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RESUME

Dans le cone du futur de I'espace de Minkowski, la pseudo-norme associée a la métrique
lorentzienne satisfait une inégalité du type de Hlawka :

LX) +L(Y)+2(2)+ELXx+y+2) <lx+y)+L(y+2) +lz+Xx).

Le signe est I'opposé de celui du cas euclidien, tout comme dans l'inégalité «a la
Cauchy-Schwarz ».
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Motivation and statement
In a Euclidean space E, the Hlawka inequality (see [3] or [4]) reads:
Ix+yl+ 1y +zl +liz+xll < Xl + Iyl + Izl +lIx+y +2zll.  Vx,y,z€E. (1)
This inequality is sharp in three ways:
e the equality holds true if one of the vectors is 0,

e the equality holds true if x, y, z are positively collinear,
e the equality holds true if x+ y +z=0.
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The two first equality cases are tightly related to the fact that the norm is positively homogeneous of degree one. Therefore,
let us say that a continuous function f : K — R, defined over a closed convex cone in R", which is positively homogeneous
of degree one, satisfies a Hlawka-type inequality if

FR+N+FY+D+ @+ fO+fW+f@Q+f&x+y+2, Vxy,zek. (2)

A necessary condition for this to happen is obtained by taking z=y:

2f(x+y) < fx)+ f(x+2y), Vx,y €K.

This tells us that if u, v € K are ordered, that is if v —u € K, then the convexity inequality

fu+v) < f+ fv)

holds true. Actually, we have a bit more
Proposition 1.1. If f is C2 in the interior of K and f satisfies the Hlawka-type inequality, then f is convex.

Proof. It is enough to prove that the Hessian D? f is non-negative at interior points. For this, let us denote

0xy.0=fO+fWM+f@Q+fx+y+2—-f&x+y)—fy+2)— fz+%),

which is non-negative by assumption. Since ¢ (x, x, x) = 0, the Hessian of ¢ at (x, x, x) must be non-negative if x is interior
(one finds easily that the gradient is zero). Let us just compute the Hessian with respect to x:

D)2¢¢(x,x,x) = szx + D2f3x - 2D2f2x~

Because D? f is homogeneous of degree —1, one deduces
1
0=< D;2<¢(x,x,x) = gszx (W

The proposition above suggests to investigate which among the convex functions, positively homogenenous of degree
one, satisfy a Hlawka inequality. The first natural candidates are norms, where K = R". However it is known that the
Hlawka inequality is not always true: Witsenhausen [5] proved that a finite-dimensional normed space whose unit ball is a
polytope satisfies (1) if and only if it is L'-embeddable. See also Theorem 8.3.2 in [1].

Other candidates are given in terms of hyperbolic polynomials. Recall that a polynomial p over R", homogeneous of degree
d, is hyperbolic in the direction of some vector e if p(e) > 0 and if for every x € R", the roots of the univariate polynomial
t — p(x + te) are real. Garding [2] introduced this notion in connection with the well-posedness theory of the Cauchy
problem for hyperbolic differential operators; the vector e is time-like. He proved two important facts:

e the connected component of e in {p > 0} is a convex cone. Its elements are time-like vectors too;

o if we denote K the closure of this cone, so that p > 0 over K, the function x — p(x)l/d is concave over K.
An especially interesting example is that of p(A) =det A over the space Sym,;(R) (here n = @), which is hyperbolic in
the direction of I4. The future cone K is made of the positive semi-definite matrices, and the concavity property bears the

name of Minkovski’s determinantal inequality:

(det A)1/4 + (det B)'/¢ < (det(A + B)) /4.

It is therefore natural to consider f, = —p'/d, where p is a homogeneous hyperbolic polynomial of degree d, and ask
whether f, satisfies the Hlawka inequality, that is whether
P+ p +p@" + px+y+ 2V < px+ NV p(y+ 2V +pz+ 0V, VX y.zeK. (3)

The following example shows that this turns out to be false in general. Take again for p the determinant over symmetric
matrices, where d > 3. One can write I = P + Q + R as the sum of non-trivial mutually orthogonal projectors. Then
detP =-.-=det(Q + R) =0, but det(P + Q + R) =1, so that (3) is violated. This flaw looks to be caused by the fact that
the boundary of K has flat parts.

The above counter-example leaves open the case d =2, where the determinant is a non-degenerate quadratic form. In
degree 2, the determinant becomes actually a paradigm, because of the following observations:

e the Hlawka inequality involves only three vectors. By restricting to the space spanned by x,y and z, it is therefore
enough to consider forms in 2 or 3 space variables;

e a quadratic form g is hyperbolic if and only if its signature is (1,n — 1); in other words, when (R", q) is a Minkowski
space. In particular, there is only one hyperbolic quadratic form in R", up to a change of variable.
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Since Sym,(R), equipped with the determinant, is a Minkowski space of dimension 3, we deduce that the status of the
Hlawka inequality for —+/det is the same as the status for any Minkowski metric. Our main result is as follows.

Theorem 1.1. The reverse Hlawka inequality is true in Minkowski spaces: if q is a quadratic form on R", with signature (1,n — 1), then
the “length” £ = ,/q satisfies

L) +L(Y)+L@D+HLELx+Yy+2) <lx+Y)+ LY +2)+L(z+X) (4)
for every vectors x, y, z in the future cone.

Remarks.

e The fact that the sign in this inequality is opposite to the sign in the Euclidean Hlawka inequality (1) is all but a
surprise. The same flip occurs in the Cauchy-Schwarz inequality, whose Lorentzian counterpart is £(x)£(y) < x -y, for
every x,y € K.

e We do not exclude the possibility that some p!/¢ satisfy the reverse Hlawka inequality in the future cone, when p is
hyperbolic homogeneous of higher degree d > 2 over R". For instance, this is true when p =q™ for m > 2 and q is
a Lorentz quadratic form, because then p'/? = /4. We leave open the case when p3(x) = 01(x)02(x), where o; are
the elementary symmetric polynomials, hyperbolic in the direction 1= (1,...,1). Because of the formula (n — 1)p3 =
aa- V)(ozz), this raises the question whether the Hlawka inequality transfers from a hyperbolic polynomial p to its
derivative (e - V)p in a time-like direction.

Outline of the paper. According to the observations made above, it is enough to consider the cases

e n=2 and q(x) = x1xy,
e n=3 and q(A) =det A, with R? ~ Sym, (R).

We treat the first case in Section 2. We prove in Section 3 that it implies the second one. We study the equality case in the
last section.

2. The two-dimensional case

We consider the form q(x) = x1x2, whose future cone is K = (RT)2. The corresponding bilinear form is

1
X-y= 5(X1y2 +x2¥1).
Let g denote ,/q (the opposite of f). One seeks for the inequality

gX)+gY)+g@D)+gx+y+2)<gx+y)+gy+2+giz+x), Vx,y,ze K (5)

Because both sides of (5) are non-negative, and because of the identity

qx) +q¥) +q@+qx+y+2)=qx+y) +qy +2) +q(z+x),

the inequality is equivalent to

E®+gy)+g@)egx+y+2+8x)gy) +g(y)g(2) + g(2)gx)
<gx+yEY+2+gy+28z+x)+gz+x)gx+y), Vx,y,zeK. (6)

The latter can be written as

0x,y,2)+0(z,x,y)+0(y,2,x) <0,

where
0, y,2):=gX)gx+y+2)+2(y)g12) — g+ y)gx+2).
It is therefore enough to prove that
0(x,y,2) <0, Vx,y,zeK. 7)

Because g is non-negative, (7) is equivalent to

(EEx+y+2) +2(1)2(2)* < (gx+ y)gx+2)*,
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that is to

2gx)g(¥)g()gx+y+2) <mRK y,2) VX, y,zeK
=qx+y)qx+2) —qx)qx+y+2) —q(y)q(2). (8)

One verifies

XY, 20 =4x - Y)x-2)+2(x-¥)q@) +2(x- 2q(y) — 2(y - D)q(X),
or equivalently

T =X{y2z2 + 5y121 + 2(x - ¥)q(2) + 2(x - 2)q(y),
which is obviously non-negative for x, y, z € K. From this, we infer that (8) holds true if and only if

490q(N9@Dqx+y+2) <X, y,2)%, VX y,z€K. 9)
The latter inequality turns out to hold true in an even more generality, because of the identity

(X y.2) —4x)qN9@qx+y+2)=Q*>0,
where Q :=Xx1Y222(X1 + y1 +21) — x2y121(x2 + y2 + z2). This follows from the factorization

T =x1y222x+y+21+xy121x+y +2)2.
The correctness of (9) is that of (7), which implies the correctness of (6), which amounts to the truth of (5). This ends
the proof of the two-dimensional case.

3. The end of the proof

We now turn to the three-dimensional case where K = Sym;r and q(A) = det A. Again, we write g = ,/q. By a continuity
argument, we may assume that the three elements, denoted here A, B, C, are positive definite.
Defining A’ = C~1/2AC~1/2 and B’ = C~1/2BC~1/2, we see that (5) amounts to
g+ A +B)+gA)+gB)+1<gly+A)+g(+B)+g(A+B).
In other words, it is enough to consider the case where C = I.
Let us denote a; <ay and by < b, the eigenvalues of A and B, and A, i those of A+B. We know A+u =T :=TrA+TrB.
By Weyl's inequalities, we have
ar+by <A, pu<ay+bs.

We therefore have the constraints § := (a; 4+ by)(az + by) < A < T?/4. Let us estimate

Vdet(I; + A+ B) —y/det(A+B)=/1+T + it — /Au.

Because the function s — «/T+T +5 — 4/s is monotone decreasing, its maximum under the conditions 5§ <s < T2/4 is
achieved at s. We deduce

J/det(I; + A+ B) — /det(A + B) < /(1 +a; +b1)(1 +az + by) — /(a1 +b1)(az + by).

Since

gl +A) + g2 + B) — g(A) — g(B) = /(1 +a1)(1 +az) ++/(1+b1)(A +by) — araz — v/biba,
there remains to prove
VA +a+b) (A +az+ba) + Varaz +Vbiby +1 < /(A +a)(1 +az2) +/(1+b)(1 +ba)
++/(a1 +by)(az +b2),

which is a consequence of the two-D case studied in Section 2.

Remark. One might have tried to prove the Theorem in every dimensions by following the same strategy as in the two-
dimensional case, that is by proving that the corresponding function
0. y,2):=gX)gx+y+2)+g(y)g2) —gx+y)gx+2)

remains non-positive. This is how the Euclidean Hlawka inequality was proved in [4]. This approach fails here because 6
does not keep a constant sign in dimension > 3.
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4. The equality case
Proposition 4.1. The equality holds in (4) if and only if

e either one vector among x, y or z is 0,
e orx,y and z are collinear.

Proof.

Case n =2. If equality happens in (4), then we have 6(x, y,z) =0(y, z,x) =0(z,x, y) = 0. We may assume that none of the
vectors be 0.
If x; =0, we thus have x, > 0 and

O0=yvizi=y122(x1 + y1 +21) = 21¥2(%1 + ¥1 + 21).

If y1 =21 =0, then x, y, z are collinear. If not, there remains 0 = y1zy = y1z2 = z1y2, which implies that either y
or z is 0. The same analysis works if any of the five other coordinates vanishes.
Now, if all coordinates are positive, we obtain
X2+Y2+22 X1Y2Z2 X2Y1Z2  X2)2Z1
Xt+y1+z1 Xyizi x1y2z1 X1y1z2’
which implies
x2_y2_n
X1 1

Therefore the vectors are collinear.
Casen=3. We first assume C = I;. We keep the notations of Section 3. On the one hand, the equality in (4) implies

Vdet(I; + A+ B) — y/det(A + B) = /(1 + a1 + b1)(1 + a2 + b2) — v/(a1 + b1)(az + b),

which amounts to

A=ai+by, p=az+bs.

This equality case in Weyl’s inequality implies that A and B commute with each other. Going back to the general
situation where C is positive definite, we obtain that A, B and C are diagonal in the same orthogonal basis. Finally,
the vectors of eigenvalues must satisfy the two-dimensional equality case, meaning that either one matrix is 0y,
or that A, B and C are collinear.

There remains the sub-case where all of A, B and C are rank-one, say A =aa®, B =bb! and C = cc'. Then
det A =det B =detC =0. Denoting uj = (aj, bj, ¢;), we also have

det(B+C) = (u1 x uz)?, det(C+ A) = (u1 x uz)5, det(A+B)=(us x uz)3

and

det(A+ B+ C) = |lu; x uz|>.
The equality in (4) tells us therefore

3
lur x uall =) (1 x uz)ql.

a=1

This implies that two coordinates of uq x uy vanish. This can happen only if either one of the vectors a, b or c is
0, or if all of them are collinear.
The case where n > 4 reduces to the cases n < 3 by restriction to the subspace spanned by x, y and z. O
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