )

,

‖P(u · ∇w)‖
L1(B

4/p−3/2
p )

� ‖u‖
L2(B

3/2
2 )

‖∇w‖
L2(B

4/p−3/2
p )

,

‖P(Qu · ∇v)‖
L1(B

4/p−3/2
p )

� ‖∇v‖
L2(B

1/2
2 )

‖Qu‖
L2(B

4/p−1/2
p )

,

�
(
Cεν

0

)2
ε1/2−1/p,
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‖P(u · ∇Qu)‖
L1(B

4/p−3/2
p )

� ‖u‖
L2(B

3/2
2 )

‖∇Qu‖
L2(B

4/p−3/2
2 )

,

�
(
Cεν

0

)2
ε1/2−1/p.

Thanks to the embeddingB1/p
2 ↪→B

4/p−3/2
p , we also have∥∥∥∥P(

εb

1 + εb
Au

)∥∥∥∥
L1(B

4/p−3/2
p )

� ‖εb‖
L4p/(p−2)(B

3/2
2 )

‖Au‖
L4p/(3p+2)(B

1/p
2 )

,

� ε1/2−1/p‖b‖
L4p/(p−2)(B̃

3/2,4p/(p−2)
εν )

‖u‖
L4p/(3p+2)(B

1/p+2
2 )

,

�
(
Cεν

0

)2
ε1/2−1/p.

Applying Proposition 7.3 to (16) and using the above estimates, we gather

Yp � CCεν
0 ε1/2−1/p + CηYp,

so that we can conclude to (17) provided that the constantη has been chosen small enough.
By embedding, we readily havePu → v in L1(R+;B1−α

∞ ) ∩ C([0,+∞];B−1−α
∞ ) for all

α ∈ ]0,1/2[. The borderline caseα = 0 may be reached as in the caseN � 4.
Let us complete the proof with the study of caseN = 2. Use the following interpolation for

2 � q � +∞

L2
(
R

+;B(14+q)/(6q+4)
(6q+4)/(q+6)

)
=

[
L1

(
R

+;B2
2

)
;L4q/(q−2)

(
R

+;B−3/4+3/(2q)
q

)]
(q+2)/(3q+2)

.

Make the change of parameterp = (6q + 4)/(q + 6). Thanks to Lemma 3.1 and estimate (19),
we get

‖Qu‖
L2(B

5/(2p)−1/4
p )

� Cεν
0 ε1/4−1/(2p) for all 2 � p � 6.(22)

Next, we are going to prove that

Yp
def= ‖w‖

L1(B
5/(2p)+3/4
p )

+ ‖w‖
L∞(B

5/(2p)−5/4
p )

� Cεν
0 ε1/4−1/(2p).

According to Proposition 1.4 and to theestimates of steps 1, 2 and 3, we have

‖P(w · ∇v)‖
L1(B

5/(2p)−5/4
p )

� ‖∇v‖L2(B0
2)‖w‖

L2(B
5/(2p)−1/4
p )

,

‖P(u · ∇w)‖
L1(B

5/(2p)−5/4
p )

� ‖u‖L2(B1
2)‖∇w‖

L2(B
5/(2p)−5/4
p )

,

‖P(Qu · ∇v)‖
L1(B

5/(2p)−5/4
p )

� ‖∇v‖L2(B0
2)‖Qu‖

L2(B
5/(2p)−1/4
p )

,

�
(
Cεν

0

)2
ε1/4−1/(2p),

‖P(u · ∇Qu)‖
L1(B

5/(2p)−5/4
p )

� ‖u‖L2(B1
2)‖∇Qu‖

L2(B
5/(2p)−5/4
2 )

,

�
(
Cεν

0

)2
ε1/4−1/(2p).

Note that the condition5/2p− 1/4 > 0 is always satisfied forp � 6. Thanks to the embedding

B
1/(2p)−1/4
2 ↪→B

5/(2p)−5/4
p , we also have
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εb

1 + εb
Au

)∥∥∥∥
L1(B

5/(2p)−5/4
p )

� ‖εb‖L8p/(p−2)(B1
2)‖Au‖

L8p/(7p+2)(B
1/(2p)−1/4
2 )

,

� ε1/4−1/(2p)‖b‖
L8p/(p−2)(B̃

1,8p/(p−2)
εν )

‖u‖
L8p/(7p+2)(B

1/(2p)+7/4
2 )

,

�
(
Cεν

0

)2
ε1/4−1/(2p).

Applying Proposition 7.3 and using all the above estimates, we can conclude to the desired
inequality exactly as in the caseN � 3.

By embedding, we getPu → v in L1(R+;B1−α
∞ ) ∩C([0,+∞];B−1−α

∞ ) for all α ∈ ]0,1/6[.
The borderline caseα = 0 may be reached by repeating the arguments of caseN � 4. �

Remark3.2. – The first step also holds in the periodic setting. That means that in both cases
(periodic or whole space), uniform estimates are available for(bε, uε) in, say,(

Cb

(
R

+;BN/2−1
)
∩L2

(
R

+;BN/2
))

×
(
Cb

(
R

+;BN/2−1
)
∩L1

(
R

+;BN/2+1
))N

.

Following the arguments of P.-L. Lions and N. Masmoudi in [28], we can get some results of
convergence (local in time and space) to the incompressible solution. Since in our framework the
incompressible solution is unique, the whole sequence(ρε, uε) converges to(1, v). On the other
hand, as the method introduced in [28] requires somea priori bounds on the sequence(ρε, uε),
it is unlikely to help us to treat the case of large initial data.

4. Estimates for the linearized system

The main result of this section is the following proposition which is at the root of the proof of
Theorem 2.5:

PROPOSITION 4.1. – Let ε > 0, s ∈ R, 1 � p, r < +∞ and(c, d) be a solution of
∂tc + Tuj ∂jc +

Λd

ε
= F,

∂td + Tuj ∂jd− ν∆d− Λc

ε
= G.

(LPH ε)

Then there exists a constantC depending only onN , p, r and s, and such that the following
estimate holds:

‖c(t)‖
B̃s,∞

εν
+ ‖d(t)‖Bs−1

2
+ ν

t∫
0

(
‖c(τ)‖

B̃s,1
εν

+ ‖d(τ)‖Bs+1
2

)
dτ

� CeCV p,r
ν,ε (t)

(
‖c0‖B̃s,∞

εν
+ ‖d0‖Bs−1

2
+

t∫
0

e−CV p,r
ν,ε (τ)

(
‖F (τ)‖

B̃s,∞
εν

+ ‖G(τ)‖Bs−1
2

)
dτ

)
,

where, ifp > 1,

V p,r
ν,ε (t) def=

t∫
0

(
ν1−p‖∇u(τ)‖p

B
2/p−2
∞,∞

+
(
ε2ν

)r−1‖∇u(τ)‖r
L∞

)
dτ
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and

V 1,r
ν,ε (t) def=

t∫
0

(
‖∇u(τ)‖L∞ +

(
ε2ν

)r−1‖∇u(τ)‖r
L∞

)
dτ .

Proof. –It suffices to consider the caseε = 1. Indeed, one can make the change of functions

c̃(t, x) def= εc
(
ε2t, εx

)
, d̃(t, x) def= εd

(
ε2t, εx

)
, ũ(t, x) def= εu

(
ε2t, εx

)
,

F̃ (t, x) def= ε3F
(
ε2t, εx

)
, G̃(t, x) def= ε3G

(
ε2t, εx

)
.

Then(c̃, d̃) solves {
∂tc̃ + Tũj ∂j c̃ + Λd̃ = F̃ ,

∂td̃ + Tũj ∂j d̃− ν∆d̃−Λc̃ = G̃.
(LPH 1)

Now, if Proposition 4.1 has been shown to hold in the caseε = 1 then scaling arguments (see (5),
(6) and (9)) enable us to conclude.

Let us tackle the proof in the caseε = 1. It is actually quite similar to the one of Proposition 2.3
in [6] (where we considered only the caseε = r = p = 1 and kept the full convection termsu ·∇z
instead ofTuj ∂jz here).

To avoid a tedious distinction between the casep > 1 and the casep = 1, it will be meant
throughout the proof that‖∇u‖

B
2/p−2
∞,∞

stands for‖∇u‖L∞ if p = 1.

Let q0
def= 1− [log2 ν]. Clearly, we need appropriate estimates for

kq =
√
‖∆qc‖2

L2 + ‖∆qd‖2
L2 if q � q0 − 1,

kq =
√
‖νΛ∆qc‖2

L2 + ‖∆qd‖2
L2 if q � q0.

This suggests us to write evolution equations for∆qc and ∆qd. Applying the operator∆q

to (LPH), we infer that(∆qc,∆qd) satisfies{
∂t∆qc + ∆q(Tuj ∂jc) + Λ∆qd = ∆qF,
∂t∆qd + ∆q(Tuj ∂jd)− ν∆∆qd−Λ∆qc = ∆qG.

(LPH q)

It turns out that rough energy arguments applied to(LPH q) do not yield appropriate estimates
for kq. The reason why is that the linear operator associated to (LPH) is not diagonal. To
overcome this difficulty, we shall follow [6] and use

fq =

√
‖∆qc‖2

L2 + ‖∆qd‖2
L2 −

1
4
(νΛ∆qc|∆qd) for q � q0 − 1,

fq =
√
‖νΛ∆qc‖2

L2 + 2‖∆qd‖2
L2 − 2(νΛ∆qc|∆qd) for q � q0,

where(a|b) stands for the scalar product inL2(RN ).
UsingSuppF(∆qc)⊂ 2qC(0,5/6,12/5) and the definition ofq0, we gather

C−1kq � fq � Ckq(23)

for a universal constantC.
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The first two steps of the proof are devoted to getting a universal positive constantκ such that
for any positiveK , the following inequality holds true:

1
2

d
dt

f2
q + κν min

(
22q, ν−2

)
kqfq

� fq

(
max

(
1,2qν

)
‖∆qF‖L2 + ‖∆qG‖L2 +

κν

K
min

(
22q, ν−2

) ∑
|q′−q|�3

kq′

+
[(

K

κν

)p−1

‖∇u‖p

B
2/p−2
∞,∞

+
(

νK

κ

)r−1

‖∇u‖r
L∞

] ∑
|q′−q|�3

kq′

)
.(24)

We will then show (third step) that this inequality entails a decay forc and a low-frequencies
damping ford.

In the last part of the proof (fourth step), we will use step three to show that (LPH) has indeed
a smoothing parabolic effect ond with the gain of two derivatives.

First step: low frequencies

We here suppose thatq < q0 (thus2qν < 2). According to [6], we have the following energy
equality:

1
2

d
dt

f2
q +

7ν

8
‖Λ∆qd‖2

L2 +
ν

8
‖Λ∆qc‖2

L2 −
ν2

8
(
Λ2∆qd|Λ∆qc

)
= (∆qF |∆qc) + (∆qG|∆qd)− 1

8
(
(νΛ∆qd|∆qF ) + (νΛ∆qc|∆qG)

)
−

(
∆q(Tuj ∂jc)|∆qc

)
−

(
∆q(Tuj ∂jd)|∆qd

)
+

1
8
((

νΛ∆qc|∆q(Tuj ∂jd)
)
+

(
νΛ∆q(Tuj ∂jc)|∆qd

))
.(25)

Using the fact that2qν < 2, we have

‖νΛ∆qc‖L2 � ‖∆qc‖L2 and ‖νΛ∆qd‖L2 � ‖∆qd‖L2.(26)

Now, (23) enables us to bound the first four terms of the right-hand side of (25) by

Cfq

(
‖∆qF‖L2 + ‖∆qG‖L2

)
.

Let us remark that for a suitable constantκ, we have

7ν

8
‖Λ∆qd‖2

L2 +
ν

8
‖Λ∆qc‖2

L2 −
ν2

8
(
Λ2∆qd|Λ∆qc

)
� κνkqfq.

To bound the remaining terms of the right-hand side (i.e. the convection terms), we use
Lemma 7.5. After an obvious integration by parts, we end up with∣∣(∆q(Tuj ∂jc)|∆qc

)∣∣ � ‖Sq−1 divu‖L∞‖∆qc‖2
L2

+ 22q(1−1/p)‖∇u‖
B

2/p−2
∞,∞

‖∆qc‖L2

∑
|q′−q|�3

‖∆q′c‖L2 ,

∣∣(∆q(Tuj ∂jd)|∆qd)
∣∣ � ‖Sq−1 divu‖L∞‖∆qd‖2

L2

+ 22q(1−1/p)‖∇u‖
B

2/p−2
∞,∞

‖∆qd‖L2

∑
|q′−q|�3

‖∆q′d‖L2 ,(27)
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)
+

(
Λ∆q(Tuj ∂jc)|∆qd

)∣∣
� ‖Sq−1 divu‖L∞‖νΛ∆qc‖L2‖∆qd‖L2

+ 22q(1−1/p)‖∇u‖
B

2/p−2
∞,∞

(
‖νΛ∆qc‖L2

∑
|q′−q|�3

‖∆q′d‖L2

+ ‖∆qd‖L2

∑
|q′−q|�3

‖νΛ∆q′c‖L2

)
.

Using again (26), some further computations enable us to bound the convection terms by

C22q(1−1/p)‖∇u‖
B

2/p−2
∞,∞

fq

∑
|q′−q|�3

kq′ .

Plugging all these inequalities in (25) yields

1
2

d
dt

f2
q + κν22qkqfq

� fq

(
‖∆qF‖L2 + ‖∆qG‖L2 + 22q(1−1/p)‖∇u‖

B
2/p−2
∞,∞

∑
|q′−q|�3

kq′

)
.(28)

Moreover, according to Young inequality, we have for allK > 0,

22q(1−1/p)‖∇u‖
B

2/p−2
∞,∞

� 1
p

(
K

κν

)p−1

‖∇u‖p

B
2/p−2
∞,∞

+
(p− 1)κν

pK
22q.

This completes the proof of (24) in the caseq < q0.

Second step: high frequencies

Suppose thatq � q0 (hence2qν � 2). Following [6], we obtain

1
2

d
dt

f2
q + ν‖Λ∆qc‖2

L2 + ν‖Λ∆qd‖2
L2 − 2(Λ∆qc|∆qd)

= (νΛ∆qF |νΛ∆qc) + 2(∆qd|∆qG)− (νΛ∆qc|∆qG)− (νΛ∆qF |∆qd)

−
(
νΛ∆q(Tuj ∂jc)|νΛ∆qc

)
− 2

(
∆q(Tuj ∂jd)|∆qd

)
+

(
νΛ∆q(Tuj ∂jc)|∆qd

)
+

(
νΛ∆qc|∆q(Tuj ∂jd)

)
.

We use a very rough bound from below for the left-hand side (which amounts to loosing the
smoothing effect of (LPH 1) ond):

‖νΛ∆qd‖2
L2 − 2‖∆qd‖2

L2 � 7
9
‖∆qd‖2

L2 .

The forcing terms in the right-hand side are bounded byCfq(‖νΛ∆qF‖L2 + ‖∆qG‖L2).
On the other hand, using again Lemma 7.5 in the appendix, we get∣∣(νΛ∆q(Tuj ∂jc)|νΛ∆qc

)∣∣
� ‖Sq−1 divu‖L∞‖νΛ∆qc‖2

L2 + ‖∇u‖L∞‖νΛ∆qc‖L2

∑
|q′−q|�3

‖νΛ∆q′c‖L2 ,
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50 R. DANCHIN∣∣(∆q(Tuj ∂jd)|∆qd
)∣∣

� ‖Sq−1 divu‖L∞‖∆qd‖2
L2 + ‖∇u‖L∞‖∆qd‖L2

∑
|q′−q|�3

‖∆q′d‖L2 ,

∣∣(νΛ∆qc|∆q(Tuj ∂jd)
)
+

(
νΛ∆q(Tuj ∂jc)|∆qd

)∣∣
� ‖Sq−1 divu‖L∞‖νΛ∆qc‖L2‖∆qd‖L2

+ ‖∇u‖L∞

(
‖νΛ∆qc‖L2

∑
|q′−q|�3

‖∆q′d‖L2 + ‖∆qd‖L2

∑
|q′−q|�3

‖νΛ∆q′c‖L2

)
.

Choosing an appropriate constantκ > 0, this leads to

1
2

d
dt

f2
q + κν−1kqfq � Cfq

(
‖νΛ∆qF‖L2 + ‖∆qG‖L2 + ‖∇u‖L∞

∑
|q′−q|�3

kq′

)
.(29)

We then conclude to (24) thanks to the following Young inequality:

‖∇u‖L∞ �
(

1
r

Kν

κ

)r−1

‖∇u‖r
L∞ +

(r − 1)κ
rνK

.

Third step: L1 decay for c

We are going to show that inequality (24) provides us with decay estimates forc andd. We
postpone the proof of smoothing properties ford with gain of two derivatives to the next step.
Rewriting (24) in terms ofh2

q = f2
q + δ2 (for any δ > 0), one can divide both sides byhq and

perform a time integration. After havingδ tend to0, this leads to

fq(t) + κν min
(
22q, ν−2

) t∫
0

kq(τ)dτ

� fq(0) + C

t∫
0

(
max

(
1,2qν

)
‖∆qF‖L2 + ‖∆qG‖L2

)
dτ

+
κν

K
min

(
22q, ν−2

) ∑
|q′−q|�3

t∫
0

kq′(τ)dτ

+ C

t∫
0

[(
K

κν

)p−1

‖∇u(τ)‖p

B
2/p−2
∞,∞

+
(

νK

κ

)r−1

‖∇u(τ)‖r
L∞

] ∑
|q′−q|�3

kq′ dτ.(30)

Multiply both sides by2q(s−1). Using (23) and summing onZ, we infer that

‖c(t)‖
B̃s,∞

ν
+ ‖d(t)‖Bs−1

2
+ κν

∑
q∈Z

t∫
0

min
(
22q, ν−2

)
2q(s−1)kq(τ)dτ

� C

(
‖c0‖B̃s,∞

ν
+ ‖d0‖Bs−1

2
+

t∫
0

(
‖F (τ)‖

B̃s,∞
ν

+ ‖G(τ)‖Bs−1
2

)
dτ

)

4e SÉRIE– TOME 35 – 2002 –N◦ 1



ZERO MACH NUMBER LIMIT IN CRITICAL SPACES 51

+
Cκν

K

∑
q∈Z

t∫
0

min
(
22q, ν−2

)
2q(s−1)kq(τ)dτ + C

t∫
0

[(
K

κν

)p−1

‖∇u(τ)‖p

B
2/p−2
∞,∞

+
(

νK

κ

)r−1

‖∇u(τ)‖r
L∞

](
‖c(τ)‖

B̃s,∞
ν

+ ‖d(τ)‖Bs−1
2

)
dτ.

ChoosingK = 2C and denotingdBF
def=

∑
q<q0

∆qd, we eventually obtain

‖c(t)‖
B̃s,∞

ν
+ ‖d(t)‖Bs−1

2
+ ν

t∫
0

(
‖c(τ)‖

B̃s,1
ν

+ ‖dBF (τ)‖Bs+1
2

)
dτ

� ‖c0‖B̃s,∞
ν

+ ‖d0‖Bs−1
2

+

t∫
0

(
‖F (τ)‖

B̃s,∞
ν

+ ‖G(τ)‖Bs−1
2

)
dτ

+

t∫
0

(V p,r
ν,1 )′(τ)

(
‖c(τ)‖

B̃s,∞
ν

+ ‖d(τ)‖Bs−1
2

)
dτ.(31)

Now, thanks to Gronwall inequality, we conclude that

‖c(t)‖
B̃s,∞

ν
+ ‖d(t)‖Bs−1

2
+ ν

t∫
0

(
‖c(τ)‖

B̃s,1
ν

+ ‖dBF (τ)‖Bs+1
2

)
dτ

� CeCV p,r
ν,1 (t)

(
‖c0‖B̃s,∞

ν
+ ‖d0‖Bs−1

2
+

t∫
0

e−CV p,r
ν,1 (τ)

(
‖F (τ)‖

B̃s,∞
ν

+ ‖G(τ)‖Bs−1
2

)
dτ

)
.(32)

Fourth step: the L1 smoothing effect for d

To achieve the proof of Proposition 4.1, we still have to show thatdHF
def=

∑
q�q0

∆qd satisfies

ν

t∫
0

‖dHF (τ)‖Bs+1
2

dτ � CeCV p,r
ν,1 (t)

(
‖c0‖B̃s,∞

ν
+ ‖d0‖Bs−1

2
+

t∫
0

e−CV p,r
ν,1 (τ)

(
‖F (τ)‖

B̃s,∞
ν

+ ‖G(τ)‖Bs−1
2

)
dτ

)
.(33)

From the first equation of(LPH q), we get

1
2

d
dt

‖∆qd‖2
L2 + κν22q‖∆qd‖2

L2

� ‖∆qd‖L2

(
‖∆qΛc‖L2 + ‖∆qG‖L2

)
+

∣∣(∆qd|∆q(Tuj ∂jd)
)∣∣.

The last term may be bounded thanks to (27). Using Young inequality and integrating in time,
this yields
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‖∆qd(t)‖L2 + κν

t∫
0

22q‖∆qd(τ)‖L2 dτ

� ‖∆qd0‖L2 + C

t∫
0

(
2q‖∆qc‖L2 + ‖∆qG‖L2

)
dτ

+
κν

K
22q

∑
|q′−q|�3

t∫
0

‖∆q′d(τ)‖L2 dτ

+ C

t∫
0

(
K

κν

)p−1

‖∇u(τ)‖p

B
2/p−2
∞,∞

∑
|q′−q|�3

‖∆q′d(τ)‖L2 dτ.

Multiply both sides of the above inequality by2q(s−1) and sum forq � q0. ChoosingK suitably
large, we eventually get

‖dHF (t)‖Bs−1
2

+ ν

t∫
0

‖dHF (τ)‖Bs+1
2

dτ

� ‖d0,HF ‖Bs−1
2

+

t∫
0

ν1−p‖∇u‖p

B
2/p−2
∞,∞

‖d(τ)‖Bs−1
2

dτ

+

t∫
0

(
‖cHF (τ)‖Bs

2
+ ‖GHF (τ)‖Bs−1

2
+ ‖dBF (τ)‖Bs+1

2

)
dτ.(34)

Plugging inequality (32) in (34), we get (33).
We conclude this section by stating a result in the same spirit for the paralinearized

incompressible Navier–Stokes equation. This result will be at the root of an explosion criterion
given in Section 6. Here is the precise statement:

PROPOSITION 4.2. – Let s ∈ R, 1 � p < +∞ andv be a solution of{
∂tv +P(Tu · ∇v)− µ∆v = F,
v|t=0 = v0,

with div v0 = divF = 0. Then there exist a universal constantκ and a constantC depending
only onN, p ands, and such that the following estimate holds:

‖v(t)‖Bs−1
2

+ κµ

t∫
0

‖v(τ)‖Bs+1
2

dτ � eCV p
µ (t)

(
‖v0‖Bs−1

2
+

t∫
0

e−CV p
µ (τ)‖F (τ)‖Bs−1

2
dτ

)
,

whereV 1
µ (t) def=

∫ t

0
‖∇u(τ)‖L∞ dτ andV p

µ (t) def=
∫ t

0
µ1−p‖∇u(τ)‖p

B
2/p−2
∞,∞

dτ if p > 1.

The proof (which is left to the reader) goes along the lines of the proof of Proposition 4.1. It
is in fact much simpler since there is only a parabolic equation to treat.
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5. The case of large initial data

To prove Theorem 2.5, we are going to follow the five steps described in Section 2. In the
first three steps which are devoted to a priori estimates, we will often make the distinction
between the caseN � 4 (which actually is easier) and the caseN = 2,3. This is mainly because
in high dimension, more dispersive inequalities are available than in dimensionN = 2,3 (see
Proposition 2.2).

Throughout the first four steps, we shall make the implicit assumption that(bε, uε) is a given

solution of(NSC ε) which belongs toEN/2
εν,T ∩E

N/2+α
εν,T (for aα ∈ ]0,1/2] if N � 4, α ∈ ]0,1/2[

if N = 3 andα ∈ ]0,1/6] if N = 2) and satisfies‖εbε‖L∞ � 3/4. We shall likewise assume that

the corresponding incompressible solutionv belongs toFN/2
T0

∩F
N/2+α
T0

.
Let us introduce some notations. First of all, we are going to drop all the exponentsε, andw

will stand forPu− v. Forβ ∈ [0,1/2], we denote

Xβ(T ) def= ‖b‖
L1

T
(B̃

N/2+β,1
εν )

+ ‖Qu‖
L1

T
(B

N/2+1+β
2 )

+ ‖b‖
L∞

T
(B̃

N/2+β,∞
εν )

+ ‖Qu‖
L∞

T
(B

N/2−1+β
2 )

,

Vβ(T ) def= ‖v‖
L1

T
(B

N/2+1+β
2 )

+ ‖v‖
L∞

T
(B

N/2−1+β
2 )

,

Wβ(T ) def= ‖w‖
L1

T
(B

N/2+1+β
2 )

+ ‖w‖
L∞

T
(B

N/2−1+β
2 )

,

Yβ(T ) def= ‖b‖
L2

T
(B

β−1/2
∞ )

+ ‖Qu‖
L2

T
(B

β−1/2
∞ )

if N � 4,

Y p
β (T ) def= ‖b‖

Lp
T
(B

β−1+1/p
∞ )

+ ‖Qu‖
Lp

T
(B

β−1+1/p
∞ )

if N = 3 and2 < p � +∞,

Yβ(T ) def= ‖b‖
L4

T
(B

β−3/4
∞ )

+ ‖Qu‖
L4

T
(B

β−3/4
∞ )

if N = 2.

We shall also use the notationPβ(T ) = Vβ(T ) + Wβ(T ) and it is meant that

X0
β = ‖b0‖B̃

N/2+β,∞
εν

+ ‖Qu0‖B
N/2−1+β
2

+ ‖Qf‖
L1(B

N/2−1+β
2 )

.

In absence of ambiguity, theT will be omitted, andβ will always stand for0 or α.
Now, let us tackle the first step of the proof.

First step: Dispersive estimates for (b,Qu)

Denote

G
def= ν∆Qu−Q

(
u · ∇u− εb

1 + εb
Au +

K(εb)b
ε

)
.

Applying Proposition 2.2 to the first two equations of (10), we get forN � 4,

Yα � ε1/2
(
‖(b0,Qu0)‖B

N/2−1+α
2

+ ‖Qf‖
L1

T
(B

N/2−1+α
2 )

+ ‖div(bu)‖
L1

T
(B

N/2−1+α
2 )

+ ‖G‖
L1

T
(B

N/2−1+α
2 )

)
,(35)

for N = 3 and2 < p � +∞,

Y p
α � ε1/p

(
‖(b0,Qu0)‖B

1/2+α
2

+ ‖Qf‖
L1

T
(B

1/2+α
2 )

+ ‖div(bu)‖
L1

T
(B

1/2+α
2 )

+ ‖G‖
L1

T
(B

1/2+α
2 )

)
,(36)
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for N = 2,

Yα � ε1/4
(
‖(b0,Qu0)‖Bα

2
+ ‖Qf‖L1

T
(Bα

2 ) + ‖div(bu)‖L1
T
(Bα

2 ) + ‖G‖L1
T

(Bα
2 )

)
.(37)

From Proposition 1.4, Lemma 1.5 and (7), we easily gather that for anyN � 2,

‖div(bu)‖
L1

T
(B

N/2−1+α
2 )

� ‖b‖
L2

T
(B

N/2
2 )

‖u‖
L2

T
(B

N/2+α
2 )

+ ‖u‖
L2

T
(B

N/2
2 )

‖b‖
L2

T
(B

N/2+α
2 )

,

� X0(Xα + Pα) + Xα(X0 + P0),

‖Q(u · ∇u)‖
L1

T
(B

N/2−1+α
2 )

� ‖u‖
L2

T
(B

N/2
2 )

‖∇u‖
L2

T
(B

N/2−1+α
2 )

,

� (X0 + P0)(Xα + Pα),∥∥∥∥Q(
εb

1 + εb
Au

)∥∥∥∥
L1

T
(B

N/2−1+α
2 )

� ε‖b‖
L∞

T
(B

N/2
2 )

‖Au‖
L1

T
(B

N/2−1+α
2 )

,

� X0(Xα + Pα),∥∥∥∥Q(
K(εb)b

ε

)∥∥∥∥
L1

T
(B

N/2−1+α
2 )

� ε−1‖εb‖
L2

T
(B

N/2
2 )

‖∇b‖
L2

T
(B

N/2−1+α
2 )

,

� X0Xα.

Plugging the above inequalities in (35), (36) or (37), we conclude that
Yα � ε1/2

(
X0

α + Xα + (X0 + P0)(Xα + Pα)
)

if N � 4,
Y p

α � ε1/p
(
X0

α + Xα + (X0 + P0)(Xα + Pα)
)

if N = 3 and 2 < p � +∞,
Yα � ε1/4

(
X0

α + Xα + (X0 + P0)(Xα + Pα)
)

if N = 2.
(38)

Remark5.1. – It goes without saying that Proposition 2.2 actually provides us with estimates
for (b,Qu) in a plethora of spacesLr

T (Bσ
p ).

Second step: Estimates for w in L1(0, T ;BN/2+1+β
2 )∩C([0, T ];BN/2−1+β

2 )

From the third equation of (10) and (NSI), we gather that

∂tw +P(A · ∇w) +P(w · ∇B)− µ∆w = PF

with A = B = Qu + v andF = −(Qu · ∇v + v · ∇Qu + w · ∇w + εb
1+εbAu).

Apply Proposition 7.4 withs = N/2 + β. This yields

Wβ � eC(V0+X0)‖F‖
L1

T
(B

N/2−1+β
2 )

.(39)

For the last term inF , we readily have

‖w · ∇w‖
L1

T
(B

N/2−1+β
2 )

� ‖w‖
L2

T
(B

N/2
2 )

‖∇w‖
L2

T
(B

N/2−1+β
2 )

� W0Wβ .(40)

Next, by interpolation and according to (7), we have

‖b‖
B

N/2
2

� ‖b‖α

B
N/2+α−1
2

‖b‖1−α

B
N/2+α
2

� (εν)α−1‖b‖
B̃

N/2+α,∞
εν

.(41)
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From it we deduce that∥∥∥∥ εb

1 + εb
Au

∥∥∥∥
L1

T
(B

N/2−1+β
2 )

� ε‖b‖
L∞

T
(B

N/2
2 )

‖Au‖
L1

T
(B

N/2−1+β
2 )

,

� εα‖b‖
L∞

T
(B̃

N/2+α,∞
εν )

‖u‖
L1

T
(B

N/2+1+β
2 )

,

� εαXα(Vβ + Wβ + Xβ).(42)

The two remaining terms will betreated differently according toN � 3 or N = 2.
CaseN � 3: According to step one,Qu is small inL2(0, T ;B0

∞). Indeed, using interpolation
and injection (see Proposition 1.3(iii) and (v)), we have ifN � 4

‖Qu‖L2
T
(B0

∞) � ‖Qu‖2α

L2
T
(B

α−1/2
∞ )

‖Qu‖1−2α
L2

T
(Bα

∞)
,

� εα
(
ε−1/2‖Qu‖

L2
T
(B

α−1/2
∞ )

)2α‖Qu‖1−2α

L2
T
(B

N/2+α
2 )

,

� εα
(
Xα + ε−1/2Yα

)
,(43)

and if N = 3 andpα = 1 + 1/2α,

‖Qu‖L2
T
(B0

∞) � ‖Qu‖1/2−α

L1
T
(B1+α

∞ )
‖Qu‖1/2+α

L
(1+2α)/2α

T
(B

α−1/(1+2α)
∞ )

,

� ‖Qu‖1/2−α

L1
T
(B

5/2+α
2 )

‖Qu‖1/2+α

L
(1+2α)/2α

T
(B

α−1/(1+2α)
∞ )

,

� εα
(
Xα + ε−2α/(1+2α)Y pα

α

)
.(44)

From (43) and (44) we expect to glean some smallness forQu · ∇v andv · ∇Qu. A judicious
application of paradifferential calculus will enable us to get it. ForQu · ∇v, we shall use the
following decomposition (withη < 1 to be fixed hereafter)

Qu · ∇v =
∑
q∈Z

∆qQu · Sq−1+[log2 η]∇v

︸ ︷︷ ︸
T1

+
∑
q∈Z

Sq+2−[log2 η]Qu ·∆q∇v

︸ ︷︷ ︸
T2

which may be seen as a slight modification of Bony decomposition.
Let us remark that for anyj ∈ Z, we have

‖Sj∇v‖L∞ � 22j‖∇v‖B−2
∞

.

Therefore

‖Sq−1+[log2 η]∇v∆qQu‖L2 � ‖Sq−1+[log2 η]∇v‖L∞‖∆qQu‖L2 ,

� η22−q(N/2+β−1)‖∇v‖B−2
∞

(
2q(N/2+β+1)‖∆qQu‖L2

)
.

Since, according to (4), the functionF(Sq−1+[log2 η]∇v∆qQu) is supported in a dyadic annulus
2qC(0,R1,R2) with R1 andR2 independent ofη, Lemma 1.2 yields

‖T1‖L1
T

(B
N/2−1+β
2 )

� η2‖∇v‖
L∞

T
(B

N/2−2
2 )

‖Qu‖
L1

T
(B

N/2+1+β
2 )

.(45)

On the other hand, according to (4), we have for allp ∈ Z:

∆pT2 =
∑

q�p−2+[log2 η]

∆p(Sq+2−[log2 η]Qu ·∆q∇v).
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Therefore

2p(N/2+β−1)‖∆pT2‖L2 � 2p(N/2+β−1)‖Qu‖L∞

∑
q�p−2+[log2 η]

‖∆q∇v‖L2 ,

� η1−β−N/2‖Qu‖L∞‖∇v‖
B

N/2+β−1
2

whence,

‖T2‖B
N/2+β−1
2

� η1−β−N/2‖v‖
B

N/2+β
2

‖Qu‖L∞ .(46)

Chooseη = ε2α/(2+N+2β). SinceB0
∞ ↪→ L∞, we conclude from (45), (46), and (43) or (44) that

‖Qu · ∇v‖
L1

T
(B

N/2−1+β
2 )

� ε4α/(2+N+2β)
(
V0Xβ + Vβ

(
Xα + ε−1/2Yα

))
if N � 4,

‖Qu · ∇v‖
L1

T
(B

N/2−1+β
2 )

� ε4α/(2+N+2β)
(
V0Xβ + Vβ

(
Xα + ε−2α/(1+2α)Y pα

α

))
if N = 3.

(47)

The termv · ∇Qu may be treated similarly. Use the decomposition

v · ∇Qu =
∑
q∈Z

Sq−1+[log2 η]v ·∆q∇Qu

︸ ︷︷ ︸
T̃1

+
∑
q∈Z

∆qv · Sq+2−[log2 η]∇Qu

︸ ︷︷ ︸
T̃2

.

Following the proof of (45), we readily get

‖T̃1‖L1
T

(B
N/2−1+β
2 )

� η‖v‖
L∞

T
(B

N/2−1
2 )

‖∇Qu‖
L1

T
(B

N/2+β
2 )

,

‖T̃2‖L1
T

(B
N/2−1+β
2 )

� η−N/2−β‖v‖
L2

T
(B

N/2−1
2 )

‖∇Qu‖L2
T
(B−1

∞ ).

Choosingη = ε2α/(2+N+2β), we conclude that

‖v · ∇Qu‖
L1

T
(B

N/2−1+β
2 )

� ε2α/(2+N+2β)
(
V0Xβ + Vβ

(
Xα + ε−1/2Yα

))
if N � 4,

‖v · ∇Qu‖
L1

T
(B

N/2−1+β
2 )

� ε2α/(2+N+2β)
(
V0Xβ + Vβ

(
Xα + ε−2α/(1+2α)Y pα

α

))
if N = 3.

(48)

Plugging inequalities (40), (42), (47) and (48) into (39), we eventually get, ifN � 4

Wβ � CeC(V0+X0)
(
W0Wβ + εαXα(Vβ + Xβ + Wβ)

+ ε2α/(2+N+2β)
(
V0Xβ + Vβ

(
Xα + ε−1/2Yα

)))
,(49)

and if N = 3,

Wβ � CeC(V0+X0)
(
W0Wβ + εαXα(Vβ + Xβ + Wβ)

+ ε2α/(5+2β)
(
V0Xβ + Vβ

(
Xα + ε−2α/(1+2α)Y pα

α

)))
.(50)

CaseN = 2: That case is more intricate for two reasons. First, proving an estimate of type (43)
for Qu in L2(B0

∞) is hopeless (the reason why is that Proposition 2.2 yields estimates in spaces
of typeLr

T (Bs
p) with r � 4 only). On the other hand, the following estimate is available (recall

that hereα ∈ ]0,1/6]):
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‖Qu‖
L

1/(1−3α)
T

(B2−10α
2/(1−4α))

� ‖Qu‖1−4α

L1
T
(Bα+2

2 )
‖Qu‖4α

L4
T
(B

α−3/4
∞ )

,

� εα
(
Xα + ε−1/4Yα

)
,(51)

and we shall often utilize the embeddingB2−10α
2/(1−4α) ↪→ B1−6α

∞ .
Next, due to the low regularity of the norms considered, we will have to be a bit more careful

when writing estimates for the termsQu · ∇v andv · ∇Qu.
The key to the proof lies on the following refined Bony decomposition:

Qu · ∇v =
∑
q∈Z

Sq−1+[log2 η]Qu∇∆qv +
∑
q∈Z

(Sq−1 − Sq−1+[log2 η])Qu∇∆qv

+ R(Qu,∇v) + T∇vQu.

Using arguments of caseN � 3 and (51), we get∥∥∥∥∑
q∈Z

Sq−1+[log2 η]Qu∇∆qv

∥∥∥∥
L1

T
(Bβ

2 )

� η‖Qu‖L∞
T

(B−1
∞ )‖∇v‖L1

T
(B1+β

2 ),

� ηX0Vβ ,∥∥∥∥∑
q∈Z

(Sq−1 − Sq−1+[log2 η])Qu∇∆qv

∥∥∥∥
L1

T
(Bβ

2 )

� η6α−1‖Qu‖
L

1/(1−3α)
T

(B1−6α
∞ )

‖∇v‖
L

1/(3α)
T

(B6α−1+β
2 )

,

� η6α−1εαVβ

(
Xα + ε−1/4Yα

)
.

Whence, choosingη = εα/(2−6α),

‖TQu∇v‖L1
T

(Bβ
2 ) � εα/(2−6α)

(
X0Vβ + Vβ

(
Xα + ε−1/4Yα

))
.(52)

Next, according to Proposition 1.9 and (51), we have

‖R(Qu,∇v)‖L1
T
(Bβ

2 ) � ‖∇v‖
L

1/(3α)
T

(B6α+β−1
2 )

‖Qu‖
L

1/(1−3α)
T

(B2−10α
2/(1−4α))

,

� εαVβ

(
Xα + ε−1/4Yα

)
.(53)

On the other hand, sinceα,β � 1/6, we have10α + β − 2 < 0. Hence

‖Sq−1∇v∆qQu‖L2 � ‖∆qQu‖L2/(1−4α)

∑
q′�q−2

‖∆q′∇v‖L1/(2α) ,

� 2−qβ
(
2q(2−10α)‖∆qQu‖L2/(1−4α)

)
‖∇v‖B10α+β−2

1/(2α)
.

Apply Lemma 1.2 and use the embeddingB6α+β−1
2 ↪→ B10α+β−2

1/(2α) . We get

‖T∇vQu‖L1
T
(Bβ

2 ) � ‖∇v‖
L

1/(3α)
T

(B6α+β−1
2 )

‖Qu‖
L

1/(1−3α)
T

(B2−10α

2/(1−4α))
,

� εαVβ

(
Xα + ε−1/4Yα

)
.(54)

We shall use a similar decomposition forv · ∇Qu:

v · ∇Qu = T∇Quv + R(v,∇Qu) +
∑
q∈Z

Sq−1+[log2 η]v∇∆qQu

+
∑
q∈Z

(Sq−1 − Sq−1+[log2 η])v∇∆qQu.
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According to Proposition 1.9, we have

‖T∇Quv‖L1
T

(Bβ
2 ) � ‖∇Qu‖

L
1/(1−3α)
T

(B−6α
∞ )

‖v‖
L

1/(3α)
T

(B6α+β
2 )

,

� εαVβ

(
Xα + ε−1/4Yα

)
,(55)

‖R(∇Qu, v)‖L1
T

(Bβ
2 ) � ‖∇Qu‖L1/(1−3α)(B1−10α

2/(1−4α))
‖v‖

L
1/(3α)
T

(B6α+β
2 )

,

� εαVβ

(
Xα + ε−1/4Yα

)
.(56)

And, following the computations of the caseN � 3, we have∥∥∥∥∑
q∈Z

Sq−1+[log2 η]v∇∆qQu

∥∥∥∥
L1

T
(Bβ

2 )

� η‖v‖L∞
T

(B−1
∞ )‖∇Qu‖L1

T
(B1+β

2 ),

� ηV0Xβ,

∥∥∥∥∑
q∈Z

(Sq−1 − Sq−1+[log2 η])v∇∆qQu

∥∥∥∥
L1

T
(Bβ

2 )

� η−6α−β‖v‖
L

1/(3α)
T

(B6α+β
2 )

‖∇Qu‖
L

1/(1−3α)
T

(B−6α
∞ )

,

� η−6α−βεαVβ

(
Xα + ε−1/4Yα

)
,

so that, choosingη = εα/(1+6α+β), we get

‖Tv∇Qu‖L1
T

(Bβ
2 ) � εα/(1+6α+β)

(
V0Xβ + Vβ

(
Xα + ε−1/4Yα

))
.(57)

Plugging (40), (42) and (52)–(57) in (39), we conclude to

Wβ � CeC(V0+X0)

×
(
W0Wβ + εαXα(Vβ + Xβ + Wβ) + εα/(2+β)

(
V0Xβ + Vβ

(
Xα + ε−1/4Yα

)))
.(58)

Third step: Estimates for (b,Qu) in E
N/2+β
εν,T

Denoted
def= Λ−1 divQu. From (10), we gather the following system for(b, d):

∂tb + Tuj ∂jb +
Λd

ε
= F,

∂td + Tuj ∂jd− ν∆d− Λb

ε
= G + Λ−1 divQf

with

F
def= −T ′

∂jbu
j − bdivQu,

G
def= Λ−1 div

(
K(εb)

∇b

ε
− εb

1 + εb
Au

)
− T ′

∂j divΛ−1Quuj

+
(
u · ∇Λ−1 divQu−Λ−1 div(u · ∇u)

)
.

According to Proposition 4.1, we have
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Xβ(T ) � CeV p,r
ν,ε (T )

(
‖b0‖B̃

N/2+β,∞
εν

+ ‖d0‖B
N/2−1+β
2

+ ‖Qf‖
L1

T
(B

N/2−1+β
2 )

+ ‖F‖
L1

T
(B̃

N/2+β,∞
εν )

+ ‖G‖
L1

T
(B

N/2−1+β
2 )

)
(59)

with

V p,r
ν,ε (t) def=

t∫
0

(
ν1−p‖∇u(τ)‖p

B
2/p−2
∞

+
(
ε2ν

)r−1‖∇u(τ)‖r
L∞

)
dτ(60)

for anyp, r > 1 (to be fixed hereafter).

Estimates for F
According to (7),

‖F‖
L1

T
(B̃

N/2+β,∞
εν )

� ‖F‖
L1

T
(B

N/2−1+β
2 )

+ εν‖F‖
L1

T
(B

N/2+β
2 )

.(61)

CaseN � 4: From Proposition 1.9, we get∥∥T ′
∂jbu

j
∥∥

L1
T

(B
N/2−1+β
2 )

� ‖∇b‖L2
T
(B−1

∞ )‖u‖L2
T
(B

N/2+β
2 )

.

But replacingQu by b in the proof of (43), we also get

‖b‖L2
T
(B0

∞) � εα
(
Xα + ε−1/2Yα

)
(62)

so that ∥∥T ′
∂jbu

j
∥∥

L1
T

(B
N/2−1+β
2 )

� εα(Xβ + Pβ)
(
Xα + ε−1/2Yα

)
.(63)

According to (41), the following inequality holds true∥∥T ′
∂jbu

j
∥∥

L1
T

(B
N/2+β
2 )

� ‖∇b‖
L∞

T
(B

N/2−1
2 )

‖u‖
L1

T
(B

N/2+1+β
2 )

,

� εα−1‖b‖
L∞

T
(B̃

N/2+α,∞
εν )

‖u‖
L1

T
(B

N/2−1+β
2 )

,

� εα−1Xα(Xβ + Pβ).(64)

Using Proposition 1.4, (43) and (62), we infer that

‖bdivQu‖
L1

T
(B

N/2+β−1
2 )

� ‖b‖L2
T
(B0

∞)‖divQu‖
L2

T
(B

N/2−1+β
2 )

+ ‖divQu‖L2
T
(B−1

∞ )‖b‖L2
T
(B

N/2+β
2 )

,

� εαXβ

(
Xα + ε−1/2Yα

)
.(65)

On the other hand, using (7) and (41), we gather that

‖bdivQu‖
L1

T
(B

N/2
2 )

� ‖b‖
L∞

T
(B

N/2
2 )

‖divQu‖
L1

T
(B

N/2
2 )

,

� εα−1XαX0,(66)

‖bdivQu‖
L1

T
(B

N/2+α
2 )

� ‖b‖
L∞

T
(B

N/2
2 )

‖divQu‖
L1

T
(B

N/2+α
2 )

+ ‖b‖
L

2/α

T
(B

N/2+α
2 )

‖divQu‖
L

2/(2−α)
T

(B
N/2
2 )

,

� εα−1
(
‖b‖

L∞
T

(B̃
N/2+α,∞
εν )

‖Qu‖
L1

T
(B

N/2+1+α
2 )
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+ ‖b‖
L

2/α

T
(B̃

N/2+α,2/α
εν )

‖Qu‖
L

2/(2−α)
T

(B
N/2+1
2 )

)
� εα−1X2

α.(67)

Plugging inequalities (63)–(67) in(61), we conclude that forβ ∈ {0, α},

‖F‖
L1

T
(B̃

N/2+β,∞
εν )

� εα(Xβ + Pβ)
(
Xα + ε−1/2Yα

)
.(68)

CaseN = 3: Estimates (64), (66) and (67) still hold in the caseN = 3 so that we only have to
deal with (62), (63) and (65). According to Proposition 1.9, we have∥∥T ′

∂jbu
j
∥∥

L1
T

(B
1/2+β
2 )

� ‖∂jb‖L
1/α

T
(B2α−2

∞ )

∥∥uj
∥∥

L
1/(1−α)
T

(B
5/2−2α+β
2 )

,

� εα(Xβ + Pβ)
(
ε−1/αY 1/α

α

)
.(69)

Using inequality (44) and Proposition 1.4, we infer

‖bdivQu‖
L1

T
(B

1/2+β
2 )

� ‖b‖
L

1/α

T
(B2α−1

∞ )
‖divQu‖

L
1/(1−α)
T

(B
3/2−2α+β
2 )

+ ‖divQu‖L2
T
(B−1

∞ )‖b‖L2
T
(B

3/2+β
2 )

,

� εαXβ

(
Xα + ε−1/αY 1/α

α + ε−2α/(1+2α)Y pα
α

)
.(70)

Plugging inequalities (69), (64), (70), (66) and (67) in (61), we conclude that

‖F‖
L1

T
(B̃

3/2+β,∞
εν )

� εα(Xβ + Pβ)
(
Xα + ε−1/αY 1/α

α + ε−2α/(1+2α)Y pα
α

)
.(71)

CaseN = 2: Estimates (64), (66) and (67) also hold in the caseN = 2 so that we just have to
concentrate on (62), (63) and (65). Let us notice that

F = −TdivQub− ∂jT
′
bu

j .

According to Proposition 1.9, Proposition 1.3(v) and Hölder inequality, we have

‖TdivQub‖L1
T
(Bβ

2 )

� ‖divQu‖
L

7/(4−3α)
T

(B−1
∞ )

‖b‖
L

7/(3+3α)
T

(B1+β
2 )

,

� ε(6α−1)/7‖divQu‖(3−4α)/7

L1
T
(B1+α

2 )
‖divQu‖(4+4α)/7

L4
T
(B

α−7/4
∞ )

‖b‖
L

7/(3+3α)
T

(B̃
1+β,7/(3+3α)
εν )

,

� εαXβ

(
Xα + ε−1/4Yα

)
,(72)

‖∂jT
′
bu

j‖
L1

T
(B

β+α−1/4
2 )

� ‖b‖
L4

T
(B

α−3/4
∞ )

‖u‖
L

4/3
T

(B
β+3/2
2 )

,

� (Xβ + Pβ)Yα.(73)

On the other hand, we have by definition of hybrid Besov norms,

‖F‖
L1

T
(B̃1+β,∞

εν )
≈ ‖FBF‖L1

T
(Bβ

2 ) + εν‖FHF ‖L1
T

(B1+β
2 )

so that

‖F‖
L1

T
(B̃1+β,∞

εν )
� ‖(TdivQub)BF‖L1

T
(Bβ

2 ) + ‖(∂jT
′
bu

j)BF‖L1
T

(Bβ
2 ) + εν‖FHF‖L1

T
(B1+β

2 ),

� ‖TdivQub‖L1
T

(Bβ
2 ) + εα−1/4‖∂jT

′
bu

j‖
L1

T
(B

β+α−1/4
2 )

+ εν‖F‖L1
T
(B1+β

2 ).
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Making use of (72), (73), (64), (66) and (67), we eventually conclude that

‖F‖
L1

T
(B̃1+β,∞

εν )
� εα(Xβ + Pβ)

(
Xα + ε−1/4Yα

)
.(74)

Estimates for G
CaseN � 4: Using Proposition 1.4, Lemma 1.5 and inequality (62), we get

‖K(εb)∇b‖
L1

T
(B

N/2−1+β
2 )

� ‖K(εb)‖L2
T

(L∞)‖∇b‖
L2

T
(B

N/2−1+β
2 )

+ ‖∇b‖L2
T
(B−1

∞ )‖K(εb)‖
L2

T
(B

N/2+β
2 )

,

� ‖εb‖L2
T

(L∞)‖∇b‖
L2

T
(B

N/2−1+β
2 )

+ ‖∇b‖L2
T
(B−1

∞ )‖εb‖L2
T
(B

N/2+β
2 )

,

� ε1+αXβ

(
Xα + ε−1/2Yα

)
.(75)

According to Proposition 1.9 and inequality (62),

‖T ′
∇Λ−1 divQuu‖

L1
T
(B

N/2−1+β
2 )

�
∥∥∇Λ−1 divQu

∥∥
L2

T
(B−1

∞ )
‖u‖

L2
T

(B
N/2+β
2 )

,

� εα
(
Xα + ε−1/2Yα

)
(Xβ + Pβ).(76)

Let us decompose the last two terms inG in the following way:

u · ∇Λ−1 divQu−Λ−1 div(u · ∇u) =Qu · ∇Λ−1 divQu−Λ−1(Qu · ∇Qu)

−Λ−1 div(Pu · ∇Pu)−Λ−1 div(Qu · ∇Pu)

−Λ−1 div(Pu · ∇Qu) +Pu · ∇Λ−1 divQu.

Thanks to Proposition 1.4, we can easily bound the first two terms of the right-hand side:∥∥Qu · ∇Λ−1 divQu−Λ−1(Qu · ∇Qu)
∥∥

L1
T

(B
N/2−1+β
2 )

� ‖Qu‖L2
T
(B0

∞)‖Qu‖
L2

T
(B

N/2+β
2 )

,

� εαXβ

(
Xα + ε−1/2Yα

)
.(77)

For the third term, we just write∥∥Λ−1 div(Pu · ∇Pu)
∥∥

L1
T

(B
N/2−1+β
2 )

� ‖Pu‖
L2

T
(B

N/2
2 )

‖∇Pu‖
L2

T
(B

N/2−1+β
2 )

� P0Pβ .(78)

Following the computations of step 2 (wherev has been replaced byPu), we get∥∥Λ−1 div(Qu · ∇Pu)
∥∥

L1
T

(B
N/2−1+β
2 )

� ε4α/(2+N+2β)
(
P0Xβ + Pβ

(
Xα + ε−1/2Yα

))
,(79)

∥∥Λ−1 div(Pu · ∇Qu)
∥∥

L1
T

(B
N/2−1+β
2 )

� ε2α/(2+N+2β)
(
P0Xβ + Pβ

(
Xα + ε−1/2Yα

))
,(80)

∥∥Pu · ∇Λ−1 divQu
∥∥

L1
T

(B
N/2−1+β
2 )

� ε2α/(2+N+2β)
(
P0Xβ + Pβ

(
Xα + ε−1/2Yα

))
.(81)

Thanks to (42) and (75)–(81), we end up with

‖G‖
L1

T
(B

N/2−1+β
2 )

� P0Pβ + εαXβ

(
Xα + ε−1/2Yα

)
+ ε2α/(2+N+2β)

(
P0Xβ + Pβ

(
Xα + ε−1/2Yα

))
.(82)
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CaseN = 3: According to Proposition 1.4 and Lemma 1.5, we have

‖K(εb)∇b‖
B

1/2+β
2

� ‖K(εb)‖L∞‖∇b‖
B

1/2+β
2

+ ‖∇b‖B−1
∞

‖K(εb)‖
B

3/2+β
2

,

� ‖εb‖L∞‖b‖
B

3/2+β
2

+ ‖b‖B0
∞
‖εb‖

B
3/2+β
2

,

� ε‖b‖
B

3/2+β
2

(
‖bBF‖B0

∞
+ ‖bHF‖B0

∞

)
,

where the notationsbBF andbHF have been defined in Section 1. Hence,∥∥∥∥K(εb)∇b

ε

∥∥∥∥
L1

T
(B

1/2+β
2 )

� ‖bBF‖L2
T

(B0
∞)‖b‖L2

T
(B

3/2+β
2 )

+ ‖bHF‖L
1/(1−α)
T

(B0
∞)

‖b‖
L

1/α

T
(B

3/2+β
2 )

.(83)

Let us remark now that we can replaceQu with bBF in the proof of (44). This yields

‖bBF‖L2
T

(B0
∞) � εα

(
Xα + ε−2α/(1+2α)Y pα

α

)
.(84)

On the other hand, according to (7), we have

‖b‖
L

1/α

T
(B

3/2+β
2 )

� ε2α−1‖b‖
L

1/α

T
(B̃

3/2+β,1/α
εν )

,(85)

and according to Proposition 1.3(iii) and (v), and (8),

‖bHF‖L
1/(1−α)
T

(B0
∞)

� ‖bHF‖(1−2α)/(1−α)

L1
T

(B
3/2+α
2 )

‖bHF‖α/(1−α)

L
1/α

T
(B−1+2α

∞ )
,

�
(
εν‖bHF‖L1

T
(B̃

3/2+α,1
εν )

)(1−2α)/(1−α)
εα2/(1−α)

(
ε−αY 1/α

α

)α/(1−α)
,

� ε1−α
(
Xα + ε−αY 1/α

α

)
.

Plugging this latter inequality, (84) and (85) in (83), we conclude that∥∥∥∥K(εb)∇b

ε

∥∥∥∥
L1

T
(B

1/2+β
2 )

� εαXβ

(
Xα + ε−2α/(1+2α)Y pα

α + ε−αY 1/α
α

)
.(86)

The other terms can be treated by following the proof in the caseN � 4. One just has to use (44)
instead of (43) which amounts to replaceε−1/2Yα with ε−2α/(1+2α)Y pα

α . Finally we conclude
that

‖G‖
L1

T
(B

N/2−1+β
2 )

� P0Pβ + εαXβ

(
Xα + ε−2α/(1+2α)Y pα

α + ε−αY 1/α
α

)
+ ε2α/(5+2β)

(
P0Xβ + Pβ

(
Xα + ε−2α/(1+2α)Y pα

α

))
.(87)

CaseN = 2: Bony decomposition forK(εb)∇b yields

K(εb)∇b = T∇bK(εb) + R(∇b,K(εb)) + TK(εb)∇b.

According to Proposition 1.9 and Lemma 1.5, we have

‖T∇bK(εb)‖Bβ
2

� ‖∇b‖B−1
∞
‖K(εb)‖B1+β

2
� ε‖b‖B0

∞
‖b‖B1+β

2
,

‖R(∇b,K(εb))‖Bβ
2

� ‖∇b‖Bβ
2
‖K(εb)‖

B
(3−4α)/7
14/(3−4α)

� ε‖b‖B1+β
2

‖b‖
B

(3−4α)/7
14/(3−4α)

,

‖TK(εb)∇b‖Bβ
2

� ‖K(εb)‖L∞‖∇b‖Bβ
2

� ε‖b‖L∞‖b‖B1+β
2

.
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Hence, using the chain of embeddingsB
(3−4α)/3
6/(3−4α) ↪→ B

(3−4α)/7
14/(3−4α) ↪→ B0

∞ ↪→ L∞,

‖K(εb)∇b‖Bβ
2

� ε‖b‖B1+β
2

‖b‖
B

(3−4α)/7
14/(3−4α)

,

� ε‖b‖B1+β
2

(
‖bBF‖B

(3−4α)/7
14/(3−4α)

+ ‖bHF‖B
(3−4α)/3
6/(3−4α)

)
.

Therefore, according to Hölder inequality, Proposition 1.3(v) and (8),∥∥∥∥K(εb)∇b

ε

∥∥∥∥
L1

T
(Bβ

2 )

� ‖b‖
L

7/(3+3α)
T

(B1+β
2 )

‖bBF‖L
7/(4−3α)
T

(B
(3−4α)/7
14/(3−4α))

+ ‖b‖
L

1/α

T
(B1+β

2 )
‖bHF‖L

1/(1−α)
T

(B
(3−4α)/3
6/(3−4α))

,

� ε(6α−1)/7‖b‖
L

7/(3+3α)
T

(B̃
1+β,7/(3+3α)
εν )

‖bBF‖(3−4α)/7

L1
T

(B2+α
2 )

‖bBF‖(4+4α)/7

L4
T

(B
α−3/4
∞ )

+ ε2α−1‖b‖
L

1/α

T
(B̃

1+β,1/α
εν )

‖bHF‖1−4α/3

L1
T

(B1+α
2 )

‖bHF‖4α/3

L4
T

(B
α−3/4
∞ )

,

� εαXβ‖b‖(3−4α)/7

L1
T
(B̃1+α,1

εν )

(
ε−1/4‖b‖

L4
T

(B
α−3/4
∞ )

)(4+4α)/7

+ εαXβ‖b‖1−4α/3

L1
T
(B̃1+α,1

εν )

(
ε−1/4‖bHF‖L4

T
(B

α−3/4
∞ )

)4α/3
.

We eventually find ∥∥∥∥K(εb)∇b

ε

∥∥∥∥
L1

T
(Bβ

2 )

� εαXβ

(
Xα + ε−1/4Yα

)
.(88)

The other terms inG have been treated in step 2. One just has to replacev with Pu or Qu,
whichever is appropriate. We eventually get

‖G‖
L1

T
(B

N/2−1+β
2 )

� P0Pβ + εαXβ

(
Xα + ε−1/4Yα

)
+ εα/(2+β)

(
P0Xβ + Pβ

(
Xα + ε−1/4Yα

))
.(89)

Let us now choose the values ofp andr in V p,r
ν,ε . A possible choice isp = 1/α andr = 2/(2−α).

Indeed, using an interpolation, we have, ifN � 4,

‖∇u‖
L

1/α

T
(B2α−2

∞ )
� ‖∇Qu‖2α

L2
T
(B

α−3/2
∞ )

‖∇Qu‖1−2α

L∞
T

(Bα−2
∞ )

+ ‖∇Pu‖
L

1/α

T
(B

N/2+2α−2
2 )

,

� εα
(
Xα + ε−1/2Yα

)
+ P0,

if N = 3,

‖∇u‖
L

1/α

T
(B2α−2

∞ )
� ‖∇Qu‖

L
1/α

T
(B2α−2

∞ )
+ ‖∇Pu‖

L
1/α

T
(B

2α−1/2
2 )

,

� εα
(
ε−αY 1/α

α

)
+ P0,

and if N = 2,

‖∇u‖
L

1/α

T
(B2α−2

∞ )
� ‖∇Qu‖4α

L4
T
(B

α−7/4
∞ )

‖∇Qu‖1−4α

L∞
T

(Bα−2
∞ )

+ ‖∇Pu‖
L

1/α

T
(B2α−1

2 )
,

� εα
(
Xα + ε−1/4Yα

)
+ P0.

On the other hand, for anyN � 2,

‖∇u‖
L

2/(2−α)
T

(L∞)
� ‖u‖

L
2/(2−α)
T

(B
N/2+1
2 )

,

� Pα + Xα.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



64 R. DANCHIN

According to (60), we thus have
V

1/α,2/(2−α)
ν,ε � P

1/α
0 + ε(Xα + ε−1/2Yα)1/α +

(
εα(Pα + Xα)

)2/(2−α)
if N � 4,

V
1/α,2/(2−α)
ν,ε � P

1/α
0 + ε(ε−αY

1/α
α )1/α +

(
εα(Pα + Xα)

)2/(2−α)
if N = 3,

V
1/α,2/(2−α)
ν,ε � P

1/α
0 + ε(Xα + ε−1/4Yα)1/α +

(
εα(Pα + Xα)

)2/(2−α)
if N = 2.

(90)

Plugging this latter inequality, (68) and (82) in (59), we eventually get, ifN � 4,

Xβ � CeC(P
1/α
0 +ε(Xα+ε−1/2Yα)1/α+(εα(Pα+Xα))2/(2−α))

×
(
X0

β + P0Pβ + εαN
(
P0Xβ + (Xβ + Pβ)

(
Xα + ε−1/2Yα

)))
.(91)

If N = 3, we use (71) and (87) and get

Xβ � CeC(P
1/α
0 +ε(ε−αY 1/α

α )1/α+(εα(Pα+Xα))2/(2−α))

×
(
X0

β + P0Pβ + εα3
(
P0Xβ + (Xβ + Pβ)

(
Xα + ε−αY 1/α

α + ε−2α/(1+2α)Y pα
α

)))
.(92)

If N = 2, we plug (90), (74) and (89) in (59) and get

Xβ � CeC(P
1/α
0 +ε(Xα+ε−1/4Yα)1/α+(εα(Pα+Xα))2/(2−α))

×
(
X0

β + P0Pβ + εα2
(
P0Xβ + (Xβ + Pβ)

(
Xα + ε−1/4Yα

)))
.(93)

In the inequalities above, we setαN
def= 2α/(2 + N + 2α).

Fourth step: bootstrap

From now on, the proof is the same in any dimensionN � 2. DenoteX
def= X0 + Xα,

V
def= V0 + Vα, W

def= W0 + Wα andX0 def= X0
0 + X0

α. With this new notation, putting together
estimates (38), (49) or (50) or (58), and (91) or (92) or (93), we gather

W � CeC(V +X)
(
εαN

(
X2 + V

(
X0 + X + X2 + V 2

))
+ W 2

(
1 + εαN V

))
,(94)

X � CeC(ε(X+X2)1/α+(εαX)2/(2−α))eC((V +W )1/α+ε(X0+(V +W )2)1/α+ε2α/(2−α)(V +W )2/(2−α))

×
(
X0 + (V + W )

(
V + W + εαN

(
X0 + V 2 + W 2

))
+ εαN X

(
X0 + V + W + X + X2

))
.(95)

A bootstrap argument will enable us to get a bound for(b, u) from the two estimates above. More
precisely, we shall prove the following lemma:

LEMMA 5.2. – Suppose thatv ∈ F
N/2
T0

∩ F
N/2+α
T0

for a finite or infiniteT0. Then there
exists anε0 > 0 depending only onα, N, V (T0) and on the norm of the compressible data
(b0,Qu0,Qf) in

BN/2−1 ∩BN/2+α ×
(
BN/2−1 ∩BN/2−1+α

)N ×L1
(
R

+;
(
BN/2−1 ∩BN/2−1+α

)N)
and such that ifε � ε0 and (b, u) ∈ E

N/2
εν,T ∩ E

N/2+α
εν,T and ε|b| � 3/4 for a T � T0, then the

following estimates hold with the constantC = C(N,µ,λ,P,α) appearing in(94)and(95)

X(T ) � XM
def= 16CeCV 1/α(T0)

(
X0 + V 2(T0)

)
,
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W (T ) � εαN WM
def= 4εαN CeC(V (T0)+XM )

(
X2

M + V (T0)
(
X0 + XM + X2

M + V 2(T0)
))

.

Proof. –Let I
def= {t � T |X(t) � XM andW (t) � εαN WM}.

Obviously,X andW are continuous non-decreasing functions so thatI is a closed interval
of R

+ with lower bound0. If, say,C � 1, thenI is not empty. With no loss of generality, one
can assume thatI = [0, T ] for a finite positiveT . Chooseε small enough so that the following
conditions are fulfilled:

CeC(V (T0)+XM )εαN WM (1 + εαN V (T0)) � 1/2,

eC(ε(XM+X2
M )1/α+(εαXM )2/(2−α)) � 2,

eC((V (T0)+εαN WM )1/α+ε(X0+(V (T0)+εαN WM )2)1/α+ε2α/(2−α)(V (T0)+εαN WM )2/(2−α))

� 2eCV 1/α(T0),
X0 + (V (T0) + εαN WM )(V (T0) + εαN WM + εαN (X0 + V 2(T0) + ε2αN W 2

M ))
� 2(X0 + V 2(T0)),

CeCV 1/α(T0)εαN (X0 + V (T0) + εαN WM + XM + X2
M ) � 1/12.

From inequalities (94) and (95), we conclude that

X(T ) � 12CeCV 1/α(T0)
(
X0 + V 2(T )

)
,

W (T ) � 2εαN CeC(V (T0)+XM )
(
X2

M + V (T0)
(
X0 + XM + X2

M + V 2(T0)
))

.

This means thatT  = T . �
Last step: continuation argument

First of all, we have to state the existence of a local solution inE
N/2
εν,T ∩E

N/2+α
εν,T :

PROPOSITION 5.3. – Suppose thatN � 2, 0 < α < 1, b0 ∈ BN/2−1 ∩ BN/2+α,
u0 ∈ BN/2−1 ∩ BN/2−1+α and f ∈ L1(R+;BN/2−1 ∩ BN/2−1+α). Then for allε < ‖b0‖−1

L∞

there exists a timeT such that(1) has a unique solution(b, u) ∈ E
N/2
εν,T ∩E

N/2+α
εν,T with ε|b|< 1.

Moreover, the timeT may be bounded by below by

min
(

η,max
{

t > 0,
∑
q∈Z

2q(N/2−1+α)

(
1− e−ct22q

c

)(
‖∆qu0‖L2 + ‖∆qf‖L∞(L2)

)
� η

})
,

where c = c(λ,µ) and η is a non-increasing positive function ofε‖b0‖L∞ , ‖b0‖B
N/2+α
2

,

‖u0‖B
N/2−1+α
2

, ‖f‖
L1

T
(B

N/2−1+α
2 )

and depends also onλ, µ, ε, P, α andN .

Proof. –Making the change of functionρ0 = 1 + εb0 andρ = 1 + εb, and using that

ρ0 − 1∈ BN/2 ∩BN/2+α, u0 ∈ BN/2−1+α, f ∈ L1
(
R

+;BN/2−1+α
)

and inf
x∈RN

ρ0(x) > 0

one can apply Theorem 4.2 in [7]. From it, we get the existence of a finite timeT bounded from
below as required and such that (1) has a unique solution(b, u) with

b ∈ C
(
[0, T ];BN/2 ∩BN/2+α

)
, ε|b|< 1

and u ∈L1
(
0, T ;BN/2+1+α

)
∩C

(
[0, T ];BN/2−1+α

)
.
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SinceT is finite, proving that furthermoreb ∈ C([0, T ];BN/2−1) andu ∈ C([0, T ];BN/2−1)
will entail that (b, u) ∈ E

N/2
εν,T ∩ E

N/2+α
εν,T . From the first equation of (1), we readily get

that∂tb ∈ L2/(1−α)(0, T ;BN/2−1). Indeed, by interpolation,u ∈ L2/(1−α)(0, T ;BN/2). Since
b0 ∈ BN/2−1, we conclude thatb ∈ C(1+α)/2([0, T ];BN/2−1). Similarly, staring at the
momentum equation in (1), one gets∂tu − f ∈ L2/(2−α)(0, T ;BN/2−1). Denoting byuL the
solution to

∂tuL −AuL = f, uL(0) = u0,

we conclude that(u − uL) ∈ Cα([0, T ];BN/2−1). Moreover, from Proposition 7.3, we have
uL ∈ C([0, T ];BN/2−1). �

Now, suppose that for aT0 ∈ ]0,+∞], we havev ∈ F
N/2
T0

∩ F
N/2+α
T0

and let us turn to the
proof that the life spanTε of the solution to (1) satisfiesTε � T0 if ε is small enough.

More precisely, denote

Tε
def= sup

{
T ∈ R

+ | (b, u)∈ E
N/2
εν,T ∩E

N/2+α
εν,T and∀t ∈ [0, T ], ∀x ∈ R

N , |εb(t, x)|� 3/4
}
.

According to Proposition 5.3, the timeTε is well defined and positive as soon as|εb0|< 3/4.
Let us assume thatTε is finite and satisfiesTε � T0. According to Lemma 5.2, we have, for

anyT < Tε andε � ε0,

X(T ) � XM and W (T ) � εαN WM .(96)

From the first inequality and (41), we gather that

ε‖b‖
L∞

T
(B

N/2
2 )

� εανα−1XM .

Obviously, changing once moreε0 if necessary, this entails

∀x ∈ R
N , ∀0 � t < Tε, ε|b(t, x)|� 1/2.

We are now going to prove that(b, u) can be continued inTε as a solution of (1) belonging to

E
N/2
εν,Tε+τ ∩E

N/2+α
εν,Tε+τ for a smallτ > 0. According to (96), we have

b ∈ L1
(
0, Tε; B̃N/2,1

εν ∩ B̃N/2+α,1
εν

)
∩Cb

(
[0, Tε[; B̃N/2,∞

εν ∩ B̃N/2+α,∞
εν

)
,

u ∈L1
(
0, Tε;B

N/2+1
2 ∩B

N/2+α+1
2

)
∩Cb

(
[0, Tε[;B

N/2−1
2 ∩B

N/2−1+α
2

)
,

so that, using Proposition 1.4, this is not hard to get∂tu − Au ∈ L1(0, Tε;BN/2−1+α).
According to Proposition 7.3, this entails∑

q∈Z

2q(N/2−1+α)‖∆qu‖L∞
Tε

(L2) < +∞.(97)

We clearly can choose a positive constantη in Proposition 5.3 which suits to any data
(b̃0, ũ0, f̃) such thatε‖b̃0‖L∞ � 1/2, ‖b̃0‖B

N/2+α
2

� XM , ‖ũ0‖B
N/2−1+α
2

� XM + εαN
0 WM and
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‖f̃‖
L1

T
(B

N/2−1+α
2 )

� ‖f‖
L1

T
(B

N/2−1+α
2 )

. Let us remark now that

τ = min
(

η,max
{

t > 0,
∑
q∈Z

2q(N/2−1+α)

(
1− e−ct22q

c

)

×
(
‖∆qu‖L∞

Tε
(L2) + ‖∆qf‖L∞(L2)

)
� η

})
is positive according to (97).

Therefore, system (1) has a local solution(b̃, ũ) ∈ E
N/2
εν,τ ∩ E

N/2+α
εν,τ with initial data

(b(Tε − τ/2), u(Tε − τ/2)) and external forcef(· + Tε − τ/2). Since uniqueness holds in the

spaceEN/2
εν,T ∩ E

N/2+α
εν,T , this means that(b, u) may be continued beyondTε. In particular,b is

in C([0, Tε + τ/2[×R
N). Sinceε|b(t, x)| � 1/2 on [0, Tε[, we will still have ε|b| � 3/4 on a

small time interval beyondTε. This stands in contradiction with the definition ofTε. Therefore
Tε � T0 for ε � ε0.

6. Some regularity results for incompressible viscous flows

The first regularity result we need is wellknown in Sobolev spaces for example so that we
shall only sketch the proof. The bound from below of the existence time is perhaps a bit less
classical. A similar bound in the Sobolev spacesframework may be found in [4], Lemma 3.2.4.
Let us state the result in question.

PROPOSITION 6.1. – Let N � 2, µ > 0 and α � 0. Let v0 ∈ B
N/2−1
2 ∩ B

N/2+α−1
2 be

a divergence free vector field andf ∈ L1(R+;BN/2−1
2 ∩ B

N/2+α−1
2 ) be a divergence free

external force. Then there exist two constantsc andC depending only onN and such that the
incompressible Navier–Stokes equations{

∂tv +P(v · ∇v)− µ∆v = f,
v|t=0 = v0,

(98)

have a unique solutionv ∈ F
N/2
T ∩ F

N/2+α
T with a timeT bounded from below by

sup
{

T ′ > 0,
∑
q∈Z

2q(N/2−1)
(
1− e−cµ22qT ′)1/2(‖∆qv0‖L2 + ‖∆qf‖L1

T ′ (L
2)

)
� Cµ

}
.

In particular,T is strictly positive andT = +∞ if ‖v0‖B
N/2−1
2

+ ‖f‖
L1(B

N/2−1
2 )

� Cµ.

Proof. –We shall follow the fixed point method used in [2]. Denote byet∆ the semi-group of
the heat equation. LetvL ∈ FN/2 ∩ FN/2+α be the solution of

∂tvL − µ∆vL = f, vL(0) = v0.

Assume that the timeT ∈ ]0,+∞] has been chosen in such a way that

‖vL‖L2
T
(B

N/2
2 )

� µ1/2/4C(99)

for a constantC to be defined below.
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Let 0 < R < µ/(4C) and Rα = µ1/2‖vL‖L2
T

(B
N/2+α
2 )

. Let G be the set of divergence

free vector fields with coefficients inFN/2
T ∩ F

N/2+α
T , and such that‖v‖

F
N/2
T

� R and

‖v‖
F

N/2+α

T

� Rα. Define the following function:

F(v̄) def= −
t∫

0

e(t−τ)µ∆P div
(
(vL + v̄)(τ) ⊗ (vL + v̄)(τ)

)
dτ.

According to Propositions 7.3 and 1.4,F mapsFN/2
T ∩F

N/2+α
T into itself, and, forβ = 0 or α,

we have

‖F(v̄)‖
F

N/2+β

T

� Cµ−1
(
‖v̄‖

F
N/2
T

+ µ1/2‖vL‖L2
T

(B
N/2
2 )

)(
‖v̄‖

F
N/2+β

T

+ µ1/2‖vL‖L2
T

(B
N/2+β
2 )

)
so that we easily gather thatF mapsG to G. Similar computations show us that

‖F(v̄)−F(w̄)‖
F

N/2+β

T

� Cµ−1
((
‖v̄‖

F
N/2
T

+ ‖w̄‖
F

N/2
T

+ 2µ1/2‖vL‖L2
T

(B
N/2
2 )

)
‖(v̄ − w̄)‖

F
N/2+β

T

+
(
‖v̄‖

F
N/2+β

T

+ ‖w̄‖
F

N/2+β

T

+ 2µ1/2‖vL‖L2
T

(B
N/2+β
2 )

)
‖(v̄ − w̄)‖

F
N/2
T

)
.

Denotek = 1/2 + 2RC/µ andK = 4RαC/µ. According to the above inequality, we have for
all η > 0,

‖F(v̄)−F(w̄)‖
F

N/2
T

+ η‖F(v̄)−F(w̄)‖
F

N/2+α

T

� (k + ηK)
(
‖v̄ − w̄‖

F
N/2
T

+ η‖v̄ − w̄‖
F

N/2+α

T

)
.

Choosingη so small thatk + ηK < 1, we conclude thatF is a contraction onG endowed with
the norm‖·‖F 0

T
+ η‖·‖

F
N/2+α

T

. Denotingv = vL + v̄ wherev̄ is the unique fixed point ofF in G,

we easily gather thatv solves (98).
Now, according to Proposition 2.3 in [7], we have, for two constantsc andC1 depending only

onN ,

µ1/2‖vL‖L2
T

(B
N/2
2 )

� C1

(∑
q∈Z

2q(N/2−1)
(
1− e−cµ22qT

)1/2(‖∆qv0‖L2 + ‖∆qf‖L1
T

(L2)

))
.

According to Lebesgue theorem, the right-hand side tends to zero whenT tends to zero. Coming
back to (99), this gives us a bound from below for the life span ofv.

Uniqueness is classical and actually holds in a larger space: inL∞
loc(0, T ; ḢN/2−1) ∩

L2
loc(0, T ; ḢN/2) for instance (see [3]). �
It turns out that the quantity‖v‖B0

∞,∞
controls positive regularity forv. More precisely, we

have

LEMMA 6.2. – Let s > 0 and v ∈ F s
T be a solution of(98). Then for all0 � t < T , the

following estimate holds for a constantC depending only ons and a universal constantκ:

‖v(t)‖Bs−1
2

+ κµ

t∫
0

‖v(τ)‖Bs+1
2

dτ � eCV (t)

(
‖v0‖Bs−1

2
+

t∫
0

e−CV (τ)‖f(τ)‖Bs−1
2

dτ

)
,

with V (t) def= µ−1
∫ t

0
‖v(τ)‖2

B0
∞,∞

dτ .
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Proof. –Using Bony decomposition, we have

∂tv +P(Tv∇v)− µ∆v = f −P(T ′
∇vv).

Apply Proposition 4.2 withp = 2. Denoting V (t) def= µ−1
∫ t

0 ‖v(τ)‖2
B0

∞,∞
dτ , we get for

0 � t < T ,

‖v(t)‖Bs−1
2

+ κµ

t∫
0

‖v(τ)‖Bs+1
2

dτ � eCV (t)

(
‖v0‖Bs−1

2
+

t∫
0

e−CV (τ)‖f(τ)‖Bs−1
2

dτ

+

t∫
0

e−CV (τ)‖P(T ′
∇vv)(τ)‖Bs−1

2
dτ

)
.(100)

Since(T ′
∇vv)i = T∂jvivj + ∂jR(vi, vj), we get from Proposition 1.9 and interpolation,

eC(V (t)−V (τ))‖P(T ′
∇vv)(τ)‖Bs−1

2

� CeC(V (t)−V (τ))‖v(τ)‖B0
∞,∞

‖v(τ)‖Bs
2
,

� CeC(V (t)−V (τ))‖v(τ)‖B0
∞,∞

‖v(τ)‖1/2

Bs−1
2

‖v(τ)‖1/2

Bs+1
2

,

� C2e2C(V (t)−V (τ))

2κµ
‖v(τ)‖2

B0
∞,∞

‖v(τ)‖Bs−1
2

+
κµ

2
‖v(τ)‖Bs+1

2
.

Plugging this latter inequality in (100), we conclude to the desired estimate.�
We conclude this section with a global regularity result in the two-dimensional case.

THEOREM 6.3. –SupposeN = 2 andα � 0. Suppose that the initial velocityv0 belongs to
B0

2 ∩Bα
2 and thatf ∈L1(R+;B0

2 ∩Bα
2 ). Then(98)has a unique global solutionv in F 1∩F 1+α

and satisfies moreover

‖v‖F 1∩F 1+α � eCµ−2(‖v0‖L2+‖f‖L1(L2))
2(
‖v0‖B0

2∩Bα
2

+ ‖f‖L1(B0
2∩Bα

2 )

)
.(101)

Proof. –Let us first notice thatB0
2 ↪→ L2 so that actuallyv0 ∈ L2 andf ∈L1(R+;L2). In the

casef ∈L2(R+; Ḣ−1), it is well known since a celebrated result of J. Leray (see [23]) that (98)
has a unique global solutionv ∈ Cb(R+;L2) ∩L2(R+; Ḣ1) which satisfies the energy equality.
Slight modifications of the proof show that a similar result holds iff ∈ L1(R+;L2) and that we
have, for a universal constantκ,

‖v(t)‖2
L2 + κµ

t∫
0

‖∇v(τ)‖2
L2 dτ �

(
‖v0‖L2 +

t∫
0

‖f(τ)‖L2 dτ

)2

.(102)

Now, according to Proposition 6.1, (98) has a local solutionv′ in F 1
T ∩ F 1+α

T which, in view of
uniqueness, must coincide withv on [0, T [. Denote

T  = sup
{
T > 0, v ∈ F 1

T ∩F 1+α
T

}
.

Since‖v‖B0
∞,∞

� C‖∇v‖L2 , Lemma 6.2 combined with (102) tells us that the norm ofv in⋂
T<T � F 1

T ∩ F 1+α
T is bounded by the right-hand side of (101).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



70 R. DANCHIN

Now, using Proposition 1.4, one easily gathers that∂tv − µ∆v ∈ L1(0, T ;B0
2).

Sincev0 ∈ B0
2 , Proposition 7.3 insures us that

I def=
∑
q∈Z

‖∆qv‖L∞
T� (L2) < +∞.

The end of the proof is standard. Suppose thatT  is finite. Then in view of Proposition 6.1, for
any t < T  one can define a solutioñv ∈ F 1

τ ∩ F 1+α
τ to (98) with initial datav(t). Moreoverτ

may be chosen depending only onN, µ, I and‖f‖L1(L2), and not ont. By virtue of uniqueness,
ṽ must coincide withv on [t, t + τ [. Hence, choosingt = T  − τ/2 contradicts the definition
of T . �

7. Appendix

7.1. A dispersive inequality

For the convenience of the reader we here give a sketchy proof of Proposition 2.2. We actually
give a more general and precise statement. We shall use the following notation fors ∈ R,
1 � p, r � +∞ and0 < T � +∞:

‖z‖
L̃r

T
(Bs

p)

def=
∑
q∈Z

2qs‖∆qz‖Lr
T

(Lp).

Owing to Minkowski inequality, we have‖z‖Lr
T
(Bs

p) � ‖z‖
L̃r

T
(Bs

p)
and equality holds ifr = 1.

PROPOSITION 7.1. – Let (c, d) be a solution of(W ε). Then for anys ∈ R and positiveT
(possibly infinite), the following estimate holds

‖(c, d)‖
L̃r

T
(B

s+N(1/p−1/2)+1/r
p )

� ε1/r‖(c0, d0)‖Bs
2
+ ε1+1/r−1/r̄′

‖(F,G)‖
L̃r̄′

T
(B

s+N(1/p̄′−1/2)+1/r̄′
p̄′ )

with

p � 2,
2
r

� min
(
1, γ(p)

)
(r, p,N) 
= (2,∞,3),

p̄ � 2,
2
r̄

� min
(
1, γ(p̄)

)
(r̄, p̄,N) 
= (2,∞,3),

where

γ(q) def= (N − 1)
(

1
2
− 1

q

)
,

1
p̄

+
1
p̄′

= 1 and
1
r̄

+
1
r̄′

= 1.

Proof. –DenoteΦ def= t(c, d) andH
def= t(F,G). Setting

Ψ(t, x) = Φ(εt, x) and H(t, x) = εH(εt, x),

one easily checks thatΨ solves(W 1) with external forceH. Therefore, thanks to (5), (6) and (9),
it suffices to treat the caseε = 1.
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Denoting byU(t) the group corresponding to the homogeneous equation(W 1), we have in
Fourier variables

F(U(t)Φ)(ξ) =
(

cos(|ξ|t) − sin(|ξ|t)
sin(|ξ|t) cos(|ξ|t)

)
FΦ0(ξ).

From it, we deduce exactly as for the wave equation (see for example [16]) that for anyg valued
in R

2 and such thatFg is supported in the annulusC(0,1/2,2), then

‖U(t)g‖L2 � ‖g‖L2,

‖U(s)U(t)g‖L∞ � (1 + |t− s|)−(N−1)/2‖g‖L1.

According to [20], this yields Proposition 7.1 inthe special case where the spectrum of the data
is supported in the annulusC(0,1/2,2).

In the general case, let us use Littlewood–Paleydecomposition. Scaling arguments enable us
to get the following estimate for each dyadic block

2q(N(1/p−1/2)+1/r)‖∆qΦ‖Lr
T

(Lp) � ‖∆qΦ0‖L2 + 2q(N(1/p̄′−1/2)+1/r̄′−1)‖∆qH‖Lr̄′
T

(Lp̄′).

We then conclude by multiplying both sides of the above inequality by2qs and by performing a
summation onZ. �

Remark7.2. – The fact that the summation on indicesq is done after the time integration for
each dyadic block explains the reason why the norms inL̃r

T (Bs
p) appear naturally. This is not

specific to(W ε) and also applies to the heat equation (see Proposition 7.3 below).

7.2. Some estimates for the heat equation

In the proposition below, we state the smoothing properties we need in part 3 for the standard
heat equation. The reader may refer to [5] for the proof of them.

PROPOSITION 7.3. – Let p ∈ [1,+∞], 1 � s2 � s1 � +∞, and letu solve{
∂tu− µ∆u = f,
ut=0 = u0.

Then there existsC > 0 depending only onN , µ, s1 ands2 such that

‖u‖
L̃

s1
T

(B
s+2/s1
p )

� C‖u0‖Bs
p
+ C‖f‖

L̃
s2
T

(B
s−2+2/s2
p )

.

Moreoveru belongs toC([0, T ];Bs
p).

In Section 5, we need estimates for a heat equation with terms of order one.

PROPOSITION 7.4. – Let s ∈ ]1−N/2,1 + N/2] andz solving{
∂tz +P(A · ∇z) +P(z · ∇B)− µ∆z = F,
zt=0 = z0,
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with div z0 = divF = 0. There exist two constantsκ and C = C(N,s) such that for all
positiveT (possibly infinite), we have

‖z‖L∞
T

(Bs−1
2 ) + κµ‖z‖L1

T
(Bs+1

2 ) � eCV (T )

(
‖z0‖Bs−1

2
+

T∫
0

e−CV (t)‖F (τ)‖Bs−1
2

dτ

)

with V (t) def=
∫ t

0 (‖A(τ)‖
B

N/2+1
2

+ ‖B(τ)‖
B

N/2+1
2

)dτ.

Proof. –Let us write the evolution equation for each dyadic block∆qz:

∂t∆qz + ∆qP(A · ∇z) + ∆qP(z · ∇B)− µ∆∆qz = ∆qF.

An energy method gives us

1
2

d
dt

‖∆qz‖2
L2 + µ‖∇∆qz‖2

L2

= −
(
∆qP(A · ∇z)|∆qz

)
−

(
∆qP(z · ∇B)|∆qz

)
+ (∆qF |∆qz).(103)

Since Leray projector is symmetric anddiv z = 0, we have(
∆qP(A · ∇z)|∆qz

)
=

(
∆q(A · ∇z)|P∆qz

)
=

(
∆q(A · ∇z)|∆qz

)
.

Applying Lemma 5.1 in [6], we get for a positive sequence(cq)q∈Z such that
∑

q∈Z
cq � 1,∣∣(∆qP(A · ∇z)|∆qz

)∣∣ � cq2−q(s−1)‖z‖Bs−1
2

‖A‖
B

N/2+1
2

‖∆qz‖L2.(104)

Sincediv z = 0, Bony decomposition for the termz · ∇B yields

(z · ∇B)i = Tzj∂jB
i + T∂jBizj + ∂jR

(
Bi, zj

)
.

Thanks to Proposition 1.9 and Lemma 1.2, we thus have

‖∆qP(z · ∇B)‖L2 � cq2−q(s−1)‖z‖Bs−1
2

‖B‖
B

N/2+1
2

.(105)

Plugging (104) and (105) in (103) and using Bernstein inequality, we gather

1
2

d
dt

‖∆qz‖2
L2 + κµ22q‖∆qz‖2

L2 � ‖∆qz‖L2

(
‖∆qF‖L2 + Ccq2−q(s−1)V ′‖z‖Bs−1

2

)
.

Integrate in time and multiply both sides of the above inequality by2q(s−1). We get

2q(s−1)‖∆qz(t)‖L2 + κµ

t∫
0

2q(s+1)‖∆qz(τ)‖L2 dτ

� 2q(s−1)‖∆qz0‖L2 +

t∫
0

2q(s−1)‖∆qF (τ)‖L2 dτ + C

t∫
0

cq(τ)V ′(τ)‖z(τ)‖Bs−1
2

dτ.

Now, summing onq and using Gronwall inequality enable us to conclude to the desired
estimate. �
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7.3. Estimates for the convection term

In this last section of the appendix, we state an estimate used in Section 4.

LEMMA 7.5. – Let A ∈ C∞(RN\{0}) be a non-vanishing homogeneous function of degree
m ∈ R, ands > 0. Then for anyz ∈ S′(RN ) andu ∈B1−s

∞,∞, we have

A(D)∆q(Tuj ∂jz) = Sq−1u
j∂jA(D)∆qz + Rq(A,z)

with

‖Rq(A,z)‖L2 � 2qs‖∇u‖B−s
∞,∞

∑
|q′−q|�3

‖∆q′A(D)z‖L2 .

If ∇u ∈ L∞, then we have

‖Rq(A,z)‖L2 � ‖∇u‖L∞

∑
|q′−q|�3

‖∆q′A(D)z‖L2.

Proof. –The starting point is the following equality

A(D)∆q(Tuj ∂jz) = A(D)∆q

∑
|q′−q|�3

Sq′−1u
j∆q′∂jz,

= Sq−1u
j∂jA(D)∆qz + A(D)∆q

∑
|q′−q|�3

(Sq′−1 − Sq−1)uj∆q′∂jz

+
∑

|q′−q|�3

[
A(D)∆q , Sq−1u

j
]
∂j∆q′z.(106)

Note that, due to (4), the summations in the above equalities may indeed be restricted to the
indicesq′ such that|q′ − q|� 3.

On the other hand,A(D)∆q = 2qmθ(2−qD) with θ
def= Aϕ. Sinceθ does not vanish on a

suitably thin annulusC(0,R1,R2), Bernstein inequality yields

‖A(D)∆qz‖L2 ≈ 2qm‖∆qz‖L2.(107)

This enables us to write the following calculations fors � 0:∥∥∥∥A(D)∆q

∑
|q′−q|�3

(Sq′−1 − Sq−1)uj∆q′∂jz

∥∥∥∥
L2

� 2qm
∑

|q′−q|�3

2q′‖(Sq′−1 − Sq−1)u‖L∞‖∆q′z‖L2,

� 2qs‖u‖B1−s
∞,∞

∑
|q′−q|�3

2q′m‖∆q′z‖L2 ,

� 2qs‖∇u‖B−s
∞,∞

∑
|q′−q|�3

‖∆q′A(D)z‖L2.

Let h
def= F−1θ. The last term in the right-hand side of (106) may be bounded thanks to the first

order Taylor’s formula:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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A(D)∆q, Sq−1u

j
]
∂j∆q′z(x)

= 2q(m−1)

∫
RN

1∫
0

h(y)ykSq−1∂kuj
(
x− 2−qτy

)
∆q′∂jz

(
x− 2−qy

)
dτ dy.

Making use of convolution inequalities and (107), we eventually get∥∥[A(D)∆q , Sq−1u
j
]
∂j∆q′z

∥∥
L2 � 2q(m−1)‖∆q′∇z‖L2‖∇Sq−1u‖L∞ ,

� ‖∆q′A(D)z‖L2‖∇Sq−1u‖L∞ .

We conclude by using that

‖∇Sq−1u‖L∞ � 2qs‖∇u‖B−s
∞,∞

if s > 0 and ‖∇Sq−1u‖L∞ � ‖∇u‖L∞ . �
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