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HECKE CURVES AND HITCHIN DISCRIMINANT

By JUN-MUK HWANG ! AND S. RAMANAN

ABSTRACT. — Let C be a smooth projective curve of genys> 4 over the complex numbers and
SUE (r, d) be the moduli space of stable vector bundles of rawith a fixed determinant of degrekeIn the
projectivized cotangent space at a general pbintf SUZ (7, d), there exists a distinguished hypersurface
Sg consisting of cotangent vectors with singular spectral curves. In the projectivized tangent space at
there exists a distinguished subvari€ly consisting of vectors tangent to Hecke curvesSi¢, (r, d)
throughE. Our main result establishes that the hypersurfageand the variety’ r are dual to each other.
As an application of this duality relation, we prove that any surjective morpSi&ii(r, d) — SUZ. (r,d),
whereC’ is another curve of genusg is biregular. This confirms, faSU¢ (r, d), the general expectation
that a Fano variety of Picard numbigrexcepting the projective space, has no non-trivial self-morphism and
that morphisms between Fano varieties of Picard nurhtzee rare. The duality relation also gives simple
proofs of the non-abelian Torelli theorem and the result of Kouvidakis—Pantev on the automorphisms of
SUg(r,d).
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RESUME. — SoientC' une courbe projective lisse de gefgre: 4 sur les nombres complexeSi{¢ (1, d)
la variété de modules des fibrés stables de radg déterminant fixé de degi Dans I'espace cotangent
projectivisé en un point général de SU¢ (r, d), il existe une hypersurface distingu§g qui correspond
aux vecteurs cotangents avec courbes spectrales singulieres. Dans I'espace tangent projediyisé en
il existe une sous-variété distingu€e; comprenant des vecteurs tangents aux courbes de Hecke dans
SU¢ (r,d) passant pak. Notre résultat principal établit que I'hypersurfage et la variété& i sont duales
'une a l'autre. Comme applicatiorectette relation de dualité, nous démtrons qu’un mqvhisme surjectif
SU%(r,d) — SUE, (r,d) est biréguliere, ol’ est une courbe quelconque de gepreCeci confirme,
pour SU¢ (r,d), 'espérance générale gu’une variété de Fano de nombre de Picardiégal'@xception
des espaces projectifs, n'a pas de morphisme noialtsur elle-méme et que les morphismes entre les
variétés de Fano de nombre de Picard éghlsant rares. La relation de dualité fournit en méme temps
des preuves simples du théoreme de Torelli non abélien et du résultat de Kouvidakis—Pantev concernant les
automorphismes d8U(¢ (r, d).
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1. Introduction

Any smooth projective variety with Picard group isomorphicZas usually classified into
one of three classes, namejgneral type, Calabi—Yau or Faraccording as the canonical line
bundle is positive, trivial or negative. Fano varieties are somewhat special among varieties, and
algebraic homogeneous spaces fall in that clHsse leave out projective spaces, morphisms
between two such varieties of the same dimension seem to be rare [5]. In particular, there is a

1 Supported by the Korea ResearabuRdation Grant (KRF-2002-070-C00003).
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802 J.-M. HWANG AND S. RAMANAN

conjecture, originating from a related questiof Lazarsfeld, that there are no nonconstant self
maps of these varieties except automorphisms.

Let C' be a smooth projective curve of genusver the complex numbers astd/(r, d) be
the moduli space of stable vector bundles of ranith a fixed determinant of degreke When
r andd are coprime, these are smooth Fano varieties with Picard dgfodjus these provide
examples against which the abduad of conjectures can be tested.

Our main aim in this paper is to prove the following theorem.

THEOREM 5.6.—-Let C and C’ be two smooth projective curves of genys> 4. Let
f:8UE(r,d) — SUE (1, d) be a surjective morphism. Thehis biregular.

Note that we do not assume in this theorem thahdd are coprime, but take only the smooth
locus of the varieties in question. The theorem is perhaps also valig$o8 but our method
does not cover that case. The method synthesizes three different strands.

Firstly, the moduli spaces of vector bundlesé®een studied by Hitchin [3] from the view-
point of symplectic geometry of its cotangent bundle. On the other hand this study has been used
as a tool to derive results on the moduli spaces gewes in [2]. These ideas can be codified in
the terms ‘spectral curves’, ‘Higgs moduli’, ‘nonabelian theta functions’, etc.

Secondly a certain amount of rigidity in theoehuli spaces were established by [12] and [13]
by a study of the geometry of the moduli spaces.dHbe main ingredient is the notion of ‘Hecke
cycles’. For our purposes it is more fruitful to consider what we call ‘Hecke curves’ [9].

Finally, the moduli space may be investigated by tools commonly used in the study of higher-
dimensional Fano varieties. This leads to the study of rational curves on it [7,9] and the Hecke
curves provide the means for doing it. The result quoted above is obtained by studying interesting
relationship between these aspects.

Let us now briefly describe our approach.

Associated to the Hitchin map on the cotangent bund&4 (r, d), there exists a canonically
defined hypersurfacé C PT*(SU¢ (r,d)) corresponding to twisted endomorphisms of stable
vector bundles whose spectral curves are singular. For a general Pansl(((r,d), the
corresponding hypersurfacg; in the projectivized cotangent spabd ;. (SU¢ (1, d)) will be
calledthe Hitchin discriminanat .

On the other hand, there are naturally defined rational curvés4gn(r, ), which (as referred
to above) we call Hecke curves. For a gendtak SU/(r,d), let Cg be the subvariety of
PTr(SU(r,d)) consisting of tangent vectors to Hecke curves throBgfThis subvarietyx
will be called thevariety of Hecke tangentt F.

The key point in our proof is the following result which we hope is sufficiently interesting in
itself.

THEOREM 4.4.—Let g > 4 and let E be a general point oSU/(r,d). Then the Hitchin
discriminantSg is the dual variety of the variety of Hecke tangefits

This has other interesting consequences. It gives simple proofg, fo#, of non-abelian
Torelli theorem (Theorem 5.1) and the description due to Kouvidakis and Pantev, of the
automorphisms o8U{ (r,d) (Theorem 5.4). Our proof of the non-abelian Torelli theorem is
reminiscent of Andreotti’s proof of the abelian Torelli theorem [1]. Recall that in Andreotti's
proofthe curve is recovered as the dual variety of a certain discriminantal hypersurface associated
to the Gauss map of the Riemann theta divisor. In our proof of non-abelian Torelli theorem, the
curve is recovered from the dual variety of a certain discriminantal hypersurface associated to
the Hitchin map.

4€ SERIE— TOME 37 — 2004 -N° 5



HECKE CURVES AND HITCHIN DISCRIMINANT 803

2. Variety of minimal rational tangents

In this preliminary section, weecall some results concerning mimal rational curves (cf. [8]).
Let M be a smooth quasi-projective variety of dimensioWe will assume that there exists a
componenfC of the Hilbert scheme of complete curves dhsuch that
(1) the subschemé’, C K consisting of members of passing through a general point
y € M is a non-empty irreducible smooth projective variety of which every member is
an irreducible smooth rational curve lying id.
A member ofK is called aminimal rational curveon M. For a pointy € M, let T,,(M) be
the tangent space i/ aty. Define thetangent morphism

Ty ICy = PT, (M)
by sendin¢ € KC,;, a smooth rational curvec M, to
Ty () :=PT,(¢).

For a general membérof K,
(M), =20Q2) o010 P

wherep is the dimension of’,, andO(2) corresponds t@'(¢) [8, Theorem 1.2]. This implies that
T, is generically finite over its image. The imagemfis denoted by, and called thevariety
of minimal rational tangentat the general poing associated to the famili¢. The following
proposition is a consequence of basic deformation theory.

PROPOSITION 2.1 [8, Theorem 1.4]. Let/ be a general member &, with
T(M);=20(2)®0(1)P a0 1P,
ThenT, is an immersion at € K, and the tangent space 0, at 7,(¢) corresponds to the
subspace df’, (M) defined by th&(2) & O(1)P-part of T'(M)|,.

Recall that whenX is an irreducible subvariety of a projective sp&g, its dual varietyX *
is the irreducible subvariety of the dual projective sp®ge which is the closure of the set of
hyperplanes containing the projective tangent space of a smooth paoint ldbte that for/ as
above,

HO(6,T*(M)],) 2 H(¢,0(-2) & O(-1)? & O™ '"P) = HO(¢, 0"~ '7P)
are exactly cotangent vectors annihilatii@2) ¢ O(1)?-part of T'(M)|,. Also note that sections
of T* (M) over{ give smooth rational curves ifi*(M ). As a consequence, we get the following.

COROLLARY 2.2.-LetS c T*(M) be the closure of the union of the smooth rational curves
in T*(M) given byH(¢,T*(M)) as/ varies overk. LetS ¢ PT*(M) be the corresponding
projective subvariety. For a poing € M let S, be the intersectios N PT,;(M). Then for
generaly, S, is the dual variety of,,.

We recall the following result from [6].

THEOREM 2.3 [6, Theorem 1]. 4n the situation above, the tangent morphism C, — C,
is birational for a general poingy € M.
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804 J.-M. HWANG AND S. RAMANAN

This was proved in [6] whed/ is a projective variety, but the proof there works even when
M is quasi-projective, as long as the assumptiorholds.
We will also need the following wibh is essentially [4, Proposition 2].

PROPOSITION 2.4. —Let M and K be as above. Suppose there exists an open subiseft
an abelian varietyA and a generically finite morphisni: A’ — M. Lety € M be a general
point and¢ C M be a general member &f,. Assume that there exists a complete cufve A’
such thatf(¢') = ¢. Then the variety of minimal rational tangertfg is a linear subvariety in
PT,(M).

The proof uses the following lemma about curves on abelian varieties, which is exactly
[4, Lemma 3].

LEMMA 2.5.-Let C; € A be a p-dimensional irreducible family of curves on an
n-dimensional abelian varietyl passing through a common poine A. If the constructible set
in A consisting of the union af;’s is of dimensior(p + 1) and the subspace é{°(C;, T*(A))
consisting of elements annihilating tangent vectorS tés of dimensiorn: n— 1 —p for ageneral
membelC;, then the closure of the union of these curves is a translate(pftal )-dimensional
abelian subvariety.

Proof of Propogtion 2.4.—-Let a € ¢’ be a point with f(a) = y. Note that elements of
HO(¢, T*(M)) annihilate the tangent vectors foand h°(¢,T*(M)) = n — 1 — p wherep is
the number ofO(1)-factors inT'(M)|,, or equivalently, the dimension &f,. The pull-back
of elements ofH® (¢, T*(M)) to H°(¢/,T*(A)) gives a subspace of dimensignn — 1 — p,
annihilating tangent vectors td, because/ passes through the general poine M. By
Lemma 2.5, the closure of the union of all such choiced’os a translate of dp + 1)-
dimensional abelian subvariety. In particular, the closure of their tangent vectonsast be
a linear subvariety oPT,(A). This implies that, is a linear subvariety dPT,(M). O

Remark2.6. — Since some of our applications, namely, Theorems 5.1 and 5.3 below, will be
simpler proofs of some results which have been proved by other means, it is worth pointing out
that the preliminary results reviewed in this section are not so difficult to prove. The proofs of
Proposition 2.1 and Corollary 2.2 are quite straigiward and use only basic deformation theory
due to Kodaira. Proposition 2.4, whose proof is also easy, will not be needed for Theorems 5.1
and 5.3. The proof of Theorem 2.3 is more involved, but Theorem 2.3 will be needed in this
paper only when the genus 6fis 4.

3. Variety of Hecke tangents

Let C' be a smooth projective curve of gengs: 4. Let SUZ (r, d) be the moduli space of
stable bundles of rankwith a fixed determinant of degrekoverC'. For M = SU(r,d), there
exists a family of rational curves satisfying the condit{gh, called Hecke curves. Let us briefly
recall the definition (see [13] and [9] for detalils).

Let E € SU{(r,d) be a stable bundle over. Denote byE* the dual bundle an® E the
projectivization consisting of linethrough the origin on each fiber. Fere C and¢ € PE?,
consider a new vector bundki¢ defined by

0—FE —E—(E,/¢H®0, —0

where¢* denotes the hyperplane i, annihilated by. Let.: ES — E, be the homomorphism
between the fibers at induced by the sheaf map¢ — E. The kernel of:, Ker(1), is a
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HECKE CURVES AND HITCHIN DISCRIMINANT 805

1-dimensional subspace of the fibBf and its annihilatofKer(:))* is a hyperplane ifE¢).
Let 1 be a line inPES containing the poinfKer()]. For gach point € 1 corresponding to a
1-dimensional subspade- ES, consider the vector bundig’ defined by

0— B! — (BS)* — [(E9): /1] © 0y — 0

wherel+ C (E¢) is the hyperplane annihilating This vector bundleE! is stable for each
[[] €lif E is a general point o§U/{.(r,d) andg > 4 [9, Proposition 2]. It is easy to check that
for I = Ker(1),

EKer(L) ~ B

It follows that{(E')*; 1 € 1} defines a rational curve passing througin Si/%,(r, d). A rational
curve onSUE (r, d) constructed this way is calledHecke curveUsing [13, 5.9], one can show
that a Hecke curve is smooth. In view of [13, 5.16], it is easy to check that a Hecke curve has
degree2r with respect td{a;bltsc(r.,d)'
On PE*, consider the relative cotangent bundle; of the fibrationw: PE* — C. The
projective bundlePQ g over PE* is a smooth projective variety of dimensi@n — 2. The set
of all lines in PES containing the poinfKer(:)] is naturally isomorphic t@®(ES / Ker(1)) =2
PQg . In other words, each point dP{)r defines a Hecke curve througdh for a general
point E € SUL(r,d). The argument of [13, 5.13] shows that Hecke curves associated to two
distinct points of PQg are distinct rational curves 08U (r,d). Thus PQg is naturally
isomorphic to the variety of all Hecke curves throughA simple dimension-counting shows
that Hecke curves are dense in an irreducible component of the Hilbert scheme of curves on
SU(r,d) [9, Proposition 3]. It follows that the componeftof the Hilbert scheme a$U/¢- (r, d)
corresponding to Hecke curves satisfies the conditipn.e., Hecke curves are minimal rational
curves ofSU¢(r, d).
Let us describe the tangent morphism associated to Hecke curves through a general point
E e SUL(r,d). Letp: PQr — PE* be the projectivization o2z andég be theO(1)-bundle
of the projectivization so thap.{g = (23, is the relative tangent bundle ef. Recall thato. Q7
is the bundleadg of traceless endomorphisms éf. Let 7:PQgr — C be the composition
m = w o w. Note that

is the dual of the tangent space & ¢ (r,d) at E. Thus the line bundlérz ® 7*w¢ defines a
rational map

For a generak’, this rational map is exactly the tangenorphism assigning to each Hecke curve
throughF its tangent vector ak [9, Theorem 3]. We denote the imagef by Cr and call it
thevariety of Hecke tangents

THEOREM 3.1.—Letg > 5. Then for a general stable bundiee SU¢ (r, d), the line bundle
Ep @ T we is very ample, i.eqg : PQg — Cg is a biregular morphism.
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806 J.-M. HWANG AND S. RAMANAN

Proof. —~Write L for ¢ @ m*we. For anyz € C, the line bundld. restricted to the fiber —1 ()
is very ample. Thud. is very ample orPQg if for any z,y € C, the caser = y included, the
restriction map

H(PQg,L) — H(r " (2 +y), Llx-1(s1y))

is surjective. From the exact sequence
0—Ler"0(—x—y) — L — Llz-1(34,) — 0,

the surjectivity is guaranteed if
H' (PQp, L m*O(—z —y)) = H' (C,adp ®Kx(—z — y))

or its dual H%(C,adg ®O(z + y)) vanishes. Thus Theorem 3.1 follows from Proposition 3.2
below. O

PROPOSITION 3.2. —Let £ be a positive integer satisfying > %E + 2. Then for a general
stable bundlée’ of arbitrary rank and degreél®(C,adr (D)) = 0 for any effective divisoD of
degreef.

We need a few lemmas.

LEMMA 3.3.—For a general stable bundI& on C of rankr and degreel, H°(C, E) = 0 if
d<r(g-1).

Proof. —Let us count the dimension of the space of stable bundles which have non-zero
sections. IfE has a non-zero section, there exists a line subbuhdieE with d' := deg(L) > 0.
ThusFE can be realized as an extension of the type

0—L—F—G—0

whereL is a line bundle of degre¢ > 0 with H°(C, L) # 0 andG is a vector bundle of rank

r — 1 and degre@” = d — d’. Since non-stable bundles can be deformed to stable bundles [12,
Proposition 2.6], we may assume tliais stable in dimension-coting. Recall that the moduli
spacéic(r,d) of semi-stable bundles of ramkand degred on C has dimensiom?(g — 1) + 1.

Thus the dimension of deformation 6fis equal to

dimUc(r —1,d")=(r—1)*(g—1) + 1.

The dimension of possible choices of the line bunbiis < d’. For a fixedG and a fixedL, the
dimension of extensions &f by L is k! (C,G* ® L). We claim that{°(C,G* ® L) = 0. In fact,
assuming tha& = E// L for some stable bundl&, if there exists a homomorphism G — L,
the composition

E—E/L-LL—E

must be identically zero because any endomorphisii ofust be a homothety. Henge= 0. It
follows that

W (C,G*® L) =—x(G*® L)
=d"—(r—1d +(r—1)(g—1)
=d—rd +(r—1)(g—-1).
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Thus the space of stable bundles which have non-zero sections has dimension at most
d+(r—1)*(g-1)+1+rC,G*@L)~1=(*—r)(g—1)+d+ (1 —r)d.
SincedimUc(r,d) =r?(g — 1) + 1 and
[7’2(9— 1)—1—1} - [(T2 —r)(g—1)+d+ (1 —T)dl] =r(g—1)—d+(r—1)d +1
>r(g—1)—d+1,
a general stable bundle cannot have a non-zero sectiggp #f 1) —d > 0. O

LEMMA 3.4.-Let E be a general stable bundle of rank— 1 and degreed. Assume/
is a positive integer satisfying > —(r — 1)(g — 1 — ¢) + ¢. Then there exists an element
e € HY(C,E*) such that for any effective divisab of degree/ on C, ¢ (e) # 0 where
P HY(C, E*) — HY(C, E*(D)) is the homomorphism arising from the short exact sequence

0— E* — E*(D) — E*(D)|p — 0.
Proof. —From the exact sequence
H°(C,E*(D)|p) — H'(C,E*) — H'(C,E*(D)),
it suffices to show that

h'(C,E*) —h°(C,E*(D)|p) — £ >0,

where ¢ is interpreted as the dimension of possible choicesDofNote h°(C, E*) = 0 by
Lemma 3.3 becauskg(E*) = —d < (r—1)(¢ — 1). Thus

RYC,E*) = —x(E*)=d+ (r —1)(g — 1).
Also h°(C,E*(D)|p) = ¢(r — 1). So
h'(C,E*) —h°(C,E*(D)|p) —t=d+ (r—1)(g—1)—€(r—1)—¢

which is positive fromi > —(r —1)(g—1—-¢)+¢. O

LEMMA 3.5.—Let FE be a general stable bundle ari of rankr — 1 and degreel. Let/ be
a positive integer satisfyingl| < (r — 1)(g — 1 — ¢). Assume that/®(C,adg(Z)) = 0 for any
effective divisoZ of degree/. Suppose there exists an extensioof £ by O,

0—0O—F—F—0

such thati°(C,adr (D)) # 0 for some effective divisap of degree/. Then the extension class
[F] e H'(C, E*) satisfies” ([F]) = 0 for some effective divisab’ of length.

Proof. —Let ¢: F — F(D) be a non-zero element df°(C,adr(D)). The composition
Bogoain

0 O F FE 0
l¢
0 O(D) F(D) 2~ EBE(D)——~0
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808 J.-M. HWANG AND S. RAMANAN

defines a section df(D). Sincedeg(E(D)) =d+{(r—1) < (r—1)(g—1), E(D) cannot have
a non-zero section by Lemma 3.3 and consequeghtly o o = 0. Thus there exists satisfying

[e3

0 O F E 0
Pk
0 o(D) F(D) E(D) —=0.

Lets € H(C,O(D)) be the section defined by Consider
¢ =¢—1Ir-5:F— F(D)

wherelr denotes the identity map df. Then¢’ annihilates the subbundte O C F, inducing
a non-zero homomorphisth E — F (D) satisfying

(e

0 O F E 0
0 laﬁ/ Bo¢
0 o(D) "~ F(D) "~ E(D) — 0.

If 50¢ =0, thenthere exists: E — O(D) such thaty’ o £ = (. Then we get a non-zero element
£ in H°(C, E*(D)) which is not possible by Lemma 3.3 because

deg(E*(D)) = —d+(r —1) < (r—1)(g — 1).
Thusf o ¢ # 0. By the assumptio/(C, ad z(D)) = 0, we conclude that
Bol=1Ig-s

for some non-zere’ € H°(C,0(D)). Let D' be the effective divisor defined by. We claim
thaty? ([F]) =0in H'(C, E*(D’)), which proves the lemma.

To prove the claim, let us recall the definition of the extension cla$sand ¢ ([F]). Let
§:H°(C,E* ® F) — H'(C, E*) be the boundary map associated to the short exact sequence

0—FE*"—FE'QF —FE'®FE—0.

Then[F]:=§(Ig) for the identity mapl € H°(C, E* ® E). The multiplications by’

0 E* E*®F ErQFE——0

0—=> E*(D') —= E*® F(D') —= E*® E(D') — 0

induce a commutative diagram

0

H(C,E* @ F) H(C,E* @ E) HY(C,E*)

\L’IJJD/
B 5’

HY(C,E*® F(D')) — H(C, E* ® E(D')) ~—= H(C, E*(D")).
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It follows that
WP ([F)) ="' (6(1)) = 8° (Ig - 5").
But we know that
Ig-s'=Bo(=5(C)
for some¢ € HO(C, E* @ F(D)). Thusy® ([F]) =0. O
LEMMA 3.6.—-Letr > 2, £>1 andd be integers satisfying

—(r=1(g—-1-0)+L<d<(r—1)(g—1-29).

Suppose for a general stable bundleof rank » — 1 and degreel, H°(C,adg(D)) = 0 for
any effective divisoD of degreef. Then for a general stable bundle of rankr and degreel,
H°(C,adr(D)) = 0 for any effective divisoD of degree!.

Proof. -By Lemma 3.4, we can choo$é&,] € H'(C, E*) such that)y” ([Fy]) # 0 for any
effective divisorD of degree/. Then by Lemma 3.5H°(C,adr, (D)) = 0 for any effective
divisor D of degreel. By [12, Proposition 2.6]F, can be approximated by stable bundles, i.e.,
there exists a flat family of bundldd;, ¢ € T'} parametrized by an affine curZewith a base
point0 € T such thatF} is stable fort £ 0. OnC'¥) x T whereC'®) is the set of effective divisors
of degreef, consider the loci of pointéD, ) € C) x T such thatt°(C,adf, (D)) # 0. This
lociis a closed subvariety @f(*) x T and is disjoint fromC“) x {0} sinceH°(C, adp, (D)) =0
forall D € C). Itfollows that there exists+# 0 such thati7®(C, adr, (D)) = 0forall D € C¥),

In particular, for a general stable bundie H°(C,adr (D)) =0forall D€ C¥). 0O

Proof of Propogtion 3.2. —The proof is by induction on the rankof F. If » =1 this is
obvious. Assume that the result holds for a general stable bundierankr — 1 and degree
d = deg(F'). By Lemma 3.6, the result follows if

—(r=1)(g—1-0)+L<d<(r—1)(g—1-14).

Note that there arg(r — 1)(g — 1 — ¢) — ¢ consecutive integerésatisfying this and
3
2r—1)(g—1-¢)—£¢>=r forr>=2andg> §€—|—2.

If H°(C,adr(D)) = 0 for some vector bundlé” then H(C,ad (D)) = 0 for any vector
bundleF” of the formF’ = F ® L for a line bundleL. Thus we may assume that the degiee
of " belongs to any set of consecutive integers. This finishes the proof of Proposition 3:2.

THEOREM 3.7. —Letg = 4. Then for a general stable bundie € SU¢ (r, d),
TE : PQE — CE

is a birational morphism and is unramified in a neighborhood of a general fibet B2z — C.

Proof. —The birationality ofrg over its image is from Theorem 2.3. That is unramified in
a neighborhood of a general fibermofollows from Proposition 3.8 Hew, in the same way that
Theorem 3.1 followed from Proposition 3.20

PROPOSITION 3.8. —Letg > 4 and F' be a general stable bundle of arbitrary rank and degree.
Then there exists a pointe C such thatd°(C, adp(2x)) = 0.
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For the proof of Proposition 3.8, we need the following three lemmas, Lemmas 3.9, 3.10 and
3.11, which are just slight modifications of Lemmas 3.4, 3.5 and 3.6, respectively.

LEMMA 3.9.-Let £ be a general stable bundle of rank— 1 and degreed satisfying
d > —(r —1)(g — 3). Then there exists an element H'(C, E*) such that for a givem: € C,
% (e) # 0 wherey?* : H(C, E*) — H'(C, E*(2x)) is as defined in Lemn@4with D = 2x.

Proof. —As in the proof of Lemma 3.4, it suffices to show
h'(C,E*) — h°(C, E*(2x)|2,) > 0.
But this is obvious from
RC,EX)=d+ (r—1)(g—1), K (C, E* (22)]22) =2(r — 1),

as in the proof of Lemma 3.4.0

LEMMA 3.10.-Let = be a point satisfyingh?(C,O(2z)) = 1, which is certainly true
for a generalz € C. Let E be a vector bundle of rank — 1 and degreed satisfying|d| <
(r—1)(g — 3). Assume that{%(C,adg(2x)) = 0. Supposé" is an extension of by O with
H°(C,adr(2z)) # 0. Then the extension clagg] € H'(C, E*) satisfieg)?®([F]) = 0.

Proof. —The proof of Lemma 3.5 works almost verbatim. It suffices to replace the divi3ors
andD’ by 2z and the sections ands’ by the unique section (up to scalar)@f2x). O

LEMMA 3.11.-Letr > 2 andd be integers satisfying
—(r=1)(g—-3)<d<(r—1)(g—3).

Suppose for a general stable bundieof rank » — 1 and degreel, H°(C,adg(2x)) = 0 for
somez € C. Then for a general stable bundiof rankr anddet(F) = det(E),

H°(C,adp(2z)) =0.

Proof. —A simple modification of the proof of Lemma 3.6 works. It suffices to take} with
det(F;) = det(E), replaceC®) by C and use Lemmas 3.9 and 3.10 in place of Lemmas 3.4
and 3.5, respectively. O

Proof of Propogion 3.8. —The proof is by induction on the rankof F' as in the proof of
Proposition 3.2. Ifr = 1, it is obvious. Assume that the result holds for a general stable bundle
E of rankr — 1 anddet(E) = det(F'). By Lemma 3.11, the result follows if

—(r=1)(g-3)<d<(r—1)(g-3).
Note that there ar2(r — 1)(g — 3) consecutive integersatisfying these inequalities and
2r=1)(g—3)=2r ifr>2andg>4.
If a vector bundleF” satisfiesH®(C,adr(2x)) = 0 for somez € C, thenH°(C, ad/ (22)) =0
for any vector bundlg”” of the formF’ = F' @ L for a line bundleL. Thus we may assume

that the degred of F' belongs to any set af consecutive integers. This finishes the proof of
Proposition 3.8. O
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4, Hitchin discriminant and itsdual variety

Let us briefly recall the definition of the Hitchin map and spectral curves. See [2,3] and [10]
for details. As before( is a smooth projective curve of genkst. Let

W:=H"(C,w&®) @ & H*(C,wg")

be the space of characteristic polynomials and™* (SU/5(r,d)) — W be theHitchin map
defined by

h(8) := (s2(0),...,s:(0))
where ford € T3 (SUZ (r,d)) = H(C,ad g ®wc),

5:(0) == (—1)'tr(A'0).

Let K¢ be the total space of the canonical line bundle and «: Ko — C be the natural
projection. For an element= (ss,...,s,) € W, thespectral curveC associated ta is the
curve in the total spacE ¢ defined by the equation

2+ Sox" 24t spqT + S,

wherez is the tautological section ef*wc. LetD C W be the set of characteristic polynomials
with singular spectral curves. The following two facts are standard.

PROPOSITION 4.1 [10, Corollary 1.5 and Remark 1.7]7>is an irreducible hypersurface in
W and for a general point € D, C; is an integral curve with a unique ordinary double point
over a general point of.

PROPOSITION 4.2 [2, 3.6 and 3.7]. # s € W has an integral spectral curve, therm!(s)
is irreducible and for a generak € h=!(s) regarded as an element ¢f°(C, adg ®wc) for
someE € SU¢(r,d), each eigenvalue af, : F, — F, ® wc has one-dimensional eigenspace
for eachz € C. If furthermore the spectral curve is smooth, i W \ D, thenh~!(s) is an
open subset of an abelian variety and is dominant &ig§. (r, d).

PROPOSITION 4.3. —The hypersurfacé ~! (D) in T*(SUZ(r,d)) is irreducible.

Proof. —Sinceh~1(s) for a generaks € D is irreducible by Propositions 4.1 and 4.2, there
exists a unique irreducible componefit of 4 ~1(D) which is dominant oveD. Suppose there
exists another componef which is not dominant oveP. We will get a contradiction.

For E € SU¢ (r,d), let us denote the restriction &fto the cotangent spadgs (SU¢(r,d))
by

hg :Tp(SUL(r,d)) — W.
There is a naturalC*-action onT;,(SU(r,d)) by the scalar multiplication and a natural
C*-action onW/ by the weighted scalar multiplication. Clearlyg is equivariant with respect
to these actions o€>. Suppose thal’;,(SUZ (r,d)) N h~1(0) = 0. Thenh descends to a
morphism

iLE : PTE (SZ/{SC (T’, d)) — PweightW
where P.ignt W is the weighted projective space obtained as the quotieft’ of0 by the
weightedC* -action. Thish gz must be a finite morphism. It follows that is a finite morphism.
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If Sy intersectsTy(SUL(r,d)) for some E with Tx(SUL(r,d)) N h=1(0) = 0, the
intersectionS) := So N T (SU(r,d)) must be a hypersurface i (SU (r,d)). But then
S% is dominant over the irreducible hypersurfaBebecausen is finite on Ty (SU(r,d)), a
contradiction. Thus the image (S2) under the natural projection

pr:T* (SZ/{SC(T‘, d)) — SUE(r,d)
is contained in the subvariety
N :={E € SU(r,d): dim(T5(SUE(r,d)) Nh™(0)) >1}.

Recall that\ # SU¢(r,d) by [11]. Thuspr(Ss2) is a hypersurface iSUL (r,d) and Sy =
pr—Y(pr(Sz)). Sincedim(h=1(0)) = dim(SUZ (r,d)) from [11],

dim (T3 (SUE(r,d)) Nh™1(0)) =1

for a generalE € pr(Sz2). Thushg : T5(SUE(r,d)) — W must have general fiber dimension
< 1. This implies that s (T5 (SU¢ (r, d))) is a hypersurface ifW. SinceT' (SUE(r,d)) C S,
this is a contradiction to the fact th&t is not dominantoveb. 0O

Let S be the hypersurface iIRT*(SU (r,d)) corresponding td 1 (D) in T*(SUL(r,d)).

For a general poinE € SU{ (r, d), the hypersurfac8g := S NPT (SUL(r, d)) will be called
theHitchin discriminantat £.

Recall that whenX C Py is a smooth subvariety, its dual variety is the subvariety of the
dual projective spac®j, corresponding to singular hyperplane sectionsXofSuppose the
normalizationX of X is smooth and-: X — X C Py is the normalization morphism. Then
X* is the closure of the set of hyperplanes containing the projective tangent space of a point of
X wherer is an immersion. This observation will be used implicitly in the proof of the following
theorem, for the case gf= 4.

THEOREM 4.4. —Assumey > 4. Let E € SU{(r,d) be a general point. Then the Hitchin
discriminant Sg C PT5(SUE(r,d)) is the dual variety of the variety of Hecke tangents
Cg C PTr(SUE(r,d)). In other wordsS defined above agrees wighin Corollary 2.2

Proof. —Let § € h~1(D) be a general point. Theh: E — E ® wc is an endomorphism of a
general stable bundl® such that its spectral curvg, ¢y has a unique ordinary double point
singularity which lies over a general point 6%. It suffices to show tha € PT}(SU¢ (r,d))
belongs to the dual variety ¢fz. By Proposition 4.2, for each € C, each eigenvalue @&, has
a 1-dimensional eigenspace. Thus we have a curve

Cy C PE*

biregular to the spectral curvg, ¢y corresponding to thé-dimensional eigenspaces.

Let Q7}, be the relative tangent bundle of the projective burdld® E* — C. Recall that when
an endomorphism of a vector spakeis regarded as a vector field @&V, the zero set of the
vector field corresponds to the set of eigenvectors of the endomorphism. \itheegarded as
a vertical vector field o E* twisted byw*w¢ via the isomorphism

H°(C,adp ®@we) = HY(PE*, Q) @ w'we),

0 vanishes exactly 06y. Thus, when we regard it as a sectiorfpf® 7m*wc onPQg, it defines
an element of the linear systel§y; ® m*w¢| with a singular point lying over the singular point
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of Cy by Lemma 4.5 below. This implies thétbelongs to the dual variety @fy becausey is
an immersion over a general point@fby Theorems 3.1 and 3.7.0

LEMMA 4.5, —Let
0 o0

V:al(zl,...,zn)g—|—~-~+an,1(z1,...,zn)
1

azn—l
be a holomorphic vectdield on the polydisd™. Assume that the zero set of the vector field
a1(z)=+=an-1(2)=0

is a curve with a singularity ab. Let {2 be the relative cotangent bundle of the projection
p: A" — A, p(21,...,2,) = z,. Then the hypersurface R(Q2) =2 P"~2 x A" defined by

ai(z1,...,2n)y1 + -+ an—1(21,...,2p)Yn-1=0

for the homogeneous coordinatgs : - - - : y,_1] € P"~2 has a singular point ovet; = --- =
zn = 0.

Proof. —Since

a1(z)=+=an-1(2)=0
is a curve with a singular point ate A", the matrix(gj} )|.=0 has rank< n — 2, by Jacobian

criterion of smoothness. Thus there exist complex numbers. , ¢,,_1, with ¢; # 0 for some,

satisfying
(0
=1 (92’]‘

Itis straightforward to check that the point

>ci =0 foreachl <j<n.
z2=0

le...zznzo’ [yl : ... :ynfl]: [Cl : .'.:Cnfl]
is a singular point of the hypersurface
a1(z1, -y zn)yn + -+ an—1(21,- -, 2n)Yn—1 =0. O

COROLLARY 4.6.—The irreducible hypersurfack—!(D) is the closure of the union of all
rational curves inl™(SUE (r, d)).

Proof. —By Corollary 2.2 and Theorem 4.4,~(D) is covered by rational curves. By
Proposition 4.2, there exists no rational curvdi(SUZ (r,d)) \ h~4(D). O

Remark4.7. — Note that for a general Hecke cudye
T(SUL(r,d))], = O2) & O(1)7 2 @ O~ D(g=D-2r+1

because’ is a minimal rational curve oSU¢(r,d) and ¢ - Kgblls (ra) = 27 A section/ of
&(r,

T*(SU (r, d))|. gives a smooth rational curve &in the notation of Corollary 2.2. On the other
hand, for a general € D, h=1(s) is an open subset of the compactified Jacobian of the spectral
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curve ofs which has a unique node (cf. [10, Remark 1.7]). The normalization of the compactified
Jacobian is &1 -bundle over an abelian variety which is the Jacobian of the normalization of the
spectral curve. The curvds the image of a fiber of thi®;-bundle. In [10, Remark 1.7], it was
stated that the image of thi®, -fiber has a node in the compactified Jacobian. This is inaccurate,
as/ is a smooth rational curve. In fact, the morghi[10, (1.13)] does not exist because the pull-
back of a torsion-free sheaf on the nodal curve tadsmnalization is not necessarily torsion-free.
The normalization map of the compactified Jacobian identifies two points on different fibers of
the P;-bundle, contrary to the claim in [10, Remark 1.7]. However this mistake in Remark 1.7
does not affect the rest of the argument in [10].

Remark4.8. — Itis possible to describe the sectidn Remark 4.7 more explicitly as a family
of Hecke transformations of a Higgs field. Such description may give a more direct proof of
Corollary 4.6 and more detailed information about the geometry of the Hitchin fibers. We will
leave it for a future investigation.

Remark4.9. — In the above manner, the section§'6{SU - (r,d)) over Hecke curves give a
rank-1 foliation on an open subset/of! (D). This foliation can be described in another way. The
cotangent bundI&* (SU/¢ (r, d)) has a natural symplectic form. The restriction of the symplectic
form on the hypersurface™! (D) must be a holomorphi2-form with a 1-dimensional kernel.

It is not difficult to check that the foliation defined by tHisdimensional kernel is precisely the
foliation given by Hecke curves.

5. Applications
As an application of Theorem 4.4, we will give a proof of the non-abelian Torelli theorem,
simplifying the proofin [10, Theorem E] fay > 4.

THEOREM 5.1.—Let C and C’ be two smooth projective curves of genus> 4. Let
f:SUL(r,d) — SUE(r,d) be a biregular morphism. Thefi induces a biregular morphism
cx=(C.

The following is a direct consequence of Corollary 4.6.
LEMMA 5.2. —In the situation of Theore®.1, let
W:=H(C,w&®) & - & H(C,wd"),
W' = H(C",wS?) @@ H(C',w&)
be the spaces of characteristic polynomials and
h:T* (SL{SC(T, d)) — W,
W T (SUE (r,d)) — W’

be the Hitchin maps. LeD Cc W (resp. D’ € W’) be the hypersurface consisting of
characteristic polynomials with singular spectral curves aSdC PT*(SU(r,d)) (resp.
S’ C PT*(SUL.(r,d))) be the hypersurface corresponding#to® (D) (resp.(h')~1(D’)). Let
df*:PT*(SUE (r,d)) — PT*(SUL(r, d)) be the pull-back by . Thendf*(S’) = S.

Proof of Theorem 5.1. ket E be a general point 8/ (r,d) andE’ = f(E). By Lemma5.2,
df (S ) = Sg. Thus by Theorem 4.4/, induces a biregular morphis@y, = Cg-. This induces
a biregular morphisnPQg = PQg by Theorem 3.1 and Theorem 3.7, and consequently
a biregular morphisnC = C” becauseC' (resp.C’) is the Albanese image dPQ2p (resp.
PQg). O
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A precise description of the automorphism group&#¢.(r,d), for g > 3, was given by
Kouvidakis and Pantev. An essential part of their work was the following, which we will prove
as an application of Theorem 4.4. This simplifies the proof in [10}for4.

THEOREM 5.3. —Let C be a smooth projective curve of genkist. The group of automor-
phisms ofSU/{.(r, d) is generated by automorphisms of the following two types whed.
(a) E— ~*FE wherev is an automorphism of the curve, and
(b) E'— E ® pwherey is anr-torsion of the Picard group of.
Whenr | 2d, additional generators of the following type are needed.
(¢) E— E* @ v wherev is a line bundle of degreé;—i on C whoserth power is isomorphic
to the square oflet(E).

We need two simple lemmas.

LEMMA 5.4.—Let E (resp.E’) be a vector bundle of rankon a smooth projective curv@
of genus> 4 andQ g (resp.f)g/) be the relative cotangent bundle ®F* (resp.P(E’)*) with
respect to the natural projectioy : PE* — C (resp.ww’: P(E’)* — C). Suppose there exists a
biregular morphisnG: PQ g — PQg/. Then there exists a biregular automorphismC — C
making the following diagram commutative.

POy — %> POy

Pk

C c

Moreover, eitherG descends to a biregular morphisPE* — P(E’)* or it descends to a
biregular morphisnPE* — PE'.

Proof. —The existence of is obvious by considering Albanese map. Each fiber ahd~’ is
isomorphic toPT*(P,_1) which has exactly two Mori contractions (of extremal rays)
Pr*(P,—1) — P,y and PT*(P,_,) —P;_,.

ThusPQpg (resp.PQg/) has exactly two Mori contractions

(resp. PQp — P(E')* and PQg — PE').
ThusG induces eithePE* = P(E')* or PE* = PE'. O

LEMMA 5.5.—In the situation of Lemm&.4, assume thatleg(E) = deg(E’) =: d and
det(E) = v* det(E’). Then denoting bRic’ (C)|[r] the r-torsion subgroup of the Picard group,
one of the following holds.

(i) If 1 2d, there existg: € Pic’(C)[r] such thatE = v*(E' @ p).

(i) If r | 2d, either there existg € Pic’(C)[r] such thatE = v*(E’ ® p), or there exists
v € Pic™ (O) with v&" = (det(E"))®? such thatE = v*((E')* @ v).

Proof. —From Lemma 5.4, it is obvious that eithBr> v*(E’ @ u) or E =2 ~v*((E')* @ v) for
some line bundleg, v on C'. The assumptiodet(E) = v* det(E’) can be easily translated to
the properties of: andv described in (i) and (ii). O
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Proof of Theorem 5.3. ket o be an automorphism a$i/¢(r,d). Arguing as in the proof
of Theorem 5.1, we see thatinduces a biregular morphis@: PQg = PQg for a general
E € SUi(r,d) andE’ = o(E). By Lemma 5.4¢ induces an automorphism € Aut(C) for
each generak € SU{(r,d). SinceAut(C) is finite, vz is independent oF for generalE.
Composingr with an automorphism of type (a), we may assume that I, the identity map
of C. Theno must agree with an automorphism of type (b) or (c) by Lemma 5c5.

As a final application of Theorem 4.4, we prove the following result on morphisms between
moduli spaces of bundles.

THEOREM 5.6.—Let C and C’ be two smooth projective curves of gengs> 4. Let
f:SUL(r,d) — SUE (r,d) be a surjective morphism. Thefis biregular.

Proof. —The key point is to prove an analogue of Lemma 5.2. In other words, when
df*: f*T*(SUE (r,d)) — T*(SUL(r,d)) is the natural morphism associated fpwe claim
thatdf*(f*S’) C S in the notation of Lemma 5.2. Note that the proof of Lemma 5.2 does not
work whenf is a priori not biregular.

To prove the claim, let be a general Hecke curve @i/¢, (r,d) and/ ¢ SUE (r,d) be an

irreducible component of ~1(¢). An elements € H°(¢,T*(SUZ., (r,d)) defines an element
f*o e HO(0, T*(SUL (r,d))). Let(’ be the image of *o in T*(SUL (r, d)). SinceW is affine,
(") is one points € W. Suppose ¢ D. By Proposition 4.2k~ (s) is an open subset’ of an
abelian varietyd. The natural projectiodl’ — SU¢(r, d) is dominant and so is its composition
with f, which is denoted by’ : A’ — SU%, (r,d). But the complete curvé satisfiesf’ (¢”) = £.
This is a contradiction to Proposition 2.4, becatieevariety of Hecke tangents is not linear. It
follows thats € D. Thusf*o has itsimage ik~ (D). Since(h’) ~1(D’) is covered by images of
o by Corollary 2.2 and Theorem 4.4, this implies that((h') =1 (D’)) c h=(D), as claimed.

Choose an analytic open subgetc SU¢(r,d) such thatf|y: U — f(U) is biholomorphic.
By the claim, for each € U, (dfu)* (S} () = Su. By Theorem 4.4f, (C,) = C},,. Then we
can proceed as in the proof of Theorem 5.1 and Theorem 5.3 to sho@ ti&t’ and f|; agrees
with the restriction of an automorphism 8t/ (r, d) to U. Hencef is biregular. O

Remark5.7. — The argument used in the proof of Theorem 5.6 shows that wheR, the
projectionh=1(s) — SUE(r,d) cannot be proper over a Hecke curve. In fact, there exists no
complete curve inh~!(s) which is mapped to a Hecke curve &U{ (r,d). Since for any
subvarietyZ of codimension= 2 in SU¢(r, d), there exists a Hecke curve disjoint fraf this
means that the locus where the projectiort (s) — SUZ (r, d) is not proper is of codimensidn
in SUE(r, d).
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