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Abstract

We pursue the study of one-dimensional symmetry of solutions to nonlinear equations involving nonlocal operators. We consider 
a vast class of nonlinear operators and in a particular case it covers the fractional p-Laplacian operator. Just like the classical 
De Giorgi’s conjecture, we establish a Poincaré inequality and a linear Liouville theorem to provide two different proofs of the 
one-dimensional symmetry results in two dimensions. Both approaches are of independent interests. In addition, we provide certain 
energy estimates for layer solutions and Liouville theorems for stable solutions. Most of the methods and ideas applied in the 
current article are applicable to nonlocal operators with general kernels where the famous extension problem, given by Caffarelli 
and Silvestre, is not necessarily known.
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1. Introduction

We examine nonlocal and nonlinear operators whose model is associated with the following energy functional for 
� ⊂R

n

E�
K (u,�) := K�

K(u,�) −
∫
�

F(u)dx, (1.1)

when the term K�
K is given by

K�
K(u,�) := 1

2

∫∫
R2n\(Rn\�)2

�[u(x) − u(y)]K(x − y)dydx. (1.2)
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For the above operator, we suppose that K is a nonnegative measurable kernel and even that is K(z) = K(−z) for 
z ∈R

n and F ∈ C1(R). We also assume that the function � ∈ C2(R+), �(0) = �′(0) = 0, �′ is an odd function with 
�, �′, �′′ > 0 in R+. For even nonlinearity � and even kernel K , the above kinetic energy K�

K becomes

K�
K(u,�) = 1

2

∫
�

∫
�

�[u(x) − u(y)]K(x − y)dydx +
∫
�

∫
Rn\�

�[u(x) − u(y)]K(x − y)dydx. (1.3)

The associated Euler–Lagrange nonlocal equation to (1.1) is∫∫
R2n

�′[u(x) − u(y)][v(x) − v(y)]K(x − y)dydx =
∫
Rn

f (u(x))v(x)dx, (1.4)

for every smooth function v with compact support and when f (t) = F ′(t). In this regard, we study solutions of the 
following nonlocal equation

T�[u(x)] = f (u(x)) in R
n, (1.5)

when the operator T� is defined by

T�[u(x)] := p.v.
∫
Rn �′[u(x) − u(y)]K(y − x)dy

= limε→0
∫
Rn\Bε(x)

�′[u(x) − u(y)]K(y − x)dy,
(1.6)

where the notation p.v. stands for the principal value. Note that when �(t) = t2

2 the operator T� is a linear operator 
and the associated equation is of the form

p.v.

∫
Rn

[u(x) − u(y)]K(y − x)dy = f (u) in R
n. (1.7)

The above linear operator is well-studied in the literature in particular for the following (translation invariant) standard 
kernel

K(x − z) = c(x − z)

|x − z|n+α
, (1.8)

where c(x − z) is bounded between two positive constants 0 < λ ≤ � and 0 < α < 2 (see [23] and references therein). 
For the case of λ = � that is when

K(x − z) = λ

|x − z|n+α
, (1.9)

the operator in (1.7) is known as the fractional Laplacian operator that is (−�)α/2. It is by now a well-known fact that 
the fractional Laplacian operator can be realized as the boundary operator (more precisely the Dirichlet-to-Neumann 
operator) of a suitable extension function in the half-space, see Caffarelli–Silvestre in [14]. In addition to above 
kernels, the following truncated kernels that are locally comparable to (1.8) and have been of great interests as well 
and with a finite range

c(x − z)

|x − z|n+α
1{|x−z|≤r∗} ≤ K(x − z) ≤ c(x − z)

|x − z|n+α
1{|x−z|≤R∗}, (1.10)

when 0 < r∗ ≤ R∗. We also consider the following kernel with decays that are

K(x, z) = c(x − z)

|x − z|n+α
when |x − z| ≤ R∗, (1.11)

and ∫
r<|x−z|<2r

|K(x, z)|dz ≤ CD(r) when r > R∗, (1.12)

where 0 ≤ D ∈ C(R+) with limr→∞ D(r) = 0.
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The above problems (1.1), (1.5) and (1.4) have been of great interests in the literature for various nonlinearity �
and kernel K . For the case of general � satisfying

�(t) ≤ �|t | and �(t)t ≥ t2,

and kernels modeled on the fractional p-Laplacian, several studies have been devoted to the regularity and a priori 
estimates for the weak solutions. In this regard we refer interested readers to [15,16,27] and references therein. The 
fractional-type p-Laplacian is when �(t) = |t |p

p
for p ≥ 2. The above equation (1.5) is then of the following form∫

Rn

|u(x) − u(y)|p−2[u(x) − u(y)]K(y − x)dy = f (u) in R
n. (1.13)

The operator in the above equation with kernel (1.9) for α = ps when 0 < s < 1 is known as fractional p-Laplacian 
operator that is denoted usually (−�p)s , see for instance [7]. Various properties of solutions of this equation are 
studied extensively in the literature. Let us mention that there are many other functions fulfilling conditions on � such 
as �(t) = √

1 + t2 − 1. For this choice of �, the equation (1.5) is of the following form∫
Rn

[
u(x) − u(y)√

1 + |u(x) − u(y)|2
]

K(y − x)dy = f (u) in R
n. (1.14)

The above equation can be seen as the fractional minimal graph equation. Throughout the article, we assume that there 
exist positive constant C and a nonnegative constant β such that β > α, one of the following holds

�′′(t) ≤ Ctβ−2 for t ∈R
+, (1.15)

�′(t) ≤ Ctβ−1 for t ∈R
+, (1.16)

�(t) ≤ Ctβ for t ∈R
+, (1.17)

when β ≥ 2. Note that for equations (1.7), (1.13) and (1.14) the exponent β is given by β = 2, β = p ≥ 2 and β = 2, 
respectively.

In the current article, we also study the sum of nonlocal operators

S�[u(x)] = f (u(x)) in R
n, (1.18)

when the operator S� stands for

S�[u(x)] :=
m∑

i=1

T i
�i

[u(x)],

where each T i
�i

is given by (1.6) that is

T i
�i

[u(x)] =
m∑

i=1

lim
ε→0

∫
Rn\Bε(x)

�′
i[u(x) − u(y)]Ki(y − x)dy for m,n ≥ 1.

Needless to say that for the case of m = 1 operators given in (1.18) and (1.5) are equivalent. The sum operators of the 
form (1.18), and in particular the sum of fractional Laplacian operators, have been studied from both deterministic and 
probabilistic perspectives. In this regard we refer interested readers to [12] by Cabré and Serra, to [29] by Silvestre, 
to [5] by Bass and Levin and references therein. We assume that the truncated kernels Ki are of the form

ci(x − y)

|x − y|n+αi
1{|x−z|≤ri } ≤ Ki(x − y) ≤ ci(x − y)

|x − y|n+αi
1{|x−y|≤Ri }, (1.19)

for 0 < ri ≤ Ri , αi > 0 and 0 < λi ≤ ci ≤ �i . Note that (1.19) is locally comparable to

Ki(x − y) = ci(x − y)

n+αi
. (1.20)
|x − y|
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We assume that each �i satisfies one of the conditions (1.15)–(1.17) for βi ≥ 2 and βi > αi . As an example, consider 
operators T 1

�1
, T 2

�2
and T 3

�3
given with (1.7), (1.13) and (1.14), respectively. For these operators we have β1 = 2, 

β2 = p and β3 = 2 so that (1.17) holds. Now, consider the following nonlocal problem

S�[u(x)] =
3∑

i=1

T i
�i

[u(x)] = f (u(x))) in R
n. (1.21)

Suppose also that α1 = 2s, α2 = ps and α3 = 2s for 0 < s < 1 and p > 2 so that kernels Ki satisfy all of the 
requirements on indices. We also consider the following kernel with decays that is

Ki(x, z) = ci(x − z)

|x − z|n+αi
when |x − z| ≤ Ri, (1.22)

and ∫
r<|x−z|<2r

|Ki(x, z)|dz ≤ CDi(r) when r > Ri, (1.23)

where each 0 ≤ Di ∈ C(R+) with limr→∞ Di(r) = 0.
The ideas and methods developed in the current article are strongly motivated by a famous conjecture of De Giorgi 

(1978) in [19] that states bounded monotone solutions of the Allen–Cahn equation must be one-dimensional at least 
for n ≤ 8. Here by monotonicity we mean monotonicity in one direction, e.g. ∂xnu > 0. The goal of the present article 
is to develop symmetry results for stable solutions of semilinear nonlocal equations involving nonlinear operators 
described above in lower dimensions. The notion of stable solutions is as follows.

Definition 1.1. A solution u of (1.5) is called stable when there exists φ > 0 such that

L�[φ(x)] = f ′(u)φ(x) in R
n, (1.24)

where L�(φ(x)) is the linearized operator and given by

L�[φ(x)] := lim
ε→0

∫
Rn\Bε(x)

�′′[u(x) − u(y)][φ(x) − φ(y)]K(y − x)dy.

Note that stability is weaker assumption that monotonicity. The De Giorgi’s conjecture has been of great interests in 
the literature for the past decades from mathematical analysis, geometry and mathematical physics perspectives. The 
conjecture was solved for n = 2 by Ghoussoub–Gui in [24], for n = 3 by Ambrosio–Cabré in [2] for the Allen–Cahn 
equation, and later by Alberti–Ambrosio–Cabré [1] for a general nonlinearity. In higher dimensions, up to some 
additional natural assumptions, the conjecture is settled by Savin in [28] and also by Ghoussoub–Gui in [25]. In 
addition, we refer interested readers to [3,4,6,21] for related results. A counterexample in dimensions n ≥ 9 has been 
obtained by del Pino–Kowalczyk–Wei in [20]. Note also that De Giorgi type results for the case of fractional Laplacian 
operator are provided in [9–11,13,26,30] and references therein.

Here is how this article is structured. In Section 2, we establish a Poincaré type inequality for stable solutions of 
(1.5) with a general kernel K . This inequality is inspired by the ones given originally by Sternberg and Zumbrun in 
[31,32] and later in [17,21–23]. In Section 3, we apply the Poincaré inequality to establish our main result that is 
one-dimensional symmetry of solutions for (1.5) in two dimensions when the kernel is either with finite range or with 
decay at infinity. In Section 4, we prove a linear Liouville theorem and we apply the theorem to provide a second proof 
of our main results. In Section 5, we prove certain energy estimates for layer solutions under various assumptions on 
kernels. Lastly, in Section 6, we consider the sum of nonlocal operators examined in previous sections and we provide 
similar results.

2. A Poincaré inequality for stable solutions

We start this section with a technical lemma that is useful in the forthcoming proofs.
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Lemma 2.1. Assume that operators T� and L� are given by (1.6) and (1.24) with a measurable and even kernel K . 
Suppose also that f, g ∈ C1(Rn). Then,∫

Rn

g(x)T�(f (x))dx = 1

2

∫
Rn

∫
Rn

�′[f (x) − f (y)] [g(x) − g(y)]K(x − y)dxdy, (2.1)

and ∫
Rn

g(x)L�(f (x))dx = 1

2

∫
Rn

∫
Rn

�′′[u(x) − u(y)][f (x) − f (y)] [g(x) − g(y)]K(x − y)dxdy. (2.2)

Proof. These are direct consequences of the fact that �′ and �′′ are odd and even functions, respectively. �
In what follows we establish a stability inequality that is our main tool to derive a priori estimates on stable 

solutions. Note that this inequality is valid for a general kernel K and nonlinearity �.

Proposition 2.1. Let u be a stable solution of (1.5). Then, for any ζ ∈ C1
c (Rn),∫

Rn

f ′(u)ζ 2(x)dx ≤ 1

2

∫∫
R2n

�′′[u(x) − u(y)][ζ(x) − ζ(y)]2K(x − y)dydx. (2.3)

Proof. Let u denote a stable solution of (1.5). Then, there exists a function φ such that

L�[φ] = f ′(u)φ in R
n. (2.4)

Multiply both sides with ζ
2

φ
where ζ is a test function. Therefore,

L�[φ]ζ
2

φ
= f ′(u)ζ 2 in R

n.

From this and (2.4) we get∫
Rn

f ′(u(x))ζ 2(x)dx ≤
∫
Rn

L�[φ(x)]ζ
2(x)

φ(x)
dx. (2.5)

Applying Lemma 2.1 for the right-hand side of the above, we have∫
Rn

L�[φ(x)]ζ
2(x)

φ(x)
dx = 1

2

∫
Rn

∫
Rn

�′′[u(x) − u(y)][φ(x) − φ(y)]
[

ζ 2(x)

φ(x)
− ζ 2(y)

φ(y)

]
K(x − y)dxdy.

Note that for a, b, c, d ∈R when ab < 0 we have

(a + b)

[
c2

a
+ d2

b

]
≤ (c − d)2.

Since each φ is positive, we have φ(x)φ(z) > 0. Setting a = φ(x), b = −φ(y), c = ζ(x) and d = ζ(y) in the above 
inequality and from the fact that ab = −φ(x)φ(y) < 0, we conclude

[φ(x) − φ(y)]
[

ζ 2(x)

φ(x)
− ζ 2(y)

φ(y)

]
≤ [ζ(x) − ζ(y)]2.

Note that �′′ is even and �′′ > 0 in R+. Therefore,∫
Rn

L[φ(x)]ζ
2(x)

φ(x)
dx ≤ 1

2

∫
Rn

∫
Rn

�′′[u(x) − u(y)][ζ(x) − ζ(y)]2K(y − x)dydx.

This together with (2.5) complete the proof. �
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We are now ready to establish a Poincaré type inequality for stable solutions. As mentioned earlier, the methods 
and ideas that we apply here are strongly motivated by the ones given in [17,21–23,31,32] and references therein. Note 
that the following inequality is valid for a vast class of kernels K and nonlinearities �. Note also that the function f
does not appear in the inequality directly.

Theorem 2.1. Assume that n ≥ 1 and u is a stable solution of (1.5). Then,∫∫
R2n∩{|∇xu|
=0}

�′′[u(x) − u(x + y)]Ay(∇xu)[η2(x) + η2(x + y)]K(y)dxdy (2.6)

≤
∫∫
R2n

�′′[u(x) − u(x + y)]By(∇xu)[η(x) − η(x + y)]2K(y)dxdy, (2.7)

for any η ∈ C1
c (Rn) where

Ay(∇xu) := |∇xu(x)||∇xu(x + y)| − ∇xu(x) · ∇xu(x + y), (2.8)

By(∇xu) := |∇xu(x)||∇xu(x + y)|. (2.9)

Proof. Suppose that u is a stable solution of (1.5), Proposition 2.1 implies that the stability inequality (2.3) holds. 
Test the stability inequality on ζ(x) = |∇xu(x)|η(x) where η ∈ C1

c (Rn) is a test function to get∫
Rn

f ′(u)|∇xu(x)|2η2(x)dx

≤ 1

2

∫∫
R2n

�′′[u(x) − u(x + y)][|∇xu(x)|η(x) − |∇xu(x + y)|η(x + y)]2K(y)dydx.

Expanding the right-hand side of the above inequality, we get∫
Rn

f ′(u)|∇xu(x)|2η2(x)dx (2.10)

≤ 1

2

∫∫
R2n

�′′[u(x) − u(x + y)]|∇xu(x)|2η2(x)K(y)dydx

+1

2

∫∫
R2n

�′′[u(x) − u(x + y)]|∇xu(x + y)|2η2(x + y)K(y)dydx

−
∫∫
R2n

�′′[u(x) − u(x + y)]|∇xu(x)||∇xu(x + y)|η(x)η(x + y)K(y)dydx.

We now apply the equation (1.5). Note that for any index 1 ≤ k ≤ n we have

∂xk
T�[u(x)] = L�[∂xk

u(x)]
=
∫
Rn

�′′[u(x) − u(y)][∂xk
u(x) − ∂xk

u(x + y)]K(y − x)dy

= f ′(u)∂xk
u(x).

Multiplying both sides of the above equation with ∂xk
u(x)η2(x) and integrating we have∫

Rn

f ′(u)[∂xk
u(x)]2η2(x)dx =

∫
Rn

∂xk
u(x)η2(x)L�[∂xk

u(x)]dx.

From Lemma 2.1 we can simplify the right-hand side of the above as



M. Fazly, Y. Sire / Ann. I. H. Poincaré – AN 36 (2019) 523–543 529
1

2

∫∫
R2n

�′′[u(x) − u(x + y)]
[
∂xk

u(x)η2(x) − ∂xk
u(x + y)η2(x + y)

] [
∂xk

u(x) − ∂xk
u(x + y)

]
K(y)dxdy.

Combining the above two equalities, we get∫
Rn

f ′(u)|∇xu(x)|2η2(x)dx

= 1

2

∫∫
R2n

�′′[u(x) − u(x + y)]|∇xu(x)|2η2(x)K(y)dxdy

+1

2

∫∫
R2n

�′′[u(x) − u(x + y)]|∇xu(x + y)|2η2(x + y)K(y)dxdy

−1

2

∫∫
R2n

�′′[u(x) − u(x + y)]∇xu(x) · ∇xu(x + y)η2(x)K(y)dxdy

−1

2

∫∫
R2n

�′′[u(x) − u(x + y)]∇xu(x) · ∇xu(x + y)η2(x + y)K(y)dxdy.

Combining this and (2.10) we end up with∫∫
R2n

�′′[u(x) − u(x + y)]|∇xu(x)||∇xu(x + y)|η(x)η(x + y)K(y)dydx

≤ 1

2

∫∫
R2n

�′′[u(x) − u(x + y)]∇xu(x) · ∇xu(x + y)
[
η2(x) + η2(x + y)

]
K(y)dxdy.

Using the fact that η(x)η(x + y) = 1
2 [η2(x) + η2(x + y)] − 1

2 [η(x) − η(x + y)]2 and regrouping terms we get the 
desired result. �
3. One-dimensional symmetry: via a Poincaré inequality

In this section, we apply the Poincaré inequality, given in former section, to establish one-dimensional symmetry 
results for bounded stable solution of (1.5) in two dimensions. Due to mathematical techniques and ideas that we 
apply in the proof, we assume that the kernel K is of finite range or with certain decay at infinity.

Theorem 3.1. Suppose that u is a bounded stable solution of (1.5) in two dimensions and (1.15) holds. Assume also 
that the kernel K satisfies either (1.10) or (1.11) and (1.12) with D(r) < Cr−θ for θ > β + 1. Then, u must be a 
one-dimensional function.

Proof. From the Poincaré inequality (2.6), we have∫∫
R2n∩{|∇xu|
=0}

�′′[u(x) − u(x + y)]Ay(∇xu)[η2(x) + η2(x + y)]K(y)dxdy (3.1)

≤ C

∫∫
R2n

�′′[u(x) − u(y)] [η(x) − η(y)]2 K(x − y)dxdy,

where Ay(∇xu) := |∇xu(x)||∇xu(x+y)| −∇xu(x) ·∇xu(x+y) ≥ 0 for all x, y and C is a positive constant depending 
on ||∇xu||∞. Since �′′ satisfies (1.15), we have

�′′[u(x) − u(y)] ≤ C|u(x) − u(y)|β−2,
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for β ≥ 2 and β > α. Note that |u(x) − u(y)| ≤ C|x − y| when C is a positive constant depending only on ||u||∞. 
Therefore,

�′′[u(x) − u(y)] ≤ C|x − y|β−2.

From this, (3.1) and the assumptions on the kernel, we get∫∫
R2n∩{|∇xu|
=0}

�′′[u(x) − u(x + y)]Ay(∇xu)[η2(x) + η2(x + y)]K(y)dxdy (3.2)

≤ C

∫∫
R2n

[η(x) − η(y)]2 |x − y|β−2K(x − y)dxdy. (3.3)

We now test the above inequality on the following standard test function

η(x) :=

⎧⎪⎨
⎪⎩

1
2 , if |x| ≤ √

R,
log R−log |x|

log R
, if

√
R < |x| < R,

0, if |x| ≥ R.

Suppose that �R := ∪6
i=1�

i
R where

�1
R := B√

R
× (BR \ B√

R
), �2

R := (BR \ B√
R
) × (BR \ B√

R
), �3

R := (BR \ B√
R
) × (Rn \ BR),

�4
R := B√

R
× (Rn \ BR), �5

R := B√
R

× B√
R
, �6

R := (Rn \ BR) × (Rn \ BR).

From the definition of test function η we have |η(x) − η(y)| = 0 on �5
R and �6

R . We now apply this in (3.2) to get∫∫
{Rn×B√

R
}∩{|∇xu|
=0}

�′′[u(x) − u(x + y)]Ay(∇xu)K(y)dxdy (3.4)

≤ C

4∑
i=1

∫∫
�i

R∩|x−y|≤R∗

[η(x) − η(y)]2 |x − y|β−2−n−αdxdy

+C

4∑
i=1

∫∫
�i

R∩|x−y|>R∗

[η(x) − η(y)]2 |x − y|β−2K(x − y)dxdy

=: C
4∑

i=1

Ii(R) + C

4∑
i=1

Ji(R). (3.5)

Applying properties of the test function η to compute an upper bound for each Ii(R) and Ji(R). In this regard, we use 
the following straightforward inequality

| logb − loga|2 ≤ 1

ab
|b − a|2, (3.6)

where a, b ∈ R
+. We now consider various cases based on the domains.

Case 1: Let (x, y) ∈ �1
R ∩ |x − y| ≤ R∗. Without loss of generality, we assume that x ∈ B√

R
\ B√

R−R∗ and y ∈
B√

R+R∗ \ B√
R

. Note that η(x) = 1
2 and η(y) = 1 − log |y|

log R
. Applying (3.6) and the fact that |x| < √

R ≤ |y| we get

|η(x) − η(y)|2 = 1

log2 R
| log |y| − log

√
R|2 ≤ 1

log2 R

1

|y|√R
||y| − √

R|2

≤ 1

R log2 R
||y| − |x||2 ≤ 1

R log2 R
|y − x|2.

From this for kernels satisfying (1.10) we have
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I1(R) ≤ C

R log2 R

⎡
⎢⎣ ∫
B√

R
\B√

R−R∗

dx

⎤
⎥⎦
⎡
⎢⎣∫
BR∗

|z|β−n−αdz

⎤
⎥⎦

≤ C

β − α

R
β−α∗√

R log2 R
,

where we have used the assumptions β − α > 0 and n = 2. We now consider kernels satisfying (1.11)–(1.12) with 
D(r) < Cr−θ when θ > β + 1. Therefore,

J1(R) ≤ C

R log2 R

⎡
⎢⎣ ∫
B√

R
\B√

R−R∗

dx

⎤
⎥⎦
⎡
⎢⎣ ∞∑

k=1

∫
kR∗<|z|<2kR∗

|z|βK(z)dz

⎤
⎥⎦ (3.7)

≤ CR
β−θ∗

R log2 R

⎡
⎢⎣ ∫
B√

R
\B√

R−R∗

dx

⎤
⎥⎦
[ ∞∑

k=1

kβ−θ

]
≤ CR

β−θ∗√
R log2 R

.

Case 2: Suppose that (x, y) ∈ �2
R ∩ |x − y| ≤ R∗. Without loss of generality we assume that |x| ≤ |y|. Since x, y ∈

BR \ B√
R

, we have

|η(x) − η(y)|2 = 1

log2 R
| log |y| − log |x||2 ≤ 1

log2 R

1

|x||y| ||y| − |x||2 ≤ 1

|x|2 log2 R
|y − x|2.

From this for kernels (1.10) we conclude

I2(R) ≤ C

log2 R

∫
BR\B√

R

1

|x|2 dx

∫
BR∗

|z|β−n−αdz ≤ C

log2 R

R∫
√

R

rn−3dr

R∗∫
0

rβ−1−αdr

≤ C

β − α

R
β−α∗

logR
,

and again we have used the assumptions β − α > 0 and n = 2. On the other hand, for kernels satisfying (1.11) and 
(1.12) with decay D(r) < Cr−θ when θ > 3 we have

J2(R) ≤ C

log2 R

⎡
⎢⎣ ∫
BR\B√

R

dx

|x|2

⎤
⎥⎦
⎡
⎢⎣ ∞∑

k=1

∫
kR∗<|z|<2kR∗

|z|βK(z)dz

⎤
⎥⎦ (3.8)

≤ CR
β−θ∗

log2 R

⎡
⎢⎣

R∫
√

R

rn−3dr

⎤
⎥⎦
[ ∞∑

k=1

kβ−θ

]
≤ CR

β−θ∗
logR

.

Case 3: Suppose that (x, y) ∈ �3
R ∩ |x − y| ≤ R∗. Without loss of generality we assume that x ∈ BR \ BR−R∗ and 

y ∈ BR+R∗ \ BR for large enough R. Therefore, η(x) = 1 − log |x|
log R

and η(y) = 0. Applying (3.6) and the fact that 
|x| < R ≤ |y|, we have

|η(x) − η(y)|2 = 1

log2 R
| log |x| − logR|2 ≤ 1

log2 R

1

|x|R ||x| − R|2 ≤ 1

|x|2 log2 R
||y| − |x||2

≤ 1

|x|2 log2 R
|y − x|2.

We first assume that (1.10) and we provide the following upper bound
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I3(R) ≤ C

log2 R

∫
BR\BR−R∗

1

|x|2 dx

∫
BR∗

|z|β−n−αdz

≤ C

β − α

R
β−α∗

log2 R
.

Assume that (1.11) and (1.12) hold when D(r) < Cr−θ for θ > β + 1. Then,

J3(R) ≤ CR
β−θ∗

logR
. (3.9)

Case 4: Suppose that (x, y) ∈ �4
R . Note that η(x) = 1

2 and η(y) = 0 and |x − y| > R − √
R > R∗ for large enough R. 

This implies that I4(R) = 0 for either (1.10) or (1.11)–(1.12). Note also that J4(R) = 0 provided (1.10). Therefore, 
we assume that the kernel satisfy the decay assumptions (1.11)–(1.12) and

J4(R) = 1

2

∫
B√

R

dx

∞∑
k=1

∫
k(R−√

R)<|z|<2k(R−√
R)

|z|β−2K(z)dz ≤ CR

(R − √
R)θ−β+2

∞∑
k=1

kβ−2−θ ≤ C

Rθ−β+1 .

From the above cases and (3.4), we get

1

2

∫∫
{R2×B√

R
}∩{|∇xu|
=0}

�′′[u(x) − u(x + y)]Ay(∇xu)K(y)dxdy ≤ C

β − α

R
β−α∗

logR
for large R.

Sending R → ∞ and applying the fact that Ay(∇xu) ≥ 0 for all x, y ∈R
2, we get

�′′[u(x) − u(x + y)]Ay(∇xu)K(y) = 0 a.e. for all x, y ∈ R
2.

Since u is not constant and �′′ is an even function, we have �′′(u(x) − u(x + y)) > 0. Therefore, Ay(∇xu) = 0 for 
all x ∈ R

2 and y ∈ Br∗ . This implies that

|∇xu(x)||∇xu(x + y)| = ∇xu(x) · ∇xu(x + y),

when |∇xu| 
= 0. The above is equivalent to

ux1(x)ux2(x + y) = ux1(x + y)ux2(x),

and

∇xu(x) · ∇⊥
x u(x + y) = 0.

This finishes the proof. �
For the rest of this section, we provide a Liouville theorem for solutions of (1.5) under some sign assumptions on 

the function f .

Theorem 3.2. Let u be a bounded solution of (1.5) when the kernel K satisfies either (1.10) or (1.11)–(1.12) with 
D(r) < Cr−θ when θ > β + 1. Suppose that � satisfies (1.16). If f (u) ≥ 0 or uf (u) ≤ 0, then u must be constant 
provided n ≤ β .

Proof. Suppose that f (u) ≥ 0. Let η be a test function and multiply (1.5) with (u(x) − ||u||∞)η2m(x) and integrate 
to get∫

Rn

�′[u(x) − u(y)](u(x) − ||u||∞)η2m(x)T�[u(x)]dx ≤ 0,

for m := β ≥ 1. We now apply the technical Lemma 2.1 to conclude
2
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0 ≥
∫∫
R2n

�′[u(x) − u(y)][(u(x) − ||u||∞)η2m(x) − (u(y) − ||u||∞)η2m(y)]K(x − y)dxdy. (3.10)

Adding and subtracting u(y)η2m(x) and u(x)η2m(y) to above and applying the fact that �′ is an odd function, we get∫∫
R2n

�′[u(x) − u(y)][u(x) − u(y)][η2m(x) + η2m(y)]K(x − y)dxdy

≤ 4||u||∞
∫∫
R2n

|�′[u(x) − u(y)]||η2m(x) − η2m(y)|K(x − y)dxdy.

Note that |η2m(x) − η2m(y)| ≤ 2m|η(x) − η(y)||η2m−1(x) + η2m−1(y)|. This and above implies that∫∫
R2n

�′[u(x) − u(y)][u(x) − u(y)][η2m(x) + η2m(y)]K(x − y)dxdy

≤ C

∫∫
R2n

|�′[u(x) − u(y)]||η(x) − η(y)|[η2m−1(x) + η2m−1(y)]K(x − y)dxdy,

where C is a positive constant and it is independent from R. Consider the standard test function η when η = 1 in BR

and η = 0 in Rn \ B2R with η ∈ C1
c (Rn) and ||∇η||∞ < CR−1 in B2R \ BR . We now apply the Hölder inequality with 

exponent to get∫∫
R2n

�′[u(x) − u(y)][u(x) − u(y)][η2m(x) + η2m(y)]K(x − y)dxdy (3.11)

≤ C

⎡
⎢⎣∫∫

�R

|�′[u(x) − u(y)]| 2m
2m−1 [η2m(x) + η2m(y)]K(x − y)dxdy

⎤
⎥⎦

2m−1
2m

(3.12)

⎡
⎢⎣∫∫

�R

|η(x) − η(y)|2mK(x − y)dxdy

⎤
⎥⎦

1
2m

, (3.13)

when

�R = ∪6
i=1�

i
R and each �i

R is given by (3.14)

�1
R := BR × (B2R \ BR),�2

R := (B2R \ BR) × (B2R \ BR),�3
R := (B2R \ BR) × (Rn \ B2R),

�4
R := BR × (Rn \ B2R), �5

R := BR × BR, �6
R := (Rn \ B2R) × (Rn \ B2R).

Note that from the assumptions we have |�′[u(x) − u(y)]| ≤ |u(x) − u(y)]|2m−1. Multiplying both side of this with 
|�′[u(x) − u(y)]|2m−1, we conclude

|�′[u(x) − u(y)]|2m ≤ |u(x) − u(y)]|2m−1|�′[u(x) − u(y)]|2m−1.

From the oddness assumption on �′, we have t�(t) ≥ 0 for t ∈R. Therefore,

|�′[u(x) − u(y)]| 2m
2m−1 ≤ �′[u(x) − u(y)][u(x) − u(y)].

Substituting this in (3.11) we conclude∫∫
2n

�′[u(x) − u(y)][u(x) − u(y)][η2m(x) + η2m(y)]K(x − y)dxdy (3.15)
R
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≤ C

⎡
⎢⎣∫∫

�R

�′[u(x) − u(y)][u(x) − u(y)][η2m(x) + η2m(y)]K(x − y)dxdy

⎤
⎥⎦

2m−1
2m

(3.16)

⎡
⎢⎣∫∫

�R

|η(x) − η(y)|2mK(x − y)dxdy

⎤
⎥⎦

1
2m

. (3.17)

We now provide an upper bound for (3.17). Note that when (x, y) ∈ �5
R ∪ �6

R , we have |η(x) − η(y)| = 0.∫∫
�R

|η(x) − η(y)|2mK(x − y)dxdy =
4∑

i=1

∫∫
�i

R∩{|x−y|≤R∗}
|η(x) − η(y)|2mK(x − y)dxdy

+
4∑

i=1

∫∫
�i

R∩{|x−y|>R∗}
|η(x) − η(y)|2mK(x − y)dxdy

=
4∑

i=1

Ii(R) +
4∑

i=1

Ji(R).

For (x, y) ∈ �4
R , we have |η(x) − η(y)| = 1 and for (x, y) ∈ ∪3

i=1�
i
R , we conclude

|η(x) − η(y)|β ≤ CR−β |x − y|β.

We now consider each domain �i
R for 1 ≤ i ≤ 3 and �4

R separately to provide upper bounds for (3.17).
Case 1: Suppose that (x, y) ∈ �1

R . Then, for kernels satisfying (1.10) we obtain

I1(R) ≤ CR−β

∫
BR\BR−R∗

∫
BR+R∗\BR

|x − y|βK(x − y)dydx

≤ CR−β

∫
BR\BR−R∗

dx

∫
BR∗

|z|β−n−αdz ≤ CR∗β−α

β − α
Rn−1−β.

Now suppose that (1.11)–(1.12) hold with D(r) < Cr−θ when θ > β + 1. Then,

J1(R) ≤ CR−β

⎡
⎢⎣∫
BR

dx

⎤
⎥⎦
⎡
⎢⎣ ∞∑

k=1

∫
kR∗<|z|<2kR∗

|z|βK(z)dz

⎤
⎥⎦≤ CR

β−θ∗
Rβ

⎡
⎢⎣∫
BR

dx

⎤
⎥⎦
[ ∞∑

k=1

kβ−θ

]
≤ CR

β−θ∗
Rβ−n

,

where we have used θ > β + 1 and β − α > 0.
Case 2: Suppose that (x, y) ∈ �2

R . Then, whenever (1.10) holds we have

I2(R) ≤ CR−β

⎡
⎢⎣ ∫
B2R\BR

dx

⎤
⎥⎦
⎡
⎢⎣∫
BR

|z|β−n−αdz

⎤
⎥⎦

≤ CR∗β−α

β − α
Rn−β.

For kernels satisfying (1.11)–(1.12), the above estimate holds for I2(R) and

J2(R) ≤ CR−β

⎡
⎢⎣ ∫
B2R\BR

dx

⎤
⎥⎦
⎡
⎢⎣ ∞∑

k=1

∫
kR∗<|z|<2kR∗

|z|βK(z)dz

⎤
⎥⎦≤ CR

β−θ∗
Rβ−n

, (3.18)

where we have used θ > β + 1 and β − α > 0.
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Case 3: Suppose that (x, y) ∈ �3
R . Just like the previous cases we first assume that (1.10) holds. Then,

I3(R) ≤ CR−β

∫
B2R\B2R−R∗

∫
B2R+R∗\B2R

|x − y|βK(x − y)dydx

≤ CR−β

∫
B2R\B2R−R∗

dx

∫
BR∗

|z|β−n−αdz ≤ CR
β−α∗

β − α
Rn−1−β .

When the kernel satisfies (1.11)–(1.12), then an upper bound of the form (3.18) holds for J3(R).
Case 4: Suppose that (x, y) ∈ �4

R . Note that I4(R) = J4(R) = 0 whenever (1.10) holds for large enough R. We 
now assume that (1.11)–(1.12) holds and we provide an estimate for J4(R). Note that η(x) = 1 and η(y) = 0 and 
|x − y| > R > R∗,

J4(R) =
⎡
⎢⎣∫
BR

dx

⎤
⎥⎦
⎡
⎢⎣ ∞∑

k=1

∫
kR<|z|<2kR

K(z)dz

⎤
⎥⎦≤ CRn−θ

∞∑
k=1

k−θ ≤ CRn−θ . (3.19)

From the assumption n ≤ β and from the estimate (3.15), we conclude∫∫
�R

�′[u(x) − u(y)][u(x) − u(y)][η2m(x) + η2m(y)]K(x − y)dxdy ≤ C,

where C is a positive constant that is independent from R. From this and (3.15), we get∫∫
R2n

�′[u(x) − u(y)][u(x) − u(y)]K(x − y)dxdy = 0.

This implies that �′[u(x) −u(y)][(u(x) − (u(y)]K(x −y) = 0 a.e. (x, y) ∈ R
n ×R

n. From the assumptions, we have 
�′ is an odd function and �′ > 0 in R+. This implies that �′[u(x) − u(y)][(u(x) − (u(y)] ≥ 0 and equality occurs if 
and only if u(x) = u(y) for x ∈ R

2 and y ∈ Br∗(x). This implies that u is constant. Note that the case of uf (u) ≤ 0 is 
similar and we omit the proof. �
4. Liouville theorem: second proof of Theorem 3.1

We now provide a Liouville theorem for the quotient σ := ψ
φ

when ψ := ∇u · ν for ν(x) = ν(x′, 0) : Rn−1 → R

and φ solves the linearized system (1.24). Note that for stable solutions u of (1.5), there exists a function φ such that

L�[φ(x)] = f ′(u)φ(x). (4.1)

Differentiating (1.18) with respect to x, we get

L�[ψ(x)] = f ′(u)ψ(x). (4.2)

From (4.2) and the fact that ψ = σφ, we have

L�[σ(x)φ(x)] = f ′(u)σ (x)φ(x). (4.3)

Multiply (4.1) with −σ and add with (4.3) to get

L�[σ(x)φ(x)] − σ(x)L�[φ(x)] = 0. (4.4)

Note that for any two functions g, h ∈ C1(Rn), the following technical identity holds

L�[g(x)h(x)] = g(x)L�[h(x)] + h(x)L�[g(x)]
−
∫
n

�′′[u(x) − u(y)] [g(x) − g(y)] [h(x) − h(y)]K(x − y)dy.
R



536 M. Fazly, Y. Sire / Ann. I. H. Poincaré – AN 36 (2019) 523–543
Combining (4.4) and (4.5) for h = φ and g = σ , we conclude

φ(x)L�[σ(x)] −
∫
Rn

�′′[u(x) − u(y)][σ(x) − σ(y)][φ(x) − φ(y)]K(x − y)dy = 0. (4.5)

This implies that∫
Rn

�′′ [u(x) − u(y)] (σ (x) − σ(y))φ(y)K(x − y)dy = 0. (4.6)

Theorem 4.1. Suppose that σ and φ satisfy (4.6) and φ does not change sign. Assume also that∫∫
{∪4

k=1�
k
R}

�′′ [u(x) − u(y)] [σ(x) + σ(y)]2φ(x)φ(y)|x − y|2K(x − y)dydx ≤ CR2, (4.7)

where �k
R are given in (3.14). Then, σ must be constant.

Proof. Multiplying both sides of (4.6) with η2(x)σ (x)φ(x) and integrating, we get∫∫
R2n

�′′ [u(x) − u(y)] (σ (x) − σ(y))φ(x)φ(y)K(x − y)η2(x)dxdy = 0,

for a test function η ∈ C1
c (Rn). Rearranging terms and apply the fact that �′′ is an even function, we get∫∫

R2n

�′′ [u(x) − u(y)] [η2(x)σ (x) − η2(y)σ (y)][σ(x) − σ(y)]φ(x)φ(y)K(x − y)dydx = 0. (4.8)

Note that

[η2(x)σ (x) − η2(y)σ (y)] = 1

2
[σ(x) − σ(y)][η2(x) + η2(y)] + 1

2
[σ(x) + σ(y)][η2(x) − η2(y)]. (4.9)

Combining (4.8) and (4.9), we get

0 ≤ I :=
∫∫
R2n

�′′ [u(x) − u(y)] [σ(x) − σ(y)]2[η2(x) + η2(y)]φ(x)φ(y)K(x − y)dydx

=
∫∫
R2n

�′′ [u(x) − u(y)] [σ 2(x) − σ 2(y)][η2(x) − η2(y)]φ(x)φ(y)K(x − y)dydx

≤ C

⎛
⎜⎝∫∫

R2n

�′′ [u(x) − u(y)] [σ(x) − σ(y)]2[η2(x) + η2(y)]φ(x)φ(y)K(x − y)dydx

⎞
⎟⎠

1/2

⎛
⎜⎝∫∫

R2n

�′′ [u(x) − u(y)] [σ(x) + σ(y)]2[η(x) − η(y)]2φ(x)φ(y)K(x − y)dydx

⎞
⎟⎠

1/2

.

Note that in the above we have used the Cauchy–Schwarz inequality and [η(x) + η(y)]2 ≤ 2[η2(x) + η2(y)] and

[σ 2(y) − σ 2(x)][η2(x) − η2(y)] = [σ(y) − σ(x)][σ(y) + σ(x)][η(x) − η(y)][η(x) + η(y)].
We now set to be the standard test function that is η = 1 in BR and η = 0 in Rn \ B2R with ||∇η||L∞(B2R\BR) ≤ CR−1. 
Therefore,
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I 2 ≤ C

⎛
⎜⎜⎝

∫∫
{∪4

k=1�
k
R}

�′′ [u(x) − u(y)] [σ(x) − σ(y)]2[η2(x) + η2(y)]φ(x)φ(y)K(x − y)dydx

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∫∫
{∪4

k=1�
k
R}

�′′ [u(x) − u(y)] [σ(x) + σ(y)]2[η(x) − η(y)]2φ(x)φ(y)K(x − y)dydx

⎞
⎟⎟⎠

=: I (R)J (R),

where domain decompositions �k
R are set in (3.14). From the definition of η, for (x, y) in {∪4

k=1�
k
R} we have

(η(x) − η(y))2 ≤ CR−2|x − y|2.
Note that I (R) ≤ I and from the assumptions we have

J (R) ≤ R−2
∫∫

∪4
k=1�

k
R

�′′ [u(x) − u(y)] [σ(x) + σ(y)]2φ(x)φ(y)|x − y|2K(x − y)dydx ≤ C.

This implies that 0 ≤ I ≤ C and then I (R) ≤ C. Therefore, I = 0. This completes the proof. �
Note that the above Liouville theorem can be applied to establish one-dimensional symmetry results for higher 

dimensions that is n ≥ 2. One can simplify the assumption (4.7) as what follows. Since |∇u| is globally bounded, we 
conclude that |σ | ≤ C

φ
. This implies that

[σ(x) + σ(y)]2 ≤ C

(
1

φ2(x)
+ 1

φ2(y)

)
.

Therefore,

[σ(x) + σ(y)]2φ(x)φ(y) ≤ C

(
φ(x)

φ(y)
+ φ(y)

φ(x)

)
.

Suppose now that the following Harnack inequality holds for φ

sup
B1(x0)

φ ≤ C inf
B1(x0)

φ, for all x0 ∈R
n.

This implies that

[σ(x) + σ(y)]2φ(x)φ(y) ≤ C.

From this, the assumption (4.7) can be simplified as∫∫
{∪4

k=1�
k
R}

�′′ [u(x) − u(y)] |x − y|2K(x − y)dydx ≤ CR2. (4.10)

Let u be a bounded monotone solution of (1.5) in two dimensions when the kernel K satisfies either (1.10) or 
(1.11)–(1.12) with D(r) < Cr−θ when θ > β + 1. Applying similar arguments as in the proof of Theorem 3.2, one 
can conclude that (4.10) holds in two dimensions. Therefore, u must be a one-dimensional function.

We end this section with mentioning that bounded global minimizers of nonlocal energy is studied in [8]. The 
author has provided one-dimensional symmetry results for global energy minimizers of certain nonlocal operators in 
two dimensions, under various assumptions on the operator. The ideas and methods applied in this article are different 
from ours, however, there are some connections in the spirit.
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5. Energy estimates for layer solutions

Let us start this section with the notion of layer solutions.

Definition 5.1. We say that u is a layer solution of (1.5) if u is a bounded monotone solution of (1.5) such that

lim
xn→±∞u(x′, xn) = ±1 for x′ ∈R

n−1. (5.1)

We refer interested readers to [9,11,13,18,28,30] and references therein in regard to layer solutions. Note that 
assumption (5.1) is known as a natural assumption in this context and Savin’s proof of De Giorgi’s conjecture in 
dimensions 4 ≤ n ≤ 8 and the counterexample of del Pino–Kowalczyk–Wei in dimensions n ≥ 9 rely on (5.1). The 
following theorem deals with energy estimates for layer solutions of (1.5) when the kernel is either with finite range 
or decay at infinity. Note that the energy estimate holds for a large class of kernels K and nonlinearities �.

Theorem 5.1. Suppose that u is a bounded monotone layer solution of (1.5) when F(1) = 0 and (1.16) hold. Assume 
also that the kernel K satisfies either (1.10) or (1.11)–(1.12) with D(r) < Cr−θ when θ > β . Then,

E�
K (u,BR) ≤ CRn−1 for R > R∗, (5.2)

where the positive constant C is independent from R but may depend on R∗, α, β .

Proof. Set the shift function ut(x) := u(x′, xn + t) for (x′, xn) ∈ R
n and t ∈ R. The energy functional for the shift 

function ut is

E�
K (ut ,BR) =K�

K(ut ,BR) −
∫
BR

F (ut )dx

= 1

2

∫
BR

∫
BR

�[ut (x) − ut (y)]K(x − y)dydx

+
∫
BR

∫
Rn\BR

�[ut (x) − ut (y)]K(x − y)dydx −
∫
BR

F (ut )dx,

where R > R∗. We now differentiate the energy functional in terms of parameter t to get

∂tE�
K (ut ,BR) = ∂tK�

K(ut ,BR) −
∫
BR

f ′(ut )∂tu
tdx

= 1

2

∫
BR

∫
BR

�′[ut (x) − ut (y)][∂tu
t (x) − ∂tu

t (y)]K(x − y)dydx

+
∫
BR

∫
Rn\BR

�′[ut (x) − ut (y)][∂tu
t (x) − ∂tu

t (y)]K(x − y)dydx

−
∫
BR

f ′(ut )∂tu
tdx.

Straightforward computations show that

∂tE�
K (ut ,BR) =

∫
Rn\BR

∫
BR

�′[ut (x) − ut (y)]∂tu
t (x)K(x − y)dydx

+
∫

∂tu
t (x)T�(ut (x))dx −

∫
f ′(ut )∂tu

tdx. (5.3)
BR BR
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It is straightforward to notice that ut is a solution of (1.5). Therefore, (5.3) vanishes and consequently

∂tE�
K (ut ,BR) =

∫
Rn\BR

∫
BR

�′[ut (x) − ut (y)]∂tu
t (x)K(x − y)dydx. (5.4)

Note that E�
K(u, BR) = E�

K (1, BR) − ∫∞
0 ∂tE�

K (ut , BR)dt . From the fact that E�
K(1, BR) = 0, we obtain

E�
K (u,BR) ≤

∫
Rn\BR

∫
BR

∞∫
0

|�′[ut (x) − ut (y)]|∂tu
t (x)K(x − y)dtdydx

≤
∫

Rn\BR

∫
BR

∞∫
0

|ut (x) − ut (y)|β−1∂tu
t (x)K(x − y)dtdydx,

where (1.16) is used. Note that |ut(x) − ut (y)| ≤ C|x − y|. From the boundedness of u and |∇u|, we have

E�
K (u,BR) ≤ C

∫∫
[(Rn\BR)×BR]

|x − y|β−1K(x − y)dydx.

Therefore,

E�
K (u,BR) ≤ C

3∑
k=1

∫∫
�k

R

|x − y|β−1K(x − y)dydx =: C
3∑

i=1

Ii(R), (5.5)

when

�1
R := BR−R∗ × (Rn \ BR), �2

R := BR × (Rn \ BR+R∗), �3
R := (BR \ BR−R∗) × (BR+R∗ \ BR). (5.6)

We first assume that (1.10) holds. Note that the above integrals I1(R) and I2(R), on domains �1
R and �2

R , vanish. 
Hence,

E�
K (u,BR) ≤ CI3(R) ≤ C

∫
BR\BR−R∗

∫
BR+R∗\BR

|x − y|β−1−n−αdydx. (5.7)

On the other hand, straightforward computations show that∫
BR\BR−R∗

∫
BR+R∗\BR

|x − y|β−1−n−αdydx ≤ C

{
R∗Rn−1 for β − α = 1,

(2R∗)−α+β

(−1−α+β)(−α+β)
Rn−1 for β − α 
= 1,

(5.8)

when C is a positive constant it does not depend on R, α, β, R∗. Combining (5.8) and (5.7) finishes the proof of (5.2)
for the truncated kernels satisfying (1.10). We now assume that (1.11)–(1.12) hold for D(r) < Cr−θ when θ > β .

I1(R) ≤ C

⎡
⎢⎣ ∫
BR+R∗\BR

dx

⎤
⎥⎦
⎡
⎢⎣ ∞∑

k=1

∫
kR∗<|z|<2kR∗

|z|β−1K(z)dz

⎤
⎥⎦≤ C

[ ∞∑
k=1

kβ−1−θ

]
Rn−1 ≤ CRn−1,

where we have used D(r) < Cr−θ for θ > β . For I2(R), we have

I2(R) ≤
∫
BR

∫
|x−y|>R+κi−|x|

|y − x|β−1K(y − x)dydx

=
∫
B

∞∑
k=1

∫
|y − x|β−1K(y − x)dydx
R k(R+R∗−|x|)<|x−y|<2k(R+R∗−|x|)
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≤
∫
BR

(R + R∗ − |x|)β−1−θ dx

[ ∞∑
k=1

kβ−1−θ

]
≤ CRn−1

R∫
0

(R + R∗ − r)β−1−θ dr

= C

[
R

β−θ∗
θ − β

− (R + R∗)β−θ

θ − β

]
Rn−1 ≤ C

[
R

β−θ∗
θ − β

]
Rn−1,

when C is a positive constant that is independent from R. Note that due to the structure of the domain �3
R, a similar 

estimate as (5.8) holds for I3(R). This completes the proof. �
We end this section with an energy estimate for layer solutions of (1.5) when the kernel K satisfies (1.8) that 

is a generalization of the fractional Laplacian kernel. Note that in this case, unlike the previous theorem, the en-
ergy estimate depends on the exponent α. For similar results in the case of fractional Laplacian operator where the 
Caffarelli–Silvestre extension problem is used we refer interested readers to [9,10]. Note that our proofs do not rely 
on the local extension problem and we apply integral estimates directly, as this is the case in [12,18].

Theorem 5.2. Suppose that u is a bounded monotone layer solution of (1.5) with F(1) = 0 and (1.16) holds. Assume 
also that the kernel K satisfies (1.8). Then, the following energy estimates hold for R > max{R∗, 1}.

(i) If 0 < α < 1, then EK(u, BR) ≤ CRn−α ,
(ii) If α = 1, then EK(u, BR) ≤ CRn−1 logR,

(iii) If α > 1, then EK(u, BR) ≤ CRn−1,

where the positive constant C is independent from R but may depend on R∗, α, β .

Proof. The proof is similar to the one of Theorem 5.1. We only need to provide an upper bound for the right-hand 
side of (5.5). From |ut (x) − ut (y)| ≤ C min{R∗, |x − y|} and the boundedness of u, we have

E�
K (u,BR) ≤ C

∫∫
(Rn\BR)×BR

[min{R∗, |x − y|}]β−1 K(x − y)dydx

≤ C

∫∫
�R

[min{R∗, |x − y|}]β−1 K(x − y)dydx, (5.9)

where �R is given by (5.6). Note that an upper bound for the integral on �3
R is given by (5.8). Due to the symmetry 

in �1
R and �2

R , we only compute an upper bound for the integral on �1
R that is

R
β−1∗

∫∫
�1

R

|x − y|−n−αdydx = R
β−1∗

∫
BR−R∗

∫
Rn\BR(x)

|z|−n−αdzdx

≤ R
β−1∗

∫
BR−R∗

∞∫
R−|x|

r−1−αdrdx

≤ R
β−1∗
α

∫
BR−R∗

(R − |x|)−αdx

≤ R
β−1∗
α

Rn−1

R−R∗∫
0

(R − r)−αdr.

Straightforward computations show that the latter integral is bounded by the following term,
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R
β−1∗

∫
BR−R∗

∫
Rn\BR

|x − y|−n−αdydx ≤ C

⎧⎨
⎩

R
β−1∗
α

log
(

R
R∗

)
Rn−1 for α = 1,

R
β−1∗

α(1−α)
[R1−α − R1−α∗ ]Rn−1 for α 
= 1.

(5.10)

Now combining (5.10) and (5.9) completes the proof. �
6. Sum of nonlocal operators

This section is devoted to the sum of nonlocal and nonlinear operators as it is stated in (1.18). The proofs are similar 
to the ones given in previous sections. Therefore, we omit the proofs. The sum of fractional powers of Laplacian 
operators have been studied in the literature. We refer interested readers to [12] by Cabré and Serra where symmetry 
results, among other interesting results, are provided via proving and applying the extension problem. In addition, 
Silvestre in [29] studied Hölder estimates and regularity properties for the sum operators. The following theorem 
states a Poincaré type inequality for the sum operators.

Theorem 6.1. Assume that n, m ≥ 1 and u is a stable solution of (1.18). Then,
m∑

i=1

∫∫
R2n∩{|∇xu|
=0}

�′′
i [u(x) − u(x + y)]Ay(∇xu)[η2(x) + η2(x + y)]Ki

�i
(y)dxdy

≤
m∑

i=1

∫∫
R2n

�′′
i [u(x) − u(x + y)]By(∇xu)[η(x) − η(x + y)]2Ki

�i
(y)dxdy,

for any η ∈ C1
c (Rn) where

Ay(∇xu) := |∇xu(x)||∇xu(x + y)| − ∇xu(x) · ∇xu(x + y),

By(∇xu) := |∇xu(x)||∇xu(x + y)|.

Applying the above Poincaré inequality as well as other mathematical techniques we provide a one-dimensional 
symmetry result and a Liouville theorem as what follows.

Theorem 6.2. Let m ≥ 1 and u be a bounded stable solution of (1.18) in two dimensions and (1.15) for each �i

and βi . Assume also that the kernel K satisfies either (1.19) or (1.22) and (1.23) with Di(r) < Cr−θi for θi > βi + 1
for all 1 ≤ i ≤ m. Then, u must be a one-dimensional function.

Theorem 6.3. Let m ≥ 1 and u be a bounded solution of (1.18) when the kernel Ki satisfies either (1.19) or (1.22)
and (1.23) with Di(r) < Cr−θi for θi > βi + 1 for all 1 ≤ i ≤ m. If f (u) ≥ 0 or uf (u) ≤ 0, then u must be constant 
provided n ≤ min{βi, 1 ≤ i ≤ m}.

Consider the following energy functional corresponding to (1.18)

E�
K (u,�) :=

m∑
i=1

K�i

Ki
(u,�) −

∫
�

F(u)dx,

where each K�i

Ki
(u,�) satisfies (1.3) for even �i and Ki . Then, the following energy estimate holds for the sum 

operator when the kernel K is of finite range or with decay at infinity.

Theorem 6.4. Suppose that u is a bounded monotone layer solution of (1.5) with F(1) = 0 and (1.16) hold. Assume 
also that the kernel Ki satisfies either (1.19) or (1.22) and (1.23) with Di(r) < Cr−θi for θi > βi for all 1 ≤ i ≤ m. 
Then,

E�
K (u,BR) ≤ CRn−1 for R > R∗ := min{Ri,1 ≤ i ≤ m}, (6.1)

where the positive constant C is independent from R but may depend on Ri, αi, βi .
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Lastly, the following theorem provides an energy estimate for layer solutions of (1.18) where each kernel Ki satis-
fies (1.20). Note that, unlike the above, the following energy estimate depends on the minimum of all exponents αi .

Theorem 6.5. Suppose that u is a bounded monotone layer solution of (1.18) with F(1) = 0 and (1.16) holds. Assume 
also that the kernel Ki satisfies (1.20). Then, the following energy estimates hold for R > max{R∗, 1}.

(i) If 0 < α∗ < 1, then EK(u, BR) ≤ CRn−α∗ ,
(ii) If α∗ = 1, then EK(u, BR) ≤ CRn−1 logR,

(iii) If α∗ > 1, then EK(u, BR) ≤ CRn−1,

where α∗ := min{αi, 1 ≤ i ≤ m} and the positive constant C is independent from R but may depend on Ri, αi, βi .
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