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HECKE CURVES AND HITCHIN DISCRIMINANT

BY JUN-MUK HWANG 1 AND S. RAMANAN

ABSTRACT. – Let C be a smooth projective curve of genusg � 4 over the complex numbers an
SUs

C(r, d) be the moduli space of stable vector bundles of rankr with a fixed determinant of degreed. In the
projectivized cotangent space at a general pointE of SUs

C(r, d), there exists a distinguished hypersurfa
SE consisting of cotangent vectors with singular spectral curves. In the projectivized tangent spacE,
there exists a distinguished subvarietyCE consisting of vectors tangent to Hecke curves inSUs

C(r, d)
throughE. Our main result establishes that the hypersurfaceSE and the varietyCE are dual to each othe
As an application of this duality relation, we prove that any surjective morphismSUs

C(r, d)→SUs
C′(r, d),

whereC′ is another curve of genusg, is biregular. This confirms, forSUs
C(r, d), the general expectatio

that a Fano variety of Picard number1, excepting the projective space, has no non-trivial self-morphism
that morphisms between Fano varieties of Picard number1 are rare. The duality relation also gives sim
proofs of the non-abelian Torelli theorem and the result of Kouvidakis–Pantev on the automorphi
SUs

C(r, d).
 2004 Published by Elsevier SAS

RÉSUMÉ. – SoientC une courbe projective lisse de genreg � 4 sur les nombres complexes,SUs
C(r, d)

la variété de modules des fibrés stables de rangr de déterminant fixé de degréd. Dans l’espace cotange
projectivisé en un point généralE deSUs

C(r, d), il existe une hypersurface distinguéeSE qui correspond
aux vecteurs cotangents avec courbes spectrales singulières. Dans l’espace tangent projectiviE,
il existe une sous-variété distinguéeCE comprenant des vecteurs tangents aux courbes de Hecke
SUs

C(r, d) passant parE. Notre résultat principal établit que l’hypersurfaceSE et la variétéCE sont duales
l’une à l’autre. Comme application de cette relation de dualité, nous démontrons qu’un morphisme surjectif
SUs

C(r, d) → SUs
C′(r, d) est birégulière, oùC′ est une courbe quelconque de genreg. Ceci confirme,

pourSUs
C(r, d), l’espérance générale qu’une variété de Fano de nombre de Picard égal à1, à l’exception

des espaces projectifs, n’a pas de morphisme non trivial sur elle-même et que les morphismes entre
variétés de Fano de nombre de Picard égal à1 sont rares. La relation de dualité fournit en même tem
des preuves simples du théorème de Torelli non abélien et du résultat de Kouvidakis–Pantev conce
automorphismes deSUs

C(r, d).
 2004 Published by Elsevier SAS

1. Introduction

Any smooth projective variety with Picard group isomorphic toZ is usually classified into
one of three classes, namelygeneral type, Calabi–Yau or Fanoaccording as the canonical lin
bundle is positive, trivial or negative. Fano varieties are somewhat special among varieti
algebraic homogeneous spaces fall in that class.If we leave out projective spaces, morphis
between two such varieties of the same dimension seem to be rare [5]. In particular, th

1 Supported by the Korea Research Foundation Grant (KRF-2002-070-C00003).
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802 J.-M. HWANG AND S. RAMANAN

conjecture, originating from a related question of Lazarsfeld, that there are no nonconstant self
maps of these varieties except automorphisms.

Let C be a smooth projective curve of genusg over the complex numbers andSUs
C(r, d) be
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the moduli space of stable vector bundles of rankr with a fixed determinant of degreed. When
r andd are coprime, these are smooth Fano varieties with Picard groupZ. Thus these provid
examples against which the abovekind of conjectures can be tested.

Our main aim in this paper is to prove the following theorem.

THEOREM 5.6. –Let C and C′ be two smooth projective curves of genusg � 4. Let
f :SUs

C(r, d) →SUs
C′(r, d) be a surjective morphism. Thenf is biregular.

Note that we do not assume in this theorem thatr andd are coprime, but take only the smoo
locus of the varieties in question. The theorem is perhaps also valid forg = 3 but our method
does not cover that case. The method synthesizes three different strands.

Firstly, the moduli spaces of vector bundles have been studied by Hitchin [3] from the view
point of symplectic geometry of its cotangent bundle. On the other hand this study has be
as a tool to derive results on the moduli spaces themselves in [2]. These ideas can be codified
the terms ‘spectral curves’, ‘Higgs moduli’, ‘nonabelian theta functions’, etc.

Secondly a certain amount of rigidity in the moduli spaces were established by [12] and [
by a study of the geometry of the moduli spaces. Here the main ingredient is the notion of ‘Hec
cycles’. For our purposes it is more fruitful to consider what we call ‘Hecke curves’ [9].

Finally, the moduli space may be investigated by tools commonly used in the study of h
dimensional Fano varieties. This leads to the study of rational curves on it [7,9] and the
curves provide the means for doing it. The result quoted above is obtained by studying inte
relationship between these aspects.

Let us now briefly describe our approach.
Associated to the Hitchin map on the cotangent bundle ofSUs

C(r, d), there exists a canonical
defined hypersurfaceS ⊂ PT ∗(SUs

C(r, d)) corresponding to twisted endomorphisms of sta
vector bundles whose spectral curves are singular. For a general pointE ∈ SUs

C(r, d), the
corresponding hypersurfaceSE in the projectivized cotangent spacePT ∗

E(SUs
C(r, d)) will be

calledthe Hitchin discriminantatE.
On the other hand, there are naturally defined rational curves onSUs

C(r, d), which (as referred
to above) we call Hecke curves. For a generalE ∈ SUs

C(r, d), let CE be the subvariety o
PTE(SUs

C(r, d)) consisting of tangent vectors to Hecke curves throughE. This subvarietyCE

will be called thevariety of Hecke tangentsatE.
The key point in our proof is the following result which we hope is sufficiently interestin

itself.

THEOREM 4.4. –Let g � 4 and let E be a general point ofSUs
C(r, d). Then the Hitchin

discriminantSE is the dual variety of the variety of Hecke tangentsCE .

This has other interesting consequences. It gives simple proofs, forg � 4, of non-abelian
Torelli theorem (Theorem 5.1) and the description due to Kouvidakis and Pantev,
automorphisms ofSUs

C(r, d) (Theorem 5.4). Our proof of the non-abelian Torelli theorem
reminiscent of Andreotti’s proof of the abelian Torelli theorem [1]. Recall that in Andreo
proof the curve is recovered as the dual variety of a certain discriminantal hypersurface ass
to the Gauss map of the Riemann theta divisor. In our proof of non-abelian Torelli theore
curve is recovered from the dual variety of a certain discriminantal hypersurface associ
the Hitchin map.

4e SÉRIE– TOME 37 – 2004 –N◦ 5



HECKE CURVES AND HITCHIN DISCRIMINANT 803

2. Variety of minimal rational tangents

In this preliminary section, we recall some results concerning minimal rational curves (cf. [8]).
a
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s
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ves
g

Let M be a smooth quasi-projective variety of dimensionn. We will assume that there exists
componentK of the Hilbert scheme of complete curves onM such that

(†) the subschemeKy ⊂ K consisting of members ofK passing through a general po
y ∈ M is a non-empty irreducible smooth projective variety of which every memb
an irreducible smooth rational curve lying inM .

A member ofK is called aminimal rational curveon M . For a pointy ∈ M , let Ty(M) be
the tangent space toM at y. Define thetangent morphism

τy :Ky →PTy(M)

by sending� ∈Ky , a smooth rational curve� ⊂ M , to

τy(�) := PTy(�).

For a general member� of Ky ,

T (M)|� ∼= O(2)⊕O(1)p ⊕On−1−p

wherep is the dimension ofKy andO(2) corresponds toT (�) [8, Theorem 1.2]. This implies tha
τy is generically finite over its image. The image ofτy is denoted byCy and called thevariety
of minimal rational tangentsat the general pointy associated to the familyK. The following
proposition is a consequence of basic deformation theory.

PROPOSITION 2.1 [8, Theorem 1.4]. –Let � be a general member ofKy with

T (M)|� ∼=O(2)⊕O(1)p ⊕On−1−p.

Thenτy is an immersion at� ∈ Ky and the tangent space toCy at τy(�) corresponds to the
subspace ofTy(M) defined by theO(2)⊕O(1)p-part ofT (M)|�.

Recall that whenX is an irreducible subvariety of a projective spacePN , its dual varietyX∗

is the irreducible subvariety of the dual projective spaceP∗
N which is the closure of the set o

hyperplanes containing the projective tangent space of a smooth point ofX . Note that for� as
above,

H0
(
�, T ∗(M)|�

)∼= H0
(
�,O(−2)⊕O(−1)p ⊕On−1−p

)
= H0(�,On−1−p)

are exactly cotangent vectors annihilatingO(2)⊕O(1)p-part ofT (M)|�. Also note that section
of T ∗(M) over� give smooth rational curves inT ∗(M). As a consequence, we get the followin

COROLLARY 2.2. –Let Ŝ ⊂ T ∗(M) be the closure of the union of the smooth rational cur
in T ∗(M) given byH0(�, T ∗(M)) as� varies overK. LetS ⊂ PT ∗(M) be the correspondin
projective subvariety. For a pointy ∈ M let Sy be the intersectionS ∩ PT ∗

y (M). Then for
generaly, Sy is the dual variety ofCy.

We recall the following result from [6].

THEOREM 2.3 [6, Theorem 1]. –In the situation above, the tangent morphismτy :Ky →Cy

is birational for a general pointy ∈ M .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



804 J.-M. HWANG AND S. RAMANAN

This was proved in [6] whenM is a projective variety, but the proof there works even when
M is quasi-projective, as long as the assumption(†) holds.

We will also need the following which is essentially [4, Proposition 2].
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PROPOSITION 2.4. –Let M andK be as above. Suppose there exists an open subsetA′ of
an abelian varietyA and a generically finite morphismf :A′ → M . Let y ∈ M be a genera
point and� ⊂ M be a general member ofKy . Assume that there exists a complete curve�′ ⊂ A′

such thatf(�′) = �. Then the variety of minimal rational tangentsCy is a linear subvariety in
PTy(M).

The proof uses the following lemma about curves on abelian varieties, which is e
[4, Lemma 3].

LEMMA 2.5. –Let Ct ⊂ A be a p-dimensional irreducible family of curves on a
n-dimensional abelian varietyA passing through a common pointa ∈ A. If the constructible se
in A consisting of the union ofCt’s is of dimension(p + 1) and the subspace ofH0(Ct, T

∗(A))
consisting of elements annihilating tangent vectors toCt is of dimension� n−1−p for a general
memberCt, then the closure of the union of these curves is a translate of a(p + 1)-dimensional
abelian subvariety.

Proof of Proposition 2.4. –Let a ∈ �′ be a point withf(a) = y. Note that elements o
H0(�, T ∗(M)) annihilate the tangent vectors to� andh0(�, T ∗(M)) = n − 1 − p wherep is
the number ofO(1)-factors inT (M)|�, or equivalently, the dimension ofKy . The pull-back
of elements ofH0(�, T ∗(M)) to H0(�′, T ∗(A)) gives a subspace of dimension� n − 1 − p,
annihilating tangent vectors to�′, because� passes through the general pointy ∈ M . By
Lemma 2.5, the closure of the union of all such choices of�′ is a translate of a(p + 1)-
dimensional abelian subvariety. In particular, the closure of their tangent vectors ata must be
a linear subvariety ofPTa(A). This implies thatCy is a linear subvariety ofPTy(M). �

Remark2.6. – Since some of our applications, namely, Theorems 5.1 and 5.3 below, w
simpler proofs of some results which have been proved by other means, it is worth point
that the preliminary results reviewed in this section are not so difficult to prove. The pro
Proposition 2.1 and Corollary 2.2 are quite straightforward and use only basic deformation theo
due to Kodaira. Proposition 2.4, whose proof is also easy, will not be needed for Theore
and 5.3. The proof of Theorem 2.3 is more involved, but Theorem 2.3 will be needed i
paper only when the genus ofC is 4.

3. Variety of Hecke tangents

Let C be a smooth projective curve of genusg � 4. Let SUs
C(r, d) be the moduli space o

stable bundles of rankr with a fixed determinant of degreed overC. ForM = SUs
C(r, d), there

exists a family of rational curves satisfying the condition(†), called Hecke curves. Let us briefl
recall the definition (see [13] and [9] for details).

Let E ∈ SUs
C(r, d) be a stable bundle overC. Denote byE∗ the dual bundle andPE the

projectivization consisting of linesthrough the origin on each fiber. Forx ∈ C andζ ∈ PE∗
x,

consider a new vector bundleEζ defined by

0 −→Eζ −→E −→ (Ex/ζ⊥)⊗Ox −→ 0

whereζ⊥ denotes the hyperplane inEx annihilated byζ. Let ι :Eζ
x →Ex be the homomorphism

between the fibers atx induced by the sheaf mapEζ → E. The kernel ofι, Ker(ι), is a

4e SÉRIE– TOME 37 – 2004 –N◦ 5
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1-dimensional subspace of the fiberEζ
x and its annihilator(Ker(ι))⊥ is a hyperplane in(Eζ)∗x.

Let l be a line inPEζ
x containing the point[Ker(ι)]. For each pointl ∈ l corresponding to a

1-dimensional subspacel ⊂ Eζ , consider the vector bundlẽEl defined by

at

w
ve has

l
o two

s
ves on

al

al point

rve
x

0 −→ Ẽl −→ (Eζ)∗ −→
[
(Eζ)∗x/l⊥

]
⊗Ox −→ 0

where l⊥ ⊂ (Eζ)∗x is the hyperplane annihilatingl. This vector bundleẼl is stable for each
[l] ∈ l if E is a general point ofSUs

C(r, d) andg � 4 [9, Proposition 2]. It is easy to check th
for l = Ker(ι),

ẼKer(ι) ∼= E∗.

It follows that{(Ẽl)∗; l ∈ l} defines a rational curve passing throughE in SUs
C(r, d). A rational

curve onSUs
C(r, d) constructed this way is called aHecke curve. Using [13, 5.9], one can sho

that a Hecke curve is smooth. In view of [13, 5.16], it is easy to check that a Hecke cur
degree2r with respect toK−1

SUs
C

(r,d).
On PE∗, consider the relative cotangent bundleΩE of the fibration� :PE∗ → C. The

projective bundlePΩE overPE∗ is a smooth projective variety of dimension2r − 2. The set
of all lines in PEζ

x containing the point[Ker(ι)] is naturally isomorphic toP(Eζ
x/Ker(ι)) ∼=

PΩE,ζ . In other words, each point ofPΩE defines a Hecke curve throughE for a genera
point E ∈ SUs

C(r, d). The argument of [13, 5.13] shows that Hecke curves associated t
distinct points ofPΩE are distinct rational curves onSUs

C(r, d). Thus PΩE is naturally
isomorphic to the variety of all Hecke curves throughE. A simple dimension-counting show
that Hecke curves are dense in an irreducible component of the Hilbert scheme of cur
SUs

C(r, d) [9, Proposition 3]. It follows that the componentK of the Hilbert scheme ofSUs
C(r, d)

corresponding to Hecke curves satisfies the condition(†), i.e., Hecke curves are minimal ration
curves ofSUs

C(r, d).
Let us describe the tangent morphism associated to Hecke curves through a gener

E ∈ SUs
C(r, d). Let ϕ :PΩE →PE∗ be the projectivization ofΩE andξE be theO(1)-bundle

of the projectivization so thatϕ∗ξE = Ω∗
E is the relative tangent bundle of�. Recall that�∗Ω∗

E

is the bundleadE of traceless endomorphisms ofE. Let π :PΩE → C be the composition
π = � ◦ ϕ. Note that

H0(PΩE , ξE ⊗ π∗ωC) = H0(PE∗, ϕ∗ξE ⊗�∗ωC)

= H0(PE∗,Ω∗
E ⊗�∗ωC)

= H0(C,�∗Ω∗
E ⊗ ωC)

= H0(C,adE ⊗ωC)

is the dual of the tangent space ofSUs
C(r, d) at E. Thus the line bundleξE ⊗ π∗ωC defines a

rational map

τE :PΩE →PTE

(
SUs

C(r, d)
)
.

For a generalE, this rational map is exactly the tangent morphism assigning to each Hecke cu
throughE its tangent vector atE [9, Theorem 3]. We denote the image ofτE by CE and call it
thevariety of Hecke tangents.

THEOREM 3.1. –Letg � 5. Then for a general stable bundleE ∈ SUs
C(r, d), the line bundle

ξE ⊗ π∗ωC is very ample, i.e.,τE :PΩE →CE is a biregular morphism.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



806 J.-M. HWANG AND S. RAMANAN

Proof. –WriteL for ξE⊗π∗ωC . For anyx ∈ C, the line bundleL restricted to the fiberπ−1(x)
is very ample. ThusL is very ample onPΩE if for any x, y ∈ C, the casex = y included, the
restriction map

3.2

l

n-zero

k
s [12,
li
H0(PΩE ,L)−→H0
(
π−1(x + y),L|π−1(x+y)

)
is surjective. From the exact sequence

0 −→ L⊗ π∗O(−x− y)−→ L −→ L|π−1(x+y) −→ 0,

the surjectivity is guaranteed if

H1
(
PΩE ,L⊗ π∗O(−x− y)

)
= H1

(
C,adE ⊗KX(−x− y)

)
or its dualH0(C,adE ⊗O(x + y)) vanishes. Thus Theorem 3.1 follows from Proposition
below. �

PROPOSITION 3.2. –Let � be a positive integer satisfyingg � 3
2 � + 2. Then for a genera

stable bundleF of arbitrary rank and degreeH0(C,adF (D)) = 0 for any effective divisorD of
degree�.

We need a few lemmas.

LEMMA 3.3. –For a general stable bundleE on C of rankr and degreed, H0(C,E) = 0 if
d � r(g − 1).

Proof. –Let us count the dimension of the space of stable bundles which have no
sections. IfE has a non-zero section, there exists a line subbundleL⊂ E with d′ := deg(L) � 0.
ThusE can be realized as an extension of the type

0 −→ L −→E −→ G−→ 0

whereL is a line bundle of degreed′ � 0 with H0(C,L) 	= 0 andG is a vector bundle of ran
r − 1 and degreed′′ = d − d′. Since non-stable bundles can be deformed to stable bundle
Proposition 2.6], we may assume thatG is stable in dimension-counting. Recall that the modu
spaceUC(r, d) of semi-stable bundles of rankr and degreed onC has dimensionr2(g− 1)+ 1.
Thus the dimension of deformation ofG is equal to

dimUC(r − 1, d′′) = (r − 1)2(g − 1) + 1.

The dimension of possible choices of the line bundleL is � d′. For a fixedG and a fixedL, the
dimension of extensions ofG by L is h1(C,G∗⊗L). We claim thatH0(C,G∗⊗L) = 0. In fact,
assuming thatG = E/L for some stable bundleE, if there exists a homomorphismη :G → L,
the composition

E −→E/L
η−→ L−→E

must be identically zero because any endomorphism ofE must be a homothety. Henceη ≡ 0. It
follows that

h1(C,G∗ ⊗L) =−χ(G∗ ⊗L)

= d′′ − (r − 1)d′ + (r − 1)(g − 1)

= d− rd′ + (r − 1)(g − 1).

4e SÉRIE– TOME 37 – 2004 –N◦ 5
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Thus the space of stable bundles which have non-zero sections has dimension at most

d′ + (r − 1)2(g − 1) + 1 + h1(C,G∗ ⊗L)− 1 = (r2 − r)(g − 1) + d + (1− r)d′.

nt

nce

ss
SincedimUC(r, d) = r2(g − 1) + 1 and[
r2(g − 1) + 1

]
−

[
(r2 − r)(g − 1) + d + (1− r)d′

]
= r(g − 1)− d + (r − 1)d′ + 1

� r(g − 1)− d + 1,

a general stable bundle cannot have a non-zero section ifr(g − 1)− d � 0. �
LEMMA 3.4. –Let E be a general stable bundle of rankr − 1 and degreed. Assume�

is a positive integer satisfyingd > −(r − 1)(g − 1 − �) + �. Then there exists an eleme
ε ∈ H1(C,E∗) such that for any effective divisorD of degree� on C, ψD(ε) 	= 0 where
ψD :H1(C,E∗)→ H1(C,E∗(D)) is the homomorphism arising from the short exact seque

0 −→E∗ −→ E∗(D) −→E∗(D)|D −→ 0.

Proof. –From the exact sequence

H0
(
C,E∗(D)|D

)
−→H1(C,E∗) −→ H1

(
C,E∗(D)

)
,

it suffices to show that

h1(C,E∗)− h0
(
C,E∗(D)|D

)
− � > 0,

where � is interpreted as the dimension of possible choices ofD. Note h0(C,E∗) = 0 by
Lemma 3.3 becausedeg(E∗) = −d � (r − 1)(g − 1). Thus

h1(C,E∗) = −χ(E∗) = d + (r − 1)(g − 1).

Also h0(C,E∗(D)|D) = �(r − 1). So

h1(C,E∗)− h0
(
C,E∗(D)|D

)
− � = d + (r − 1)(g − 1)− �(r − 1)− �

which is positive fromd > −(r − 1)(g − 1− �) + �. �
LEMMA 3.5. –Let E be a general stable bundle onC of rankr − 1 and degreed. Let � be

a positive integer satisfying|d| � (r − 1)(g − 1 − �). Assume thatH0(C,adE(Z)) = 0 for any
effective divisorZ of degree�. Suppose there exists an extensionF of E byO,

0 −→O−→ F −→ E −→ 0

such thatH0(C,adF (D)) 	= 0 for some effective divisorD of degree�. Then the extension cla
[F ] ∈ H1(C,E∗) satisfiesψD′

([F ]) = 0 for some effective divisorD′ of length�.

Proof. –Let φ :F → F (D) be a non-zero element ofH0(C,adF (D)). The composition
β ◦ φ ◦ α in

0 O α
F

φ

E 0

0 O(D) F (D)
β

E(D) 0

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



808 J.-M. HWANG AND S. RAMANAN

defines a section ofE(D). Sincedeg(E(D)) = d+ �(r−1) � (r−1)(g−1), E(D) cannot have
a non-zero section by Lemma 3.3 and consequentlyβ ◦ φ ◦α = 0. Thus there existsγ satisfying

nt

nce
0 O
γ

α
F

φ

E 0

0 O(D) F (D)
β

E(D) 0.

Let s ∈ H0(C,O(D)) be the section defined byγ. Consider

φ′ := φ− IF · s :F → F (D)

whereIF denotes the identity map ofF . Thenφ′ annihilates the subbundleα: O⊂ F , inducing
a non-zero homomorphismζ :E → F (D) satisfying

0 O

0

α
F

φ′

E

β◦ζ

0

0 O(D) α′
F (D)

β
E(D) 0.

If β ◦ ζ = 0, then there existsξ :E →O(D) such thatα′ ◦ ξ = ζ. Then we get a non-zero eleme
ξ∗ in H0(C,E∗(D)) which is not possible by Lemma 3.3 because

deg
(
E∗(D)

)
= −d + �(r − 1) � (r − 1)(g − 1).

Thusβ ◦ ζ 	= 0. By the assumptionH0(C,adE(D)) = 0, we conclude that

β ◦ ζ = IE · s′

for some non-zeros′ ∈ H0(C,O(D)). Let D′ be the effective divisor defined bys′. We claim
thatψD′

([F ]) = 0 in H1(C,E∗(D′)), which proves the lemma.
To prove the claim, let us recall the definition of the extension class[F ] andψD′

([F ]). Let
δ :H0(C,E∗ ⊗F ) →H1(C,E∗) be the boundary map associated to the short exact seque

0 −→E∗ −→ E∗ ⊗ F −→E∗ ⊗E −→ 0.

Then[F ] := δ(IE) for the identity mapIE ∈H0(C,E∗ ⊗E). The multiplications bys′

0 E∗

·s′

E∗ ⊗F

·s′

E∗ ⊗E

·s′

0

0 E∗(D′) E∗ ⊗ F (D′) E∗ ⊗E(D′) 0

induce a commutative diagram

H0(C,E∗ ⊗ F )

·s′

H0(C,E∗ ⊗E)

·s′

δ
H1(C,E∗)

ψD′

H0(C,E∗ ⊗F (D′))
β̃

H0(C,E∗ ⊗E(D′)) δs′

H1(C,E∗(D′)).

4e SÉRIE– TOME 37 – 2004 –N◦ 5
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It follows that

ψD′(
[F ]

)
= ψD′(

δ(IE)
)

= δs′
(IE · s′).

i.e.,

s

e

t

ee.
But we know that

IE · s′ = β ◦ ζ = β̃(ζ)

for someζ ∈H0(C,E∗ ⊗ F (D)). ThusψD′
([F ]) = 0. �

LEMMA 3.6. –Let r � 2, � � 1 andd be integers satisfying

−(r − 1)(g − 1− �) + � < d � (r − 1)(g − 1− �).

Suppose for a general stable bundleE of rank r − 1 and degreed, H0(C,adE(D)) = 0 for
any effective divisorD of degree�. Then for a general stable bundleF of rankr and degreed,
H0(C,adF (D)) = 0 for any effective divisorD of degree�.

Proof. –By Lemma 3.4, we can choose[F0] ∈ H1(C,E∗) such thatψD([F0]) 	= 0 for any
effective divisorD of degree�. Then by Lemma 3.5,H0(C,adF0(D)) = 0 for any effective
divisorD of degree�. By [12, Proposition 2.6],F0 can be approximated by stable bundles,
there exists a flat family of bundles{Ft, t ∈ T } parametrized by an affine curveT with a base
point0 ∈ T such thatFt is stable fort 	= 0. OnC(�)×T whereC(�) is the set of effective divisor
of degree�, consider the loci of points(D, t) ∈ C(�) × T such thatH0(C,adFt(D)) 	= 0. This
loci is a closed subvariety ofC(�)×T and is disjoint fromC(�)×{0} sinceH0(C,adF0(D)) = 0
for all D ∈ C(�). It follows that there existst 	= 0 such thatH0(C,adFt(D)) = 0 for all D ∈ C(�).
In particular, for a general stable bundleF , H0(C,adF (D)) = 0 for all D ∈C(�). �

Proof of Proposition 3.2. –The proof is by induction on the rankr of F . If r = 1 this is
obvious. Assume that the result holds for a general stable bundleE of rank r − 1 and degree
d = deg(F ). By Lemma 3.6, the result follows if

−(r − 1)(g − 1− �) + � < d � (r − 1)(g − 1− �).

Note that there are2(r − 1)(g − 1− �)− � consecutive integersd satisfying this and

2(r − 1)(g − 1− �)− � � r for r � 2 andg � 3
2
� + 2.

If H0(C,adF (D)) = 0 for some vector bundleF then H0(C,adF ′(D)) = 0 for any vector
bundleF ′ of the formF ′ = F ⊗ L for a line bundleL. Thus we may assume that the degred
of F belongs to any set ofr consecutive integers. This finishes the proof of Proposition 3.2.�

THEOREM 3.7. –Letg = 4. Then for a general stable bundleE ∈ SUs
C(r, d),

τE :PΩE →CE

is a birational morphism and is unramified in a neighborhood of a general fiber ofπ :PΩE → C.

Proof. –The birationality ofτE over its image is from Theorem 2.3. ThatτE is unramified in
a neighborhood of a general fiber ofπ follows from Proposition 3.8 below, in the same way tha
Theorem 3.1 followed from Proposition 3.2.�

PROPOSITION 3.8. –Letg � 4 andF be a general stable bundle of arbitrary rank and degr
Then there exists a pointx ∈C such thatH0(C,adF (2x)) = 0.
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For the proof of Proposition 3.8, we need the following three lemmas, Lemmas 3.9, 3.10 and
3.11, which are just slight modifications of Lemmas 3.4, 3.5 and 3.6, respectively.

rs

3.4

ndle

e
f of
LEMMA 3.9. –Let E be a general stable bundle of rankr − 1 and degreed satisfying
d > −(r − 1)(g − 3). Then there exists an elementε ∈ H1(C,E∗) such that for a givenx ∈ C,
ψ2x(ε) 	= 0 whereψ2x :H1(C,E∗)→ H1(C,E∗(2x)) is as defined in Lemma3.4with D = 2x.

Proof. –As in the proof of Lemma 3.4, it suffices to show

h1(C,E∗)− h0
(
C,E∗(2x)|2x

)
> 0.

But this is obvious from

h1(C,E∗) = d + (r − 1)(g − 1), h0
(
C,E∗(2x)|2x

)
= 2(r − 1),

as in the proof of Lemma 3.4.�
LEMMA 3.10. –Let x be a point satisfyingh0(C,O(2x)) = 1, which is certainly true

for a generalx ∈ C. Let E be a vector bundle of rankr − 1 and degreed satisfying|d| �
(r − 1)(g − 3). Assume thatH0(C,adE(2x)) = 0. SupposeF is an extension ofE by O with
H0(C,adF (2x)) 	= 0. Then the extension class[F ] ∈ H1(C,E∗) satisfiesψ2x([F ]) = 0.

Proof. –The proof of Lemma 3.5 works almost verbatim. It suffices to replace the divisoD
andD′ by 2x and the sectionss ands′ by the unique section (up to scalar) ofO(2x). �

LEMMA 3.11. –Let r � 2 andd be integers satisfying

−(r − 1)(g − 3) < d � (r − 1)(g − 3).

Suppose for a general stable bundleE of rank r − 1 and degreed, H0(C,adE(2x)) = 0 for
somex ∈C. Then for a general stable bundleF of rankr anddet(F ) = det(E),

H0
(
C,adF (2x)

)
= 0.

Proof. –A simple modification of the proof of Lemma 3.6 works. It suffices to take{Ft} with
det(Ft) = det(E), replaceC(�) by C and use Lemmas 3.9 and 3.10 in place of Lemmas
and 3.5, respectively.�

Proof of Proposition 3.8. –The proof is by induction on the rankr of F as in the proof of
Proposition 3.2. Ifr = 1, it is obvious. Assume that the result holds for a general stable bu
E of rankr − 1 anddet(E) = det(F ). By Lemma 3.11, the result follows if

−(r − 1)(g − 3) < d � (r − 1)(g − 3).

Note that there are2(r − 1)(g − 3) consecutive integersd satisfying these inequalities and

2(r − 1)(g − 3) � r if r � 2 andg � 4.

If a vector bundleF satisfiesH0(C,adF (2x)) = 0 for somex ∈ C, thenH0(C,adF ′(2x)) = 0
for any vector bundleF ′ of the formF ′ = F ⊗ L for a line bundleL. Thus we may assum
that the degreed of F belongs to any set ofr consecutive integers. This finishes the proo
Proposition 3.8. �
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4. Hitchin discriminant and its dual variety

Let us briefly recall the definition of the Hitchin map and spectral curves. See [2,3] and [10]

l

ls

n
int

ce

ere
e

al
t

a

.

for details. As before,C is a smooth projective curve of genus� 4. Let

W := H0(C,ω⊗2
C )⊕ · · · ⊕H0(C,ω⊗r

C )

be the space of characteristic polynomials andh :T ∗(SUs
C(r, d)) → W be theHitchin map

defined by

h(θ) :=
(
s2(θ), . . . , sr(θ)

)
where forθ ∈ T ∗

E(SUs
C(r, d)) = H0(C,adE ⊗ωC),

si(θ) := (−1)itr(∧iθ).

Let KC be the total space of the canonical line bundleωC and α :KC → C be the natura
projection. For an elements = (s2, . . . , sr) ∈ W , the spectral curveCs associated tos is the
curve in the total spaceKC defined by the equation

xr + s2x
r−2 + · · ·+ sr−1x + sr

wherex is the tautological section ofα∗ωC . LetD ⊂ W be the set of characteristic polynomia
with singular spectral curves. The following two facts are standard.

PROPOSITION 4.1 [10, Corollary 1.5 and Remark 1.7]. –D is an irreducible hypersurface i
W and for a general points ∈ D, Cs is an integral curve with a unique ordinary double po
over a general point ofC.

PROPOSITION 4.2 [2, 3.6 and 3.7]. –If s ∈ W has an integral spectral curve, thenh−1(s)
is irreducible and for a generalα ∈ h−1(s) regarded as an element ofH0(C,adE ⊗ωC) for
someE ∈ SUs

C(r, d), each eigenvalue ofαx :Ex → Ex ⊗ ωC has one-dimensional eigenspa
for eachx ∈ C. If furthermore the spectral curve is smooth, i.e.,s ∈ W \ D, thenh−1(s) is an
open subset of an abelian variety and is dominant overSUs

C(r, d).

PROPOSITION 4.3. –The hypersurfaceh−1(D) in T ∗(SUs
C(r, d)) is irreducible.

Proof. –Sinceh−1(s) for a generals ∈ D is irreducible by Propositions 4.1 and 4.2, th
exists a unique irreducible componentS1 of h−1(D) which is dominant overD. Suppose ther
exists another componentS2 which is not dominant overD. We will get a contradiction.

For E ∈ SUs
C(r, d), let us denote the restriction ofh to the cotangent spaceT ∗

E(SUs
C(r, d))

by

hE :T ∗
E(SUs

C(r, d)) −→W.

There is a naturalC×-action onT ∗
E(SUs

C(r, d)) by the scalar multiplication and a natur
C×-action onW by the weighted scalar multiplication. Clearly,hE is equivariant with respec
to these actions ofC×. Suppose thatT ∗

E(SUs
C(r, d)) ∩ h−1(0) = 0. ThenhE descends to

morphism

ȟE :PT ∗
E

(
SUs

C(r, d)
)
−→PweightW

wherePweightW is the weighted projective space obtained as the quotient ofW \ 0 by the
weightedC×-action. ThišhE must be a finite morphism. It follows thathE is a finite morphism
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If S2 intersectsT ∗
E(SUs

C(r, d)) for some E with T ∗
E(SUs

C(r, d)) ∩ h−1(0) = 0, the
intersectionS′

2 := S2 ∩ T ∗
E(SUs

C(r, d)) must be a hypersurface inT ∗
E(SUs

C(r, d)). But then
S′

2 is dominant over the irreducible hypersurfaceD becauseh is finite onT ∗
E(SUs

C(r, d)), a

on

the

n
oint of
ing

in
nts

a
nt

e
s

nt
contradiction. Thus the imagepr(S2) under the natural projection

pr :T ∗(SUs
C(r, d)

)
→SUs

C(r, d)

is contained in the subvariety

N :=
{
E ∈ SUs

C(r, d): dim
(
T ∗

E

(
SUs

C(r, d)
)
∩ h−1(0)

)
� 1

}
.

Recall thatN 	= SUs
C(r, d) by [11]. Thuspr(S2) is a hypersurface inSUs

C(r, d) and S2 =
pr−1(pr(S2)). Sincedim(h−1(0)) = dim(SUs

C(r, d)) from [11],

dim
(
T ∗

E

(
SUs

C(r, d)
)
∩ h−1(0)

)
= 1

for a generalE ∈ pr(S2). ThushE :T ∗
E(SUs

C(r, d)) → W must have general fiber dimensi
� 1. This implies thathE(T ∗

E(SUs
C(r, d))) is a hypersurface inW . SinceT ∗

E(SUs
C(r, d)) ⊂ S2,

this is a contradiction to the fact thatS2 is not dominant overD. �
Let S be the hypersurface inPT ∗(SUs

C(r, d)) corresponding toh−1(D) in T ∗(SUs
C(r, d)).

For a general pointE ∈ SUs
C(r, d), the hypersurfaceSE := S ∩PT ∗

E(SUs
C(r, d)) will be called

theHitchin discriminantatE.
Recall that whenX ⊂ PN is a smooth subvariety, its dual variety is the subvariety of

dual projective spaceP∗
N corresponding to singular hyperplane sections ofX . Suppose the

normalizationX̂ of X is smooth andτ : X̂ → X ⊂ PN is the normalization morphism. The
X∗ is the closure of the set of hyperplanes containing the projective tangent space of a p
X whereτ is an immersion. This observation will be used implicitly in the proof of the follow
theorem, for the case ofg = 4.

THEOREM 4.4. –Assumeg � 4. Let E ∈ SUs
C(r, d) be a general point. Then the Hitch

discriminant SE ⊂ PT ∗
E(SUs

C(r, d)) is the dual variety of the variety of Hecke tange
CE ⊂PTE(SUs

C(r, d)). In other words,S defined above agrees withS in Corollary 2.2.

Proof. –Let θ ∈ h−1(D) be a general point. Thenθ :E → E ⊗ ωC is an endomorphism of
general stable bundleE such that its spectral curveCh(θ) has a unique ordinary double poi
singularity which lies over a general point ofC. It suffices to show thatθ ∈ PT ∗

E(SUs
C(r, d))

belongs to the dual variety ofCE . By Proposition 4.2, for eachx∈ C, each eigenvalue ofθx has
a1-dimensional eigenspace. Thus we have a curve

Cθ ⊂PE∗

biregular to the spectral curveCh(θ) corresponding to the1-dimensional eigenspaces.
Let Ω∗

E be the relative tangent bundle of the projective bundle� :PE∗ → C. Recall that when
an endomorphism of a vector spaceV is regarded as a vector field onPV , the zero set of th
vector field corresponds to the set of eigenvectors of the endomorphism. Whenθ is regarded a
a vertical vector field onPE∗ twisted by�∗ωC via the isomorphism

H0(C,adE ⊗ ωC) ∼= H0(PE∗,Ω∗
E ⊗�∗ωC),

θ vanishes exactly onCθ. Thus, when we regard it as a section ofξE ⊗π∗ωC onPΩE , it defines
an element of the linear system|ξE ⊗ π∗ωC | with a singular point lying over the singular poi
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of Cθ by Lemma 4.5 below. This implies thatθ belongs to the dual variety ofCE becauseτE is
an immersion over a general point ofC by Theorems 3.1 and 3.7.�

ion

ll

y

er
ctral
LEMMA 4.5. –Let

V = a1(z1, . . . , zn)
∂

∂z1
+ · · ·+ an−1(z1, . . . , zn)

∂

∂zn−1

be a holomorphic vectorfield on the polydisc∆n. Assume that the zero set of the vector field

a1(z) = · · ·= an−1(z) = 0

is a curve with a singularity at0. Let Ω be the relative cotangent bundle of the project
p :∆n →∆, p(z1, . . . , zn) = zn. Then the hypersurface inP(Ω) ∼= Pn−2 ×∆n defined by

a1(z1, . . . , zn)y1 + · · ·+ an−1(z1, . . . , zn)yn−1 = 0

for the homogeneous coordinates[y1 : · · · : yn−1] ∈ Pn−2 has a singular point overz1 = · · · =
zn = 0.

Proof. –Since

a1(z) = · · ·= an−1(z) = 0

is a curve with a singular point at0 ∈ ∆n, the matrix(∂ai

∂zj
)|z=0 has rank� n− 2, by Jacobian

criterion of smoothness. Thus there exist complex numbersc1, . . . , cn−1, with ci 	= 0 for somei,
satisfying

n−1∑
i=1

(
∂ai

∂zj

∣∣∣∣
z=0

)
ci = 0 for each1 � j � n.

It is straightforward to check that the point

z1 = · · ·= zn = 0, [y1 : · · · : yn−1] = [c1 : · · · : cn−1]

is a singular point of the hypersurface

a1(z1, . . . , zn)y1 + · · ·+ an−1(z1, . . . , zn)yn−1 = 0. �
COROLLARY 4.6. –The irreducible hypersurfaceh−1(D) is the closure of the union of a

rational curves inT ∗(SUs
C(r, d)).

Proof. –By Corollary 2.2 and Theorem 4.4,h−1(D) is covered by rational curves. B
Proposition 4.2, there exists no rational curve inT ∗(SUs

C(r, d)) \ h−1(D). �
Remark4.7. – Note that for a general Hecke curve�,

T
(
SUs

C(r, d)
)∣∣

�
∼= O(2)⊕O(1)2r−2 ⊕O(r2−1)(g−1)−2r+1

because� is a minimal rational curve ofSUs
C(r, d) and � · K−1

SUs
C

(r,d) = 2r. A section �̃ of

T ∗(SUs
C(r, d))|� gives a smooth rational curve in̂S in the notation of Corollary 2.2. On the oth

hand, for a generals ∈D, h−1(s) is an open subset of the compactified Jacobian of the spe
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curve ofs which has a unique node (cf. [10, Remark 1.7]). The normalization of the compactified
Jacobian is aP1-bundle over an abelian variety which is the Jacobian of the normalization of the
spectral curve. The curvẽ� is the image of a fiber of thisP1-bundle. In [10, Remark 1.7], it was

rate,
ull-
e.
ers of
k 1.7

ly
oof of
e will

a
he
ctic
.
e

rem,

of

ntly
stated that the image of thisP1-fiber has a node in the compactified Jacobian. This is inaccu
as�̃ is a smooth rational curve. In fact, the morphism [10, (1.13)] does not exist because the p
back of a torsion-free sheaf on the nodal curve to itsnormalization is not necessarily torsion-fre
The normalization map of the compactified Jacobian identifies two points on different fib
theP1-bundle, contrary to the claim in [10, Remark 1.7]. However this mistake in Remar
does not affect the rest of the argument in [10].

Remark4.8. – It is possible to describe the section�̃ in Remark 4.7 more explicitly as a fami
of Hecke transformations of a Higgs field. Such description may give a more direct pr
Corollary 4.6 and more detailed information about the geometry of the Hitchin fibers. W
leave it for a future investigation.

Remark4.9. – In the above manner, the sections ofT ∗(SUs
C(r, d)) over Hecke curves give

rank-1 foliation on an open subset ofh−1(D). This foliation can be described in another way. T
cotangent bundleT ∗(SUs

C(r, d)) has a natural symplectic form. The restriction of the symple
form on the hypersurfaceh−1(D) must be a holomorphic2-form with a1-dimensional kernel
It is not difficult to check that the foliation defined by this1-dimensional kernel is precisely th
foliation given by Hecke curves.

5. Applications

As an application of Theorem 4.4, we will give a proof of the non-abelian Torelli theo
simplifying the proof in [10, Theorem E] forg � 4.

THEOREM 5.1. –Let C and C′ be two smooth projective curves of genusg � 4. Let
f :SUs

C(r, d) → SUs
C′(r, d) be a biregular morphism. Thenf induces a biregular morphism

C ∼= C′.

The following is a direct consequence of Corollary 4.6.

LEMMA 5.2. –In the situation of Theorem5.1, let

W := H0(C,ω⊗2
C )⊕ · · · ⊕H0(C,ω⊗r

C ),

W ′ := H0(C′, ω⊗2
C′ )⊕ · · · ⊕H0(C′, ω⊗r

C′ )

be the spaces of characteristic polynomials and

h :T ∗(SUs
C(r, d)

)
→W,

h′ :T ∗(SUs
C′(r, d)

)
→W ′

be the Hitchin maps. LetD ⊂ W (resp. D′ ⊂ W ′) be the hypersurface consisting
characteristic polynomials with singular spectral curves andS ⊂ PT ∗(SUs

C(r, d)) (resp.
S′ ⊂ PT ∗(SUs

C′(r, d))) be the hypersurface corresponding toh−1(D) (resp.(h′)−1(D′)). Let
df∗ :PT ∗(SUs

C′(r, d)) →PT ∗(SUs
C(r, d)) be the pull-back byf . Thendf∗(S′) = S.

Proof of Theorem 5.1. –LetE be a general point ofSUs
C(r, d) andE′ = f(E). By Lemma 5.2,

df∗
E(S′

E′) = SE . Thus by Theorem 4.4,f induces a biregular morphismCE
∼= CE′ . This induces

a biregular morphismPΩE
∼= PΩE′ by Theorem 3.1 and Theorem 3.7, and conseque

a biregular morphismC ∼= C′ becauseC (resp.C′) is the Albanese image ofPΩE (resp.
PΩE′ ). �
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A precise description of the automorphism group ofSUs
C(r, d), for g � 3, was given by

Kouvidakis and Pantev. An essential part of their work was the following, which we will prove
as an application of Theorem 4.4. This simplifies the proof in [10] forg � 4.

-

a

p,

to
THEOREM 5.3. –Let C be a smooth projective curve of genus� 4. The group of automor
phisms ofSUs

C(r, d) is generated by automorphisms of the following two types whenr � 2d.
(a) E �→ γ∗E whereγ is an automorphism of the curveC, and
(b) E �→E ⊗ µ whereµ is anr-torsion of the Picard group ofC.

Whenr | 2d, additional generators of the following type are needed.
(c) E �→ E∗ ⊗ ν whereν is a line bundle of degree2d

r on C whoserth power is isomorphic
to the square ofdet(E).

We need two simple lemmas.

LEMMA 5.4. –LetE (resp.E′) be a vector bundle of rankr on a smooth projective curveC
of genus� 4 andΩE (resp.ΩE′ ) be the relative cotangent bundle onPE∗ (resp.P(E′)∗) with
respect to the natural projection� :PE∗ → C (resp.�′ :P(E′)∗ → C). Suppose there exists
biregular morphismG :PΩE → PΩE′ . Then there exists a biregular automorphismγ :C → C
making the following diagram commutative.

PΩE

π

G PΩE′

π′

C
γ

C

Moreover, eitherG descends to a biregular morphismPE∗ → P(E′)∗ or it descends to a
biregular morphismPE∗ →PE′.

Proof. –The existence ofγ is obvious by considering Albanese map. Each fiber ofπ andπ′ is
isomorphic toPT ∗(Pr−1) which has exactly two Mori contractions (of extremal rays)

PT ∗(Pr−1) −→Pr−1 and PT ∗(Pr−1)−→P∗
r−1.

ThusPΩE (resp.PΩE′ ) has exactly two Mori contractions

PΩE −→PE∗ and PΩE −→PE

(
resp. PΩE′ −→P(E′)∗ and PΩE′ −→PE′).

ThusG induces eitherPE∗ ∼= P(E′)∗ or PE∗ ∼= PE′. �
LEMMA 5.5. –In the situation of Lemma5.4, assume thatdeg(E) = deg(E′) =: d and

det(E) = γ∗ det(E′). Then denoting byPic0(C)[r] ther-torsion subgroup of the Picard grou
one of the following holds.

(i) If r � 2d, there existsµ ∈Pic0(C)[r] such thatE ∼= γ∗(E′ ⊗ µ).
(ii) If r | 2d, either there existsµ ∈ Pic0(C)[r] such thatE ∼= γ∗(E′ ⊗ µ), or there exists

ν ∈ Pic
2d
r (C) with ν⊗r = (det(E′))⊗2 such thatE ∼= γ∗((E′)∗ ⊗ ν).

Proof. –From Lemma 5.4, it is obvious that eitherE ∼= γ∗(E′ ⊗µ) or E ∼= γ∗((E′)∗ ⊗ ν) for
some line bundlesµ, ν on C. The assumptiondet(E) = γ∗ det(E′) can be easily translated
the properties ofµ andν described in (i) and (ii). �
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Proof of Theorem 5.3. –Let σ be an automorphism ofSUs
C(r, d). Arguing as in the proof

of Theorem 5.1, we see thatσ induces a biregular morphismG :PΩE
∼= PΩE′ for a general

E ∈ SUs
C(r, d) andE′ = σ(E). By Lemma 5.4,σ induces an automorphismγE ∈ Aut(C) for

ween

hen

not

t

n

. It
f

s no

rk 4.7.
pring

eta
each generalE ∈ SUs
C(r, d). SinceAut(C) is finite, γE is independent ofE for generalE.

Composingσ with an automorphism of type (a), we may assume thatγE = IC , the identity map
of C. Thenσ must agree with an automorphism of type (b) or (c) by Lemma 5.5.�

As a final application of Theorem 4.4, we prove the following result on morphisms bet
moduli spaces of bundles.

THEOREM 5.6. –Let C and C′ be two smooth projective curves of genusg � 4. Let
f :SUs

C(r, d) →SUs
C′(r, d) be a surjective morphism. Thenf is biregular.

Proof. –The key point is to prove an analogue of Lemma 5.2. In other words, w
df∗ :f∗T ∗(SUs

C′(r, d)) → T ∗(SUs
C(r, d)) is the natural morphism associated tof , we claim

thatdf∗(f∗S′) ⊂ S in the notation of Lemma 5.2. Note that the proof of Lemma 5.2 does
work whenf is a priori not biregular.

To prove the claim, let� be a general Hecke curve onSUs
C′(r, d) and �̂ ⊂ SUs

C(r, d) be an
irreducible component off−1(�). An elementσ ∈ H0(�, T ∗(SUs

C′(r, d)) defines an elemen
f∗σ ∈ H0(�̂, T ∗(SUs

C(r, d))). Let �� be the image off∗σ in T ∗(SUs
C(r, d)). SinceW is affine,

h(��) is one points ∈ W . Supposes /∈D. By Proposition 4.2,h−1(s) is an open subsetA′ of an
abelian varietyA. The natural projectionA′ →SUs

C(r, d) is dominant and so is its compositio
with f , which is denoted byf ′ :A′ →SUs

C′(r, d). But the complete curve�� satisfiesf ′(��) = �.
This is a contradiction to Proposition 2.4, becausethe variety of Hecke tangents is not linear
follows thats ∈D. Thusf∗σ has its image inh−1(D). Since(h′)−1(D′) is covered by images o
σ by Corollary 2.2 and Theorem 4.4, this implies thatdf∗((h′)−1(D′))⊂ h−1(D), as claimed.

Choose an analytic open subsetU ⊂ SUs
C(r, d) such thatf |U :U → f(U) is biholomorphic.

By the claim, for eachu ∈ U, (dfu)∗(S′
f(u)) = Su. By Theorem 4.4,dfu(Cu) = C′

f(u). Then we
can proceed as in the proof of Theorem 5.1 and Theorem 5.3 to show thatC ∼= C′ andf |U agrees
with the restriction of an automorphism ofSUs

C(r, d) to U . Hencef is biregular. �
Remark5.7. – The argument used in the proof of Theorem 5.6 shows that whens /∈ D, the

projectionh−1(s) → SUs
C(r, d) cannot be proper over a Hecke curve. In fact, there exist

complete curve inh−1(s) which is mapped to a Hecke curve inSUs
C(r, d). Since for any

subvarietyZ of codimension� 2 in SUs
C(r, d), there exists a Hecke curve disjoint fromZ , this

means that the locus where the projectionh−1(s) →SUs
C(r, d) is not proper is of codimension1

in SUs
C(r, d).
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