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RESUME

Cette note vise a déterminer quelles sont les valeurs propres du laplacien sur le tore plat
(R/Z)? qui ont une fonction propre réalisant le cas d’égalité dans le théoréme de Courant
(situation Courant-stricte). Nous suivons la stratégie de A. Pleijel (1956) [18], qui associe
une borne inférieure de type loi de Weyl pour la fonction de comptage et une inégalité
de type Faber-Krahn. Comme dans les travaux de P. Bérard et D. Meyer, cette derniére est
déduite d’'une inégalité isopérimétrique, avec une condition de petitesse, ici explicitée, sur
l'aire du domaine.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let us first recall two classical results on the eigenvalues and eigenfunctions of the Dirichlet-Laplacian on a bounded
domain € in the plane. According to a well-known result by R. Courant (in [8]), an eigenfunction (real valued) associated
with the k-th eigenvalue A,(2) of this operator has at most k nodal domains. In [18], A. Pleijel sharpened this result by
showing that, for a given domain, an eigenfunction associated with A, (£2) has less than k nodal domains, except for a finite
number of indices k. This was generalized in [5] by P. Bérard and D. Meyer to the case of a compact Riemannian manifold,
with or without boundary, in any dimension. It has been shown by I. Polterovich in [19], using estimates from [20], that the
analogous result also holds for the Neumann-Laplacian on a planar domain with a piecewise-analytic boundary.

These results leave open the question of determining, for a specific domain or manifold, the cases of equality. It is
stated in [18] that when € is a square, equality can only occur for eigenfunctions having one, two or four nodal domains,
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associated with the first, the second (which has multiplicity two), and the fourth eigenvalue respectively. The proof in [18]
is however incomplete and was corrected by P. Bérard and B. Helffer in [3]. The case of the sphere is treated in [11], see also
[16,17] for a related study. The cases of an equilateral torus and an equilateral triangle are investigated in [4], and the case of
the Neumann-Laplacian in a square is treated in [12]. In this note, we will show that for the flat torus (R/Z)?, equality holds
only for eigenfunctions having one or two nodal domains, respectively associated with the first and the second eigenvalue
(this last eigenvalue has multiplicity four). This complements the result [9, Theorem 7.1], which determines the cases of
equality for a flat torus (R/Z) x (R/bZ) with b? irrational.

Let us give a more precise statement of the above result, and fix some notation that will be used in the following. In
the rest of this paper, T2 stands for the two-dimensional torus (R/Z)? equipped with the standard flat metric, and —Ap
stands for the Laplace-Beltrami operator on TZ. If Q is an open set in T? with a sufficiently regular boundary, we write
(Ak(§2))k>1 for the eigenvalues of —Aq. in Q with a Dirichlet boundary condition on 9<2, arranged in non-decreasing order
and counted with multiplicity. In particular, Ax(T?) is the k-th eigenvalue of —Ax (in that case the boundary is empty). If
u is an eigenfunction of —Aq2, we call nodal domains of u the connected components of T2\ u~1({0}), and we denote by
p(u) the cardinal of the set of nodal domains. With any eigenvalue X of —Aq2, we associate the integer

v(1) = min{k € N* : A, (T?) = A}.
We say that an eigenvalue A of —Aq2 is Courant-sharp if there exists an associated eigenfunction u such that p(u) = v(x).
Following [10], we also use the adjective Courant-sharp for such an eigenfunction u. We will prove the following result.

Theorem 1. The only Courant-sharp eigenvalues of — A2 are Ay (T?) withk € {1, 2, 3, 4, 5).

The proof follows the approach used by A. Pleijel in [18] and in the case of a compact manifold by P. Bérard and D. Meyer
in [5] (see also [1,2]). We first establish a Faber-Krahn-type inequality for domains in T2 whose area is sufficiently small.
We deduce it from an isoperimetric inequality proved in [13, 7]. We then combine this information with an explicit lower
bound of the counting function (similar to Weyl’s law) to show that large eigenvalues cannot be Courant-sharp.

Let us point out that interest in Courant-sharp eigenvalues has grown recently thanks to their connection to minimal
partition problems. This appears clearly in the paper [10], where the authors consider the following problem: given a
two-dimensional domain € and an integer k, find a k-partition of €, that is to say a family (D;)1<i<k of k open, connected,
and disjoint subsets of €2, that minimizes the energy

max A1(Dj).

1<i<k
Such a k-partition is said to be minimal. Existence and regularity for minimal partitions are proved in [10]. Following [10],
let us say that a k-partition is nodal if it is the family of the nodal domains for some eigenfunction of the Dirichlet Laplacian
on . It is shown in [10] that a nodal partition is minimal if, and only if, the corresponding eigenfunction is Courant-sharp.

Finding nodal minimal partitions is therefore equivalent to finding Courant-sharp eigenfunctions. In particular, Theorem 1
has the following consequence.

Corollary 2. If k > 3, minimal k-partitions of T? are not nodal.
The problem of finding minimal k-partitions of T2, with k > 3, is studied in [14]. In this paper, a numerical method, based
on [6], is used to produce candidates to be minimal partitions for k € {3, 4, 5}. They seem to be tilings of T2 by hexagons
or squares.
2. Proof of the theorem
2.1. Faber-Krahn inequality
Let us first recall an isoperimetric inequality, which is a special case of [13, 7].
Proposition 3. If Q is an open set in T? such that || < % we have the inequality

H (0Q)? = 47 |9Q|. (1)

In this proposition, || stands for the usual two-dimensional area measure of Q and #!(2) for the one-dimensional Haus-
dorff measure of 0. This inequality is also proved in [15], by a more elementary method than in [13].

Proposition 4. If 2 is an open set in T2 such that || < % then

M(Q)IQ =73 . (2)
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The constant jo 1 in Eq. (2) is the first positive zero of the Bessel function of the first kind Jo. Let us note that nj%J

is the value of the product A1(D)|D|, when D is a disk in the Euclidean plane R2. As in the planar case, the proof uses
the Schwarz symmetrization of the level sets ; = {x : u(x) > t}, where u is a positive eigenfunction associated with 11 (2)
and t > 0. We go through the same steps as in [5, 1.9], or [7, lIl.3]. Note that since |Q2;| < || < % for all t > 0, we can use
inequality (1).

2.2. Weyl’s law with explicit bounds

For A > 0, we define the counting function by N(1) = #{k : A,(T2) < A}.

Proposition 5. We have, for all > > 0,

L_&_ng()h). (3)
41 T

Proof. The proof consists in counting lattice points contained in a planar region. Indeed, the eigenvalues of —Ar2 are of
the form

A =42 (m? +n?),
with (m, n) € N2, With each pair of integers (m, n) we associate a finite dimensional space Em.n of eigenfunctions such that
L*(T?) = €D Emn.
(m,n)

The vector space E;; p is generated by products of trigonometric functions, see for instance the proof of [9, Theorem 2.2]
for details. The dimension of Ej,, is 1 if (m,n) = (0, 0), 2 if either m or n, but not both, is 0, and 4 if m >0 and n > 0.
Let us denote by n(A) the number of points with positive and integer coordinates contained in the disk of center 0 and

radius 2—*/5 Taking the dimension of the spaces Ej , into account, we have the following exact formula for the counting

function:

N(A)=4n(A) —4 L—
2w

where |x] denotes the largest integer not greater than x. By covering the upper right-hand quarter of the disk of center 0

and radius % with squares of side 1, we see that n(i) > ﬁ, and we obtain the desired lower bound. O

2.3. Courant-sharp eigenvalues of the torus
We now turn to the proof of Theorem 1. We will use the following lemmas.
Lemma 6. If A is an eigenvalue of — A2 that has an associated eigenfunction u with k nodal domains, and if k > 4,

Tjg k<A

Proof. Since |T%| =1, one of the nodal domains of u has an area no larger than % Let us denote this nodal domain by D.
Since k > 4, |D| < % < % According to Proposition 4,

)
TJo,1

A=Xx1(D) >
1(D) > D|

> nj(znk. O
Corollary 7. If A is a Courant-sharp eigenvalue of — A2 with v(1) > 4,
7 jg.1v () <A (5)

Lemma 8. Forall k € N,

Je(T?) < (4+2\/4+n(k+3))2. (6)
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Table 1
The first 57 eigenvalues.
Tableau 1
Les 57 premiéres valeurs propres.
= Indices Multiplicity v(d)
0 (0,0) 1 1
1 (1,0), (0,1) 4 2
2 1,1 4 6
4 (2,0), (0,2) 4 10
5 2,1),(1,2) 8 14
8 2,2) 4 22
9 (3,0), (0,3) 4 26
10 3,1, (1,3) 8 30
13 (3,2), (2,3) 8 38
16 (4,0), (0,4) 4 46
17 4,1), (1,4 8 50
Table 2
Table of ratios.
Tableau 2
Tableau des rapports.
k 6 10 14 22 26 30 38 46

%ﬁ) 0.3333  0.4000 0.3571 0.3636  0.3462  0.3333  0.3421 0.3478

Proof. The proof is immediate from the following remark: if A is a non-negative number such that N(1) >k, then A;(T2) < A.
The lower bound for N(A) given in inequality (3) then implies the desired upper bound. O

Comparing the lower bound (5) with the upper bound (6), we can easily show that if A is an eigenvalue of —Ap2 with
V(1) > 50, it is not Courant-sharp. Table 1 gives the first fifty-seven eigenvalues of —Am». It shows that we have to test
inequality (5) for A = A, (T?) with k € {6, 10, 14, 22, 26, 30, 38, 46}. Table 2 displays the ratio

A (T?)
4km?’
which should be greater than

jZ
201+ 0.4602
4

in case A, (T?) is Courant-sharp. This does not happen in the cases considered, and therefore Theorem 1 is proved.
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