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We identify the category of integrable lowest-weight representations of the loop group 
LG of a compact Lie group G with the category of twisted, conjugation-equivariant curved 
Fredholm complexes on the group G: namely, the twisted, equivariant matrix factorizations of 
a super-potential built from the loop rotation action on LG. This lifts the isomorphism of 
K -groups of [3–5] to an equivalence of categories. The construction uses families of Dirac 
operators.
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r é s u m é

On identifie la catégorie des représentations intégrables de plus bas poids du groupe de 
lacets LG d’un groupe de Lie compact G avec la catégorie des complexes de Fredholm 
tordus, courbés et équivariants pour conjugaison sur le groupe G : plus précisément, 
les factorisations en matrices d’un potentiel provenant de la rotation des lacets dans LG. 
Cette construction relève l’isomorphisme de K -groupes de [3–5] en une équivalence de 
catégories. La construction fait appel aux familles d’opérateurs de Dirac.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and background

The group LG of smooth loops in a compact Lie group G has a remarkable class of linear representations whose structure 
parallels the theory for compact Lie groups [10]. The defining stipulation is the existence of a circle action on the represen-
tation, with finite-dimensional eigenspaces and spectrum bounded below, intertwining with the loop rotation action on LG. 
We denote the rotation circle by Tr ; its infinitesimal generator L0 represents the energy in a conformal field theory.

Noteworthy is the projective nature of these representations, described (when G is semi-simple) by a level h ∈ H3
G(G; Z)

in the equivariant cohomology for the adjoint action of G on itself. The representation category Reph(LG) at a given level h
is semi-simple, with finitely many simple isomorphism classes. Irreducibles are classified by their lowest weight (plus some 
supplementary data when G is not simply connected [5, Ch. IV]).
http://dx.doi.org/10.1016/j.crma.2015.02.011
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In a series of papers [3–5], the authors, jointly with Michael Hopkins, construct K 0Reph(LG) in terms of a twisted, 
conjugation-equivariant topological K -theory group. To wit, when G is connected, as we shall assume throughout this 
paper,1 we have

K 0 Reph(LG) ∼= K τ+dim G
G (G), (1.1)

with a twisting τ ∈ H3
G(G; Z) related to h, as explained below.

Remark 1.1. One loop group novelty is a braided tensor structure2 on Reph(LG). The structure arises from the fusion product
of representations, relevant to 2-dimensional conformal field theory. The K -group in (1.1) carries a Pontryagin product, and 
the multiplications match in (1.1).

The map from representations to topological K -classes is implemented by the following Dirac family. Calling A the space 
of connections on the trivial G-bundle over S1, the quotient stack [G : G] under conjugation is equivalent to [A : LG] under 
the gauge action, via the holonomy map A → G . Denote by S± the (lowest-weight) modules of spinors for the loop space 
Lg of the Lie algebra and by ψ(A) : S± → S∓ the action of a Clifford generator A, for d + Adt ∈ A. A representation H of LG
leads to a family of Fredholm operators over A,

/DA : H ⊗ S+ → H ⊗ S−, /DA := /D0 + iψ(A) (1.2)

where /D0 is built from a certain Dirac operator [7] on the loop group.3 The family is projectively LG-equivariant; dividing out 
by the subgroup �G ⊂ LG of based loops leads to a projective, G-equivariant Fredholm complex on G , whose K -theory class [
(/D•,H ⊗ S±)

] ∈ K τ+∗
G (G) is the image of H in the isomorphism (1.1). When dim G is odd, S+ = S− and skew-adjointness of 

/DA leads instead to a class in K 1. The twisting τ is the level of H ⊗ S as an LG-representation, with a (G-dependent) shift 
from the level h of H.

The shifts are best explained in the world of super-categories, with Z/2 gradings on morphisms and objects; odd simple 
objects have as endomorphisms the rank one Clifford algebra Cliff(1), and in the semi-simple case, they contribute a free 
generator to K 1 instead of K 0. Consider the τ -projective representations of LG with compatible action of Cliff(Lg), thinking 
of them as modules for the (not so well-defined) crossed product LG � Cliff(Lg). They form a semi-simple super-category 
SRepτ , and the isomorphism (1.1) becomes

K ∗ SRepτ (LG � Cliff(Lg)) ∼= K τ+∗
G (G) (1.3)

with the advantage of having no shift in degree or twisting. (For simply connected G , both sides live in degree ∗ = dimg, but 
both parities can be present for general G .) This isomorphism is induced by the Dirac families of (1.2): a super-representation 
SH± of LG � Cliff(Lg) can be coupled to the Dirac operators /DA without a choice of factorization as H ⊗ S± .

2. The main result

There is a curious mismatch in (1.3): the isomorphism is induced by a functor of underlying Abelian categories, from 
Z/2-graded representations to twisted Fredholm bundles over G , but this functor is far from an equivalence. The category 
SRepτ is semi-simple (in the graded sense discussed), but that of twisted Fredholm complexes is not so; we can even 
produce continua of non-isomorphic objects in any given K -class, by compact perturbation of a Fredholm family.

Here, we redress this problem by incorporating a super-potential, a celebrity in the algebraic geometry of 2-dimensional 
physics (the “B-model”). As explained by Orlov4 [8], this deforms the category of complexes of vector bundles into that 
of matrix factorizations: the 2-periodic, curved complexes with curvature equal to the super-potential W . Our W has Morse 
critical points, leading to a semi-simple super-category with one generator for each critical point; the generators are pre-
cisely the Dirac families of (1.2) on irreducible LG-representations. The artifice of introducing W is redeemed by its natural 
topological origin in the loop rotation Tr -action on the stack [G : G]. The Tr -action is evident in the presentation [A : LG], 
but it rigidifies to a BZ-action on the stack. Furthermore, for twistings τ transgressed from BG, the BZ-action lifts to the 
G-equivariant gerbe Gτ over G which underlies the K -theory twisting. The logarithm of this lift is 2π iW .

Remark 2.1. The conceptual description of a super-potential as logarithm of a BZ-action on a category of sheaves is worked 
out in [9]; the matrix factorization category is the Tate fixed-point category for the BZ-action. For varieties, W is a function 
and exp(2π iW ) generates a BZ-action on sheaves; on a stack, a geometric underlying action can also be present, as in this 
case. With respect to [9], our Wτ below should be re-scaled to take integer values at all critical points; we will omit this 
detail in order to better connect with the formulas in [4,5].

1 Twisted loop groups show up when G is disconnected [5].
2 When G is not simply connected, there is a constraint on h.
3 The normalized operator (−2)−1/2/D0 is the square root G0 of L0 in the super-Virasoro algebra.
4 Orlov discusses complex algebraic vector bundles; we found no exposition for equivariant Fredholm complexes in topology, and a discussion is planned 

for our follow-up paper.
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To spell this out, recall that a stack is an instance of a category, and a BZ-action thereon is described by its generator, an 
automorphism of the identity functor. This is a section over the space of objects, valued in automorphisms, which is central 
for the groupoid multiplication. For [G : G], the relevant section is the identity map G → G , from objects to morphisms. 
Intrinsically, [G : G] is the mapping stack from BZ to BG, and the BZ-action in question is the self-translation action of BZ. 
This rigidifies the geometric Tr -action on the homotopy equivalent spaces LBG ∼ BLG ∼ A/LG.

A class τ̂ ∈ H4(BG; Z) transgresses to a τ ∈ H3
G(G; Z), with the latter having a natural Tr -equivariant refinement. This 

can also be rigidified, as follows. The exponential sequence lifts τ̂ uniquely to H3(BG; T), the group cohomology with 
smooth circle coefficients. That defines a Lie 2-group G τ̂ , a multiplicative T-gerbe over G . (Multiplicativity encodes the 
original τ̂ .) The mapping stack from BZ to BGτ̂ is the quotient [G τ̂ : G τ̂ ] under conjugation, and carries the BZ-action from 
the self-translations of the latter. Because BT ↪→ G τ̂ is strictly central, the self-conjugation action of G τ̂ factors through G , 
and the quotient stack [G τ̂ : G] is our BZ-equivariant gerbe over [G : G] with band T. We denote this central circle by Tc , to 
distinguish it from Tr .

The BZ-action gives an automorphism exp(2π iWτ ) of the identity of [G τ̂ : G], lifting the geometric one on [G : G]. 
Concretely, [G τ̂ : G] defines a Tc-central extension of the stabilizer of [G : G], and exp(2π iWτ ) is a trivialization of its fiber 
over the automorphism g at the point g ∈ G (see Section 3 below). The logarithm Wτ is multi-valued and only locally 
well-defined; nevertheless, the category MFτ

G(G; Wτ ) of twisted matrix factorizations is well-defined, and its objects are 
represented by τ -twisted G-equivariant Fredholm complexes over G curved by Wτ +Z · Id.

Theorem 2.2. The following defines an equivalence of categories from SRepτ to MFτ
G(G; −2Wτ ): a graded representation SH± goes 

to the twisted and curved Fredholm family 
(
/D•,SH±)

whose value at the connection d + A dt ∈ A is the τ -projective LG-equivariant 
curved Fredholm complex

/DA = /D0 + iψ(A) : SH+ � SH−.

Remark 2.3.

(i) The factor (−2), stemming from our conventions [5], can be absorbed by scaling the operators.
(ii) Matrix factorizations obtained from irreducible representations are supported on single conjugacy classes, the so-called 

Verlinde conjugacy classes in G , for the twisting τ . These are the supports of the co-kernels of the Dirac families (1.2), 
[5, §12].

(iii) There is a braided tensor structure on SRepτ (LG � Cliff(Lg)) (without Tr -action). A corresponding structure on 
MFτ

G(G, Wτ ) should come from the Pontryagin product. We do not know how to spell out this structure, partly because 
the Tr -action is already built into the construction of MFτ , and the Pontryagin product is not equivariant thereunder.

(iv) The values of the automorphism exp(2π iWτ ) at the Verlinde conjugacy classes determine the ribbon element in 
Reph(LG); see [2] for the discussion when G is a torus.

Theorem 2.2 has a τ̂ → ∞ scaling limit, which is needed in the proof. In this limit, the representation category of LG
becomes that of G . On the topological side, noting that each τ̂ defines an inner product on g, we magnify a neighborhood 
of 1 ∈ G to fix the scale. The τ -central extensions of stabilizers near 1 have natural splittings, and Wτ converges to a 
super-potential W , a central element of the crossed product algebra G � Sym(g∗). In a basis ξa of g with dual basis ξa of g∗ , 
we will find in Section 3 that

W = −i · ξa(δ1) ⊗ ξa + 1

2

∑
a
‖ξa‖2 (2.1)

with ξa(δ1) denoting the ξa-derivative of the delta-function at 1 ∈ G . This leads to a G-equivariant matrix factorization 
category MFG(g, W ) on the Lie algebra.

To describe this limiting case, recall from [5, §4] the G-analogue of the Dirac family (1.2). Kostant’s cubic Dirac operator
[6] on G is left-invariant, and the Peter–Weyl decomposition gives an operator /D0 : V ⊗ S± → V ⊗ S∓ for any irreducible 
representation V of G , coupled to the spinors S± on g. As before, let us work with graded modules SV for the super-algebra 
G � Cliff(g).

Theorem 2.4. Sending SV± to 
(
/D•,SV±)

, the curved complex over g given by

g � μ �→ /Dμ = /D0 + iψ(μ) : SV+ � SV−

provides an equivalence of super-categories from graded G � Cliff(g)-modules SV± to G-equivariant, (−2W )-matrix factorizations 
over g.

With λ denoting the lowest weight of V and T (μ) the μ-action on SV, we have [5, Cor. 4.8]

/D2
μ = −‖λV + ρ‖2 + 2i · T (μ) − ‖μ‖2 ∈ (−2W ) +Z.
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3. Outline of the proof

3.1. Executive summary

The category MFτ
G(G; Wτ ) sheafifies over the conjugacy classes of G . Near a g ∈ G with centralizer Z , the stack [G : G] is 

modeled on a neighborhood of 0 in the adjoint quotient [z : Z ] of the Lie algebra z, via z � ζ �→ g · exp(2πζ). The equivariant 
gerbe [G τ̂ : G] is locally trivialized (possibly on a finite cover of Z ) uniquely up to discrete choices, differing by Z -characters. 
We will compute Wτ locally in those terms in Z �C∞ (z), recovering (2.1), up to a (g-dependent) central translation in z. We 
then show that MFτ vanishes near singular elements g . Assuming for brevity that π1(G) is torsion-free, we are then left with 
the case when Z is the maximal torus T ⊂ G , where the super-potential Wτ turns out to have Morse critical points, located 
precisely at the Verlinde conjugacy classes. The local category is freely generated by the respective Atiyah–Bott–Schapiro 
Thom complex; the latter is quasi-isomorphic to our Dirac family for a specific irreducible representation, associated with 
the Verlinde class [5, §12].

3.2. Crossed module description

We will describe G τ̂ as a Whitehead crossed module [11]. This is an exact sequence of groups

Tc � K
ϕ−→ H � G,

equipped with an action α : H → Aut(K ) which lifts the self-conjugation of H and factors the self-conjugation of K . Call h
an H-lift of g ∈ G and C the pre-image of Z in H . Define the central extension Z̃ by means of a Tc-central extension C̃ of C
trivialized over ϕ(K ) ∩ C , as follows.5

The commutator c �→ hch−1c−1 gives a crossed homomorphism χ : C → ϕ(K ) with respect to the conjugation action 
of C on ϕ(K ). The lift α lets χ pull back the central extension K � ϕ(K ) to one C̃ � C ; further, C̃ is trivialized over ϕ(K ), 
since α(h) identifies the fibers of K over c and hch−1, when c ∈ ϕ(K ). Finally, noticing that hhh−1h−1 = 1 trivializes the 
fiber of C̃ over c = h and gives our exp(2π iWτ ) at g ∈ Z .

3.3. Local computation of Wτ

Following [1], take K = �τ G , the τ -central extension of the group of smooth maps [0, 2π ] → G sending {0, 2π} to 1, 
and H = P1G , the group of smooth paths starting at 1 ∈ G but free at the end. With the τ̂ -inner product 〈.|.〉, the crossed 
module action of γ ∈ H on the Lie algebra iR ⊕ �g of K is

γ .(x ⊕ ω) =
⎛
⎝x − i

2π

2π∫
0

〈γ −1dγ |ω〉
⎞
⎠ ⊕ Adγ (ω) (3.1)

extending the Ad-action of �τ G [10, Prop. 4.3.2], and exponentiating to an H-action on K .6

Lift g to h = exp(tμ) ∈ P1G , μ ∈ 1
2π log g , and assume first that Z centralizes μ. Instead of the entire group C of Sec-

tion 3.2, consider the subgroup P1 Z of paths in Z . This centralizes h, trivializing C̃ over P1 Z . In this ‘lucky’ trivialization, 
Wτ = 0. However, over �Z = ϕ(K ) ∩ P1 Z , the trivialization of Section 3.2 differs from the lucky one by adding the (expo-
nentiated) character

ω �→ − i

2π

2π∫
0

〈μ|ω〉dt,

as per formula (3.1). We can trivialize Z̃ locally by extending this to a character of P1 Z , accomplished by exponentiating 
the same integral. Now, 2π iWτ (g) = π i‖μ‖2 ⊕ 2πμ ∈ iR ⊕ g.

Even when Z does not centralize μ, Wτ is determined (for π1(G) torsion-free) by restriction to a maximal torus. Conti-
nuity also pins it down: the assumption on μ can be satisfied for generic g .

3.4. Vanishing of singular contributions

Take for simplicity g = 1, Z = G , W on g as in (2.1), plus possibly a central linear term μ. Koszul duality equates the 
localized category MFτ

G(g; W ) with the super-category of modules over the differential super-algebra(
G � Cliff(g), [/Dμ, ]) , with /Dμ = /D0 + iψ(μ)

5 The trivialization will be normalized by C -conjugation, thus descending the central extension to Z .
6 Acting on other components of �G requires more topological information from τ̂ .
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of Theorem 2.4. Ignoring /Dμ , the algebra is semi-simple, with simple modules the V ⊗ S± . Now, /D2
μ = −‖λV + μ + ρ‖2

cannot vanish for any V for non-abelian z, so [/Dμ, /Dμ] provides a homotopy between 0 and the central unit /D2
μ . This makes 

the super-category of graded modules quasi-equivalent to 0.

3.5. Globalization for the torus

We describe the stack [T τ̂ : T ] and potential Wτ in the presentation T = [t : �] of the torus as a quotient of its Lie algebra 
by � ∼= π1(T ). Lifted to t, the gerbe of stabilizers T̃ is trivial with band Tc × T . The descent datum under translation by 
p ∈ � is the shearing automorphism of Tc ×T given by the Tc-valued character exp〈p| log t〉, t ∈ T . In the same trivialization 
over t, the super-potential is

2π iWτ (μ) = π i‖μ‖2 ⊕ 2πμ ∈ iR⊕ t.

With � denoting the character lattice of T , the crossed product algebra of the stack [T τ : T ] can be identified with the 
functions on 

(∐
λ∈� tλ

)
/�, with the action of � by simultaneous translation on � and t. On the sheet λ ∈ �, Wτ =

−〈λ|μ〉 + ‖μ‖2/2 has a single Morse critical point at μ = λ.
It follows that the super-category MFτ

T (T ; Wτ ) is semi-simple, with one generator of parity dim t at each point in the 
kernel of the isogeny T → T ∗ derived from the quadratic form τ̂ ∈ H4(BT ; Z). The kernel comprises precisely the Verlinde 
points in T [2], concluding the proof of our main result.
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