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We study exceptional parameters of linear mod one transformations. The present note 
proves that the set of such values has Hausdorff dimension zero. This answers the question 
posed by Bugeaud.
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r é s u m é

Nous étudions des paramètres exceptionnels de transformations linéaires mod un. La 
présente note prouve que l’ensemble de ces valeurs a zéro pour dimension de Hausdorff. 
Ceci répond à la question posée par Bugeaud.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let {·} denote the fractional part. For an interval [s, s + t) ⊂ [0, 1), and coprime integers p, q with p > q ≥ 2, we set

Z p/q(s, s + t) := {ξ > 0 : s ≤ {ξ(p/q)n} < s + t for all integers n ≥ 0}.
A well-known connection between Waring’s problem and the fractional parts {(3/2)n} leaded Mahler, in [13], to consider 
a real number ξ ∈ Z3/2(0, 1/2). Mahler called such a hypothetical number a Z -number. He proved that there are at most 
countably many Z -numbers, but was unable to determine whether Z3/2(0, 1/2) is empty or not. A series of researches since 
then tell us that, let alone Mahler’s original Z -number problem, it is nontrivial enough to determine whether Z p/q(s, s + 1

p )

is empty or not [5,1,3]. The present note is another small step in this direction. It is worthwhile to mention here that if 
q = 1 then the set Z p/1(s, s + 1

p ) is now completely understood thanks to Bugeaud and Dubickas [2].
Let τ ∈ [0, 1) be real. For any k ∈ Z, put

εk(τ ) := �kτ� − �(k − 1)τ�,
where �·� denotes the integral part.
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Proposition 1.1. (See [1].) Let p > q ≥ 2 be coprime integers. Then the set Z p/q(s, s + 1
p ) is empty if there exists a reduced rational a/b

with b > a ≥ 1 such that∑b−2
k=1 ε−k(a/b)

(
q
p

)k +
(

q
p

)b

1 + q
p + · · · +

(
q
p

)b−1
≤ {(p − q)s} ≤

∑b−2
k=1 ε−k(a/b)

(
q
p

)k +
(

q
p

)b−1

1 + q
p + · · · +

(
q
p

)b−1
.

And the set of s satisfying the inequality is of full Lebesgue measure in [0, 1 − 1
p ]. Conversely, if Z p/q(s, s + 1

p ) is nonempty for some 
s ∈ [0, 1 − 1

p ], then there exists an irrational τ ∈ (0, 1) such that

{(p − q)s} = p − q

p

∞∑
k=1

ε−k(τ )

(
q

p

)k

.

Later, in [3], Dubickas showed that the set Z p/q(s, s + 1
p ) is actually empty for every s ∈ [0, 1 − 1

p ] provided that p

and q satisfy 1 < q < p < q2. In particular, the set Z3/2(s, s + 1
3 ) is empty for each s ∈ [0, 23 ]. In the case of p > q2, the 

determination of whether or not the set Z p/q(s, s + 1
p ) is empty still remains open.

Bugeaud obtained the above proposition by a careful study of linear mod one transformations. For real numbers β > 1
and 0 ≤ α < 1, the linear mod one transformation fβ,α is defined by

fβ,α(x) := {βx + α} for x ∈ [0,1).

Via setting

Sβ,α := {x ∈ [0,1) : 0 ≤ f n
β,α(x) < 1/β for all n ≥ 0},

the linear mod one transformation enters the picture as the next proposition says.

Proposition 1.2. (See [5].) Let p > q ≥ 2 be coprime integers and s ∈ [0, 1 − 1
p ]. If S p/q,{(p−q)s} is a finite set, then the set Z p/q(s, s + 1

p )

is empty.

Therefore, we have a good reason to specify the following set: for a fixed β > 1,

Eβ := {α ∈ [0,1) : Sβ,α is an infinite set}.
Flatto et al. [5] suspected that Eβ has Lebesgue measure zero and is a nonempty perfect set. But the perfectness of Eβ turns 
out to be false. For β > 1, put γ = 1/β . We define intervals J a

b(γ ) by J 1
1(γ ) := [γ , 1), and by

J a
b(γ ) :=

[∑b−2
k=1 ε−k(a/b)γ k + γ b

1 + γ + · · · + γ b−1
,

∑b−2
k=1 ε−k(a/b)γ k + γ b−1

1 + γ + · · · + γ b−1

]
, 1

for coprime integers b > a ≥ 1. One observes that if β = p/q, then the interval J a
b(γ ) is given by the inequality in Proposi-

tion 1.1.

Proposition 1.3. (See [1].) For any real β > 1, the set Eβ has Lebesgue measure zero, is uncountable, and is not closed. More precisely,

Eβ = [0,1)
∖ ⋃

1≤a≤b
gcd(a,b)=1

J a
b(γ ).

Owing to this result, one notes that the set Z p/q(s, s + 1
p ) is empty, possibly except when s lies in a Lebesgue negligible 

set. In [1, Remark 3], Bugeaud posed a problem to determine the Hausdorff dimension of the set Eβ . The present note 
settles this problem.

Main Theorem. The set Eβ has Hausdorff dimension zero.

This computation is possible by recognizing the unexpected connection with power series whose coefficient are Sturmian 
words, which have been investigated by the author [7,8,10,11]. Note that, in the context of a certain generalization of [2], 
this type of power series appears as well [9].

1 In [1, Lemma 3], ‘∑b−1
k=1 ’ was used instead of ‘∑b−2

k=1 ’, which, however, makes no difference because ε−(b−1)(a/b) = 0. We adopt here ‘∑b−2
k=1 ’ to make 

the notation coherent with Proposition 1.1.
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2. Preliminaries on Sturmian words

Let Z (resp. N) be the set of integers (resp. nonnegative integers). For α, ρ ∈ [0, 1], two arithmetic functions sα,ρ, s′
α,ρ :

Z → A := {0, 1} are defined by

sα,ρ(n) := �α(n + 1) + ρ� − �αn + ρ�,
s′
α,ρ(n) := �α(n + 1) + ρ� − �αn + ρ�,

where �·� denotes the ceiling function. Then two (right) infinite words

sα,ρ := sα,ρ(0)sα,ρ(1) · · · and s′
α,ρ := s′

α,ρ(0)s′
α,ρ(1) · · ·

are termed lower and upper mechanical words, respectively, with slope α and intercept ρ . The bi-infinite mechanical words 
are also considered and written as

←−−→sα,ρ := · · · sα,ρ(−1)sα,ρ(0)sα,ρ(1) · · · , ←−−→
s′
α,ρ := · · · s′

α,ρ(−1)s′
α,ρ(0)s′

α,ρ(1) · · · ,
where the zeroth letters are marked with underlines. If α is irrational, then sα,ρ and s′

α,ρ are called Sturmian words. The 
case of ρ = 0 is of our special interest, which is stated as a lemma below. For any finite word u ∈ A∗ , we write ũ for its 
reversal, and a word u satisfying ̃u = u is said to be a palindrome. We mean by uω := uuu · · · (resp. ωu := · · · uuu) the right 
(resp. left) infinite word infinitely concatenated by u. If s ∈ AN is a right infinite word, then ̃s is the left infinite word that 
is defined in a natural manner.

Lemma 2.1. Let α ∈ [0, 1] be real.

(a) If α is irrational, then there exists a right infinite word cα ∈ AN such that
←−→sα,0 = c̃α10cα, and

←−→
s′
α,0 = c̃α01cα.

(b) If α = a/b is rational with gcd(a, b) = 1, then there exists a palindrome za,b ∈ Ab−2 of length b − 2 such that
←−→sα,0 = ω(0za,b1)0(za,b10)ω, and

←−→
s′
α,0 = ω(1za,b0)1(za,b01)ω.

Proof. See [12]. �
Remark 1.

(i) In the lemma, cα and za,b are called the characteristic word and the central word respectively in the literature.
(ii) If b = 2, then za,b is the empty word. In case b = 1, we adopt convention that ←−→s0,0 = ←−→

s′
0,0 = ω000ω and ←−→s1,0 = ←−→

s′
1,0 =

ω111ω .

For β > 1, let (·)β send each infinite word a0a1 · · · ∈ AN to a real number 
∑∞

i=0 ai/β
i+1. Then a real function μβ : [0, 1] →

R is defined by

μβ(x) := (s′
x,0)β =

∞∑
i=0

s′
x,0(i)

β i+1
.

A detailed real analysis on μβ was pursued in [10,11]. However, the following results are enough for our purpose.

Proposition 2.2. For any fixed β > 1, the function μβ(x) is strictly increasing. If α ∈ [0, 1] is irrational, then the function μβ(x) is 
continuous at x = α. On the other hand, at rational α0, μβ(x) is left-continuous but not right-continuous.

Proof. See [11, Lemma 3.1]. �
Proposition 2.3. Let β > 1 be fixed, and suppose that α = a/b ∈ [0, 1] is rational with gcd(a, b) = 1.

(a) The right limits of μβ(x) at rational points are given by μβ(0+) = (1(0ω))β = 1
β

, and by

μβ(α+) = (1(za,b10)ω)β .

(b) μβ(0+) − μβ(0) = 1
β

, and

μβ(α+) − μβ(α) = (1(za,b10)ω)β − ((1za,b0)ω)β = β − 1

β(βb − 1)
.
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(c)
∑

0≤a/b<1
gcd(a,b)=1

β − 1

β(βb − 1)
= 1

β − 1
= μβ(1),

where β−1
β(βb−1)

= 1
β

when a/b = 0/1 = 0.

Proof. In [10], see Lemma 2.3 for (a), Theorem 2.4 for (b), and Theorem 3.1 for (c). �
Proposition 2.3 says that μβ is a pure jump distribution. Noting that

· · ·ε−1(τ )ε0(τ )ε1(τ ) · · · =
{

c̃τ 10cτ if τ is irrational,
ω(10za,b)1(0za,b1)ω if τ = a/b with gcd(a,b) = 1,

Proposition 1.1 can be restated more neatly.

Lemma 2.4. Let p > q ≥ 2 be coprime integers and put β = p/q. Then the set Z p/q(s, s + 1
p ) is empty if there exists a reduced 

rational a/b with b > a ≥ 1 such that

μβ(a/b) ≤ q{(p − q)s}
p − q

+ q

p
≤ μβ((a/b)+).

Conversely, if Z p/q(s, s + 1
p ) is nonempty for some s ∈ [0, 1 − 1

p ], then there exists an irrational τ ∈ (0, 1) such that

q{(p − q)s}
p − q

+ q

p
= μβ(τ ).

Proof. Divided by β − 1, the inequality in Proposition 1.1 becomes

(0(za,b01)ω)β ≤ {(p − q)s}
β − 1

≤ (0(za,b10)ω)β,

which is, in turn, followed by

μβ(a/b) = ((1za,b0)ω)β ≤ {(p − q)s}
β − 1

+ 1

β
≤ (1(za,b10)ω)β = μβ((a/b)+).

For the case where Z p/q(s, s + 1
p ) is nonempty, a similar argument shows that

{(p − q)s}
β − 1

+ 1

β
= (1cτ )β = μβ(τ ). �

3. Proof of the main theorem

Let Ẽβ := μβ([0, 1] \Q) be the image of μβ at irrational points. Lemma 2.4 tells us that Eβ \{0} is obtained by translation 
and then dilation of Ẽβ . More precisely, the same argument as in the proof of Lemma 2.4 derives

Ẽβ = 1

β − 1
Eβ + 1

β
.

So we compute the Hausdorff dimension of Ẽβ . Among diverse techniques for calculating Hausdorff dimensions is the 
following.

Lemma 3.1. (See [4].) Suppose that a set S can be covered by nk sets of diameter at most δk with limk→∞ δk = 0. Then

dimH S ≤ lim inf
k→∞

log nk

− log δk
.

We recall the Farey sequence. The reader is referred to [6] for details. For positive integer k, the Farey sequence Fk of 
order k is the sequence of reduced fractions a/b ∈ [0, 1] with b ≤ k, arranged in increasing order. For example,

F1 = {0/1,1/1}, F2 = {0/1,1/2,1/1}, F3 = {0/1,1/3,1/2,2/3,1/1}, . . . .
The next lemma is one of folklores.
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Lemma 3.2. (See [6].) The number of terms in Fk fulfills

|Fk| − 1 = �(k) :=
k∑

i=1

ϕ(i) = 3k2

π2
+ O (k log k),

where ϕ is the Euler totient function.

We are now in a position to prove our main theorem.

Proof of Main Theorem. We construct a series of collections of sets that cover Ẽβ . For each integer k ≥ 1, let

Fk = {0 = r1 < r2 < · · · < r�(k) < r�(k)+1 = 1}
be the Farey sequence of order k. Then a set [0, 1

β−1 ) \⋃�(k)
i=1 [μβ(ri), μβ(ri+)] covers Ẽβ , and consists of nk := �(k) intervals. 

Suppose ri = ai/bi . Then Proposition 2.3 shows that the diameter of each interval is less than or equal to

δk := 1

β − 1
−

�(k)∑
i=1

β − 1

β(βbi − 1)
= 1

β(β − 1)
−

k∑
b=2

ϕ(b)(β − 1)

β(βb − 1)
,

and also that δk tends to zero as k approaches infinity. Let us pick a number θ in the interval (1, β). We claim that δk ≤ θ−k

for all sufficiently large k. Appealing to Proposition 2.3 again, one deduces that

δk =
∞∑

b=k+1

ϕ(b)(β − 1)

β(βb − 1)
≤ β − 1

β

∞∑
b=k+1

b − 1

βb−1
= β − 1

β

∞∑
b=k

b

βb
= k(β − 1) + 1

(β − 1)βk
,

where ϕ(b) ≤ b − 1, and where βb − 1 ≥ βb−1 as long as k ≥ − logβ(β − 1). Now the claim follows. We compute the 
Hausdorff dimension of Ẽβ :

dimH Ẽβ ≤ lim
k→∞

lognk

− log δk
≤ lim

k→∞
log(3k2/π2 + O (k log k))

k log θ
= 0. �

That the diameter of each interval in [0, 1
β−1 ) \⋃�(k)

i=1 [μβ(ri), μβ(ri+)] is less than or equal to δk is a very rough estimate. 
Moreover, δk tends to zero very quickly. Consequently, the above proof urges us to introduce ‘thinner’ measures than the 
Hausdorff measure.

For any set U ⊂ Rn , we write |U | := sup{|x − y| : x, y ∈ U }. Let h :R+ →R+ be a continuous and increasing function. For 
any set S ⊂ Rn , let us define

Hh
δ (S) := inf

{ ∞∑
i=1

h(|Ui |) : S ⊂
∞⋃

i=1

Ui, |Ui| ≤ δ

}
.

Then Hh(S) := limδ↘0 Hh
δ (S) is known to be a measure. We have proved, in the above, that Hh(Ẽβ) = 0 whenever h(t) = ts

with s > 0. On the other hand, if we set h(t) := (− log t)−2−ε for ε > 0, then Hh is a much thinner measure than any 
s-dimensional Hausdorff measure. Since Hh

δk
(Ẽβ) ≤ nkh(δk), one deduces

Hh(Ẽβ) ≤ lim
k→∞

nkh(δk) ≤ lim
k→∞

3k2/π2 + O (k log k)

(k log θ)2+ε
= 0.

It seems to be a challenge to find a function h for which 0 < Hh(Ẽβ) < ∞. Such h is called an (exact) dimension function in 
the literature. See [4, Section 2.5].
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