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We consider two functions on Sp(g, R) with values in the cyclic group of order four 
{±1, ±i}. One was defined by Lion and Vergne. The other is −i raised to the power given by 
an integer valued function defined by Masbaum and the author (initially on the mapping 
class group of a surface). We identify these functions when restricted to Sp(g, Z). We 
conjecture the identity of these functions on Sp(g, R).
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r é s u m é

Nous considérons deux fonctions sur Sp(g, R) à valeurs dans le groupe cyclique d’ordre 
quatre {±1, ±i}. L’une a été définie par Lion et Vergne. L’autre est −i élevé à la puissance 
donnée par une fonction à valeurs entières définie par Masbaum et l’auteur (initialement 
sur le groupe modulaire d’une surface). Nous montrons que ces deux fonctions coïncident 
sur Sp(g, Z). Nous conjecturons qu’elles coïncident sur Sp(g, R).

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For f ∈ Sp(g, R), we describe, in the next two subsections, an invariant s( f ) of Lion–Vergne that takes values in {±1, ±i}
and an invariant n( f ) of Gilmer–Masbaum, which takes values in Z. Our main theorem is the following.

Theorem 1. For f ∈ Sp(g, Z),

s( f ) = i−n( f ). (1)

In the second section we prove this theorem. We conjecture this theorem also holds for f ∈ Sp(g, R). We discuss this 
conjecture in the third section and prove this conjecture in genus 1. In the fourth section, we prove the square of Eq. (1)
for f ∈ Sp(g, R). In the final section, we discuss the context of this result and some motivation.

E-mail address: gilmer@math.lsu.edu.
http://dx.doi.org/10.1016/j.crma.2015.03.006
1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2015.03.006
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:gilmer@math.lsu.edu
http://dx.doi.org/10.1016/j.crma.2015.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2015.03.006&domain=pdf


478 P.M. Gilmer / C. R. Acad. Sci. Paris, Ser. I 353 (2015) 477–481
1.1. Lion and Vergne’s s( f )

Let V be a real vector space equipped with a skew symmetric nonsingular form ω. We refer to V as a symplectic inner 
product space. A Lagrangian is a subspace λ of V which is equal to its own perpendicular subspace with respect to ω.

An oriented vector space is a vector space equipped with an equivalence class of ordered bases. Two ordered bases are 
equivalent if the change of basis matrix has positive determinant. To an ordered pair of oriented Lagrangians (λ1, λ2) in V , 
Lion and Vergne associated ε(λ1, λ2) ∈ {−1, 1}, as follows.

Define hλ1,λ2 : λ1 → λ∗
2 by hλ1,λ2 (x)(y) = ω(x, y). The kernel of this map is λ1 ∩ λ2, which we will denote by κ .

1.1.1. ε(λ1, λ2) in the case κ = 0
In this case, we have that hλ1,λ2 is invertible. Let {ai}i=1,n be an ordered basis for λ1, {bi}i=1,n be an ordered basis 

for λ2. We let {b∗
i }i=1,n be the ordered basis for λ∗

2 given by b∗
i (b j) = δi j . One defines ε(λ1, λ2) to be one if and only if 

{hλ1,λ2 (ai)} and b∗
i determine the same orientation on λ∗

2. Equivalently ε(λ1, λ2) = sgn(det(ω(ai, b j))). Here and below, we 
let sgn(x) = |x|

x ∈ {±1} for a non-zero real number x.

1.1.2. ε(λ1, λ2) in the case κ �= 0
This case is reduced to the case κ = {0} as follows. We can see that κ is isotropic, and hence κ⊥/κ acquires an induced 

symplectic structure and λ1/κ , λ2/κ are Lagrangian subspaces of κ⊥/κ . Choosing an orientation of κ , we consider the short 
exact sequences:

0 → κ → λi → λi/κ → 0 (2)

and determine an orientation of λi/κ , by the rule that an ordered basis for κ followed by the lift to λi of an ordered 
basis for λi/κ is an ordered basis for λi . Since λ1/κ and λ2/κ intersect trivially, ε(λ1/κ, λ2/κ) is defined, and we may 
define ε(λ1, λ2) = ε(λ1/κ, λ2/κ). Here the choice of orientation of κ is not important, as this choice appears twice in this 
construction.

If λ1, λ2 are the same Lagrangian with the same orientation, then the above prescription asks us to compare two orien-
tations on a zero dimensional vector space. This should be interpreted as follows: ε(λ1, λ2) = 1. Similarly: if λ1, λ2 are the 
same Lagrangian but with opposite orientations, then we take ε(λ1, λ2) = −1.

1.1.3. Definition of s(f) in terms of ε
Define

s(λ1, λ2) = idim(λ1)−dim(λ1∩λ2)ε(λ1, λ2).

Consider the vector space R2g , with the standard basis denoted by {p1, · · · pg, q1, · · ·qg} and equipped with the standard 
symplectic form given by ω(pi, p j) = ω(qi, q j) = 0 and ω(pi, q j) = −ω(qi, p j) = δi j . The Lie group of isometries of this 
symplectic inner product space is called the symplectic group and is denoted Sp(g, R). Let λ0 be the Lagrangian spanned 
by {pi}. If f ∈ Sp(g, R), define

s( f ) = s(λ0, f (λ0)).

Here we give λ0 an arbitrary orientation. Since this orientation enters the computation twice, it does not effect the result.

1.2. Gilmer–Masbaum’s n( f )

Let f : V → V be an isometry. Turaev ([7], [8, 2.1,2.2]) defined a non-singular bilinear form � f on ( f − 1)V by

a � f b = ω(( f − 1)−1(a),b).

Here, ω(( f − 1)−1(a), b) means ω(x, b), where x is any element of ( f − 1)−1(a).
The determinant of a matrix for � f with respect to a basis of ( f − 1)V will be denoted det(� f ). Thus sgn[det(� f )] will 

take values in {±1}. If f = Id, ( f − 1)V = 0, and we let sgn[det(�Id)] = 1.
According to [3, Lemma 6.4], if λ ⊂ V is a Lagrangian, then the restriction of the form � f to λ ∩ ( f − 1)V is symmetric. 

This form is denoted � f ,λ . Thus � f ,λ has a signature.
In the above situation, one defines

nλ( f ) = Sign(� f ,λ) − dim(( f − 1)V ) − sgn[det(� f )] + 1 . (3)

For f ∈ Sp(g, R), let

n( f ) = nλ0( f ).
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We note that nλ( f ) was defined in [3] for f in the mapping class group of a surface (using H1(�g, Q) with a chosen 
Lagrangian λ of this rational vector space). The terms in the formula for nλ0 ( f ) make perfect sense for f ∈ Sp(g, R), so we 
can make this definition.

We also consider the free Z module generated by {p1, · · · pg, q1, · · ·qg} which we identify with Z2g ⊂ R2g . The form ω
restricts to a unimodular Z-valued form. By Sp(g, Z), we the mean the group of isometries of this symplectic inner product 
space over Z. We have that Sp(g, Z) ⊂ Sp(g, R). So we may also restrict s and n to Sp(g, Z).

2. Comparing characters on a central extension of Sp(g, Z)

Given three Lagrangians λ1, λ2, λ3 of (V , ω), there is a Maslov index μ(λ1, λ2, λ3) ∈ Z. This can be defined as the 
signature of the symmetric bilinear form on (λ1 + λ2) ∩ λ3 defined by B(a, b) = ω(x, b) where a, b ∈ (λ1 + λ2) ∩ λ3, x ∈ λ2, 
and a − x ∈ λ1. As noted in [7,8], this is equivalent to the definition given by Kashiwara and used in [4]. As we use both 
[7,8] and [4], some our results depend on this identification which can be seen for instance using [1, Thm 8.1].

Lion and Vergne [4, 1.6.14] use the Maslov index to specify a certain central extension ˜Sp(g,R) by Z of Sp(g, R). One 
defines

˜Sp(g,R) = {( f ,m)| f ∈ Sp(g,R),m ∈ Z}
with multiplication;

( f1,m1) · ( f2,m2) = ( f1 f2,m1 + m2 + μ(λ0, f1(λ0), f1 f2(λ0))). (4)

Thus ˜Sp(g,R) is the central extension of Sp(g,R) specified by the 2-cocycle ν where ν( f1, f2) = μ(λ0, f1(λ0), f1 f2(λ0)). 
According to [4, 1.7.11], the formula s( f , m) = ims( f ) defines a character on the group ˜Sp(g,R).

One can define an extension ˜Sp(g,Z) of Sp(g, Z) by the same procedure as used for Sp(g, R), and one obtains the pull 
back by the inclusion ι : Sp(g,Z) → Sp(g,R) of the extension ˜Sp(g,R) over Sp(g, R). We have the following commutative 
diagram with exact rows.

0 −−−−→ Z −−−−→ ˜Sp(g,Z) −−−−→ Sp(g,Z) −−−−→ 1

=
⏐⏐�

⏐⏐�ι̃

⏐⏐�ι

0 −−−−→ Z −−−−→ ˜Sp(g,R) −−−−→ Sp(g,R) −−−−→ 1.

We define r : ˜Sp(g,R) → {±1, ±i} by r( f , m) = in( f )−m . We need the following lemma whose proof we delay.

Lemma 2. The function r ◦ ι̃ is a character on ˜Sp(g,Z) with values in {±1, ±i}.

Proof of Theorem 1 modulo Lemma 2. Given that r ◦ ι̃ and s ◦ ι̃ are characters, it follows that t(m, f ) = r( f , m)s( f , m)

defines a character on ˜Sp(g,Z). This character vanishes on the central element (1, id) ∈ ˜Sp(g,Z). Thus t induces a well 
defined character on Sp(g,Z). According to [6, Thm 5.1], if g ≥ 3, Sp(g,Z) is perfect. So the induced character is trivial. It 
follows that t is identically one. Thus s( f ) = i−n( f ) for f ∈ Sp(g,Z) if g ≥ 3. But both s and n remain unchanged upon the 
stabilization Sp(g,Z) → Sp(g + 1,Z) given by direct summing a 2 × 2 identity matrix. Thus s( f ) = i−n( f ) for low genus as 
well. �

We will think of s and n as 1-cochains on Sp(g,R). We write n as − j − k where j and k are the two 1-cochains (the 
notation is chosen to be consistent with [3]).

j( f ) = −Sign(� f ,λ0) and k( f ) = dim (Image( f − Id)) + sgn[det(� f )] − 1 (5)

Proposition 3. (See Turaev [7,8].) Let f1, f2 ∈ Sp(g,R),

x � f1, f2 y = ω
(
( f1 − 1)−1x + ( f2 − 1)−1x + x, y

)

defines a symmetric bilinear form on Image( f1 − 1) ∩ Image( f2 − 1).

Consider the 2-cochain given by

φ( f1, f2) = Sign(� f1, f2). (6)

Recall the coboundary of a 1-cochain c is given by (δc)(g, h) = c(g) + c(h) − c(gh). We need:
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Theorem 4. (See Turaev [7,8].)

δk ≡ ϕ (mod 4). (7)

Our next result uses some topology. Let 
g denote the mapping class group of a closed surface �g of genus g . We 
may pick an identification of H1(�g) with Z2g so that the intersection pairing on H1(�g) agrees with ω. Then we have a 
surjection h : 
g → Sp(g,Z) which sends a mapping class f to the map it induces on homology. We also identify H1(�g , R)

with R2g . We pick a handlebody Hg with boundary �g such that λ0 under this identification is the kernel of the map 
H1(�g , R) → H1(Hg, R). Proposition 5 is essentially Walker’s theorem [10, p. 124] [3, Thm 8.10] together with [3, Prop 8.9]
which identifies the signatures of certain manifolds appearing in following proof with Sign(� f ,λ0) for various f .

Proposition 5. Let f1, f2 ∈ Sp(g,Z),

Sign(� f1, f2) − μ(λ0, f1(λ0), f1 f2(λ0)) + Sign(� f1◦ f2,λ0) − Sign(� f1,λ0) − Sign(� f2,λ0) = 0. (8)

Proof. Given f1, f2 ∈ Sp(g,Z), we pick f1, f2 ∈ 
, with h(fi) = f i . Then we use f1, f2 and Hg to construct five 4-manifolds 
with boundary as in [3, proof of Thm 8.10]. Using identities appearing in [3], the signatures of each of these manifolds are 
identified with the terms that appear on the left hand side of Eq. (8). Then we glue together the five 4-manifolds along 
whole components of their boundaries to obtain a closed 4-manifold. By Novikov additivity, this closed 4-manifold has 
signature given by the left hand side of Eq. (8). This closed 4-manifold is then shown to be the boundary of a five manifold, 
as in [3, proof of Thm 8.10], and thus have vanishing signature. �

Because these constructions require that f1 and f2 be the maps on the homology of a surface induced by surface 
automorphisms, the above proof does not extend to the case f1, f2 ∈ Sp(g, R).

Proof of Lemma 2. The claim is easily seen to be equivalent to the following identity involving 2-cocycles of Sp(g,Z):

μ(λ0, f1(λ0), f1 f2(λ0)) + δnλ0( f1, f2) = 0 (mod 4).

Using Eqs. (5), (6), (7) and (8), and letting ≡ denote equality modulo 4,

δ(nλ0)( f1, f2) = −δ( j)( f1, f2) − δ(k)( f1, f2) (9)

≡ Sign(� f1,λ0) + Sign(� f2,λ0) − Sign(� f1◦ f2,λ0) − Sign(� f1, f2) (10)

= −μ(λ0, f1(λ0), f1 f2(λ0)). � (11)

We remark that Lemma 2 and its proof are closely related to [3, Thm 6.6] and its proof.

3. On the conjecture that Theorem 1 holds for f ∈ Sp(g, R)

By the argument for Lemma 2, we have:

Lemma 6. If Eq. (8) holds modulo four for all f1, f2 ∈ Sp(g,R), then r is a character with values in {±1, ±i} on the group ˜Sp(g,R).

Proposition 7. If Eq. (8) holds modulo four for all f1, f2 ∈ Sp(g,R), then Eq. (1) holds for all f in Sp(g,R).

Proof. We use essentially the same argument as in the proof of Theorem 1 except we do not need to stabilize as Sp(g,R)

is perfect even for low g . �
Proposition 8. Eq. (1) holds for all f in Sp(1,R).

Proof. One easily has [4, 1.8.4] that, if a �= 0, then s 
([

a b
0 a−1

])
= sgn(a), and if c �= 0, then s 

([
a b
c d

])
= sgn(c)i. To 

complete the proof, one only needs to calculate n modulo 4 explicitly in these cases. �
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4. The square of Eq. (1)

We can obtain that the square of Eq. (1) is valid for f ∈ Sp(g,R).

Proposition 9. If f ∈ Sp(g,R), (s( f ))2 = (−1)n( f ) .

Proof. From the definition of s, one easily has that

(s( f ))2 = (−1)g+dim(λ0∩ f (λ0)).

From the definition of nλ0 , one easily has that

(−1)n( f ) = (−1)
Sign(� f ,λ0 )−dim(Image( f −1))

.

By [3, Proposition 7.3] (whose proof is valid for f ∈ Sp(g,R)),

g + dim(λ0 ∩ f (λ0)) = Sign(� f ,λ0) − dim(Image( f − 1)) (mod 2). �
5. Final comments

Central extensions of the mapping class group are used to upgrade projective representations arising in topological quan-
tum field theory (TQFT) to honest representations [10,5]. More generally an extension of the three dimensional cobordism 
category is used to remove the projective ambiguity of TQFT maps induced by more general cobordisms than mapping cylin-
ders [10,9]. An index two subcategory of the extended cobordism category [2] proved useful in demonstrating that certain 
projective modules associated with surfaces by an integral version TQFT are free. In [3], the function n was defined in order 
to describe an index four subgroup of the extended mapping class group. This allowed Masbaum and the author to define 
modular representations of the unextended mapping class group. In [3, Remark 7.5], it is asked whether there is a corre-
sponding index four subcategory of the 3-dimensional extended cobordism category. As s gives a very different description 
of this same index four subgroup, it is plausible to hope that Theorem 1 might help answer this question. As a tentative 
step in this direction, Wang [11] makes use of Theorem 1 to define a version of n for connected extended cobordisms which 
have been further enhanced with a choice of orientation for the Lagrangians that are part of the extended structure. This 
version of n agrees with n when applied to mapping cylinders.
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