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We establish a formula for the volume Poincaré series of a log smooth scheme. This yields 
in particular a new expression and a smaller set of candidate poles for the motivic zeta 
function of a hypersurface singularity and of a degeneration of Calabi–Yau varieties.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous établissons une formule pour la série volume de Poincaré d’un schéma log lisse. 
Ceci nous fournit en particulier une nouvelle expression et un ensemble réduit de 
candidats pôles pour la fonction zêta motivique d’une singularité d’hypersurface et d’une 
dégénération de variétés de Calabi–Yau.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The motivic zeta function Z f (T ) of a complex algebraic function f : X → A
1
C

is one of the most emblematic objects of 
motivic integration. The function contains many invariants of singularities of f and its poles have attracted much interest 
for their conjectural relation with eigenvalues of the local monodromy action, as precisely stated by Denef and Loeser’s 
monodromy conjecture (see for example [9, 5.2.3]).

In [8] Nicaise and Sebag introduced the volume Poincaré series S(X, ω; T ) of a pair (X, ω) consisting of a generically 
smooth stft (for separated and topologically of finite type) formal scheme X over a complete discrete valuation ring R and a 
volume form on its generic fiber Xη . Then they showed how to express Z f (T ) as such a series, yielding a new interpretation 
of the motivic zeta function. This new way of considering Z f allowed Halle and Nicaise in [4] to associate a motivic zeta 
function Z X with a Calabi–Yau variety X over the fraction field of R .

We will show how to compute S(X , ω; T ) when X is a generically smooth log smooth R-scheme. By adding a suitable 
structure to schemes, logarithmic geometry allows one to handle so-called log smooth schemes as if they were smooth. 
A key feature of log smooth schemes is that their fans, as defined by Kato in [7], can be used to exhibit a desingularization 
of the scheme. In this process of desingularizing, fake poles are introduced into the expression of S(X , ω; T ), so that our 
formula, depending directly on the fan, substantially reduces the set of candidate poles.
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Let us finally mention that our formula is sufficiently general to recover a combinatorial expression of Z f (T ) obtained 
by Guibert in [3] when f is a polynomial that is nondegenerate with respect to its Newton polyhedron.

Detailed proofs of these results will appear in the author’s PhD thesis.

2. Log geometry

Every monoid will be assumed commutative. For a monoid M , we denote by M× its group of invertible elements. 
A morphism of monoids u: P → Q is called local if u−1(Q ×) = P× .

Let X be a scheme. A pre-log structure on X consists of a sheaf of monoids MX on X together with a morphism of 
sheaves α: MX → (OX , ·) to the multiplicative monoid of OX . A pre-log structure is called a log structure if, moreover, 
α−1(O×

X ) →O×
X is an isomorphism. This is equivalent to saying that αx: MX,x →OX,x is local and induces an isomorphism 

M×
X,x → O×

X,x for every x ∈ X . Every pre-log structure α: MX → OX induces canonically a log structure Ma
X , called the 

associated log structure.
We present two examples that will be of great use to us.

Example 1. Let R be a discrete valuation ring and π a uniformizer. The morphism of monoids N → (R, ·), 1 �→ π defines a 
pre-log structure on Spec R . If S = Spec R , we will denote by S† the scheme S endowed with the associated log structure.

Example 2. Let X → R be an sncd R-scheme, i.e. a regular scheme of finite type over R whose special fiber Xs = ∑
i∈I Ni Ei

is a divisor with strict normal crossings. For J ⊆ I we write

E J =
⋂

J

E j and E◦
J = E J

∖ ⋃
i /∈ J

Ei,

where E∅ = X . Around each point x ∈ E J we can find an affine open Spec A in X on which π = u 
∏

J x
N j

j for u a unit and 
where V (x j) = E j . Then the morphism of monoids

N
J → A, e j �→ x j

defines a pre-log structure on X .

More background on log geometry can be found in [6].
Let X → S be a morphism of log schemes. We can make sense of the module Ω log

X/S of S-log differentials whose construction 
involves the classical module of differentials ΩX/S and the log structures on X and S . One of the key notions of log geometry 
is log smoothness (see [7, 8.1]). It guarantees that the sheaf Ω log

X/S of log differentials is locally free, making it a good substitute 
for ΩX/S when the morphism of schemes X → S is not smooth.

3. A formula for the volume Poincaré series

Let k be a field of characteristic zero. In this section, we set R = k�π �, S = Spec R , and we denote by S† the log scheme 
Spec R endowed with the log structure defined in Example 1. All S-schemes will be assumed separated and will be of 
finite type. For d ≥ 1, we consider the totally ramified extension R(d) := R[T ]/(T d − π) and set S(d) = Spec R(d). Let X
be a generically smooth S-scheme of pure relative dimension m and let ω be a volume form on the generic fiber Xη , i.e., 
a nowhere vanishing differential form of degree m. We denote by X̂ the π -adic completion of X and we write ω(d) for 
the inverse image of ω on the generic fiber of X̂ (d) := X̂ ×S S(d). Following [8, 7.2], the volume Poincaré series of the pair 
(X , ω) is defined as

S(X ,ω; T ) :=
∑
d≥1

( ∫
X̂ (d)

∣∣ω(d)
∣∣) T d ∈ MXs �T �,

where MXs is the localization K0(VarXs )[L−1] of the Grothendieck ring of Xs-varieties and L := [A1
Xs

].
When X is sncd, we have by [8, 7.6] (with the notation of Example 2)

S(X ,ω; T ) = L
−m

∑
∅	= J⊆I

(L− 1)| J |−1[Ẽ◦
J

] ∑
k j≥1, j∈ J

L
− ∑

J k jμ j T
∑

J k j N j ∈ MXs �T �, (1)

where μ j is the order of ω along E j (see [8, 6.8]) and Ẽ◦
J is a certain Galois cover of E◦

J , as described in [8, §4].

If we endow X with the log structure described in Example 2, then X is log smooth over S† and we can interpret all 
the elements appearing in the formula in terms of the log geometry of X . This suggests the following formula.
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Theorem 3.1. Let X be a generically smooth log smooth scheme over S† of pure relative dimension m. Let ω be a volume form on Xη

and denote by F the fan of X . Then

S(X ,ω; T ) = L
−m

∑
t∈Fs

(L− 1)r(t)−1[Ũ (t)
] ∑

u∈M∨,loc
F ,t

L
−u(Iω) T u(eπ ) ∈ MXs �T �. (2)

We now explain the different elements appearing in (2).
Let X be a log smooth S†-scheme. For every x ∈X we denote by mx the maximal ideal of OX ,x and by M+

X ,xOX ,x the 
ideal of OX ,x generated by MX ,x\M×

X ,x . The set

F = F (X ) := {
x ∈ X

∣∣ M+
X ,xOX ,x = mx

}
can be endowed with a fan structure in the sense of Kato [7, 9.3], which is closely related to the classical notion in toric 
geometry. For every point t ∈ F , we have a canonical morphism N → M F ,t induced by the morphism of log structures, 
where M F ,t :=MX ,t/O×

X ,t . We write eπ for the image of 1 under this morphism and set Fs = {t ∈ F | eπ /∈ M×
F ,t}.

The fan F determines a stratification of X by locally closed subschemes U (t), where

U (t) = {
x ∈ {t} ∣∣ M+

X ,xOX ,t = mt
}
.

We denote by Ũ (t) the inverse image of U (t) in the fibered product X ×S† S(d)† in the category of fine and saturated log 
schemes, with d sufficiently divisible. If X is sncd, then the ideal M+

X ,xOX ,x is given by (x1, . . . , xn), where the xi are local 
equations for the components of Xs passing through x, so that the points of F are exactly the generic points of the E J , 
for J ⊆ I . In particular, we see that the stratification (U (t))t∈F coincides with the stratification (E◦

J ) J⊆I . Also note that the 
condition t ∈ Fs ensures that π is not invertible at t , so that the stratum E◦

∅ = Xη gets discarded. Finally, Ũ (t) can be 
identified with the Galois cover Ẽ◦

J .

Assume that the log smooth scheme X → S† is generically smooth and of pure relative dimension m and let ω ∈
Ωm

Xη
(Xη) be a volume form. We keep writing ω for its image in the sheaf Ω log,m

Xη/K of m-log differentials where Xη is 

endowed with the log structure induced by X . Let Ω log
X /S† be the sheaf of log differentials of X . The invertible sheaf Ω log,m

X /S†

together with the rational section ω ∈ Ω
log,m
X /S† (Xη) induces a Cartier divisor div(ω) on X . Since ω is a volume form, [7, 11.8]

ensures that there is a unique fractional ideal Iω of F = F (X ) such that IωOX = div(ω).
Finally, for a point t ∈ F , r(t) is the rank of the group Mgp

F ,t generated by M F ,t . The set M∨,loc
F ,t consists of all local 

morphisms of monoids M F ,t →N. If r(t) = 1 then one can show that M F ,t is canonically isomorphic to N. This isomorphism, 
denoted by vt , generates M∨,loc

F ,t and is called the valuation at t .

When X is sncd, then each M F ,t is isomorphic to Nr(t) so that

M∨,loc
F ,t

∼=
⊕
τ∈St

N≥1 vτ ,

where St denotes the set of points τ of F with r(τ ) = 1 that specialize to t . Those points are exactly the generic points 
of the components of Xs passing through t . Furthermore vτ (Iω) equals the order of ω along the corresponding component 
of Xs and one can easily see that vτ (eπ ) is its multiplicity.

It is now clear that (1) and (2) coincide when X is sncd. The strategy of the proof of 3.1 is to show that the quantity (2)
is invariant under subdivisons of fans (again, in the sense of Kato [7, 9.6], which is close in spirit to the classical notion).

A subdivision ϕ: F ′ → F of the fan F of X determines in a canonical way a proper birational morphism ϕ∗X → X . We 
can always find a subdivision of F such that ϕ∗X is an sncd scheme, hence fully desingularizing the scheme X . This allows 
us to fall back on (1).

The major piece of work consists of the following proposition, which compels us to study more deeply the behavior of 
N-monoids under base change.

Proposition 3.2. Let X be a log smooth scheme over S† and ϕ: F ′ → F a subdivision of its fan. For every t ∈ F ′ the restriction of 
ϕ∗X →X to ̃U (t) → Ũ (ϕ(t)) is a piecewise trivial fibration whose fiber is a torus of dimension r(ϕ(t)) − r(t). In particular

(L− 1)r(t)−1 [
Ũ (t)

] = (L− 1)r(ϕ(t))−1 [
Ũ

(
ϕ(t)

)] ∈ K0(VarXs ),

where brackets denote classes in the Grothendieck ring of Xs-varieties K0(VarXs ).

The rest of the proof makes use of basic properties of subdivisions to yield the claimed result.
An important advantage of our formula is that it reduces the set of candidate poles of S(X , ω; T ).
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Corollary 3.3. Let X be a generically smooth log smooth scheme over S† of pure relative dimension m, ω a volume form and F its fan. 
Then every pole of the function S(X , ω; L−s) is of the form s = −vt(Iω)/vt(eπ ), for some point t ∈ Fs with r(t) = 1.

We present two main contexts in which our formula can be applied.
• Let X be a Calabi–Yau variety of dimension m over K = Frac R . Let ω ∈ Ωm

X (X) be a volume form on X . Then the 
motivic zeta function of (X, ω) is defined as

Z X,ω(T ) := L
m

∑
d≥1

( ∫
X(d)

∣∣ω(d)
∣∣) T d ∈ Mk �T �

(see [5, 6.4] when ω is distinguished). If X is a proper S-model of X , then by [8, 7.2]

Z X,ω(T ) = L
m S(X ,ω; T ) ∈ Mk �T �.

Hence Corollary 3.3 gives us a set of candidate poles for the zeta function Z X,ω(T ) when X is log smooth, and this set is 
much smaller than the one we would get from a desingularization of X . Log smooth models of Calabi–Yau varieties over K
appear naturally in the Gross–Siebert program on mirror symmetry (see for example [2]).

• Let X be a smooth irreducible scheme of finite type over k of dimension n and f : X → A
1
k = Spec k[π ] a dominant 

morphism. Denote by Xs the zero locus of f and set X∗ = X\Xs . Shrinking X around Xs , we can assume that f is smooth 
on X∗ . Then we can find a unique form α ∈ Ωn−1

X∗/A1
k
(X∗) such that α ∧ d f is the restriction of φ to X∗ . The induced volume 

form is called the Gelfand–Leray form and is denoted by φ
d f . By [8, 9.10] the motivic zeta function of f (as defined in 

[1, 3.2.1]) can then be computed as

Z f (T ) = L
n−1 S

(
X ,

φ

d f
;L−1T

)
∈ MXs �T �.

Hence if Y → S† is a log smooth S†-scheme dominating X and such that Ŷη
∼= X̂η , 3.1 gives a formula for Z f (T ) in terms 

of the model Y . As an application, we can recover a formula for Z f given by Guibert in [3] when f is a polynomial that is 
nondegenerate with respect to its Newton polyhedron.
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