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Abstract

In form of a case study for the KdV and the KdV2 equations, we present a novel approach of representing the frequencies of 
integrable PDEs which allows to extend them analytically to spaces of low regularity and to study their asymptotics. Applications 
include convexity properties of the Hamiltonians and wellposedness results in spaces of low regularity. In particular, it is proved 
that on Hs the KdV2 equation is C0-wellposed if s � 0 and illposed (in a strong sense) if s < 0.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The goal of this paper is to discuss, in form of a case study for the KdV and the KdV2 equations on T = R/Z, 
novel formulas for the frequencies of integrable PDEs, allowing to extend the frequencies analytically to spaces of 
functions of low regularity or distributions and to study their asymptotics. These results are used to derive properties 
of the frequency map relevant for perturbation theory, the Hamiltonian, and the solution map of such equations. First 
we state our results on the solution maps for the KdV equation

∂tu = −∂3
xu + 6u∂xu, (1)

and the second equation in the KdV hierarchy (KdV2)

∂tu = ∂5
xu − 10u∂3

xu − 20∂xu∂2
xu + 30u2∂xu, (2)

and outline the derivation of the novel formulas for the frequencies of (1) and (2) at the end of the introduction. To 
state our results, we need to introduce some more notation. By Hs ≡ Hs(T, R), s � −1, we denote the standard 
Sobolev spaces, endowed with the Gardner bracket
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{F,G} :=
1∫

0

∂uF ∂x∂uGdx. (3)

Here, ∂uF and ∂uG are the L2-gradients of functionals F and G on Hs assumed to be sufficiently regular, so that the 
integral (3) is well defined. Then equations (1) and (2) take the form

∂tu = ∂x∂uH1, ∂tu = ∂x∂uH2,

where H1 and H2 denote the KdV and, respectively, KdV2 Hamiltonian

H1(u) = 1

2

1∫
0

(u2
x + 2u3)dx,

H2(u) = 1

2

1∫
0

(u2
xx + 10uu2

x + 5u4)dx.

Note that [u] := ∫ 1
0 u(x) dx is a Casimir of the bracket (3) and that the level sets

Hs
c := {u ∈Hs : [u] = c

}
, c ∈R,

are symplectic leaves. We concentrate on the leaf Hs
0 only, since our results can be easily extended to any other leaf. 

Furthermore, for any s ∈ R and 1 ≤ p < ∞, we introduce the sequence space

�
s,p

0,C
≡ �

s,p

0 (Z,C) := {z = (zn)n∈Z ⊂C : z0 = 0, ‖z‖s,p < ∞} ,
where

‖z‖s,p :=
(∑

n∈Z
〈n〉sp |zn|p

)1/p

, 〈n〉 := 1 + |n| .

In addition, we denote by �s,p

0 the real subspace 
{
(zn) ∈ �

s,p

0,C
: z−n = zn

}
of �s,p

0,C
. The spaces �s,p

C
≡ �s,p(N, C) and 

�s,p = �s,p(N, R) are defined in an analogous way. To further simplify notation, we also define

hs
0 := �

s,2
0 , hs

0,C := �
s,2
0,C

.

Note that the Sobolev spaces Hs
0 and more generally the Fourier Lebesgue spaces F�

s,p

0 can then be described by

Hs
0 = {u ∈ S ′

C
: (un)n∈Z ∈ hs

0

}
, F�

s,p

0 = {u ∈ S ′
C

: (un)n∈Z ∈ �
s,p

0

}
(4)

with un = 〈u, ei2nπx
〉
, n ∈ Z. Here, 〈·, ·〉 denotes the L2-inner product on L2(T, C), 〈f,g〉 = ∫

T
f (x)g(x)dx, extended 

by duality to a pairing of the Schwartz space SC of 1-periodic functions f ∈ C∞(R, C) and its dual S ′
C

. The following 
result says that the KdV equation and its hierarchy are integrable PDEs in the strongest possible sense.

Before we state it let us recall the notion of a real analytic map. Let E, F be real Banach spaces and denote by 
EC, FC their complexifications. A map f : U → F , defined on a nonempty open subset U ⊂ E, is said to be real 
analytic if there exists a complex open neighborhood V ⊂ EC of U and a (complex) analytic map g : V → FC which 
extends f . Conversely, by a slight abuse of terminology, we say that a (complex) analytic map g : V → FC, defined 
on an open subset V ⊂ EC with U := V ∩ E �= ∅, is real analytic, if its restriction to U takes values in F and hence g
is the analytic extension of the real analytic map f := g|U : U → F .

Theorem 1.1 ([18,17,20]). There exists a complex neighborhood W ⊂H−1
0,C

of H−1
0 and an analytic map

� : W→ h
−1+1/2
0,C

, u �→ (zn(u))n∈Z,

with �(0) = 0 so that the following holds:
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(i) For any s � −1, the restriction �
∣∣
Hs

0
is a real analytic diffeomorphism Hs

0 → h
s+1/2
0 .

(ii) The map � is canonical in the sense that {zn, z−n} = i for any n � 1, whereas all other brackets between 
coordinate functions vanish.

(iii) The transformed Hamiltonians H1 ◦ �−1, defined on h1+1/2
0 , and H2 ◦ �−1, defined on h2+1/2

0 , are real analytic 
functions of the actions In := znz−n, n � 1, alone. Corresponding results hold for any of the Hamiltonians in the 
KdV hierarchy.

(iv) The differential d0� of � at u = 0 is the weighted Fourier transform,

d0� : Hs
0 → h

s+1/2
0 , u �→

(
(2 |n|π)−1/2 un

)
n�=0

. �

The equations of motion of (1) and (2), expressed in Birkhoff coordinates are

∂t zn = −iω(j)
n zn, ∂t z−n = iω(j)

n z−n, ∀n � 1,

where ω(j)
n , n � 1, are the frequencies corresponding to Hj , j = 1, 2,

ω
(j)
n = ∂InHj .

Let �s,p
+ denote the positive quadrant of �s,p given by

�
s,p
+ ≡ �

s,p
+ (N,R) := {I = (In)n�1 ∈ �s,p(N,R) : In � 0

}
. (5)

The KdV frequencies (ω(1)
n )n∈Z are defined on �3,1

+ (N), whereas the KdV2 frequencies (ω(2)
n )n∈Z are defined on 

�
5,1
+ (N). They are real analytic and admit the following expansions at I = 0, reviewed in (Appendix D),

ω(1)
n = (2nπ)3 − 6In + · · · , (6)

ω(2)
n = (2nπ)5 + 20(2nπ)H0 − 20(2nπ)2In + · · · , (7)

where the dots stand for higher order terms in I and

H0 = 1

2

1∫
0

u2 dx =
∑
n�1

(2nπ)In.

In order to state our results on the analytic extensions of ω(j)
n , n � 1, we need to normalize the frequencies as follows

ω(1)�
n = ω(1)

n − (2nπ)3 = −6In + · · · , (8)

ω(2)�
n = ω(2)

n − (2nπ)5 − 20(2nπ)H0 = −20(2nπ)2In + · · · . (9)

Note that ω(j)�
n = ∂InH

�
j , with H�

j , j = 1, 2, denoting the renormalized Hamiltonians given by

H�
1 = H1 −

∑
n�1

(2nπ)3In, H�
2 = H2 −

∑
n�1

(2nπ)5In − 10H 2
0 . (10)

The results for the frequency maps ω(1)� = (ω
(1)�
n )n�1 and ω(2)� = (ω

(2)�
n )n�1 are now stated separately: It has been 

shown in [17] that each ω(1)�
n , n ∈ Z, extends to a real analytic map on a complex neighborhood V of �−1,1.

Our novel approach allows to obtain sharp asymptotics of ω(1)�
n as n → ∞ and at the same time yields a direct 

proof of their analytic extensions.

Theorem 1.2 (Extension & asymptotics of ω(1)�).

(i) The map ω(1)� extends to a map on �−1,1
+ with values in 

⋂
r>1 �−1,r and its restrictions

ω(1)� : �
2s+1,1
+ →

⎧⎪⎨
⎪⎩

�−1,r , s = −1, r > 1,

�2s+1,1, −1 < s < −1/2,

�r , s �−1/2, r > 1,

are real analytic.
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(ii) For any −1 < s < −1/2 and any I ∈ �
2s+1,1
+ , the linear operator dIω

(1)� + 6Id : �2s+1,1 → �2s+1,1 is compact.

(iii) On �2s+1,1
+ , the frequencies ω(1)�

n , n � 1, have the following asymptotics

ω(1)�
n + 6In =

{
o(n3|s|−2), −1 ≤ s < −1/3,

O(n−1), s � −1/3,

which hold locally uniformly in a complex neighborhood of �2s+1,1
+ .

(iv) Furthermore, the restriction of ω(1)� to �2+ takes values in �2, the map ω(1)� : �2+ → �2 is real analytic, and 
dIω

(1)� + 6Id : �2 → �2 is compact for any I ∈ �2+. �

An extended version of Theorem 1.2 can be found in Section 3 Theorem 3.6. Theorem 1.2 has several applications. 
One application concerns convexity properties of the KdV Hamiltonian. Recall that in [14, Theorem 1] we proved a 
conjecture of Korotyaev & Kuksin [26] saying that the Hamiltonian H�

1 admits a real analytic extension to �2+ and that 
d2
IH

�
1

∣∣
I=0 = −6Id. It implies that H�

1 is strictly concave near I = 0. Since H�
1 is known to be concave on the positive 

quadrant �2+ (cf. [26]), the question arose whether H�
1 is strictly concave on all of �2+. Theorem 1.2 implies that by 

and large, this indeed holds.

Theorem 1.3. The renormalized KdV Hamiltonian H�
1 : �2+ → R is strictly concave on an open and dense subset O

of �2+ containing I = 0. It means that for any I ∈ O,

d2
IH

�
1 (J, J ) ≤ −c ‖J‖2

�2 , ∀J ∈ �2,

where the constant c > 0 can be chosen locally uniformly in I . �

The compactness of dω(1)� + 6Id together with the analyticity of the frequencies ω(1)�
n and their asymptotics, 

obtained in Theorem 1.2, lead to the following result on the frequency map.

Corollary 1.4. For any −1 < s < −1/2, the map ω(1)� : �
2s+1,1
+ → �2s+1,1 is a local diffeomorphism on an open and 

dense subset of �2s+1,1
+ containing I = 0. �

The asymptotics of ω(1)�
n of Theorem 1.2 (iii) lead to the following

Corollary 1.5.

(i) On Hs
0, −1 ≤ s ≤ 0, one has

ω(1)
n = 8n3π3 +

{
o(n−2s−1), −1 ≤ s < 0,

O(n−1), s = 0,
(11)

where the implicit constant can be chosen locally uniformly in q ∈ Hs
0 and uniformly in n � 1.

(ii) The estimate is sharp for −1 < s < 0 in the sense that ω(1)
n = 8n3π3 +O(nα) does not hold for any α < −2s −1. 

In particular, ω(1)
n = 8n3π3 + O(1) does not hold for −1 < s < −1/2.

(iii) For s = 0, the statement (11) holds uniformly on bounded subsets of L2
0. �

Remark 1.6. The estimate ω(1)
n = 8n3π3 + O(n−1) (uniformly on bounded subsets of L2

0) improves on [19, Proposi-
tion 8.1] where by other techniques, the estimate was proved for q in H1

0. �

Corollary 1.5 leads to an improvement of the one-smoothing property of solutions of the KdV equation on the 
circle of [10] and [19]. We again state our result only for the zero leaf Hs

0. Denote by L the operator L = −∂3
x of the 

Airy equation ∂tv = Lv.
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Corollary 1.7. For any initial datum q ∈ L2
0, denote by u(t) the unique solution of the KdV equation with u(0) = q

and by etLq the solution of ∂tv = Lv with v(0) = q . Then∥∥∥u(t) − etLq

∥∥∥
H1

≤ C(1 + |t |), ∀t ∈ R.

The constant C > 0 can be chosen locally uniformly for q ∈ L2
0. �

Remark 1.8. For initial data q ∈ L2
0, the results in [10] imply that for any s < 1, 

∥∥u(t) − etLq
∥∥
Hs is bounded by 

C(s, ‖q‖L2)(1 + |t |). In [19, Theorem 8.2] it is shown that for any q ∈ HN
0 with N ∈ Z�1, 

∥∥u(t) − etLq
∥∥
H1 ≤

C(1 + |t |) – see [19, Appendix B] for a detailed discussion. �

Finally, Theorem 1.2 can be used to answer the question left open for quite some time whether the KdV equation 
is Ck wellposed for k = 1, 2 in Hs

0 for any −1 < s < −1/2. We show in Theorem 3.10 that the answer is negative.
Let us now turn to the frequencies of the KdV2 equation. Recall from [1] that ω(2)� admits a real analytic extension 

to a map �3,1
+ → �∞. In fact, it is shown in [1] that ω(2)� takes values in c0. We improve this result as follows.

Theorem 1.9 (Extension & asymptotics of ω(2)�). The map ω(2)� can be extended as a real analytic map

ω(2)� : �
2s+1,1
+ →

{
�2s−1,1, −1 < s < 1/2,

�r , s � 1/2, r > 1,

with asymptotics

ω(2)�
n + 20(2nπ)2In =

{
n−3s�1

n, −1 < s < 0,

�1+
n , s � 0,

which hold locally uniformly on a complex neighborhood of �2s+1,1
+ . Here �p

n , 1 ≤ p ≤ ∞, denotes a sequence of 
complex numbers which is �p-summable and �1+

n one which is �r summable for any r > 1. �

Remark 1.10. Additional results on the extension of ω(2)� to Fourier Lebesgue spaces can be found in
Section 4.1. �

Theorem 1.9 leads to the following result on the frequency map, useful to analyze perturbations of the KdV2 
equation.

Corollary 1.11. For any −1 < s < 1/2, the map ω(2)� : �
2s+1,1
+ → �2s−1,1 is a local diffeomorphism on an open and 

dense subset of �2s+1,1
+ containing I = 0. �

Theorem 1.9 also applies to study the solution map of the KdV2 equation. First we need to introduce some more 
notation. According to [1], for any initial datum q ∈ Hm with m � 1 integer, there exists a unique, global in time 
solution v(t, x) = v(t, x, q) of (2), v ∈ C(R, Hm). In particular, for any time t ∈R and T > 0, the nonlinear evolution 
operator

S(2)
t = S(2)(t, ·) : Hm → Hm

and the uniquely defined solution map

S(2) : Hm → C([−T ,T ],Hm), q �→ v(·, ·, q),

are well defined and continuous. In the following, let H denote any invariant subspace of Hs with s real and a <

0 < b. A continuous curve γ : (a, b) → H, γ (0) = q , is called a solution of the KdV2 equation in H with initial 
datum q if and only if for any sequence of C∞-potentials (qk)k�1 converging to q in H, the corresponding sequence 
(S(2)(t, qk))k�1 of solutions of (2) with initial data qk converges to γ (t) in H for any t ∈ (a, b). KdV2 is said to be 
globally C0-wellposed in H if (a) for any initial datum q ∈H the initial value problem (2) admits a solution S(2)(·, q)
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in the aforementioned sense which is globally defined in time and (b) the solution map S(2) : H → C([−T , T ], H)

is continuous for every T > 0. KdV2 is said to be (uniformly/Ck/Cω) wellposed if the solution map S(2) : H →
C([−T , T ], H) is (uniformly continuous/Ck/Cω) for every T > 0. Furthermore, a map f : X → Y between Banach 
spaces X and Y is said to be nowhere locally uniformly continuous if for any nonempty open subset U ⊂ X, the map 
f is not uniformly continuous on U . Finally, for any d > 0 and any s � 0, introduce the level sets of H0

Ms
0,d ≡Ms

0,d (T,R) = {u ∈Hs
0 : H0(u) = d

}
.

Theorem 1.12 (Wellposedness for KdV2).

(i) The KdV2 equation is globally C0-wellposed in Hs for any s � 0. In particular, for any T > 0, the solution map 
S(2) : Hs → C([−T , T ], Hs) is continuous and has the group property S(2)(t + s, q) = S(2)(t, S(2)(s, q)) for 
all t, s ∈ R and q ∈ Hs . As a consequence, for any t ∈ R, the flow map S(2)

t : Hs → Hs , q �→ S(2)(t, q) is a 
homeomorphism.

(ii) For any s � 1/2 and d > 0, the KdV2 equation is globally Cω-wellposed and uniformly C0-wellposed in Ms
0,d .

(iii) In contrast, for any s � 1/2 and t > 0, the solution map S t : Hs
0 → Hs

0 is nowhere locally uniformly continuous. 
In particular, the KdV2 equation is not C1-wellposed and not uniformly C0-wellposed in Hs

0 for s � 1/2.
(iv) For any 0 ≤ s < 1/2, d > 0, and t > 0, the solution map S t : Ms

0,d → Ms
0,d is nowhere locally uniformly con-

tinuous. In particular, the KdV2 equation is not C1-wellposed and not uniformly C0-wellposed in Ms
0,d for 

0 ≤ s < 1/2 and d > 0.
(v) The solution map cannot be continuously extended to any initial datum in Hs

0\L2
0 for −1 < s < 0. More precisely, 

the frequencies are given by the formula

ω(2)
n = (2nπ)5 + 20(2nπ)H0 + ω(2)�

n ,

where ω(2)�
n extends analytically to Hs

0 with s > −1. Hence for any n � 1, ω(2)
n becomes infinite on Hs

0 \ L2
0 for 

any −1 < s < 0. �

Remark 1.13. The KdV2 equation and generalizations of it appear in the analysis of long-wave approximations to the 
water wave equation – cf. for instance [7] as well as the references therein. Wellposedness results for such equations 
in the periodic setup are discussed in [3], but the case of the KdV2 equation is not explicitly treated there. Earlier 
results were obtained in [29]. To the best of our knowledge, the results in[1] are the best available so far. In contrast, 
the wellposedness of this type of equations on the line have been studied extensively. Recently various new results 
have been obtained – see [12,13,23,24] and references therein. In particular, in [13,23], wellposedness results were 
established for initial data in Hs(R) with s � 2 whereas in [12,23], such results were obtained for initial data in 
certain classes of Fourier Lebesgue spaces. Since it is believed that for such equations stronger wellposedness results 
can be obtained on the line than in the periodic setup (cf. [3]), it can be expected that results analogous to the ones of 
Theorem 1.12 hold for the KdV2 equation on the line. �

Finally, we prove that the renormalized KdV2 Hamiltonian H�
2 extends real analytically to h1+ = h1+, and discuss 

its convexity properties which are similar to those of H�
1 – see Section 4.2.

Formulas for the frequencies As mentioned at the beginning of the introduction, the proofs of Theorem 1.2 and 
Theorem 1.9 are based on new formulas for the frequencies of the KdV and the KdV2 equations. Let us outline how 
to derive them in the case of the KdV equation: Consider for any n � 1 the nth frequency ω(1)

n . By a density argument, 
it suffices to consider real potentials with In > 0. In a real neighborhood of such a potential, the Birkhoff coordinate 
zn can be expressed in terms of action angle variables zn = +√Ine−iθn and Hamilton’s equations of motion take the 
form

∂t θn = ω(1)
n = {H1, θn} , ∂t In = 0.

The identity ω(1)
n = {H1, θn} is the starting point for the new formula for ω(1)

n . The asymptotics of the discriminant 
�(λ, u) of the operator −∂2

x +u at λ = ∞ and the residue calculus allow us to expand ω(1)
n = {H1, θn} into the constant 
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term (2nπ)3 plus a weighted sum 
∑

k�1 k
(2)
nk of functionals (2)

nk , each of which is an expression depending only on 
the discriminant �(λ, u) – or equivalently, the periodic spectrum of −∂2

x + u. Using that by [17] the discriminant can 
be analytically extended to H−1

0 , one shows that the same holds true for each functional (2)
nk . From the asymptotics 

of the periodic eigenvalues of −∂2
x + u one then deduces that (

∑
k�1 k

(2)
nk )n�1 converges absolutely in �−1,r , r > 1, 

for u in a complex neighborhood W of H−1
0 and when restricted to Hs

0, −1 ≤ s ≤ 0, has the asymptotics stated in 
Theorem 1.2.

In [14] we proved by similar techniques that the renormalized Hamiltonian H�
1 = H1 −∑n�1(2nπ)3In analytically 

extends to the Fourier Lebesgue spaces F�
−1/2,4
0 (T, R) or, considering H�

1 as a function of the actions, to �2+(N). It 

implies that (ω(1)�
n = ∂InH

�
1 )n�1 is in �2(N). Since by [14, Theorem 1] (∂InH

�
1 )n�1 is a local diffeomorphism near 

I = 0, H�
1 does not admit a C1-smooth extension to a neighborhood of 0 in �2s+1,p/2 for any (s, p) �= (−1/2, 4)

with s ≤ −1/2 and 4 ≤ p < ∞. Similarly, H�
1 does not admit a C1 extension to a neighborhood of the origin in 

�
2s+1,1
+ for any −1 < s < −1/2. In fact, this would imply that ∂H�

1 takes values in �−2s−1,∞ while at the same 
time ∂H�

1 = ω(1)� : �
2s+1,1
+ → �2s+1,1 is a homeomorphism locally around the origin by Corollary 1.4, which is 

impossible. Nevertheless, according to Theorem 1.2, the frequencies (ω(1)�
n )n�1 analytically extend to �2s+1,1

+ (N) for 
any −1 < s < −1/2.

Notation. We collect a few notations used throughout the paper. A sequence of complex numbers (an)n∈A is denoted 
an = �

p
n + �

q
n if it can be decomposed as an = xn + yn with (xn) ∈ �

p

C
(A) and (yn) ∈ �

q

C
(A). Here 0 < p, q ≤ ∞ and 

�
p

C
(A) denotes the vector space of sequences with 

∑
n∈A |xn|p < ∞. Moreover, an = �1+

n means that (an) ∈ �r
C
(A)

for any r > 1. Finally, we define x+ = max(x, 0).
We say the tuple (s, p) of real numbers is admissible if either p = 2 and −1 ≤ s < ∞ or 2 < p < ∞ and −1/2 ≤

s ≤ 0.

2. Preliminaries

In this section we review results from [14,16–19,21,28]. In addition, we prove asymptotics of spectral quantities 
for potentials in Fourier Lebesgue spaces.

2.1. Spectral theory of Schrödinger operators

Let q be a complex potential in H−1
0,C

and consider the differential operator

L(q) = −∂2
x + q. (12)

In the sequel we will only consider potentials q ∈ W with W denoting the complex neighborhood of H−1
0 in H−1

0,C
of 

Theorem 1.1. If needed, we will shrink W further. The spectrum of L(q), called the periodic spectrum of q , is known 
to be discrete and the eigenvalues, when counted with their multiplicities and ordered lexicographically – first by their 
real part and second by their imaginary part – satisfy

λ+
0 (q)� λ−

1 (q)� λ+
1 (q)� · · · , λ±

n (q) = n2π2 + n�2
n. (13)

Furthermore, we define the gap lengths γn(q) and the mid points τn(q) by

γn(q) := λ+
n (q) − λ−

n (q) = n�2
n, τn(q) := λ+

n (q) + λ−
n (q)

2
= n2π2 + n�2

n.

If q is real-valued, then the periodic spectrum of q as well as its gap lengths and mid points are real. Therefore, the 
lexicographical ordering reduces to the real ordering

λ+
0 < λ−

1 ≤ λ+
1 < λ−

2 ≤ λ+
2 < · · · .

The discriminant �(λ, q) of L(q), defined for q ∈H0
0,C

by Floquet theory, admits an analytic extension to C ×W. 
Furthermore, �2(λ, q) − 4 has the product representation
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�2(λ, q) − 4 = −4(λ − λ+
0 )
∏
m�1

(λ+
m − λ)(λ−

m − λ)

m4π4
. (14)

The λ-derivative �• of the discriminant � is analytic on C ×W, too, and admits the product representation

�•(λ) = −
∏
m�1

λ•
m − λ

m2π2
(15)

where (λ•
m)m�1 ⊂C are ordered lexicographically

λ•
1 � λ•

2 � · · · , λ•
n = n2π2 + n�2

n .

We also consider the spectrum of the operator Ldir(q) = −∂2
x + q on H−1

dir ([0, 1], C) with domain of definition 
H1

dir([0, 1], C) – cf. e.g. [9,16,21,25,30] for a more detailed discussion. This spectrum, referred to as the Dirichlet 
spectrum of q , is known to be discrete and to be given by a sequence of eigenvalues (μn)n�1, counted with multiplic-
ities and ordered lexicographically so that

μ1 � μ2 � μ2 � · · · , μn = n2π2 + n�2
n.

For each potential q ∈H−1
0 there exists a complex neighborhood Wq of q in W such that the closed intervals

G0 = {λ+
0 + t : −∞ < t ≤ 0

}
, Gn = [λ−

n , λ+
n ], n � 1,

are disjoint from each other for every r ∈ Wq . Moreover, there exist open, connected, convex, and mutually disjoint 
neighborhoods Un �C, n � 0, called isolating neighborhoods, which satisfy:

(i) Gn, μn, and λ•
n are contained in the interior of Un for every r ∈Wq ,

(ii) there exists a constant c � 1 such that for all n, m � 1 with m �= n

c−1
∣∣∣m2 − n2

∣∣∣≤ dist(Un,Um) ≤ c

∣∣∣m2 − n2
∣∣∣ , (16)

(iii) there exists an integer n0 � 1 so that

Un = Dn :=
{
λ ∈C :

∣∣∣λ − n2π2
∣∣∣≤ n

}
, n� n0. (17)

In the sequel, for any q ∈W, Wq denotes a neighborhood of q in W such that a common set of isolating neighborhoods 
for all r ∈ Wq exists which are denoted by Un, n � 0. We shrink W, if necessary, such that W is contained in the 
union of all Wq with q ∈ H−1

0 .
We say that q ∈ W is a finite-gap potential if

S(q) = {k ∈N : γk(q) �= 0} (18)

is finite. By Theorem 1.1 it follows that such potentials are C∞-smooth and dense in W.

2.2. Birkhoff coordinates for the KdV hierarchy

Following [17], for q ∈W, one can define action variables for the KdV equation by

In = 1

π

∫
�n

λ�•(λ)

c
√

�2(λ) − 4
dλ, n � 1. (19)

Here �n denotes any counter clockwise oriented circuit around and sufficiently close to Gn, and the canonical root
c
√

�2(λ) − 4 is defined on C \⋃ n�0
γn �=0

Gn with γ0 = ∞, where, for q real, the sign of the root is determined by

i c
√

�2(λ) − 4 > 0, λ+
0 < λ < λ−

1 ,

and for q ∈ W it is defined by continuous extension.
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The Dirichlet eigenvalues and the discriminant can be used to construct the angles θk(q), k � 1, which are conju-
gated to the actions In(q), n � 1. In more detail, according to [17], for any given k � 1 the action Ik is a real analytic 
function on W, whereas the angle θk is defined modulo 2π on W \ Zk and is a real analytic function on W \ Zk when 
considered modulo π , where

Zk := {q ∈W : γk(q) = 0} . (20)

It was shown in [17, Proposition 4.3] that Zk ∩ H−1
0 is a real analytic submanifold of H−1

0 of codimension two. 
Moreover, by [17, Section 6] the following commutator relations hold for any m, n � 1

{Im, In} = 0, {Im, θn} = δnm, {θm, θn} = 0, (21)

whenever the bracket is defined.
For any q ∈ H−1

0 \ Zk with k � 1 define

zk(q) := +√Ik(q) e−iθk(q), z−k(q) := +√Ik(q) eiθk(q). (22)

It is shown in [17, Section 5] that the mappings H−1
0 \ Zk → C, q �→ z±k(q), analytically extend to the neighbor-

hood W. The Birkhoff map is then defined as follows

� : W → h
−1/2
0,C

, q �→ �(q) := (zk(q))k∈Z (23)

with z0(q) = 0. Its main properties are stated in Theorem 1.1.
In addition, it was shown in [19] that � and its inverse are 1-smoothing. More precisely, for any integer N � 0, the 

maps

� − d0� : HN
0 → h

N+3/2
0 , �−1 − (d0�)−1 : h

N+1/2
0 → HN+1

0 (24)

are analytic and bounded, i.e. bounded on bounded subsets. We note the following immediate consequence for later 
use.

Lemma 2.1. For any s > 0 the Birkhoff map and its inverse

� : Hs → hs+1/2, �−1 : hs+1/2 →Hs

are uniformly continuous on bounded subsets. �

Proof. By the 1-smoothing property (24) for any integer N � 0 the map � − d0� : HN → hN+3/2 is continuous and 
hence uniformly continuous on compacts. Since Hs embeds compactly into H[s] if s > [s], we conclude that

� − d0� : Hs ↪→c H
[s] → �[s]+3/2 ↪→ �s+1/2

is uniformly continuous on bounded sets for any s > 0. Clearly, d0� : Hs → hs+1/2 is uniformly continuous as well, 
which gives the claim for �. One argues analogously for the inverse. �
2.3. Roots and Abelian integrals

It is convenient to define the standard roots

wn(λ) = s
√

(λ+
n − λ)(λ−

n − λ), λ ∈ C \ Gn, n� 1,

by the condition

wn(λ) = (τn − λ)
+
√

1 − γ 2
n /4(τn − λ)2, τn = (λ−

n + λ+
n )/2. (25)

Here +√ denotes the principal branch of the square root on the complex plane minus the ray (−∞, 0]. The standard 
root is analytic in λ on C \ Gn and in (λ, r) on (C \ Un) ×Wq , and one can choose c > 0 locally uniformly on Un so 
that for all n, m � 1

inf |wm(λ)| � c−1
∣∣∣n2 − m2

∣∣∣ . (26)

λ∈Un
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If γn = 0, then wn(λ) = (τn −λ) is an entire function of λ. On the other hand, if γn �= 0, then wn extends continuously 
to both sides of Gn, denoted by G±

n ,

G±
n = {λ±

t = τn + (t ± i0)γn/2 : −1 ≤ t ≤ 1
}
, (27)

and we have

wn(λ
±
t ) = ∓i

γn

2
+√

1 − t2, −1 ≤ t ≤ 1. (28)

Lemma 2.2. Suppose γn �= 0 and f is continuous on Gn, then

sup
λ∈G+

n ∪G−
n

∣∣∣∣∣∣∣
1

π

λ∫
λ−

n

f (z)

wn(z)
dz

∣∣∣∣∣∣∣≤ max
λ∈Gn

|f (λ)| . �

Proof. We choose the parametrization λ±
t of G±

n to obtain for −1 ≤ t ≤ 1,

λ±
t∫

λ−
n

f (z)

wn(z)
dz = ±i

t∫
−1

f (λ±
r )

+√1 − r2
dr.

Since 
∫ 1
−1

1
+√1−r2

dr = π , the claim follows immediately. �
Lemma 2.3. Suppose f is analytic in a neighborhood of Gn containing �n, then

1

2π

∣∣∣∣∣∣∣
∫
�n

f (λ)

wn(λ)
dλ

∣∣∣∣∣∣∣≤ max
λ∈Gn

|f (λ)| . �

Proof. If γn = 0, then wm(λ) = τn − λ and the claim follows from Cauchy’s theorem. Conversely, if γn �= 0, then we 
may apply the previous lemma. �

The canonical root c
√

�2(λ) − 4 can be written in terms of standard roots as follows

c
√

�2(λ) − 4 := −2i +
√

λ − λ+
0

∏
m�1

wm(λ)

m2π2
(29)

and is analytic in λ on C \⋃γm �=0 Gm and in (λ, r) on (C \⋃m�0 Um) ×Wq . In particular, the quotient

�•(λ)

c
√

�2(λ) − 4
= 1

2i

1

+
√

λ − λ+
0

∏
m�1

λ•
m − λ

wm(λ)
, (30)

is analytic in (λ, r) on (C \⋃m�0 Um) ×Wq , and analytic in λ on C \⋃ γm �=0
m�0

Gm where we set γ0 = ∞ for conve-

nience.
A path in the complex plane is said to be admissible for q if, except possibly at its endpoints, it does not intersect 

any non-collapsed gap Gn(q). For any n � 1 and any admissible path from λ−
n to λ+

n in Un we have

λ+
n∫

λ−
n

�•(λ)

c
√

�2(λ) − 4
dλ = 0. (31)

As a consequence, 
∫
�n

�•(λ)
c
√

2
dλ = 0, for any closed circuit �n in Un around Gn – cf. e.g. [28].
� (λ)−4
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Next we define for any q ∈W and λ ∈C \⋃ γm �=0
m�0

Gm the improper integral

F(λ) :=
λ∫

λ+
0

�•(z)
c
√

�2(z) − 4
dz, (32)

computed along an arbitrary admissible path. The improper integral F(λ) exists as in the product representation (30)

the factor 1/ +
√

λ − λ+
0 is integrable on C \G0. Furthermore, in view of (31) it is independent of the chosen admissible 

path and hence well defined. Moreover, F(λ) continuously extends to G±
n for any n � 0, where G+

n [G−
n ] is the left 

[right] hand side of Gn.

Remark 2.4. For q ∈ L2
0, F(λ) is one of the two Floquet exponents of the operator L(q) − λ meaning that eF(λ) is an 

eigenvalue of the Floquet matrix associated to L(q) − λ. �

Lemma 2.5 ([14]). For any q ∈W the following holds:

(i) F is analytic in (λ, r) on (C \⋃m�0 Um) ×Wq with L2-gradient

∂qF (λ) = ∂q�(λ)

c
√

�2(λ) − 4
.

Further, F(λ) ≡ F(λ, q) is analytic in λ on C \⋃ γm �=0
m�0

Gm. (We recall that γ0 = ∞.)

(ii) F(λ+
0 ) = 0 and F(λ+

n ) = F(λ−
n ) = −inπ for any n � 1.

(iii) Locally uniformly on Wq

sup
λ∈G+

n ∪G−
n

|F(λ) + inπ | = O(γn/n), n → ∞.

(iv) For q = 0, F(λ) is analytic on C \ (−∞, 0] and given by F(λ) = −i +√
λ.

(v) If q is a real-valued finite-gap potential cf. (18) with [q] = 0 and νn = (n + 1/2)π , then for any K � 0

F(ν2
n) = −iνn + i

∑
0≤k≤K

Hk

4k+1ν2k+3
n

+ O(ν−2K−5
n ), n → ∞, (33)

where Hk denotes the kth Hamiltonian of the KdV hierarchy. �

Occasionally we write for n � 0

Fn(λ) := F(λ) + inπ =
λ∫

λ+
n

�•

c
√

�2 − 4
dz (34)

to denote the primitive of �•
c
√

�2−4
normalized by the condition Fn(λ

+
n ) = 0.

Lemma 2.6.

(i) For any q ∈ W and any n � 0, the function F 2
n (λ) is analytic on Un and hence on C \⋃n�=m�0

γm �=0
Gm.

In particular, for a finite-gap potential cf. (18), F 2(λ) = F 2
0 (λ) is analytic on U0 and hence outside a disc centered 

at zero of sufficiently large radius.

(ii) For any q ∈ W and any n � 0 and l � 0, the function F 2l+1
n (λ)

c
√

�2(λ)−4
is analytic on Un. In particular, F 2l+1(λ)

c
√

�2(λ)−4
is 

analytic on C \⋃m�1 Gm. �
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Proof. The proof of item (i) can be found in [14, Lemma 4.3]. To prove item (ii) we note that both Fn and the 
canonical root admit opposite signs on opposite sides of Gn and they vanish on Un only at λ±

n hence the quotient 
Fn(λ)/

c
√

�2(λ) − 4 is analytic on Un \ {λ−
n , λ+

n

}
. Moreover, by l’Hopital’s rule one has Fn(λ)/

c
√

�2(λ) − 4
∣∣
λ±

n
=

1
�(λ±

n )
= (−1)n

2 so the quotient is continuous and hence analytic on all of Un. Together with item (i) it thus follows that 

F 2l+1
n (λ)/

c
√

�2(λ) − 4 is analytic on Un as well. �
2.4. Asymptotics of spectral quantities in Fourier Lebesgue spaces

Recall that we say the tuple (s, p) of real numbers is admissible if either p = 2 and −1 ≤ s < ∞ or 2 < p < ∞
and −1/2 ≤ s ≤ 0. For (s, p) admissible we introduce

Ws,p =W∩F�
s,p

0,C
, F�

s,p

0,C
=
{
u ∈ S ′

C
: (un) ∈ �

s,p

0,C

}
,

– cf. (4). According to [14,15] for q ∈ Ws,p the estimates of the periodic eigenvalues (13) can be refined to

λ±
n = n2π2 + n−s�

p
n . (35)

This estimate holds locally uniformly on Ws,p. In more detail,∑
n�1

nsp
∣∣∣λ±

n − n2π2
∣∣∣p ≤ C,

where the constant C can be chosen locally uniformly on Ws,p. We note that (35) immediately implies that τ =
(τn)n�1 and γ = (γn)n�1 satisfy

τn = n2π2 + n−s�
p
n , γn = n−s�

p
n . (36)

It was shown in [17, Proposition 2.18] that for every ε > 0 there exists nε � n0 so that∣∣λ•
n − τn

∣∣≤ ε |γn| , n� nε, (37)

and nε can be chosen locally uniformly on W. As an immediate consequence of (36) and (37),

λ•
n = n2π2 + n−s�

p
n . (38)

We proceed by further refining the estimate of λ•
n as well as other quantities derived from the periodic spectrum of q . 

A key ingredient into the proof of these estimates is an estimate of functions of the form

fn(λ) = nπ

+
√

λ − λ+
0

∏
m �=n

σm − λ

wm(λ)
, (39)

with σ̃ = (σn −n2π2)n�1 ∈ h−1
C

. Note that for each n � 1, the function fn is analytic in (λ, σ̃ , q) on (C \⋃m �=n Um) ×
h−1
C

×Wq – cf. [11, Corollary 12.8].
In a first step we estimate the infinite-product part of fn. To simplify notation we write for any subset U of the 

complex plane |f |U := supλ∈U |f (λ)|.

Lemma 2.7. Suppose (s, p) is admissible with −1 ≤ s ≤ 0. For any σ = (σn)n�1 ⊂ C with σn − τn = n−t �r
n, −1 ≤

t ≤ 0, and 1 < r < ∞,∣∣∣∣∣∣
∏
m �=n

σm − λ

wm(λ)
− 1

∣∣∣∣∣∣
Un

= n−1−t �r
n + n−2−2s�

p/2
n ,

uniformly in ‖σ − τ‖t,r and locally uniformly on Ws,p. In more detail, one has 
∏

m �=n
σm−λ
wm(λ)

= 1 + an(λ) + bn(λ)

where the functions an and bn satisfy the estimate



T. Kappeler, J.-C. Molnar / Ann. I. H. Poincaré – AN 35 (2018) 101–160 113
∑
n�1

(
n(1+t)r |an|rUn

+ n(2+2s)p/2 |bn|p/2
Un

)
≤ C,

and the absolute constant C can be chosen uniformly in ‖σ − τ‖t,r and locally uniformly on Ws,p. �

Proof. Write the product in the form

∏
m �=n

σm − λ

wm(λ)
=
∏
m �=n

σm − λ

τm − λ

∏
m �=n

(
1 − γ 2

m

4(τm − λ)2

)−1/2

. (40)

Here x−1/2 denotes the standard branch +√x of the square root which is analytic on C \ (−∞, 0]. By (17) we have 
Un = Dn for n � n0 where n0 can be chosen locally uniformly on W. Consequently, the first factor is 1 + n−1−t �r

n

in view of (16) and Lemma B.3. For the second factor, note that 
∣∣∣ γ 2

m

4(τm−λ)2

∣∣∣
Un

= O
(

γ 2
m

(n2−m2)2

)
for all n � n0 again in 

view of (16). Applying the estimate

|γm|2
(n2 − m2)2

≤
{

4‖γ ‖2
h−1 /n2, |n − m| > n/2,∥∥Rn/2γ
∥∥2

h−1 , 1 ≤ |n − m| ≤ n/2,

where Rn/2(γ ) = (γm)m�n/2, shows that one can choose ñ0 � n0 locally uniformly in W so that 
∣∣∣ γ 2

m

4(τm−λ)2

∣∣∣
Un

≤ 1/2

for all m � 1 with m �= n and all n � ñ0. Invoking the estimate 
∣∣1/ +√1 + x − 1

∣∣≤ |x| for |x| ≤ 1/2 then gives∣∣∣∣∣
(

1 − γ 2
m

4(τm − λ)2

)−1/2

− 1

∣∣∣∣∣≤
∣∣∣∣ γ 2

m

4(τm − λ)2

∣∣∣∣= n−2−2s�
p/2
m

(n − m)2
,

where we used that γ 2
m = m−2s�

p/2
m and 1

(n2−m2)2 ≤ 1
n2+2sm−2s (n−m)2 . Therefore, Lemma A.5 yields 

∑
m �=n

∣∣∣ γ 2
m

4(τm−λ)2

∣∣∣=
n−2−2s�

p/2
n and finally, in view of Lemma B.1, we conclude

∏
m �=n

(
1 − γ 2

m

4(τm − λ)2

)−1/2

= 1 + n−2−2s�
p/2
n .

By going through the arguments of the proof one verifies the claimed uniformity statement. �
It remains to estimate the nπ

+
√

λ−λ+
0

term of fn, introduced in (39).

Lemma 2.8. Suppose (s, p) is admissible with −1 ≤ s ≤ 0, then∣∣∣∣∣∣∣
nπ

+
√

λ − λ+
0

− 1

∣∣∣∣∣∣∣
Gn

= n−2−s�
p
n + n−2�∞

n = n−3/2−s(�
p/2
n + �1+

n ) + n−1�1+
n ,

locally uniform on Ws,p. �

Proof. Let (λn)n�1 be any sequence with λn ∈ Gn, then by (36) we can write λn = n2π2 + n−san with an = �
p
n . 

Using that 
∣∣(1 + x)−1/2 − 1

∣∣≤ |x| for |x| ≤ 1/2, we conclude∣∣∣∣∣∣∣
nπ

+
√

λ − λ+
0

− 1

∣∣∣∣∣∣∣=
∣∣∣∣∣∣
(

1 + n−san

n2π2
− λ+

0

n2π2

)−1/2

− 1

∣∣∣∣∣∣=
�
p
n

n2+s
+ �∞

n

n2
.

For p > 2, one has n−2−s�
p
n = n−3/2−s�

p/2
n whereas for p = 2 we have n−2−s�

p
n = n−3/2−s�1+

n . Moreover, n−2�∞
n =

n−1�1+
n . By going through the arguments of the proof, one sees that estimate holds locally uniformly on Ws,p. �
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Combining the previous two lemmas yields the following estimate for the function fn = nπ

+
√

λ−λ+
0

∏
m �=n

σm−λ
wm(λ)

.

Proposition 2.9. Suppose (s, p) is admissible with −1 ≤ s ≤ 0, and σ = (σn)n�1 ⊂C with σn−τn = n−t �r
n, s ≤ t ≤ 0, 

and 1 < r ≤ p. Then

|fn(λ) − 1|Gn
= n−1−t �r

n + n−1+(−1−2s)+(�
p/2
n + �1+

n ),

uniformly in ‖σ − τ‖t,r and locally uniformly on Ws,p. �

Remark 2.10. Proposition 2.9 implies the simpler estimate

|fn(λ) − 1|Gn
= n−1−s�

p
n . �

We are now in a position to obtain refined estimates for λ•
n and In.

Lemma 2.11. If (s, p) with −1 ≤ s < ∞ is admissible, then locally uniformly on Ws,p

(i)

λ•
n = τn + γ 2

n n−1�
p
n ,

(ii)

8nπIn

γ 2
n

= 1 + n−1+(−1−2s)+(�
p/2
n + �1+

n ). �

Remark 2.12.

(i) Estimate (i) implies that for any n � 1 with γn = 0 one has the standard identity λ•
n = τn.

(ii) Since γn = n−s�
p
n by (36), we conclude for any (s, p) admissible

In − γ 2
n

8nπ
=
{

n−3−4s�1
n −1 ≤ s ≤ −1/2,

n−2−2s(�
p/4
n + �1

n) −1/2 < s < ∞.
� (41)

Proof. (i) It was shown in [17, Proposition 2.19] that

λ•
n − τn = O(γ 2

n ) (42)

locally uniformly in W whence it suffices to prove the claimed asymptotics for n sufficiently large.

With �n(λ) := λ+
0 −λ

n4π4

∏
m �=n

(λ+
m−λ)(λ−

m−λ)

m4π4 the identity 0 = 1
4∂λ(�

2(λ) − 4)

∣∣∣
λ•

n

can be written as

0 = 2(λ•
n − τn)�n(λ

•
n) +

(
(λ•

n − τn)
2 − γ 2

n /4
)

�•
n(λ

•
n). (43)

By Lemma B.4 from Appendix B and since 2 ≤ p < ∞ and hence n−2 = n−1�
p
n , one has uniformly for λ ∈ Dn with 

n � n0,

�n(λ) = − λ

n2π2 + O(n−2)

n2π2

(
n2π2

n2π2 − λ

sin
√

λ√
λ

)2 (
1 + n−1−s�

p
n

)2

= −1

n2π2

⎛
⎝ λ

n2π2

(
n2π2

n2π2 − λ

sin
√

λ√
λ

)2

+ n−1−s�
p
n

⎞
⎠ .

Since infλ∈Dn

∣∣∣ n2π2

2 2
sin

√
λ√
∣∣∣� 1/4 by (97) for all n � n0, it follows that
n π −λ λ



T. Kappeler, J.-C. Molnar / Ann. I. H. Poincaré – AN 35 (2018) 101–160 115
inf
λ∈Dn

|�n(λ)| � 1

32π2n2
(44)

for all n is sufficiently large. On the other hand, let D′
n = {λ ∈C : ∣∣λ − n2π2

∣∣≤ n/2
}

hence dist(D′
n, ∂Dn) = n/2, 

and by Cauchy’s estimate and the above estimate of �n,∣∣∣∣∣∣∂λ

⎛
⎝�n(λ) − −λ

n4π4

(
n2π2

n2π2 − λ

sin
√

λ√
λ

)2
⎞
⎠
∣∣∣∣∣∣
D′

n

= n−3−s�
p
n

n/2
= n−4−s�

p
n . (45)

Writing 
√

λ = nπ + α, a straightforward computation gives

∂λ

⎛
⎝ λ

n4π4

(
n2π2

n2π2 − λ

sin
√

λ√
λ

)2
⎞
⎠= −2(nπ + α) sin2(α) + 1

2α(2nπ + α) sin(2α)

α3(nπ + α)(2nπ + α)3
.

Inserting the expansion sinx = x + O(x3) gives

−2(nπ + α) sin2(α) + 1

2
α(2nπ + α) sin(2α) = −α3 + nO(α4)

so that

∂λ

⎛
⎝ λ

n4π4

(
n2π2

n2π2 − λ

sin
√

λ√
λ

)2
⎞
⎠= O(1/n4) + O(α/n3). (46)

In view of (38) we have 
√

λ•
n = nπ + n−1−s�

p
n , and by combining (45) and (46) one gets

�•
n(λ

•
n) = O(1/n4) + n−4−s�

p
n = n−3�

p
n . (47)

Substituting the lower bound (44) of �n and the estimate (47) of �•
n(λ

•
n) into identity (43) and using that by (37)∣∣λ•

n − τn

∣∣≤ |γn| for n sufficiently large thus gives∣∣λ•
n − τn

∣∣= γ 2
n n−1�

p
n .

(ii) By [17, Proposition 3.3] the quotient In/γ
2
n is real-analytic on W, hence it suffices to prove the asymptotics 

for n sufficiently large. Since 
∫
�n

�•(λ)
c
√

�2(λ)−4
dλ = 0 by (31), one can write the actions, defined in (19), in the form 

In = − 1
π

∫
�n

(λ•
n − λ)

�•(λ)
c
√

�2(λ)−4
dλ. In case γn �= 0, one can deform the contour of integration �n to the straight line 

Gn and insert the product representation (30) of �•(λ)/
c
√

�2(λ) − 4 to obtain

nπIn = −1

i

∫
G−

n

(λ•
n − λ)2χn(λ)

wn(λ)
dλ, χn(λ) := nπ

+
√

λ − λ+
0

∏
m �=n

λ•
m − λ

wm(λ)
. (48)

Using the parametrization (27), λ±
t = τn + (t ± i)γn/2, of the gap then gives in view of (28) provided γn �= 0

8nπIn

γ 2
n

= 2

π

1∫
−1

(t − tn)
2

+√1 − t2
χn(λt )dt, tn = 2(λ•

n − τn)

γn

. (49)

It follows from a limiting argument for γn → 0 that identity (49) holds as well in the case γn = 0. Then tn = 0 and 
one has

8nπIn

γ 2
n

= χn(τn)
2

π

1∫
−1

t2

+√1 − t2
dt.

Since λ• − τk = γ 2k−1�
p = k−1−2s�

p/3 by item (i), Proposition 2.9 (ii) yields
k k k k
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χn(λ)|Gn
= 1 + n−1+(−1−2s)+(�

p/2
n + �1+

n ). (50)

Moreover, tn = γnn
−1�

p
n = o(1) so that

2

π

1∫
−1

(t − tn)
2

+√1 − t2
dt = 2

π

1∫
−1

t2

+√1 − t2
dt + t2

n

2

π

1∫
−1

1
+√1 − t2

dt

= 1 + γ 2
n n−2�

p/2
n = 1 + n−2−2s�

p/4
n .

Therefore, 8nπIn

γ 2
n

= 1 + n−1+(−1−2s)+(�
p/2
n + �1+

n ). Going through the arguments of the proof, one sees that the 

estimate holds locally uniformly on Ws,p. �
We also need to refine the estimate |Fn|Gn

= O(γn/n) from Lemma 2.5 (iii), where Fn is defined in (34). In view 
of (31) one has

Fn(λ) =
λ∫

λ−
n

�•(z)
c
√

�2(z) − 4
dz.

Lemma 2.13. For any (s, p) admissible with −1 ≤ s ≤ 0

sup
λ∈G+

n ∪G−
n

∣∣∣∣Fn(λ) − iwn(λ)

2nπ

∣∣∣∣= 1

2nπ

(
γnn

−s−1(�
p/2
n + �1+

n )
)

,

locally uniformly on Ws,p. �

Proof. If γn = 0, then Gn = {λ±
n

}
and F(λmn ) = 0 = iwn(λ±

n )

2nπ
. Therefore, we only consider the case γn �= 0. With χn(λ)

given as in (48), Fn takes form

Fn(λ) =
λ∫

λ−
n

�•(z)
c
√

�2(z) − 4
dz = − i

2nπ

λ∫
λ−

n

λ•
n − z

wn(z)
χn(z)dz.

By (50), |χn(λ) − 1|Gn
= n−1+(−1−2s)+(�

p/2
n +�1+

n ) and in view of (37), 
∣∣λ•

n − λ
∣∣
Gn

≤ |γn| for all n sufficiently large. 
Therefore, by Lemma 2.2∣∣∣∣∣∣∣Fn(λ) − −i

2nπ

λ∫
λ−

n

λ•
n − z

wn(z)
dz

∣∣∣∣∣∣∣
G+

n ∪G−
n

≤ ∣∣(λ•
n − λ)(χn(λ) − 1)

∣∣
Gn

= γnn
−1+(−1−2s)+(�

p/2
n + �1+

n ).

(51)

One further checks that ∂λwn(λ) = − τn−λ
wn(λ)

, hence

λ∫
λ−

n

λ•
n − z

wn(z)
dz = −wn(λ) − (τn − λ•

n)

λ∫
λ−

n

1

wn(z)
dz.

Since by Lemma 2.11 (ii) we have τn − λ•
n = γ 2

n n−1�
p
n , and γn = n−s�

p
n by (36), we get τn − λ•

n = n−s−1γn�
p/2
n . 

Hence by Lemma 2.2∣∣∣∣∣∣∣
λ∫

λ−
n

λ•
n − z

wn(z)
dz + wn(λ)

∣∣∣∣∣∣∣ + −

= n−s−1γn�
p/2
n .
Gn ∪Gn
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Inserting the latter estimate into (51) and noting that for −1 ≤ s ≤ 0 one has −s � (−1 − 2s)+, the claimed estimate 
follows. By going through the arguments of the proof, one sees that this estimate holds locally uniformly on Ws,p. �
2.5. Refined estimates for the roots of the psi-functions

For q ∈W we denote by ψn, n � 1, the entire function of the form

ψn(λ) := 2

nπ

∏
m �=n

σn
m − λ

m2π2
, σ n

m = m2π2 + O(m), (52)

which is uniquely characterized by the property that

1

2π

∫
�k

ψn(λ)

c
√

�2(λ) − 4
dλ = δnk, n, k � 1. (53)

These functions have been first constructed for q ∈ W ∩ H0
0 in [18, Theorem D.1] and were extended to the case 

q ∈ W ⊂ H−1
0 in [17, Theorem 10.1]. In addition, it is proved there that the roots of ψn are precisely the complex 

numbers σn
k , k �= n, and they satisfy

σn
k − τk = O

(
γ 2
k /k

)
(54)

uniformly in n � 1 and locally uniformly in q ∈ W. It appears, in a sense to be made precise, that σn
k is closer to λ•

k

than to τk . By Lemma 2.11, one has

σn
k − λ•

k = (σ n
k − τk) + (τk − λ•

k) = k−1−sγk�
p
k = k−1−2s�

p/2
k , k �= n. (55)

The purpose of this subsection is to improve on these estimates.

Proposition 2.14. For any (s, p) admissible, and any k �= n

σn
k − λ•

k =
{

γk�
2
k, s = −1, p = 2

n−(1−ρ)sk−1−sργk�
p
k , −1 < s ≤ 0, 2 ≤ p < ∞, 0 ≤ ρ ≤ 1,

locally uniformly on Ws,p. �

Proof. If s = −1, p = 2, then the claimed estimate σn
k − λ•

k = γk�
2
k follows from (55). Thus it remains to consider 

the case s > −1. Note that in view of (52) and (29) for any n, k � 1

ψn(λ)

c
√

�2(λ) − 4
= n

k

i

wk(λ)

σn
k − λ

σn
n − λ

ζk(λ), ζk(λ) = kπ

+
√

λ − λ+
0

∏
m �=k

σ n
m − λ

wm(λ)
, (56)

where the function ζk is analytic on Uk and we set σn
n := λ•

n. By (53), the roots σn
k , k �= n, of ψn are characterized by 

the equation

0 =
∫
�k

ψn(λ)

c
√

�2(λ) − 4
dλ = i

n

k

∫
�k

σn
k − λ

wk(λ)

ζk(λ)

σn
n − λ

dλ, k �= n. (57)

It implies that

(σ n
k − λ•

k)

∫
�k

1

wk(λ)

ζk(λ)

σn
n − λ

dλ =
∫
�k

λ − λ•
k

wk(λ)

ζk(λ)

σn
n − λ

dλ, k �= n. (58)

This identity is the starting point for estimating σn
k − λ•

k . A key step in the proof of the claimed estimate is to rewrite 
this identity in an appropriate way. Let us multiply the identity by (σ n

n − λ• ) and introduce
k
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ξk(λ) = σn
n − λ•

k

σ n
n − λ

ζk(λ) =
(

1 + λ − λ•
k

σ n
n − λ

)
ζk(λ).

It then follows from (58) that

(σ n
k − λ•

k)

∫
�k

ξk(λ)

wk(λ)
dλ =

∫
�k

(λ − λ•
k)ξk(λ)

wk(λ)
dλ, k �= n,

where∫
�k

(λ − λ•
k)ξk(λ)

wk(λ)
dλ =

∫
�k

(λ − λ•
k)ζk(λ)

wk(λ)
dλ +

∫
�k

(λ − λ•
k)

2ζk(λ)

(σn
n − λ)wk(λ)

dλ.

The second term on the right hand side is expected to be small in comparison to the first term since σn
n − λ is of the 

size of n2 − k2. We proceed by writing the first term in a more convenient form. Note that the roots λ•
k , k � 1, of �•

are characterized by the equation

0 =
∫
�k

�•(λ)

c
√

�2(λ) − 4
dλ = −i

2kπ

∫
�k

λ•
k − λ

wk(λ)
χk(λ)dλ, k � 1, (59)

where χk is given by (48). Hence∫
�k

(λ − λ•
k)ζk(λ)

wk(λ)
dλ =

∫
�k

(λ − λ•
k)(ζk(λ) − χk(λ))

wk(λ)
dλ.

Altogether, identity (58) then reads

(σ n
k − λ•

k)

∫
�k

ξk(λ)

wk(λ)
dλ =

∫
�k

(λ − λ•
k)(ζk(λ) − χk(λ))

wk(λ)
dλ

+
∫
�k

(λ − λ•
k)

2ζk(λ)

(σn
n − λ)wk(λ)

dλ, k �= n.

(60)

The integrals in (60) are now estimated separately. First note that for λ ∈ Gk we have

λ − λ•
k

σ n
n − λ

= O

(
γk

n2 − k2

)
= k−1−s�

p
k .

Since by Remark 2.10 we have ζk

∣∣
Gk

= 1 + k−1−s�
p
k , we find

ξk

∣∣
Gk

= (1 + k−1−s�
p
k )ζk

∣∣
Gk

= 1 + k−1−s�
p
k .

Since 1
2π i

∫
�k

1
wk(λ)

dλ = −1, we then conclude

1

2π i

∫
�k

ξk(λ)

wk(λ)
dλ = −1 + k−1−s�

p
k . (61)

Concerning the integral 
∫
�k

(λ−λ•
k )(ζk(λ)−χk(λ))

wk(λ)
dλ, it follows from Lemma 2.3 that∣∣∣∣∣∣∣

1

2π

∫
�k

(λ − λ•
k)(ζk(λ) − χk(λ))

wk(λ)
dλ

∣∣∣∣∣∣∣≤ |γk| |ζk(λ) − χk(λ)|Gk
. (62)

Similarly, for the integral 
∫ (λ−λ•

k )2ζk(λ)
n dλ, we get
�k (σn −λ)wk(λ)
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∣∣∣∣∣∣∣
1

2π

∫
�k

(λ − λ•
k)

2ζk(λ)

(σn
n − λ)wk(λ)

dλ

∣∣∣∣∣∣∣≤
∣∣∣∣∣ (λ − λ•

k)
2

σn
n − λ

ζk(λ)

∣∣∣∣∣
Gk

= O

(
γ 2
k

n2 − k2

)
. (63)

Using that for 1 ≤ k < n/2, n/2 ≤ k ≤ 3n/2, and 3n/2 < k one has 1
n2−k2 = O(1/n2), 1

n2−k2 = O(1/(nk)), and 
1

n2−k2 = O(1/k2), respectively, one concludes that for any −3/2 ≤ α ≤ 3/2 we have

1

n2 − k2
= O(n−1/2+αk−1/2−α), n �= k, (64)

where the implicit constant can be chosen uniformly in α and n, k � 1. Therefore, if −1 ≤ s ≤ 0 and 0 ≤ ρ ≤ 1, we 
may choose α = 1/2 − s(1 − ρ) to obtain

O

(
γ 2
k

n2 − k2

)
= n−s(1−ρ)k−1−sργk�

p
k . (65)

Inserting estimates (61)–(65) into (60) yields

(σ n
k − λ•

k)(1 + k−1−s�
p
k ) = O

(
γk |ζk(λ) − χk(λ)|Gk

)+ n−s(1−ρ)k−1−sργk�
p
k . (66)

To estimate |ζk(λ) − χk(λ)|Gk
, write the product expansions (56) and (48), respectively, as ζk(λ) = fk(λ, α1) and 

χk(λ) = fk(λ, α0), where we have set α1 = (σ n
m), α0 = (λ•

m), and

fk(λ,α) = kπ√
λ − λ+

0

∏
m �=k

αm − λ

wm(λ)
.

By (39), the function fk is analytic on (C \⋃m �=k Gk) × �
p

C
and by Remark 2.10 satisfies the estimate |fk(λ, α) −

1|Gk
= 1 + k−1−s�

p
k locally uniformly on �p

C
. Thus we may write for any λ ∈ Gk ,

ζk(λ) − χk(λ) = fk(λ,α1) − fk(λ,α0) =
1∫

0

∑
m �=k

∂αmfk(λ,αt )(σ n
m − λ•

m)dt,

where αt := (αt
m) = ((1 − t)σ n

m + tλ•
m). Since for any m �= k one has

∂αmfk(λ,α) = 1

αm − λ
fk(λ,α),

we conclude

ζk(λ) − χk(λ) =
1∫

0

fk(λ,αt )
∑
m �=k

σ n
m − λ•

m

αt
m − λ

dt.

By Remark 2.10, we can choose M > 0 so that sup0≤t≤1 |fk(λ,αt )|Gk
≤ M for all k � 1. Moreover, by the mean 

value theorem there exists a sequence (νk) ⊂C with νk ∈ Gk such that

|ζk(λ) − χk(λ)|Gk
≤ M

1∫
0

∣∣∣∣∣∣
∑
m �=k

σ n
m − λ•

m

αt
m − νk

∣∣∣∣∣∣ dt. (67)

Since Um is assumed to be convex, we have αt
m ∈ Um for all m � 1. Moreover, νk ∈ Gk ⊂ Uk for all k � 1. Thus 

by (16), there exists c > 0 so that∣∣αt
m − νk

∣∣� c

∣∣∣m2 − k2
∣∣∣ , m �= k, 0 ≤ t ≤ 1.

If ρ = 1, the claimed estimate is the one of (55). In the case 0 ≤ ρ < 1 we argue by iteration using (66). As a 
starting point, write the estimate (55) in the form σn

m − λ•
m = nβ1m−t1γm�

p
m with β1 = 0 and t1 = 1 + s ∈ (0, 1] and 

suppose that for some j � 1



120 T. Kappeler, J.-C. Molnar / Ann. I. H. Poincaré – AN 35 (2018) 101–160
σn
m − λ•

m = nβj m−tj γm�
p
m, βj � 0, tj ∈ (0,1].

It follows with Lemma A.6 from (67) that

|ζk(λ) − χk(λ)|Gk
= nβj k−1−min(0,tj +s)(�

p/2
k + �1+

k ).

We conclude with (66) that for all k sufficiently large

σn
k − λ•

k = nβj k−1−min(0,tj +s)γk(�
p/2
k + �1+

k ) + n−s(1−ρ)k−1−sργk�
p
k

= nβj+1k−tj+1γk�
p
k ,

(68)

where

βj+1 := max(βj ,−s(1 − ρ)) � 0, tj+1 := min(1 + sρ,1 + tj + s) ∈ (0,1].
We may thus iterate the estimate. Since β1 = 0, we conclude βj = −s(1 − ρ) � 0 for all j � 2. On the other hand, 
since t1 = 1 + s, we conclude tj = min(1 + sρ, j (1 + s)) for all j � 2. After finitely many iterations of this estimate 
we have 1 + sρ < j (1 + s) and hence

σn
k − λ•

k = n−(1−ρ)sk−1−sργk�
p
k .

By going through the arguments of the proof, one verifies that the estimate holds locally uniformly on Ws,p. �
3. KdV

3.1. Frequencies

In this section we derive a novel formula for the KdV frequencies ω(1)
n , n � 1, which we then use to study their 

asymptotics for n → ∞. The frequencies can be viewed either as analytic functionals of the potential q on W or as 
analytic functionals of the actions I = (Im)m�1 on a neighborhood V of �−1,1

+ within �−1,1
C

. Which case is at hand 
should be always clear from the context, hence we do not introduce different notations for them. Our starting point 
for deriving the novel formula is the following identity for the nth KdV frequency

ω(1)
n = {H1, θn} ,

which a priori holds on H1
0,C

∩ (W \ Zn), where Zn := {q ∈ W : γ 2
n (q) = 0

}
is an analytic subvariety of W. Recall 

that γ 2
n is analytic on W whereas γn is not.

It turns out to be convenient to introduce for any integers n, k � 1 and m � 0 the moments


(m)
nk :=

∫
�k

(Fk(λ))mψn(λ)

c
√

�2(λ) − 4
dλ.

Lemma 3.1.

(i) 
(0)
nk = 2πδnk , for all n, k � 1.

(ii) Each moment (m)
nk , n, k � 1, m � 1, is analytic on W.

(iii) 
(2l+1)
nk = 0, for all n, k � 1 and l � 0.

(iv) 
(m)
nk = 0, for all n, k � 1, m � 1, if γk = 0. �

Proof. (i) follows immediately from the characterization (53) of the functions ψn.
(ii) For any q ∈ W we have a set of isolating neighborhoods (Um)m�1 which work for a whole neighborhood 

Wq ⊂ W of q . Moreover, by the locally uniform asymptotic behavior of the periodic and Dirichlet eigenvalues, we 
can choose a set of counterclockwise oriented circuits �m, m � 1, and a set of open neighborhoods U ′

m of �m so that 
�m ⊂ Um circles around Gm and U ′

m ⊂ Um \ Gm for any potential in Wq . By the properties of the function Fk(λ) (cf. 
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Lemma 2.5), c
√

�2(λ) − 4 (see (29) and the discussion following it), and ψn(λ) (see (52) above), for each q ∈ W, the 

integrand 
Fm

k (λ)ψn(λ)
c
√

�2(λ)−4
is analytic on (

⋃
n�1 U ′

n) ×Wq hence (m)
nk is analytic on Wq as well.

(iii) For any k, l � 0, the function (Fk(λ))2l+1/
c
√

�2(λ) − 4 is analytic on Uk by Lemma 2.6. Therefore, 


(2l+1)
nk = 0 for all n, k � 1.
(iv) In view of item (iii) it remains to consider the case where m = 2l with l � 1 and γk = 0. We first consider the 

case n �= k. It follows from (54) that σn
k = τk for any n � 1, so that by the product representations (29) and (52) the 

quotient ψn(λ)/
c
√

�2(λ) − 4 is analytic on Uk . Moreover, (Fk(λ))2l is analytic on Uk by Lemma 2.6, which proves 
the claim for n �= k. Now suppose n = k, then by (56)

ψn(λ)

c
√

�2(λ) − 4
= i

wn(λ)
ζn(λ),

where wn(λ) = (τn − λ) if γn = 0 by (25) and ζn is analytic on Un. Since F 2l
n is analytic on Un by Lemma 2.6 (i), we 

conclude with Cauchy’s theorem that

(2l)
nn = 2π iFn(τn)

2lζn(τn) = 0.

Here we used that Fn(τn) = F(λ±
n ) = 0 by Lemma 2.5 (ii) if γn = 0. �

Lemma 3.2. For any real-valued finite-gap potential cf. (18) with [q] = 0 and any n � 1

ω(1)�
n := ω(1)

n − (2nπ)3 = −12
∑
k�1

k
(2)
nk . � (69)

Proof. Let q be a finite-gap potential, meaning that S = {k ∈N : γk(q) �= 0} is finite. By Lemma 2.6, the function F 2

is analytic outside a sufficiently large circle Cr which encloses all open gaps Gk , k ∈ S, and whose exterior contains 
G0. Furthermore, F admits according to (33) an asymptotic expansion for νk = (k + 1/2)π . In particular,

F(λ)4 = λ2 − H0 − H1

4

1

λ
+ O(λ−2),

so that by Cauchy’s Theorem

−H1

4
= 1

i2π

∫
Cr

F 4(λ)dλ.

Let n ∈ S then γn(q) �= 0 and θn mod π is analytic near q so that

ω(1)
n = {H1, θn} = 2

iπ

∫
Cr

{
θn,F

4(λ)
}

dλ = 8

iπ

∫
Cr

F 3(λ) {θn,F (λ)} dλ.

Since {θn,F (λ)} = {θn,�(λ)}
c
√

�2(4)−4
by Lemma 2.5 (i) and 2{θn, �(λ)} = ψn(λ) by [18, Proposition F.3], one obtains

ω(1)
n = 4

iπ

∫
Cr

F 3(λ)ψn(λ)

c
√

�2(λ) − 4
dλ.

By Lemma 2.6 (ii) and formula (52), the integrand is analytic on U0, while for any k ∈ N \ S, one has σn
k = τk and 

wk(λ) = τk − λ so that in view of the product representations (29) and (52) the integrand extends analytically to Uk . 
Consequently, the integrand is analytic on C \⋃k∈S Gk and one obtains by contour deformation

ω(1)
n = 4

iπ

∑
k∈S

∫
�k

F 3(λ)ψn(λ)

c
√

�2(λ) − 4
dλ.

Proceeding by expanding F(λ)3 = (Fk(λ) − ikπ)3 gives
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F 3(λ) = F 3
k (λ) − 3i(kπ)F 2

k (λ) − 3(kπ)2Fk(λ) + i(kπ)3,

and since (3)
nk ≡ 

(1)
nk ≡ 0 by Lemma 3.1 (iii) and (0)

nk = 2πδnk by Lemma 3.1 (i), we thus get

ω(1)
n = 4

iπ

∑
k∈S

(
−3i(kπ)

(2)
nk + i(kπ)3

(0)
nk

)

=
∑
k�1

(
−12k

(2)
nk + (2kπ)3δkn

)
,

where in the second line we used that (2)
nk = 0 for all k ∈N \ S by Lemma 3.1 (iv). This shows that (69) holds for all 

n ∈ S.
Now consider any n ∈ N \ S, that is γn(q) = 0. We can choose a sequence of real-valued finite-gap potentials ql

with γk(ql) = γk(q) for k �= n, γn(ql) �= 0, and ql → q in H1
0. In particular, S(l) ≡ S(ql) :=

{
j ∈N : γj (ql) �= 0

}
is 

given by S ∪ {n} for any l � 1. Since each (2)
nk , k � 1, is continuous, indeed analytic on W by Lemma 3.1 (ii), it 

follows that∑
k�1

k
(2)
nk (ql) =

∑
k∈S∪{n}

k
(2)
nk (ql) →

∑
k∈S∪{n}

k
(2)
nk (q) =

∑
k�1

k
(2)
nk (q).

Since ω(1)�
n (q) = lim

l→∞ω
(1)�
n (ql) and ω(1)�

n (ql) = −12 
∑

k∈S∪{n} k
(2)
nk (ql) for any l � 1, one concludes that ω(1)�

n (q) =
−12 

∑
k�1 k

(2)
nk (q). �

We proceed by deriving decay estimates for (2)
nk .

Lemma 3.3. For any n � 1 and any q ∈Ws,p with (s, p) admissible and −1 ≤ s ≤ 0 for k �= n,

k
(2)
nk =

⎧⎨
⎩

n

n2−k2 k−2γ 3
k �2

k, s = −1, p = 2,

n1−(1−ρ)s

n2−k2 k−3−ρsγ 3
k �

p
k , −1 < s ≤ 0, 2 ≤ p < ∞, 0 ≤ ρ ≤ 1,

and

n(2)
nn = γ 2

n

16nπ

(
1 + n−s−1�

p
n

)
,

locally uniformly on Ws,p. �

Proof. We begin with the case k �= n. Our goal is to obtain a representation of (2)
nk involving a difference of the 

quotients

(2nπ)�•(λ)

c
√

�2(λ) − 4
= − inπ

+
√

λ − λ+
0

∏
m�1

λ•
m − λ

wm(λ)
,

(σ n
n − λ)ψn(λ)

c
√

�2(λ) − 4
= inπ

+
√

λ − λ+
0

∏
m�1

σn
m − λ

wm(λ)
,

(70)

which are obtained from (30) and (56) – recall that σn
n = λ•

n. This allows to reduce the estimate of (2)
nk to an estimate 

of σn
k − λ•

k where we can apply Proposition 2.14. We first note that

(σ n
n − τk)

(2)
nk = Ank + Bnk,

Ank :=
∫
�k

F 2
k (λ)(σn

n − λ)ψn(λ)

c
√

�2(λ) − 4
dλ, Bnk :=

∫
�k

F 2
k (λ)(λ − τk)ψn(λ)

c
√

�2(λ) − 4
dλ,
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and proceed by estimating the second term which is expected to be small since λ is close to τk . In view of (56) we 
may write for k �= n,

ψn(λ)

c
√

�2(λ) − 4
= σn

k − λ

wk(λ)
ζ n
k (λ), ζ n

k (λ) = i
n

k

1

σn
n − λ

ζk(λ), (71)

where ζk is given by (56). By Remark 2.10, ζk(λ)
∣∣
Gk

= 1 + k−s−1�
p
k while on the other hand, uniformly for λ ∈ Gk ,

σn
n − τk

σn
n − λ

− 1 = λ − τk

σn
n − λ

= O

(
k−s�

p
k

n2 − k2

)
= k−1−s�

p
k .

Both estimates together yield

ζ n
k (λ)

∣∣∣∣
Gk

= i
n

k

1

σn
n − τk

(
1 + k−1−s�

p
k

)
. (72)

By Lemma 2.5
∣∣F 2

k

∣∣
Gk

= O(γ 2
k /k2), and by (36) and (54) we have 

∣∣σn
k − λ

∣∣
Gk

= O(γk), while by (16) there exists 

c > 0 so that 
∣∣σn

n − τk

∣∣� c
∣∣n2 − k2

∣∣. Thus it follows with Lemma 2.3 that

Bnk =
∫
�k

F 2
k (λ)(λ − τk)(σ

n
k − λ)ζ n

k (λ)

wk(λ)
dλ

= O

(
n

k3

γ 4
k

n2 − k2

)
= n

n2 − k2
k−3−sγ 3

k �
p
k .

By (64) one then gets for any −3/2 ≤ α ≤ 3/2,

Bnk = n1/2+αk−7/2−s−αγ 3
k �

p
k .

We proceed with estimating Ank . By Lemma 2.5 the function F 3
k (λ) is analytic on Uk \ Gk and we compute

∂λ

(
1

3
F 3

k (λ)

)
= F 2

k (λ)�•(λ)

c
√

�2(λ) − 4
.

Therefore,∫
�k

F 2
k (λ)�•(λ)

c
√

�2(λ) − 4
dλ = 0.

Thus Ank may be written in the form

Ank =
∫
�k

F 2
k (λ)

(σn
n − λ)ψn(λ) + (2nπ)�•(λ)

c
√

�2(λ) − 4
dλ.

Note that in view of (70)

kπ

inπ

(σn
n − λ)ψn(λ) + (2nπ)�•(λ)

c
√

�2(λ) − 4
= f (λ,α1) − f (λ,α0),

where α1 = (σ n
m)m∈Z, α0 = (λ•

m)m∈Z, and

f (λ,α) = αk − λ

wk(λ)
fk(λ,α), fk(λ,α) = kπ

+
√

λ − λ+
0

∏
m �=k

αm − λ

wm(λ)
.

By (39) the functions fk : (C \⋃m �=k Gm) × �
p

C
→ C and f : (C \⋃m∈Z Gm) × �

p

C
→ C are analytic. One further 

computes that
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∂αmf (λ,α) = αk − λ

αm − λ

fk(λ,α)

wk(λ)
, m �= k, ∂αk

f (λ,α) = fk(λ,α)

wk(λ)
.

For 0 ≤ t ≤ 1, let αt = (αt
m) = ((1 − t)σ n

m + tλ•
m). Then

f (λ,α1) − f (λ,α0) =
1∫

0

∑
m

∂αmf (λ,αt )(σ n
m − λ•

m)dt

=
1∫

0

⎛
⎝∑

m �=k

σ n
m − λ•

m

αt
m − λ

⎞
⎠ (αt

k − λ)fk(λ,αt )

wk(λ)
dt

+ (σ n
k − λ•

k)

1∫
0

fk(λ,αt )

wk(λ)
ds.

Consequently, by Lemma 2.3

|Ank| ≤ n

k

∣∣∣F 2
k

∣∣∣
Gk

sup
0≤t≤1

(∣∣∣∣∑
m �=k

σ n
m − λ•

m

αt
m − λ

Gk

∣∣∣∣ ∣∣(αt
k − λ)fk(λ,αt )

∣∣
Gk

+ ∣∣σn
k − λ•

k

∣∣ ∣∣fk(λ,αt )
∣∣
Gk

)
.

Since 
∣∣F 2

k

∣∣
Gk

= O(γ 2
k /k2) by Lemma 2.5, 

∣∣fk(λ,αt )
∣∣
Gk

is bounded uniformly in k and 0 ≤ t ≤ 1 by Proposition 2.9, 

and 
∣∣αt

k − λ
∣∣
Gk

= O(γk) uniformly in k and 0 ≤ t ≤ 1, we get

|Ank| ≤ n

k3
|γk|2

⎛
⎝|γk| sup

0≤t≤1

∣∣∣∣∣∣
∑
m �=k

σ n
m − λ•

m

αt
m − λ

∣∣∣∣∣∣
Gk

+ O(
∣∣σn

k − λ•
k

∣∣)
⎞
⎠ .

Finally, note that for some c > 0,

inf
λ∈Gk

∣∣αt
m − λ

∣∣� c

∣∣∣m2 − k2
∣∣∣ , m �= k, 0 ≤ t ≤ 1.

Case A. s = −1: Since σn
m − λ•

m = γm�2
m by Proposition 2.14, we obtain from Lemma A.6 that Ank = nk−3γ 3

k �2
k . 

Moreover, with α = −1/2 − s, we obtain Bnk = nk−3γ 3
k �

p
k . Hence, altogether we have shown that

(σ n
n − τk)

(2)
nk = Ank + Bnk = nk−3γ 3

k �2
k.

Case B. −1 < s ≤ 0: Since σn
m − λ•

m = n−(1−ρ)sm−1−ρsγm�
p
m by Proposition 2.14, we obtain from Lemma A.6

that

Ank = n1−(1−ρ)s

k3
k−1−ρsγ 3

k �
p
k = n1−(1−ρ)sk−4−ρsγ 3

k �
p
k .

Moreover, with α = 1/2 − (1 − ρ)s,

Bnk = n1−(1−ρ)sk−4−ρsγ 3
k �

p
k .

Altogether we thus have shown that

(σ n
n − τk)

(2)
nk = Ank + Bnk = n1−(1−ρ)sk−4−ρsγ 3

k �
p
k .

This completes the proof of the claimed asymptotics for (2) with k �= n.
nk



T. Kappeler, J.-C. Molnar / Ann. I. H. Poincaré – AN 35 (2018) 101–160 125
It remains to consider the case k = n. In view of (56),

(2)
nn = i

∫
�n

F 2
n (λ)ζn(λ)

wn(λ)
dλ

= i
∫
�n

(
− w2

n(λ)

4n2π2 + F 2
n (λ) + w2

n(λ)

4n2π2

)(
1 + ζn(λ) − 1

)
wn(λ)

dλ

= −i
∫
�n

wn(λ)

4n2π2
dλ + i

∫
�n

F 2
n (λ) + w2

n(λ)

4n2π2

wn(λ)
dλ + i

∫
�n

F 2
n (λ) (ζn(λ) − 1)

wn(λ)
dλ.

By Remark 2.10 we have |ζn(λ) − 1|Gn
= n−s−1�

p
n and by Lemma 2.13,∣∣∣∣F 2

n (λ) + w2
n(λ)

4n2π2

∣∣∣∣
Gn

= γ 2
n

4n2π2
n−s−1�

p
n .

We may thus apply Lemma 2.3 to obtain the estimate

1

2π

∣∣∣∣∣∣∣
(2)
nn + i

∫
�n

wn(λ)

4n2π2
dλ

∣∣∣∣∣∣∣
≤
∣∣∣∣F 2

n (λ) + w2
n(λ)

4n2π2

∣∣∣∣
Gn

+
∣∣∣F 2

n (λ)

∣∣∣
Gn

|ζn(λ) − 1|Gn

= γ 2
n

4n2π2
n−s−1�

p
n .

Finally, the integral 
∫
�n

wn(λ) dλ can be explicitly computed. If γn = 0, then wn(λ) = (τn − λ) and hence ∫
�n

wn(λ) dλ = 0. On the other hand, if γn �= 0, then we may use (28) to compute

∫
�n

wn(λ)dλ = i
γ 2
n

2

1∫
−1

+√
1 − t2 dt = iπ

γ 2
n

4
.

Consequently,

(2)
nn = γ 2

n

16n2π

(
1 + n−1−s�

p
n

)
.

Going through the arguments of the proof, one verifies that the estimates hold locally uniformly on Ws,p. �
Our first main result for the KdV frequencies is the following formula for their analytic extension.

Theorem 3.4. For any n � 1, the sum −12 
∑

k�1 k
(2)
nk converges locally uniformly on W to the analytic function 

ω
(1)�
n ,

ω(1)�
n = −12

∑
k�1

k
(2)
nk . � (73)

Remark 3.5. (i) In [22] it has been shown that ω(1)�
n extends to an analytic function by a different formula. The 

formula (73) allows us to obtain asymptotic estimates for ω(1)�
n .

(ii) Let V denote the image of the map W → �
−1,1
C

, q �→ (znz−n)n�1, then V defines a complex neighborhood of 
�
−1,1
+ . Using Theorem 3.4, one can argue as in the proof of [11, Theorem 20.3], to see that for any n � 1, the frequency 

ω
(1)�
n is a real analytic function of the actions on V. �
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Proof. By Lemma 3.1 (ii), all moments (2)
nk are analytic on W. Moreover, combining the asymptotics (36), γk =

k−s�
p
k , and Lemma 3.3, yields for k �= n and s = −1, p = 2, and ρ = 0,

k
(2)
nk = n2

n2 − k2
�1
k = n�1

k.

Thus, the sum (2)
n := −12 

∑
k�1 k

(2)
nk is absolutely and locally uniformly convergent to an analytic function on W. 

Moreover, the identity ω(1)�
n = 

(2)
n , n � 1, holds for any real-valued finite-gap potential by Lemma 3.2. Consequently, 


(2)
n is the unique analytic extension of ω(1)�

n from the set of finite-gap potentials to W. �
Our second main result for the KdV frequencies concerns their asymptotic behavior. To this end, we introduce 

frequency map ω(1)� = (ω
(1)�
n )n�1.

Theorem 3.6.

(i) The map ω(1)� : H−1
0 → �−1,r is real-analytic for any r > 1, whose restriction to F�

s,p

0 with (s, p) admissible is 
a real analytic map

ω(1)� : F�
s,p

0 →

⎧⎪⎨
⎪⎩

�1+2s,1 −1 < s < −1/2, p = 2,

�r , s = −1/2, p = 2, r > 1,

�p/2, s = −1/2, p > 2.

(ii) For any (s, p) admissible

ω(1)�
n + 6In =

⎧⎪⎨
⎪⎩

n−3s−2�1
n, −1 < s < −2/3, p = 2,

�1+
n , −2/3 ≤ s ≤ −1/2, p = 2,

�1+
n + �

p/4
n , s = −1/2, p > 2.

(iii) Moreover, for any −1 ≤ s ≤ 0 and p = 2

ω(1)�
n + 6In =

{
o(n−3s−2), −1 ≤ s < −1/3,

O(n−1), −1/3 ≤ s ≤ 0.

All estimates are locally uniform on Ws,p. �

Remark 3.7.

(i) Combining Remark 3.5 (ii) and the decay estimates of Theorem 3.6 (ii), one obtains that the frequency map, as a 
function of the actions, is real analytic on V. Moreover, for any (s, p) admissible, we introduce

V2s+1,p/2 :=
{
I ∈ V : I ∈ �

2s+1,p/2
C

}
. (74)

Then V2s+1,p/2 ⊂ V defines a complex neighborhood of �2s+1,p/2
+ in �2s+1,p/2

C
. The restriction of ω(1)� to 

V2s+1,p/2 is a real analytic map

ω(1)� : �2s+1,p/2 →

⎧⎪⎨
⎪⎩

�1+2s,1 −1 < s < −1/2, p = 2,

�r , s = −1/2, p = 2, r > 1,

�p/2, s = −1/2, p > 2.

The asymptotics of ω(1)�
n , viewed as a function of the actions on V2s+1,p/2, are the same as the ones stated in 

Theorem 3.6 (ii) and (iii) for ω(1)�
n on Ws,p .

(ii) Suppose u ∈Hs
c with c an arbitrary real number. Write u = c + q with q ∈Hs

0, then

ω(1)
n (u) = (2nπ)3 + 6c(2nπ) + ω(1)�

n (q). �
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Proof. (ii) Combining Lemma 3.3 and the asymptotics (36), γn = n−s�
p
n , yields with ρ = 1, k

(2)
nk = n

n2−k2 k−4s−3�
p/4
k

for k �= n and (s, p) admissible with −1 ≤ s ≤ 0. Note that for (s, 2) with −1 ≤ s ≤ −3/4, one has 1 � −4s − 3 � 0
and we conclude with Lemma A.2 that∑

k �=n

k
(2)
nk = n−4s−3�1+

n . (75)

Similarly, for (s, 2) with −3/4 < s < −1/2, we have∑
k �=n

k
(2)
nk = �1+

n . (76)

Finally, for s = −1/2, we have −4s − 3 = −1, hence k−4s−3�
p/4
k = �1

k for any 2 ≤ p < ∞, and we conclude with 
Lemma A.2 that (76) holds in this case as well.

Next we consider the case k = n. By Lemma 3.3

n(2)
nn = γ 2

n

16nπ
+ n−3s−2�

p/3
n = n−2s−1�

p/2
n . (77)

Combining estimates (75)–(77), and using ω(1)�
n = −12 

∑
k�1 

(2)
nk , we obtain for any (s, p) admissible with −1 ≤

s ≤ 0

ω(1)�
n = −3

4

γ 2
n

nπ
+ n−3s−2�

p/3
n + n(−4s−3)+�1+

n . (78)

By (41) we have for any (s, p) admissible with −1 ≤ s ≤ 0

γ 2
n

8nπ
− In = n−3s−2(�

p/4
n + �1

n). (79)

In particular, ω(1)�
n = n�1+

n for s = −1, and for −1 < s < −2/3

ω(1)�
n = −6In + n−3s−2�1

n = n−1−2s�1
n,

while for −2/3 ≤ s < −1/2 we have

ω(1)�
n = −6In + �1+

n = n−1−2s�1
n,

and if s = −1/2 and 2 ≤ p < ∞ using that n−1/2�
p/3
n = �

p/4
n for p � 3

ω(1)�
n = −6In + �

p/4
n + �1+

n .

By going through the arguments of the proof, one sees that the estimates hold locally uniformly on Ws,p.
(i) Since γ 2

n /n = n−2s−1�
p/2
n by (36), we find In = n−2s−1�

p/2
n and conclude together with item (ii) that locally 

uniformly on Ws,p

ω(1)�
n =

⎧⎪⎨
⎪⎩

n�+1
n , s = −1, p = 2,

n−2s−1�1
n, −1 < s < −1/2, p = 2,

�
p/2
n , s = −1/2, 2 ≤ p < ∞.

Since by Theorem 3.4 each ω(1)�
n , n � 1, is analytic on W, the claimed analyticity statements for ω(1)� follow.

(iii) By (75) we have 
∑

k �=n k
(2)
nk = o(n−4s−3) for k �= n and −1 ≤ s ≤ −3/4. On the other hand, for (s, p)

admissible with −3/4 < s ≤ 0 and p ≤ 4, we use that |n − k| ≤ n/2 implies |k|� |n|/2 to conclude∑
k �=n

k
(2)
nk = n

∑
|n−k|>n/2

k−4s−3

n2 − k2
�1
k + n

∑
1≤|n−k|≤n/2

k−4s−3

n2 − k2
�1
k

= O(n−1) + O(n−4s−3).

Finally, by (77) and (79), n
(2)
nn = γ 2

n + o(n−3s−2) = 1In + o(n−3s−2).
16nπ 2
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For −1 ≤ s < −1/3 we have −3s − 2 > −4s − 3 > −1 and hence

ω(1)�
n = −6In + o(n−3s−2),

while for −1/3 ≤ s ≤ 0 with p = 2 we have

ω(1)�
n = −6In + O(n−1).

By going through the arguments of the proof, one sees that the estimates hold locally uniformly on Ws,2. �
Theorem 3.8. If either −1 < s < −1/2 and p = 2 or s = −1/2 and p > 2, then the map ω(1)� : �

2s+1,p/2
+ → �2s+1,p/2

(i) is a local diffeomorphism near I = 0,
(ii) is a local diffeomorphism on a dense open subset of �2s+1,p/2

+ ,
(iii) is a Fredholm map of index zero everywhere. �

Proof. Throughout this proof we assume that either −1 < s < −1/2 and p = 2 or s = −1/2 and p > 2. In either case 
ω(1)� : �

2s+1,p/2
+ → �2s+1,p/2 is real analytic in view of Theorem 3.6 (i).

(i): Since d0ω
(1)� = −6Id, it follows from the inverse function theorem that ω(1)� is a local diffeomorphism near 

I = 0.
(ii): We show that for any I in V2s+1,p/2, defined in (74), the map �I := dIω

(1)� +6Id
�

2s+1,p/2
C

is a compact operator 

on �2s+1,p/2
C

. We treat the three cases

(A) − 1 < s < −2/3, p = 2,

(B) − 2/3 ≤ s < −1/2, p = 2,

(C) s = −1/2, p > 2,

separately. In case (A), by Theorem 3.6 (ii) ω(1)�
n + 6In = n−3s−2�1

n locally uniformly, hence by Cauchy’s estimate 
for any I ∈ V2s+1,1 the map �I : �2s+1,1 → �3s+2,1 is bounded. Since �3s+2,1 embeds compactly into �2s+1,1, the 
operator �I is compact on �2s+1,1. In case (B), ω(1)�

n + 6In = �1+
n locally uniformly whence �I : �2s+1,1 → �r is 

bounded for any r > 1. The claim in the case (B) follows from the fact that �r embeds compactly into �2s+1,1 if r > 1
is chosen sufficiently small. Finally in case (C), we have ω(1)�

n + 6In = �
p/4
n + �1+

n . Hence there exists 1 < r < p/2 so 
that �I : �p/2 → �r is bounded. It now follows from Pitt’s Theorem – see [8] for a short proof – that �I is compact.

When combined with item (i) above, Proposition C.4 from Appendix C implies that ω(1)�
n is a local diffeomorphism 

on a dense open subset of �2s+1,p/2
+ .

(iii): Since �I : �2s+1,p/2 → �2s+1,p/2 is compact it follows that dIω
(1)� is a compact perturbation of the identity 

and hence a Fredholm operator of index zero. �
Proof of Corollary 1.4. The claimed result follows from Theorem 3.8 (i)–(ii). �
Proof of Corollary 1.5. It follows from item (iii) of Theorem 3.6 that locally uniformly on Ws,2

ω(1)�
n =

{
o(n−1−2s), −1 ≤ s < 0,

O(n−1), s = 0.

For −1 < s < 0, the leading term of ω(1)�
n is −6 γ 2

n

8nπ
. Hence, the estimate is sharp in the sense that for ε > 0 arbitrary 

small

ω(1)�
n = O(n−1−2s−ε)

does not hold locally uniformly on Hs
0. Moreover, For q ∈ L2

0 the corresponding action variables are in �1,1
+ and one 

has that
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γ 2
n

8nπ
= In + n−1�2

n

uniformly on bounded subsets of L2
0 – cf. [18]. Consequently, ω(1)�

n = O(n−1) uniformly on bounded subsets of 
L2

0. �
Proof of Corollary 1.7. The same arguments as those used in the proof of Theorem 8.2 from [19, Appendix B] apply. 
With Corollary 1.5 and the one-smoothing property of the Birkhoff map established in [19, Theorem 1.1], the claimed 
result follows. �
3.2. Hamiltonian

In [26], using results from [2], it was shown that the renormalized KdV Hamiltonian H�
1 : �2+ → R, introduced 

in (10), is a continuous function which is concave on all of �2+. Subsequently, it was shown in [14] that H�
1 is real 

analytic, d2
IH

�
1 ≤ 0 for all I ∈ �2+, and that H�

1 is strictly concave near I = 0 in the sense that

d2
IH

�
1 (J, J ) ≤ −〈J,J 〉�2,�2 , ∀J ∈ �2,

for all I in a sufficiently small neighborhood of the origin in �2+.

Theorem 3.9. The KdV Hamiltonian H� : �2+ → C is strictly concave on a dense open subset of �2+. �

Proof. By the above discussion, d2
IH

�
1 ≤ 0 holds for all I ∈ �2+. Further, d2

IH
2
1 < 0 holds whenever d2

IH
�
1 =

dIω
(1)� : �2+ → �2+ is a diffeomorphism at I . By Theorem 3.8, dIω

(1)� is a diffeomorphism on a dense open sub-
set of �2+, which proves the claim. �
3.3. Wellposedness

We briefly recall some wellposedness results for the KdV equation on the circle which are most closely related to 
our main result. According to [22], the KdV equation is globally C0-wellposed in Hs

0 for any s � −1, i.e. for any 
T > 0 the solution map

S : Hs
0 → C0([−T ,T ],Hs

0)

is continuous. It was further shown in [14] that the KdV equation is also globally C0-wellposed in the Fourier 
Lebesgue spaces F�

s,p

0 for any p > 2 and −1/2 ≤ s ≤ 0. In the analytic class, Colliander et al. [6] proved that 
the KdV equation is Cω-wellposedness in Hs

0 for any s � −1/2, i.e. for any T > 0 the solution map S : Hs
0 →

C0([−T , T ], Hs
0) is real-analytic. They also proved that the KdV equation is globally uniformly C0-wellposed in 

Hs
0 for any s � −1/2, i.e. for any T > 0 the solution map S : Hs

0 → C0([−T , T ], Hs
0) is uniformly continuous on 

bounded subsets. There also exist several illposedness results. Christ et al. [5] showed that the KdV equation is not
uniformly C0-wellposed in Hs

0 with −1 ≤ s < −1/2. Moreover, Bourgain [4] proved that the KdV equation is not
C3-wellposed in Hs

0 with s < −1/2. In [27] Molinet showed that KdV is illposed in Hs
0 for s < −1.

The following result answers in particular the question, whether the KdV equation is C1 or C2-wellposed on Hs
0

for −1 < s < −1/2.

Theorem 3.10.

(i) For any 2 ≤ p < ∞ and −1/2 ≤ s ≤ 0, the KdV equation is Cω-wellposed on F�
s,p

0 .
(ii) For any −2/3 ≤ s < −1/2 and t > 0, the solution map

St : Hs
0 → Hs

0

is nowhere locally uniformly continuous. In particular, the KdV equation is not Ck-wellposed, k � 1, in Hs
0 for 

any −2/3 ≤ s < −1/2.
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(iii) For any −1 < s < −2/3 and T > 0, the solution map

S : Hs
0 → C0([−T ,T ],Hs

0)

is nowhere locally uniformly continuous. In particular, the KdV equation is not Ck-wellposed, k � 1, in Hs
0 for 

any −1 < s < −2/3. �

Remark 3.11. We expect that statement (ii) of Theorem 3.10 remains valid for −1 ≤ s < −2/3. �

Before proving Theorem 3.10, we first prove corresponding results in Birkhoff coordinates. By Theorem 3.6 from 
the previous section, the KdV frequencies ω(1)

n give rise to a flow S� : (t, z) �→ (ϕt
n(z))n∈Z in Birkhoff coordinates on 

�
s+1/2,p

0 with coordinate functions

ϕt
n(z) = eiω(1)

n (z)t zn, n ∈ Z. (80)

Here, the KdV frequencies are viewed as analytic functions of the Birkhoff coordinates and as such have been extended 
to the bi-infinite sequence (ω(1)

n )n∈Z by setting

ω
(1)
0 (z) = 0, ω

(1)
−n(z) = −ω(1)

n (z), n � 1.

The KdV solution map on F�
s,p

0 is then given by

S t = �−1 ◦ S t
� ◦ �. (81)

We first establish properties of the map S� corresponding to the ones of S .

Theorem 3.12.

(i) For any −1/2 ≤ s ≤ 0, 2 ≤ p < ∞, and T > 0, the map S� : �
s+1/2,p

0 → C([−T , T ], �s+1/2,p

0 ) is real-analytic.

(ii) For any −2/3 ≤ s < −1/2 and t > 0, the map S t
� : h

s+1/2
0 → h

s+1/2
0 is nowhere locally uniformly continuous.

(iii) For any −1 < s < −2/3 and T > 0, the map S� : h
s+1/2
0 → C([−T , T ], hs+1/2

0 ) is nowhere locally uniformly 
continuous. �

Proof. (i) Suppose −1/2 ≤ s ≤ 0 and 2 ≤ p < ∞, then by Theorem 3.6 (i) the map ω(1)� : �
s+1/2,p

0 → �∞ is real 
analytic. The analyticity of S� thus follows from Theorem E.1 (iii).

(ii) For −2/3 ≤ s < −1/2 let σ = −(s + 1/2) so that 0 < σ ≤ 1/6. We show that for any t > 0 and any nonempty 
open subset U ⊂ h−σ

0 , the map S t
�

∣∣
U

: U → hσ
0 is not locally uniformly continuous. After possibly shrinking U , by 

Theorem 3.6 (ii) there exists N� � 1 so that

ω(1)�
n (z) = −6znz−n + rn(z), (82)

with supn�N�
|rn(z)| ≤ π/(4t) for all z ∈ U . We show that there exist two sequences p(m) and q(m) in U and η0 > 0

so that∥∥∥p(m) − q(m)
∥∥∥

h−σ
→ 0,

∥∥∥S t
�(p(m)) − S t

�(q(m))

∥∥∥
h−σ

� η0.

To this end, fix any zo ∈ U so that there exists N � N� with zo±n = 0 for all n �N . For δ > 0 define pδ,m
±n = q

δ,m
±n = zo±n

if 1 ≤ n ≤ N , and for n > N ,

p
δ,m
±n =

{
δnσ , n = 2m,

0, otherwise,
q

δ,m
± =

{
p

δ,m
±n ± iδm1/2, n = 2m,

0, otherwise,

A straightforward computation gives with nm := 2m,

1√ ∥∥pδ,m − zo
∥∥

h−σ = δ,
1√ ∥∥qδ,m − zo

∥∥
h−σ = δ

√
1 + n−2σ

m m.

2 2
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Since σ > 0 we can choose δ0 ∈ (0, 1) so that the sequences (pδ,m) and (qδ,m) are both contained in U for any 
0 < δ < δ0. Moreover,

1√
2

∥∥pδ,m − qδ,m
∥∥

h−σ ≤ δ0n
−σ
m m1/2 → 0, m → ∞,

and by (82) one has

ω(1)
nm

(pδ,m) − ω(1)
nm

(qδ,m) = −6δ2m + rnm(pδ,m) − rnm(qδ,m).

Choose k � 1 so that δ ≡ δ(t) = √
π/6tk ≤ δ0. Consequently,(

m

k
− 1

2

)
π ≤

(
ω(1)

nm
(pδ,m) − ω(1)

nm
(qδ,m)

)
t ≤
(

m

k
+ 1

2

)
π, nm � N.

With mj = (2j + 1)k we conclude∣∣∣exp
(

i
(
ω(1)

nmj
(pδ,mj ) − ω(1)

nmj
(qδ,mj )

)
t
)

− 1
∣∣∣� 1, nmj

� N.

Thus, by comparing only the nmj
th component,

1√
2

∥∥S t
�(pδ,mj ) − S t

�(qδ,mj )
∥∥

h−σ � n−σ
mj

∣∣∣pδ,mj
nmj

∣∣∣− n−σ
mj

∣∣∣pδ,mj
nmj

− q
δ,mj
nmj

∣∣∣
� δ − ∥∥pδ,mj − qδ,mj

∥∥
h−σ

� δ/2,

for all j sufficiently large.
(iii) For −1 < s < −2/3 let σ = −(s +1/2) so that 1/6 < σ < 1/2. We show that for any T > 0 and any nonempty 

open subset U ⊂ h−σ
0 , the map S�

∣∣
U

: U → C([−T , T ], h−σ
0 ) is not locally uniformly continuous. After possibly 

shrinking U , we have by Theorem 3.6 (ii) that

ω(1)�
n (z) = −6znz−n + rn(z), (83)

where 
∥∥(rn)n�1

∥∥
�−ϑ,∞ is bounded uniformly on U with

ϑ ≡ ϑ(σ) = 3σ − 1/2.

We show that there exist two sequences p(m) and q(m) in U , a sequence of times tm → 0, and η0 > 0 so that∥∥∥p(m) − q(m)
∥∥∥

h−σ
→ 0,

∥∥∥S tm
� (p(m)) − S tm

� (q(m))

∥∥∥
h−σ

� η0.

To this end, fix any zo ∈ U so that there exists N � 1 with zo±n = 0 for all n �N . For δ > 0 define p(m)
±n = q

(m)
±n = zo±n

if 1 ≤ n ≤ N , and for n > N ,

p
(m)
±n =

{
δnσ , n = 2m,

0, otherwise,
q

(m)
± =

{
p

(m)
±n ± iδnϑ/2m1/2, n = 2m,

0, otherwise.

A straightforward computation gives with nm := 2m,

1√
2

∥∥∥p(m) − zo
∥∥∥

h−σ
= δ,

1√
2

∥∥∥q(m) − zo
∥∥∥

h−σ
= δ

√
1 + n

−(2σ−ϑ)
m m.

Since 2σ − ϑ = 1/2 − σ > 0, we can choose δ > 0 so that the sequences (p(m)) and (q(m)) are both contained in U . 
Moreover,

1√
2

∥∥∥p(m) − q(m)
∥∥∥

h−σ
= δn

−(2σ−ϑ)/2
m m1/2 → 0, m → ∞,

and since ϑ � 0, one has by (83) that
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∣∣∣ω(1)
nm

(p(m)) − ω(1)
nm

(q(m))

∣∣∣= ∣∣∣6δ2nϑ
mm + nϑ

m�∞
m

∣∣∣�m1/2, m� M,

where M is chosen sufficiently large. Consequently, one can choose a sequence of times tm → 0 so that∣∣∣exp
(

i
(
ω(1)

nm
(p(m)) − ω(1)

nm
(q(m))

)
tm

)
− 1
∣∣∣� 1, m� M.

Therefore,

1√
2

∥∥∥S tm
� (p(m)) − S tm

� (q(m))

∥∥∥
h−σ

� n−σ
m

∣∣∣p(m)
nm

∣∣∣− n−σ
m

∣∣∣p(m)
nm

− q(m)
nm

∣∣∣
� δ −

∥∥∥p(m) − q(m)
∥∥∥

h−σ

� δ/2,

for all m �M sufficiently large. �
Proof of Theorem 3.10. Since the Birkhoff map � is bi-real-analytic, all claims follow from Theorem 3.12 and the 
identity S t = �−1 ◦ S t

� ◦ �. �
4. KdV2

4.1. Frequencies

Proceeding as for the KdV equation explained in the previous section, we derive in this section formulae for the 
frequencies of the KdV2 equation. Our starting point is the following identity for the KdV2 frequencies which a priori 
holds on H2

0 ∩ (W \ Zn)

ω(2)
n = {H2, θn} .

By (9) the renormalized KdV2 frequencies are given by

ω(2)�
n = ω(2)

n − (2nπ)5 − 20(2nπ)H0, n� 1.

Lemma 4.1. For any real-valued finite-gap potential cf. (18) with [q] = 0 and any n � 1

ω(2)�
n = −160π2

∑
k�1

k3
(2)
nk + 80

∑
k�1

k
(4)
nk . � (84)

Proof. We argue as in the proof of Lemma 3.2. Suppose q is a finite-gap potential, then there exists S ⊂ N finite so 
that γk(q) �= 0 if and only if k ∈ S. By Lemma 2.6 (ii), the function F 2 is analytic outside a sufficiently large circle Cr

which encloses all open gaps Gk , k ∈ S, and whose exterior contains G0. Furthermore, F admits according to (33) an 
asymptotic expansion for νk = (k + 1/2)π . In particular,

F(λ)6 = −λ3 + 3

2
H0λ + 3

8
H1 + 3

32
(H2 − 10H 2

0 )
1

λ
+ O(λ−2),

so that by Cauchy’s Theorem

3

32
(H2 − 10H 2

0 ) = 1

i2π

∫
Cr

F 6(λ)dλ.

Let n ∈ S, then γn(q) �= 0 hence θn modulo π is analytic near q . Since {θn,F (λ)} = {θn,�(λ)}
c
√

�2(4)−4
by Lemma 2.5 (i) and 

2{θn, �(λ)} = ψn(λ) by [18, Proposition F.3], one obtains
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{
H2 − 10H 2

0 , θn

}
= −16

3

1

iπ

∫
Cr

{
θn,F

6(λ)
}

dλ

= −32

iπ

∫
Cr

F 5(λ) {θn,�(λ)}
c
√

�2(λ) − 4
dλ

= −16

iπ

∫
Cr

F 5(λ)ψn(λ)

c
√

�2(λ) − 4
dλ.

By Lemma 2.6 (ii) and formula (52), the integrand is analytic on U0, while for any k ∈ N \ S, one has σn
k = τk and 

wk(λ) = τk − λ so that in view of the product representations (29) and (52), the integrand extends analytically to Uk. 
Consequently, the integrand is analytic on C \⋃k∈S Gk and one obtains by contour deformation

{
H2 − 10H 2

0 , θn

}
= −16

iπ

∑
k∈S

∫
�k

F 5(λ)ψn(λ)

c
√

�2(λ) − 4
dλ.

Expanding F(λ)5 = (Fk(λ) − ikπ)5 yields

F 5(λ) = F 5
k (λ) − 5i(kπ)F 4

k (λ) − 10(kπ)2F 3
k (λ) + 10i(kπ)3F 2

k (λ)

+ 5(kπ)4Fk(λ) − i(kπ)5.

Recalling from Lemma 3.1 (iii) that (5)
nk , (3)

nk , and (1)
nk vanish for any n, k � 1, and that (0)

nk = 2πδnk by Lemma 3.1
(i) thus gives{

H2 − 10H 2
0 , θn

}
= −16

π

∑
k∈S

(
−5(kπ)

(4)
nk + 10(kπ)3

(2)
nk − (kπ)5

(0)
nk

)

=
∑
k�1

(
80k

(4)
nk − 160π2k3

(2)
nk + (2kπ)5δkn

)
.

Here, we used in the last line that (m)
nk = 0 for all k ∈ N \ S. Since 

{
H 2

0 , θn

} = 4nπH0 and ω(2)�
n = ω

(2)
n −

20(2nπ)H0 −(2nπ)5, it follows that (84) holds for any n � 1 with γn(q) �= 0. One argues as in the proof of Lemma 3.2
to show that the identity also holds for n � 1 with γn(q) = 0. �

The asymptotics of (2)
nk have been obtained in Section 3.1. Hence it remains to study the asymptotics of (4)

nk .

Lemma 4.2. For any n � 1 and any q ∈Ws,p with (s, p) admissible with −1 ≤ s ≤ 0

k
(4)
nk = n

n2 − k2
k−s−5γ 5

k �
p
k , k �= n,

n(4)
nn = 3

16nπ

γ 4
n

64n2π2

(
1 + n−s−1�

p
n

)
,

where the estimates hold locally uniformly on Ws,p. �

Proof. By Lemma 3.1 it suffices to consider the case γk �= 0 since otherwise (4)
nk = 0. We first prove the estimate for 

k �= n. By (71) and (72),

ψn(λ)

c
√

�2(λ) − 4
= σn

k − λ

wk(λ)
ζ n
k (λ), (n2 − k2) ζ n

k (λ)
∣∣
Gk

= n

k

(
i

π2
+ k−s−1�

p
k

)
.

Shrinking the contour of integration �k to G− ∪ G+ and using (28) gives
k k
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(4)
nk = 2

∫
G−

k

F 4
k (λ)(σn

k − λ)ζ n
k (λ)

wk(λ)
dλ.

Since |wk(λ)|Gk
= |γk|/2 by (28), Lemma 2.13 gives uniformly for λ ∈ G±

k

Fk(λ)4 = 1

(2kπ)4

(
w4

k(λ) + γ 4
k k−s−1(�

p/2
k + �1+

k )
)

.

Consequently, uniformly for λ ∈ G±
k

F 4
k (λ)ψn(λ)

c
√

�2(λ) − 4
= n

k

(
w4

k(λ) + γ 4
k k−s−1�

p
k

) (
σn

k − λ
) (

i/π2 + k−s−1�
p
k

)
(2kπ)4(n2 − k2)wk(λ)

.

Since 
∣∣σn

k − λ
∣∣
Gk

= O(γk) by (54), Lemma 2.2 thus gives

(2kπ)4
(4)
nk = i

π2

n

k

2

n2 − k2

⎛
⎜⎜⎝
∫

G−
k

(σ n
k − λ)w3

k(λ)dλ + γ 5
k k−s−1�

p
k

⎞
⎟⎟⎠ .

A straightforward computation using (28) further shows

∫
G−

k

w3
k(λ)dλ = −i

1∫
−1

(γk

2

)4 +√
1 − t2

3
dt = −i

3π

128
γ 4
k ,

∫
G−

k

(τk − λ)w3
k(λ)dλ = i

1∫
−1

(γk

2

)5
t

+√
1 − t2

3
dt = 0,

where the latter integral is zero since the integrand is an odd function of t . Writing σn
k −λ = (σ n

k − τk) + (τk −λ) and 
using σn

k − τk = γkk
−s−1�

p
k , which is deduced from (54) and (36), we hence obtain∫

G−
k

(σ n
k − λ)w3

k(λ)dλ = −i
3π

128
γ 4
n (σn

k − τk) = γ 5
n k−s−1�

p
k .

Altogether we arrive at

k
(4)
nk = n

n2 − k2
k−s−5γ 5

k �
p
k .

If k = n, then by (56) and Proposition 2.9

ψn(λ)

c
√

�2(λ) − 4
= i

wn(λ)
ζn(λ), ζn(λ)|Gn

= 1 + n−1−s�
p
n .

Thus, uniformly for λ ∈ G−
n ,

F 4
n (λ)ψn(λ)

c
√

�2(λ) − 4
=
(
w4

n(λ) + γ 4
n n−s−1�

p
n

) (
i + n−s−1�

p
n

)
(2nπ)4wn(λ)

,

and hence

(2nπ)4(4)
nn = i2

∫
G−

n

w3
n(λ)dλ + γ 4

n n−s−1�
p
n = 3π

64
γ 4
n

(
1 + n−s−1�

p
n

)
,

which establishes the claimed estimate in the case k = n.
Going through the arguments of the proofs one sees that the estimates hold locally uniformly on Ws,p. �
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Our first main result for the KdV2 frequencies establishes the following formula for their analytic extensions.

Theorem 4.3. For any n � 1 and any (s, p) admissible with s > −1, the sum −160π2∑
k�1 k3

(2)
nk + 80 

∑
k�1 k

(4)
nk

converges locally uniformly on Ws,p to the analytic function ω(2)�
n ,

ω(2)�
n = −160π2

∑
k�1

k3
(2)
nk + 80

∑
k�1

k
(4)
nk . �

Remark 4.4. Arguing as in the proof of [11, Theorem 20.3], one sees that for any n � 1 and (s, p) admissible with 
s > −1, the frequency ω(2)�

n is a real analytic function of the actions on the complex neighborhood V2s+1,p/2 of 
�

2s+1,p/2
+ introduced in (74). �

Proof. By Lemma 3.3 and Lemma 4.2 we have for any (s, p) admissible with −1 < s ≤ 0, ρ = 0, and any k �= n

k3
(2)
nk = n−s+1

n2 − k2
k−3s−1�

p/4
k , k

(4)
nk = n

n2 − k2
k−6s−5�

p/4
k ,

locally uniformly on Ws,p . Moreover, the moments (2)
nk and (4)

nk are analytic functions on W for any n, k � 1 by 
Lemma 3.1 (ii). Suppose p = 2, then for k �= n,

k3
(2)
nk = n−s+1

n2 − k2
k−3s−1�1

k ≤ n2k2

n2 − k2
�1
k = n2

(
1 + n2

n2 − k2

)
�1
k = n3�1

k.

Thus for −1 < s ≤ 0 and every fixed n � 1, the sum 
∑

k�1 k3
(2)
nk converges absolutely and locally uniformly to a 

real analytic function on Ws,2. Moreover, if s = −1/2 and 2 ≤ p < ∞ arbitrary, then for k �= n

k3
(2)
nk = nk

n2 − k2
�
p/4
k = n

n − k
�
p/4
k ,

hence by Hölder’s inequality, the sum 
∑

k�1 k3
(2)
nk converges absolutely and locally uniformly to a real analytic 

function on Ws,p . Finally, if s = −1 and p = 2, then for k �= n

k
(4)
nk = nk

n2 − k2
�1
k = n

n − k
�1
k.

Thus for every fixed n, the sum 
∑

k�1 k
(4)
nk converges absolutely and locally uniformly to a real analytic function on 

W−1,2. Altogether this shows that the functional (4)
n := −160π2∑

k�1 k3
(2)
nk + 80 

∑
k�1 k

(4)
nk is real analytic on 

Ws,p for any (s, p) admissible with s > −1. Furthermore, (4)
n coincides with ω(2)�

n at every finite-gap potential by 
Lemma 4.1. Thus for any n � 1, (4)

n is the unique real analytic extension of ω(2)�
n to Ws,p . �

Our second main result for the KdV2 frequencies establishes the following asymptotics for the frequency map 
ω(2)� = (ω

(2)�
n )n�1.

Theorem 4.5.

(i) The map ω(2)� admits a real analytic extension

ω(2)� :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Hs
0 → �2s−1,1, −1 < s ≤ 0,

F�
s,p

0 → �2s−1,p/2, −1/2 ≤ s ≤ 0, 2 < p < ∞
Hs

0 → �2s−1,1, 0 < s < 1/2,

H
1/2
0 → �r , r > 1.
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(ii) For any (s, p) admissible with −1 < s ≤ 0, ω(2)�
n = �

2s−1,p/2
n locally uniformly on Ws,p. More precisely,

ω(2)�
n + 80n2π2In =

{
n−3s(�

p/3
n + �1

n), −1 < s < 0,

�
p/3
n + �1+

n , s = 0. �

Remark 4.6. (i) By Remark 3.5 one sees that the asymptotics of ω(2)�
n , n � 1, viewed as real analytic functions of 

the actions on V2s+1,p/2, are the same as the ones stated in Theorem 4.5 (ii) for ω(2)�
n on Ws,p . In particular, ω(2)�, 

viewed as a function of the actions, is a real analytic map

ω(2)� :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2s+1,1 → �2s−1,1, −1 < s ≤ 0,

�2s+1,p/2 → �2s−1,p/2, −1/2 ≤ s ≤ 0, 2 < p < ∞
�2s+1,1 → �2s−1,1, 0 < s < 1/2,

�3/2,1 → �r , r > 1.

(ii) Suppose u ∈Hs
c with c an arbitrary real number. Write u = c + q with q ∈Hs

0, then

ω(2)
n (u) = ω(2)

n (q) + 10cω(1)
n (q) + 60nπc2

= (2nπ)5 + 10(2nπ)3c + 20(2nπ)H0(q) + 60nπc2

+ ω(2)�
n (q) + 10cω(1)�

n (q).

Since by Theorem 3.6 (ii) one has ω(1)�
n = n−2s−1�1

n for −1 < s < −1/2 and p = 2, and ω(1)�
n = �1+

n for s = −1/2

and 2 ≤ p < ∞, we conclude that for any c ∈ R, the asymptotic estimate stated in Theorem 4.5 (ii) holds for ω(2)�
n +

10cω
(1)�
n as well. �

Proof. Let us first prove (ii). By Theorem 4.3 we have for any (s, p) admissible with s > −1 and any n � 1, ω(2)�
n =

−160π2∑
k�1 k3

(2)
nk + 80 

∑
k�1 k

(4)
nk . We consider the asymptotics of the terms 

∑
k�1 k3

(2)
nk and 

∑
k�1 k

(4)
nk

separately.
Suppose −1 < s < −1/2 and p = 2, then Lemma 3.3 and the asymptotics (36), γk = k−s�

p
k , yields for k �= n with 

ρ = 0

k3
(2)
nk = n1−s k−3s−1�1

k

n2 − k2
.

Since in this case −2 ≤ 3s + 1 < −1/2, we get with Lemma A.3∑
k �=n

k3
(2)
nk = n−4s−1�1+

n .

Now consider the case −1/2 ≤ s ≤ 0 and 2 ≤ p < ∞. By Lemma 3.3 we obtain for k �= n with ρ = 1

k3
(2)
nk = n

k−4s−1�
p/4
k

n2 − k2
.

If −1/2 ≤ s ≤ −1/4, then −1 ≤ 4s + 1 ≤ 0 and Lemma A.2 gives∑
k �=n

k3
(2)
nk = n−4s−1(�

p/4
n + �1+

n ).

Moreover, if −1/4 < s < 0 and 2 ≤ p < ∞, then 0 < 4s + 1 and Lemma A.2 yields∑
k �=n

k3
(2)
nk = �

p/4
n + �1+

n .

Finally, if s = 0 and 2 ≤ p < ∞, then k−4s−1�
p/4 = �1 and we conclude with Lemma A.2 that
k k
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∑
k �=n

k3
(2)
nk = �1+

n .

For k = n and (s, p) admissible with −1 < s ≤ 0, Lemma 3.3 combined with the asymptotics (36) of γn gives

n3(2)
nn = nγ 2

n

16π

(
1 + n−s−1�

p
n

)
= nγ 2

n

16π
+ n−3s�

p/3
n = n−2s+1�

p/2
n .

Altogether, we thus have for any (s, p) admissible with −1 < s ≤ 0, using that for −1 < s < 0 one has −3s >

(−4s − 1)+ and hence

∑
k�1

k3
(2)
nk = nγ 2

n

16π
+
{

n−3s(�
p/3
n + �1

n), −1 < s < 0,

�
p/3
n + �1+

n , s = 0.
(85)

Next we consider the term 
∑

k�1 k
(4)
nk . By Lemma 4.2 and the asymptotics (36) of γn, we have for k �= n,

k
(4)
nk = n

k−6s−5�
p/6
k

n2 − k2
.

If −1 ≤ s < −1/2 and p = 2, then −1 ≤ 6s + 5 ≤ 0 and hence by Lemma A.2∑
k �=n

k
(4)
nk = n(−6s−5)+�1+

n . (86)

If s = −1/2, then −6s − 5 = −2 and hence k−6s−5�
p/6
k = �1

k , so (86) is also valid for −1/2 ≤ s ≤ 0 and 2 ≤ p < ∞.
For the case k = n we further obtain with Lemma 4.2 and the estimate of γn,

n(4)
nn = 3

210n3π3
γ 4
n

(
1 + n−s−1�

p
n

)
= n−4s−3�

p/4
n .

Therefore, for any (s, p) admissible with s �−1,∑
k�1

k
(4)
nk = n(−6s−5)+�1+

n . (87)

By (41) we have for any (s, p) admissible with −1 ≤ s ≤ 0

γ 2
n

8nπ
= In + n−3s−2(�

p/4
n + �1

n). (88)

Estimates (85), (87), and (88) give for (s, p) admissible with −1 < s ≤ 0

ω(2)�
n = −80n2π2In +

{
n−3s(�

p/3
n + �1

n), −1 < s < 0,

�
p/3
n + �1+

n , s = 0.
(89)

By going through the arguments of the proof, one sees that the estimates hold locally uniformly on Ws,p.
We now prove (i). By combining the estimate (89) of ω(2)�

n + 80n2π2In with the estimate (36), γn = n−s�
p
n , and 

noting that −2s + 1 > −3s for −1 < s ≤ 0, one obtains for (s, p) admissible with −1 < s ≤ 0

ω(2)�
n = n−2s+1�

p/2
n .

Moreover, for s = 0 and p = 2 one has by (89), ω(2)�
n + 80n2π2In = �1+

n , and by Lemma 2.11 that In = γ 2
n

8nπ
(1 +

n−1�1+
n ). Since by (36) for p = 2 and any s � 0 one has γn = n−2s+1�1

n, we conclude

ω(2)�
n =

{
n−2s+1�1

n, 0 < s < 1/2, p = 2,

�1+
n , s = 1/2, p = 2.

All estimates hold locally uniformly on Ws,p for (s, p) admissible. Since each ω(2)�
n , n � 1, is analytic on Ws,p by 

Lemma 4.3, the claimed analyticity of ω(2)� thus follows. �
Corollary 1.11 follows from the following more detailed statement.
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Corollary 4.7. For any −1 < s < 1/2,

(i) ω(2)� : �
2s+1,1
+ → �2s−1,1 is a local diffeomorphism near I = 0.

(ii) For any I ∈ �
2s+1,1
+ , the linear operator

I = dIω
(2)� + 20 diag((4n2π2)n�1) : �2s+1,1 → �2s−1,1

is compact.
(iii) ω(2)� : �

2s+1,1
+ → �2s−1,1 is a Fredholm map of index zero everywhere.

(iv) ω(2)� : �
2s+1,1
+ → �2s−1,1 is a local diffeomorphism on an open and dense subset of �2s+1,1

+ . �

Proof. (i): By Theorem 4.5 and Remark 4.6, the map ω(2)� : V2s+1,1 → �
2s−1,1
C

is analytic for any −1 < s < 1/2, 
where the neighborhood V2s+1,1 of �2s+1,1

+ in �2s+1,1
C

was introduced in (74). By Theorem D.1 we have

� := d0ω
(2)� = diag((−80n2π2)n�1).

Since � : �
2s+1,1
C

→ �
2s−1,1
C

is an isomorphism, it follows that ω(2)� is a local diffeomorphism at I = 0 for −1 < s <

1/2.
(ii): Suppose −1 < s < 0, then by Theorem 4.5 (ii) ω(2)�

n + 20(2nπ)2In = n−3s�1
n locally uniformly on V2s+1,1, 

hence by Cauchy’s estimate the map I : �
2s+1,1
C

→ �
−3s,1
C

is bounded for any I ∈ V2s+1,1. Since �−3s,1
C

embeds 
compactly into �2s−1,1

C
for −1 < s < 0, we conclude that I : �

2s+1,1
C

→ �
2s−1,1
C

is compact. If 0 ≤ s < 1/2, then 

by Theorem 4.5 (ii) ω(2)�
n + 20(2nπ)2In = �1+

n locally uniformly on V2s+1,1, hence by Cauchy’s estimate the map 
I : �

2s+1,1
C

→ �r
C

is bounded for any I ∈ Vs,1 and any r > 1. Since �r
C

embeds compactly into �2s−1,1
C

if r > 1 is 
chosen sufficiently small, we conclude that I : �

2s+1,1
C

→ �
2s−1,1
C

is compact also in this case.
(iii): By item (ii), dIω

(2)� is a compact perturbation of � and hence a Fredholm operator of index zero, meaning 
that ω(2)� is a Fredholm map of index zero.

(iv): Consider the real analytic map f = �−1ω(2)� : V2s+1,1 → �
2s+1,1
C

. By item (iii) for any I ∈ V2s+1,1 the 
differential dI f is a compact perturbation of the identity on �2s+1,1

C
if −1 < s < 1/2. So Proposition C.4 applies 

yielding that f is a local diffeomorphism generically. �
Remark 4.8. (i) Since by Remark 4.6, ω(2)� : V2s+1,p/2 → �

2s−1,p/2
C

is analytic for (s, p) admissible with −1 < s <

1/2, and d0ω
(2)� = � by Theorem D.1, it follows that ω(2)� is a local diffeomorphism at I = 0 also for −1/2 ≤ s ≤ 0

and p > 2.
(ii): For −1/2 ≤ s ≤ 0 and 2 < p < ∞, we have by Theorem 4.5 (ii),

ω(2)�
n + 80n2π2In =

{
n−3s(�

p/3
n + �1

n), −1/2 ≤ s < 0, 2 < p < ∞,

�
p/3
n + �1+

n , s = 0, 2 < p < ∞.

Therefore,

I : �
2s+1,p/2
C

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
−3s,1
C

, −1/2 ≤ s < 0, 2 < p ≤ 3,

�
−3s,p/3
C

, −1/2 ≤ s < 0, 3 < p < ∞,

�r
C
, r > 1, s = 0, 2 < p ≤ 3,

�
p/3
C

, s = 0, 3 < p < ∞,

is bounded. In all four cases, the range embeds compactly into �2s−1,p/2, hence I : �
2s+1,p/2
C

→ �
2s−1,p/2
C

is compact 
and dIω

(2)� is a compact perturbation of �.
(iii): The map f = �−1ω(2)� : V2s+1,p/2 → �

2s+1,p/2
C

is analytic and for any I ∈ V2s+1,p/2 its differential is a 
compact perturbation of the identity for any −1/2 ≤ s ≤ 0 and p > 2. Proposition C.4 yields that f is a local diffeo-
morphism generically. �
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Lemma 4.9.

(i) For any r > 1, the map ω(2)� : �
2,1
+ → �r is uniformly continuous on bounded subsets.

(ii) For any r > 1, the map ω(2)� : H1/2
0 → �r is uniformly continuous on bounded subsets. �

Proof. (i) By Theorem 4.5 (ii), ω(2)�
n + 80n2π2In = �1+

n on �1,1
+ . Recall that � = diag((−80n2π2)n�1), hence the 

map

ω(2)� − � : �
1,1
+ → �r

is real analytic for any r > 1 and thus uniformly continuous on compacts. Since �2,1
+ embeds compactly into �1,1

+ , and 
�
∣∣
�

2,1
+

: �
2,1
+ → �1+ is Lipschitz continuous, we conclude that ω(2)� : �

2,1
+ → �r is uniformly continuous on bounded 

subsets of �2,1
+ for any r > 1.

(ii) Since the Birkhoff map � : H1/2
0 → �2,1 is uniformly continuous on bounded subsets of H1/2

0 by Lemma 2.1, 
the claim follows immediately with (i). �
4.2. Hamiltonian

In this section, we derive in analogous fashion to [14] a formula for the renormalized KdV2 Hamiltonian

H�
2 = H2 − 10H 2

0 −
∑
n�1

(2nπ)5In.

This formula will allow us to extend the latter, when written as a function of the actions, from �3,1
+ to h1+.

For convenience we introduce for any integer n � 1 and m � 1 the (conveniently normalized) moments

R(m)
n = − 1

π

∫
�n

Fm
n (λ)dλ.

Lemma 4.10.

(i) R
(1)
n = In for any n � 1.

(ii) Each moment R(m)
n , n � 1, m � 1, is real analytic on W.

(iii) R
(2l)
n = 0 for all n � 1 and l � 0.

(iv) R
(m)
n = O(γ m+1

n /nm) locally uniformly on W and uniformly as n → ∞. In particular, R(m)
n vanishes if γn

vanishes.
(v) On H−1

0 , R(m)
n � 0 and R(m)

n vanishes if and only if γn vanishes. �

Proof. (i) follows from (19) and integration by parts.
(ii) Arguing as in the proof of Lemma 3.1 (ii), one sees that each moment R(m)

n is analytic on W.
(iii) Since in view of Lemma 2.6 (i) any even power of Fn is analytic on Un, the moments R(2l)

n vanish.
(iv) If γn = 0, then Fn is analytic on Un by Lemma 2.5 (i). On the other hand, if γn �= 0, then by Lemma 2.5 (iii) 

we have |Fn|Gn
= O(γn/n) and hence R(m)

n = O(γ m+1
n /nm).

(v) If q is real, then Gn ⊂ R and Fn(λ)
∣∣
G±

n
= ∓ cosh−1((−1)n�(λ)/2) by [28, Lemma 2.2]. Thus R(m)

n is real. 

Since (−1)n�(λ) > 2 for λ−
n < λ < λ+

n , R(m)
n vanishes if and only if Gn is a single point. �

Lemma 4.11. For any real-valued finite-gap potential with [q] = 0

H�
2 =

∑
n�1

(
−40

3
(2nπ)3R(3)

n + 16(2nπ)R(5)
n

)
. �
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Proof. Suppose q is a finite-gap potential, meaning that S = {n�N : γn(q) �= 0} is finite. By Lemma 2.6 (ii), the 
function F 2 is analytic outside a sufficiently large circle Cr which encloses all open gaps Gn, n ∈ S, and whose 
exterior contains G0. According to (33), the function F admits an asymptotic expansion for νn = (n + 1/2)π . In 
particular,

F(λ)6 = −λ3 + 3

2
H0λ + 3

8
H1 + 3

32

(
H2 − 10H 2

0

) 1

λ
+ O(λ−2),

hence by Cauchy’s Theorem

1

2π i

∫
Cr

F (λ)6 dλ = 3

32
(H2 − 10H 2

0 ).

Since F 2 is analytic on C \⋃n∈S Gn, we obtain by contour deformation

1

2π i

∫
Cr

F (λ)6 dλ =
∑
n∈S

1

2π i

∫
�n

F 6(λ)dλ.

Expanding F(λ)6 = (Fn − inπ)6 into

F 6
n − i6nπF 5

n − 15n2π2F 4
n + i20n3π3F 3

n + 15n4π4F 2
n − i6n5π5Fn − n6π6

and using that by Lemma 4.10 (iii) R(2)
n and R(4)

n vanish for all n ∈N yields

H2 − 10H 2
0 = 32

3

∑
n∈S

(
3n5π5R(1)

n − 10n3π3R(3)
n + 3nπR(5)

n

)

=
∑
n�1

(
(2nπ)5In − 40

3
(2nπ)3R(3)

n + 16(2nπ)R(5)
n

)
.

Here, we used that by Lemma 4.10 (i) R(1)
n = In, n � 1, and that by Lemma 4.10 (iv) R(1)

n , R(3)
n , and R(5)

n vanish for 
n ∈N \ S. �
Theorem 4.12. The renormalized KdV2 Hamiltonian H�

2 , when written as a function of the actions, extends real 
analytically to h1+. Moreover, for any I ∈ h1+, the �2-gradient ∂IH

�
2 can be identified with ω(2)�(I ) and there exists a 

neighborhood U of I = 0 in h1+ on which H�
2 is strictly concave in the sense that

〈
dIH

�
2 J,J

〉
h−1,h1 ≤ 1

2
〈�J,J 〉h−1,h1 , ∀I ∈ U, J ∈ h1,

where � := diag
(
(−80n2π2)n�1

)
. �

Proof. By Lemma 4.10 (ii) all moments R(3)
n , R(5)

n , n � 1, are real analytic on W. Moreover, by Lemma 4.10 (iv) we 
have uniformly in n � 1 and locally uniformly on W,

R(2k+1)
n = O(γ 2k+2

n /n2k+1).

Hence by (36) for any (s, p) admissible

n3R(3)
n = γ 4

n = n−4s�
p/4
n , nR(5)

n = γ 6
n /n4 = n−4−4s�

p/4
n .

Therefore, on W0,4 the sum∑
n�1

(
−40

3
(2nπ)3R(3)

n + 16(2nπ)R(5)
n

)

is absolutely and locally uniformly convergent to an analytic function H̃ . Since H̃ = H�
2 at any real-valued finite-gap 

potential by Lemma 4.11, and the finite-gap potentials are dense in F�
0,4, H̃ is the unique analytic extension of H�

0 2
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to W0,4. Arguing as in the proof of [11, Theorem 20.3], one sees that H�
2 , viewed as a function of the actions, is real 

analytic on the complex neighborhood V1,2 of �1,2
+ = h1+.

For I ∈ h2+ we have by definition ω(2)�(I ) = ∂IH
�
2 , and both sides of the identity admit real analytic extensions to 

h1+ hence the identity extends as well. Therefore, d2
IH

�
2 = dIω

(2)� and by Remark 4.8, d0ω
(2)� = �. Thus, the strict 

concavity in a neighborhood of I = 0 follows from continuous dependence of dIω
(2)� on I . �

Remark 4.13. We expect that one can adapt the arguments of [2] for H�
1 to prove that H�

2 is concave on h1+, which in 
view of the analyticity obtained in Theorem 4.12 then proves d2

IH
�
2 ≤ 0 on h1+. Using the asymptotics of ω(2)� stated 

in Theorem 4.5 for the case s = 0 and p = 4, one obtains by the same arguments as in the proof of Corollary 1.11 that 
ω(2)� : V1,2 → h1

C
is a local diffeomorphism generically and in turn that H�

2 is strictly concave on an open and dense 
subset of h1+ in the sense that d2

IH
�
2 < 0. �

4.3. Wellposedness

To discuss known results on the wellposedness of the KdV2 equation, we introduce for any d > 0 the level sets of 
H0

Ms
0,d := {q ∈ Hs

0 : H0(q) = d
}
,

ms
0,d = �(Ms

0,d ) =
{
z ∈ hs

0 :
∑
n�1

(2nπ)znz−n = d

}
.

According to [1], for any d > 0, the KdV2 equation is globally Cω-wellposed in Ms
0,d for any s � 1, i.e. for any 

T > 0 the solution map

S : Ms
0,d → C0([T ,T ],Ms

0,d )

is real-analytic.
By Theorem 4.5 from the previous section, the frequencies

ω(2)
n = (2nπ)5 + 20(2nπ)H0 + ω(2)�

n (90)

give rise to a flow S� : (t, z) �→ (ϕt
n(z))n∈Z in Birkhoff coordinates on hs+1/2

0 with coordinate functions

ϕt
n(z) = eiω(2)

n (z)t zn, n ∈ Z. (91)

Here, the KdV2 frequencies are viewed as analytic functions of the Birkhoff coordinates and as such have been 
extended to the bi-infinite sequence (ω(2)

n )n∈Z by setting

ω2
0(z) = 0, ω2−n(z) = −ω(2)

n (z), n � 1.

The KdV2 solution map is then given by

S t = �−1 ◦ S t
� ◦ �. (92)

We first consider properties of the map S� corresponding to the ones of S claimed in Theorem 1.12.

Theorem 4.14.

(i) Suppose s � 0. For any z ∈ h
s+1/2
0 the curve R → h

s+1/2
0 , t �→ S�(t, z) is continuous. Moreover, for any 

T > 0 the map S� : h
s+1/2
0 → C([−T , T ], hs+1/2

0 ) is continuous and has the group property. In particular, 

S t
� : h

s+1/2
0 → h

s+1/2
0 for any t ∈ R is a homeomorphism.

(ii) For any s � 1/2, d > 0, and T > 0, the map S� : m
s+1/2
0,d → C([−T , T ], ms+1/2

0,d ) is real-analytic and uniformly 
continuous on bounded subsets.

(iii) In contrast, for any s � 1/2 and any t > 0, the map S t
� : h

s+1/2
0 → h

s+1/2
0 is nowhere locally uniformly continu-

ous.
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(iv) For any 0 ≤ s < 1/2, d � 0, and t > 0, the map S t
� : m

s+1/2
0,d → m

s+1/2
0,d is nowhere locally uniformly continuous.

(v) For each n ∈ Z and t > 0, the coordinate function h1/2
0 → C, z �→ (S t

�(z))n cannot be extended continuously to 

points z ∈ h
s+1/2
0 with zn �= 0 for any −1 < s < 0. �

Proof. (i)–(ii): We apply Theorem E.1. In view of (90), the KdV2 frequencies ω(2)
n are well defined and continuous 

on hs+1/2
0 for s � 0, hence Theorem E.1 (i)–(ii) apply proving the continuity of S� : h

s+1/2
0 → C([−T , T ], hs+1/2

0 ). 

Moreover, for any fixed d > 0 and any s � 1/2, the map ω(2)� : m
s+1/2
0,d → �∞ is real analytic by Theorem 4.5

and uniformly continuous on bounded subsets by Lemma 4.9. Therefore, the analyticity and uniform continuity of 
S� : m

s+1/2
0,d → C([−T , T ], ms+1/2

0,d ) follow by Theorem E.1 (iii)–(iv).
(iii): To simplify notation, put σ = s + 1/2 so that σ � 1. We show that for any nonempty open subset U of hσ

0 and 
any t > 0 the map S t

�

∣∣
U

: U → hσ
0 is not uniformly continuous. By Theorem 4.5 (ii) and Remark 4.6, after possibly 

shrinking U , there exists an integer N� � 1 so that

ω(2)
n (z) = (2nπ)5 + 40nπH0(z) − 80n2π2znz−n + rn(z), (93)

where znz−n = In and sup|n|�N�
|rn(z)| ≤ π/(4t) on all of U .

We show that there exist two sequences p(m) and q(m) in U and a real number δ0 > 0 so that∥∥∥p(m) − q(m)
∥∥∥

hσ
→ 0,

∥∥∥S t
�(p(m)) − S t

�(q(m))

∥∥∥
hσ

� δ0.

Take any zo ∈ U so that there exists N � N� with zo±n = 0 for n � N . Let nm := 2m. For δ > 0 and m � 1 with 
nm > N , we define pm,δ , qm,δ ∈ hσ

0 by putting pm,δ
±n = q

m,δ
±n = zo±n for n < N ,

p
m,δ
±N = δn

−1/2
m m1/2, q

m,δ
±N = 0,

and for n > N ,

p
m,δ
±n = q

m,δ
±n =

{
δn−σ

m , n = nm,

0, otherwise.

Then H0(p
m,δ) − H0(q

m,δ) = 2Nπδ2n−1
m m, and

1√
2

∥∥pm,δ − zo
∥∥

hσ ≤ Nσ δn
−1/2
m m1/2 + δ = O(δ), m → ∞,

while similarly,

1√
2

∥∥qm,δ − zo
∥∥

hσ = δ.

Therefore, we can fix δ0 ∈ (0, 1) sufficiently small so that the sequences (qm,δ) and (pm,δ) are contained in U for all 
0 < δ ≤ δ0. Further note that

1√
2

∥∥pm,δ − qm,δ
∥∥

hσ ≤ Nσ δ0n
−1/2
m m1/2 → 0, m → ∞.

Now, by (93) we have for any m with nm > N

ω(2)
nm

(pm,δ) − ω(2)
nm

(qm,δ) = 40nmπ
(
H0(p

m,δ) − H0(q
m,δ)

)+ rnm(pm,δ) − rnm(qm,δ)

= 80Nπδ2m + rnm(pm,δ) − rnm(qm,δ).

Choose k � 1 so that δ ≡ δ(N, t, k) = 1/
√

80Ntk ≤ δ0. Consequently,(
m

k
− 1

2

)
π ≤

(
ω(2)

nm
(pm,δ) − ω(2)

nm
(qm,δ)

)
t ≤
(

m

k
+ 1

2

)
π, nm > N.

With mj = k(2j + 1) we conclude
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∣∣∣exp
(

i
(
ω(2)

nmj
(pmj ,δ) − ω(2)

nmj
(qmj ,δ)

)
t
)

− 1
∣∣∣� 1,

for all ν sufficiently large. Thus, by comparing only the nmν th component we get

1√
2

∥∥S t
�(pmj ,δ) − S t

�(qmj ,δ)
∥∥

hσ � nσ
mj

∣∣∣pmj ,δ
nmj

∣∣∣− nσ
mj

∣∣∣pmj ,δ
nmj

− q
mj ,δ
nmj

∣∣∣= δ,

for all j sufficiently large.
(iv): To simplify notation, put σ = s + 1/2 so that 1/2 ≤ σ < 1. We show that for any nonempty open subset U

of mσ
0,d and any t > 0 the map S t

�

∣∣
U

: U → mσ
0,d is not uniformly continuous. By Theorem 4.5 (ii) and Remark 4.6, 

after possibly shrinking U , there exists an integer N� � 1 so that

ω(2)
n (z) = (2nπ)5 + 40nπd − 80n2π2znz−n + rn(z), (94)

where znz−n = In and sup|n|�N�
|rn(z)| ≤ π/(4t) on all of U .

We show that there exist two sequences p(m) and q(m) in U and a real number η > 0, so that∥∥∥p(m) − q(m)
∥∥∥

hσ
→ 0,

∥∥∥S t
�(p(m)) − S t

�(q(m))

∥∥∥
hσ

� η.

Take any zo ∈ U so that there exists N � N� with zo±N �= 0 and zo±n = 0 for n > N . Let ε = +
√

zo
Nzo−N and nm = 2m. 

For δ > 0 and m � 1 with nm > N , we define pm,δ , qm,δ ∈ hσ
0 by putting pm,δ

±n = q
m,δ
±n = zo±n for n < N ,

p
m,δ
±N = ε

√
1 − δ2N−1n1−2σ

m , q
m,δ
±N = ε

√
1 − δ2N−1(n1−2σ

m + n−1
m m),

where 0 < δ < ε is chosen so that the radicands are positive, and for n > N ,

p
m,δ
±n =

{
δεn−σ

m , n = nm,

0, otherwise,
q

m,δ
±n =

{
p

(m)
±nm

± iδεn−1
m m1/2, n = nm,

0, otherwise.

Then H0(z
o) = H0(p

m,δ) = H0(q
m,δ) = d , hence for any δ > 0, pm,δ and qm,δ are sequences contained in mσ

0,d . 
Moreover, using that 

∣∣√1 − x − 1
∣∣≤ |x| if |x| ≤ 1/2,

1√
2ε

∥∥pm,δ − zo
∥∥

hσ ≤ Nσ

∣∣∣∣
√

1 − δ2N−1n1−2σ
m − 1

∣∣∣∣+ δ = O(δ).

Similarly,

1√
2ε

∥∥qm,δ − zo
∥∥

hσ ≤ Nσ

∣∣∣∣
√

1 − δ2N−1(n1−2σ
m + n−1

m m) − 1

∣∣∣∣+ δ

+ δnσ−1
m m1/2 = O(δ).

Therefore, we can choose δ0 ∈ (0, ε) so that the sequences (qm,δ) and (pm,δ) are contained in U for any 0 < δ < δ0. 
Further note that

1√
2ε

∥∥pm,δ − qm,δ
∥∥

hσ ≤ δnσ−1
m m1/2

+ Nσ

∣∣∣∣
√

1 − δ2N−1n1−2σ
m −

√
1 − δ2N−1(n1−2σ

m + n−1
m m)

∣∣∣∣ ,
thus for all m sufficiently large,

1√
2ε

∥∥pm,δ − qm,δ
∥∥

hσ ≤ δ0n
σ−1
m m1/2 + δ2

0n−1
m m → 0, m → ∞.

By (94) we have for all m � 1 with nm > N ,

ω(2)
nm

(pm,δ) − ω(2)
nm

(qm,δ) = 80δ2ε2π2m + rnm(pm,δ) − rnm(qm,δ)

Choose k � 1 so that δ ≡ δ(ε, t, k) = 1/
√

80ε2πtk ≤ δ0, then
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(
m

k
− 1

2

)
π ≤

(
ω(2)

nm
(pm,δ) − ω(2)

nm
(qm,δ)

)
t ≤
(

m

k
+ 1

2

)
π, nm > N.

With mj = k(2j + 1) we conclude∣∣∣exp
(

i
(
ω(2)

nmj
(pmj ,δ) − ω(2)

nmj
(qmj ,δ)

)
t
)

− 1
∣∣∣� 1,

for all ν sufficiently large. Thus, by comparing only the nmj
th component, we get

1√
2

∥∥S t
�(pmj ,δ) − S t

�(qmj ,δ)
∥∥

hσ � nσ
mj

∣∣∣pmj ,δ
nmj

∣∣∣− nσ
mj

∣∣∣pmj ,δ
nmj

− q
mj ,δ
nmj

∣∣∣
� δε − ∥∥pmj ,δ − qmj ,δ

∥∥
hσ

� 1

2
δε =: η0,

for all j sufficiently large.
(v): Let −1 < s < 0 and take any initial datum z ∈ h

s+1/2
0 \ h

1/2
0 with zn �= 0 for any given n � 1. By The-

orem 4.5, the function ω̃(2)
n := ω

(2)
n − 40nπH0 extends real analytically to hs+1/2

0 for any −1 < s < 0, whereas 
H0(z) =∑m�1(2mπ)z2

m is infinite for such z. �
Proof of Theorem 1.12. Since by Theorem 1.1 and Lemma 2.1 the Birkhoff map � : Hs

0 → h
s+1/2
0 and its inverse 

are both real-analytic for s � 0 and uniformly continuous on bounded subsets for s > 0, all claims of Theorem 1.12
follow from Theorem 4.14 and the identity S t = �−1 ◦ S t

� ◦ �. �
Remark 4.15. Consider the PDE with Hamiltonian

H̃2 = H2 − 10H 2
0 .

The frequencies of this integrable PDE are given by

ω̃(2)
n (u) = (2nπ)5 + ω(2)�

n (q),

where by Theorem 4.5, each ω̃(2)
n (u) is real analytic on Hs with s > −1. It follows from Theorem E.1 that this PDE 

is globally C0-wellposed in Hs for s > −1. �
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Appendix A. Discrete Hilbert transform on �p

In this appendix we recall some very well known facts on the discrete Hilbert Transform on �p

C
≡ �p(N, C) – see 

e.g. [31].

Lemma A.1. For any 1 < p < ∞ the mapping

H : (xm)m∈Z �→
⎛
⎝∑

m �=n

xm

m − n

⎞
⎠

n∈Z
defines a linear isomorphism on �p

C
(Z, C). �

As an immediate corollary one obtains the following result on the weighted �p-spaces.
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Lemma A.2. For any 1 < p < ∞ and any −1 ≤ s ≤ 0 the map

A : �
s,p

C
→ �

s+1,p

C
, (xm)m�1 = x �→ Ax =

⎛
⎝∑

m �=n

xm

m2 − n2

⎞
⎠

n�1

(95)

is bounded. �

Proof. First note that

1

m2 − n2
= 1

2m(m − n)
+ 1

2m(m − (−n))
= 1

2n(m − n)
− 1

2n(m − (−n))
.

Consequently,

(Ax)n = 1

2n
(Hx)n − 1

2n
(Hx)−n,

implying that A : �
p

C
→ �

1,p

C
is bounded for any 1 < p < ∞. Similarly,

(Ax)n = 1

2
(H x̃)n + 1

2
(H x̃)−n,

where x̃m = xm/m. Therefore, also A : �
−1,p

C
→ �

p

C
is bounded for any 1 < p < ∞. Interpolation then gives the claim 

for −1 < s < 0. �
One easily checks that for p = 1 the operator A : �

s,1
C

→ �
s+1,1
C

, introduced in (95), is unbounded for any −1 ≤
s ≤ 0. However, the following is still true.

Lemma A.3. For any −2 ≤ s ≤ 0 and r > 1 the map A : �
s,1
C

→ �
s+1,r
C

is bounded. �

Proof. For −1 ≤ s ≤ 0 the claim follows form Lemma A.2. Now consider the case s = −2. It is to show that 
A : �

−2,1
C

→ �
−1,1
C

is bounded. Let xm = m2x̃m with x̃m = �1
m. Then for any r > 1

∑
m �=n

m2x̃m

m2 − n2
=
∑
m �=n

x̃m + n2
∑
m �=n

x̃m

m2 − n2
=
∑
m �=n

x̃m + n�r
n = n�r

n.

The case −2 < s < −1 follows by interpolation. �
Remark A.4. Lemma A.3 is optimal with respect to s in the following sense: On the one hand, for s < −2, the 
sequence xm

m2−n2 does generically not converge to zero. On the other hand, for s > 0, one may consider xm = −δ1m, 

then (for n �= 1) (Ax)n = 1/(n2 − 1) = n−1�r
n for any r > 1 but not better. �

Lemma A.5. For any 1 ≤ p ≤ ∞ the map

G : (xm)m�1 �→
⎛
⎝∑

m �=n

xm

|m − n|2

⎞
⎠

n�1

defines an operator on �p

C
bounded by 4. �

Proof. For p = 1 one has ‖Gx‖�1 ≤∑m�1 |xm|
(∑

m �=n
1

|m−n|2
)

≤ 4 ‖x‖�1 while for p = ∞ we find ‖Gx‖�∞ ≤
supm�1 |xm|

(∑
m �=n

1
|m−n|2

)
≤ 4 ‖x‖�∞ . The case 1 < p < ∞ then follows by interpolation. �

To simplify notation we introduce σ 0 = (n2π2)n�1 and write for any σ = (σn)n�1, σ̃ = σ − σ 0.
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Lemma A.6. Let σ = σ 0 + σ̃ and ρ = σ 0 + ρ̃ be two sequences of complex numbers with σ̃ , ρ̃ ∈ �
−1,∞
C

. Suppose 
there exists some c > 0 so that for all m �= n

|ρm − σn| � c−1
∣∣∣m2 − n2

∣∣∣ ,
then for any −1 ≤ s ≤ 0 and any 1 < p < ∞ the mapping

B : �
s,p

C
→ �

s+1,p

C
, Bx =

⎛
⎝∑

m �=n

xm

ρm − σn

⎞
⎠

n�1

defines a bounded operator with

∥∥B�s,p→�s+1,p

∥∥≤
∥∥A�s,p→�s+1,p

∥∥+ 4c ‖ρ̃‖−1,∞ + 4c ‖σ̃‖−1,∞
π2

. �

Proof. Write

π2
∑
m �=n

xm

ρm − σn

=
∑
m �=n

xm

m2 − n2

(
1 − ρ̃m − σ̃n

ρm − σn

)

= (Ax)n − (Fρx)n + (Gσ x)n,

where

(Fρx)n =
∑
m �=n

xm

m2 − n2

ρ̃m

ρm − σn

, (Gσ x)n =
∑
m �=n

xm

m2 − n2

σ̃n

ρm − σn

.

Since |ρ̃m| ≤ m ‖ρ̃‖−1,∞, |ρm − σn| � c−1
∣∣m2 − n2

∣∣ for m �= n, as well as (m2 − n2)2 = (m − n)2(m + n)2 and 

supm,n�1
n1+sm1−s

(m+n)2 ≤ 1, we conclude with Lemma A.5 that

∥∥Fρx
∥∥

1+s,p
≤ c ‖ρ̃‖−1,∞

⎛
⎝∑

n�1

∣∣∣∣∣∣
∑
m �=n

ms |xm|
|m − n|2

∣∣∣∣∣∣
p⎞
⎠

1/p

≤ 4c ‖ρ̃‖−1,∞ ‖x‖s,p .

In a similar fashion one obtains that ‖Gσ x‖1+s,p ≤ 4c ‖σ̃‖−1,∞ ‖x‖s,p . �
Appendix B. Infinite products

First let us recall some definitions and facts on infinite products form [11]. Let a := (an)n�1 be a sequence of 
complex numbers. We say that the infinite product 

∏
n�1(1 + an) converges if the limit limN→∞

∏
1≤n≤N(1 + an)

exists, and 
∏

n�1(1 + an) is said to be absolutely convergent if 
∏

n�1(1 + |an|) converges. One verifies that absolute 
convergence implies convergence. A sufficient condition for absolute convergence is that ‖a‖�1 :=∑n�1 |an| < ∞.

The following result is obtained from [11, Lemma C1] by considering sequences a = (am)m∈Z with am = 0 for 
m ≤ 0.

Lemma B.1. Assume that for any n � 1, (am,n)m�1 is an �1-sequence with 
∣∣am,n

∣∣≤ 1/2 for any m, n. Then∣∣∣∣∣∣
∏
m�1

(1 + am,n) − 1

∣∣∣∣∣∣≤ AneSn + BneSn+S2
n

with An =
∣∣∣∑m�1 am,n

∣∣∣, Bn =∑m�1

∣∣am,n

∣∣2, and Sn =∑m�1

∣∣am,n

∣∣. �

We say a sequence σ = (σn)n�1 of complex numbers is simple if σm �= σn for any n �= m, and define σ 0 =
(n2π2)n�1.



T. Kappeler, J.-C. Molnar / Ann. I. H. Poincaré – AN 35 (2018) 101–160 147
Lemma B.2. For σ̃ = σ − σ 0 ∈ �s,p , −1 ≤ s ≤ 0, 1 < p < ∞, and n � 1,

fn(λ, σ̃ ) = 1

n2π2

∏
m �=n

σm − λ

m2π2

defines an analytic function on C × �
s,p

C
with roots σm, m �= n, listed with their multiplicities. In particular, if σ is 

simple, then fn has simple roots σm, m �= n, and no other roots and

1

fn(λ, σ̃ )
= n2π2

∏
m �=n

m2π2

σm − λ

is meromorphic with simple poles σm, m �= n. �

To proceed, we introduce the complex discs

Dn =
{
λ ∈ C :

∣∣∣λ − σ 0
n

∣∣∣< n
}

, n� 1.

Lemma B.3. Suppose σ = σ 0 + σ̃ and ρ = σ 0 + ρ̃ are two complex sequences with ρ simple, and for some n0 � 1
and c > 0

min
λ∈Dn

|ρm − λ|� c−1
∣∣∣m2 − n2

∣∣∣ , m �= n, n � n0.

If σ̃ , ρ̃ ∈ �−1,∞ and σ − ρ ∈ �s,p for some −1 ≤ s ≤ 0, 1 < p < ∞, then

sup
λ∈Dn

∣∣∣∣∣∣
∏
m �=n

σm − λ

ρm − λ
− 1

∣∣∣∣∣∣= n−1−s�
p
n

uniformly with respect to ‖σ − ρ‖�s,p and ‖ρ̃‖�−1,∞ . In more detail, if N � n0 is such that

2c

N
‖σ − ρ‖�−1,p + c

∥∥RN/2(σ − ρ)
∥∥

�−1,p ≤ 1/2,

where Rn(σ − ρ) = (σm − ρm)m�n, then

∑
n�N

n(1+s)p

∣∣∣∣∣∣ sup
λ∈Dn

∣∣∣∣∣∣
∏
m �=n

σm − λ

ρm − λ
− 1

∣∣∣∣∣∣
∣∣∣∣∣∣
p

≤ C ‖σ − ρ‖p

�s,p ,

with C ≡ C(c, ‖σ − ρ‖�s,p , ‖ρ̃‖�−1,∞). �

Proof. Given any sequence (λn)n�1 ⊂C with λn ∈ Dn for any n � 1, introduce

am,n := σm − λn

ρm − λn

− 1 = αm

ρm − λn

, αm := σm − ρm.

Since αm = m−s�
p
m and |ρm − λn| � c−1

∣∣m2 − n2
∣∣ for m �= n and n � n0, there exists N � n0 so that for all n �N

∣∣am,n

∣∣≤
{ 2c

n
‖α‖−1,p ≤ 1

2 , |m − n| > n/2,

c
∥∥Rn/2α

∥∥−1,p
≤ 1

2 , 1 ≤ |m − n| ≤ n/2.

Therefore, Lemma B.1 applies yielding∣∣∣∣∣∣
∏
m �=n

σm − λn

ρm − λn

− 1

∣∣∣∣∣∣≤ AneSn + BneSn+S2
n , n� N,

with Sn =∑m �=n

∣∣∣ αm

ρm−λn

∣∣∣, An =
∣∣∣∑m �=n

αm

ρm−λn

∣∣∣, and Bn =∑m �=n

∣∣∣ αm

ρm−λn

∣∣∣2. Since 1 < p < ∞ we can apply Hölder’s 
inequality to obtain



148 T. Kappeler, J.-C. Molnar / Ann. I. H. Poincaré – AN 35 (2018) 101–160
Sn ≤ c
∑
m �=n

m−1 |αm|
|m − n| ≤ c

⎛
⎝∑

m �=n

1

|m − n|p′

⎞
⎠

1/p′

‖α‖−1,p ≤ Cc,p ‖α‖−1,p .

By Lemma A.6 one has∥∥(An)n�N

∥∥
1+s,p

≤ Cc,‖σ̃‖−1,∞,‖ρ̃‖−1,∞,p ‖α‖s,p ,

and finally for any q � max(1, p/2) using that supm,n�1
n2+2sm−2s

|m+n|2 ≤ 1 and Lemma A.5

∥∥(Bn)n�N

∥∥
2+2s,q

≤ c2

⎛
⎝∑

n�N

∣∣∣∣∣∣
∑
m �=n

n2+2sm−2s

(m + n)2

m2s |αm|2
(m − n)2

∣∣∣∣∣∣
q⎞
⎠

1/q

≤ 16c2 ‖α‖2
�s,2q . �

Finally recall that sin
√

λ√
λ

admits the product representation

sin
√

λ√
λ

=
∏
m�1

m2π2 − λ

m2π2
or

n2π2

n2π2 − λ

sin
√

λ√
λ

=
∏
m �=n

m2π2 − λ

m2π2
,

which defines n2π2

n2π2−λ

sin
√

λ√
λ

for λ = n2π2.

Lemma B.4. Let σ = σ 0 + σ̃ with σ̃ ∈ �s,p , 1 < p < ∞ and −1 ≤ s ≤ 0, then for any n � 1,

∏
m �=n

σm − λ

m2π2
= n2π2

n2π2 − λ

sin
√

λ√
λ

(
1 + n−1−s�

p
n

)
, (96)

uniformly in λ ∈ Dn and with respect to 
∥∥σ − σ 0

∥∥
s,p

. Write λn ∈ Dn as 
√

λn = nπ + αn. Then |αn| ≤ 1/π and

n2π2

n2π2 − λ

sin
√

λ√
λ

= (−1)n+1

2
(1 + βn) , |βn| ≤ 1

n
|αn| + 1

2
|αn|2 . (97)

In particular, if αn = n−1−s�
p
n (or αn = O(n−1−s) and s + 1 > 1/p), then

n2π2

n2π2 − λ

sin
√

λ√
λ

= (−1)n+1

2
+ n−1−s�

p
n . � (98)

Proof. (96) follows directly from the product representation of sin
√

λ√
λ

and Lemma B.3. To obtain (97) write 
√

λn =
nπ + αn, then by a straightforward computation

n2π2

n2π2 − λ

sin
√

λ√
λ

= (−1)n+1

2

(
1 − αn(3nπ + αn)

(nπ + αn)(2nπ + αn)

)
sinαn

αn

.

Since |λn − nπ | < n we have that |αn| < 1/π and hence∣∣∣∣ αn(3nπ + αn)

(nπ + αn)(2nπ + αn)

∣∣∣∣≤ |αn|
n

,

∣∣∣∣ sinαn

αn

− 1

∣∣∣∣≤ |αn|2
4

.

Consequently,

n2π2

n2π2 − λ

sin
√

λ√
λ

= (−1)n+1

2
(1 + βn) ,

where

|βn| ≤ 1

n
|αn| + 1

2
|αn|2 .

Finally (98) is a consequence of (97). �
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Appendix C. A diffeomorphism property

Let Z be a K-Banach space with K = R or C and let T : Z → Z be a bounded linear operator. Suppose that Z
is the direct sum of closed subspaces X and Y , Z = X ⊕ Y , and that T admits with respect to this direct sum the 
decomposition

T =
(

A B

C D

)
. (99)

Lemma C.1 (Schur complement). The operator IdZ +T is invertible on Z if IdY +D is invertible on Y and the Schur 
complement

S = IdX + A − B(IdY + D)−1C

is invertible on X. �

As an immediate corollary we obtain the following sufficient condition.

Corollary C.2. Suppose X is finite dimensional, then IdZ + T is invertible if

detS �= 0, ‖D‖L(Y ) < 1. �

The following characterization of relatively compact sets in �p is well known.

Lemma C.3. A subset B of �p

C
, 1 ≤ p < ∞, is relatively compact if and only if it is bounded and for any ε > 0

there exists an N � 1 so that 
∥∥π⊥

N x
∥∥

p
≤ ε for all x ∈ B . Here π⊥

N = Id − πN and πN : �
p
C → �

p

C
is the projection of 

sequences x = (xn)n�1 ∈ �
p

C
to πNx given by (πNx)n = xn if 1 ≤ n ≤ N and (πNx)n = 0 for n �N + 1. �

We denote by �s,p
+ the positive quadrant of �s,p ≡ �s,p(N, R) introduced in (5). Furthermore, �s,p

C
≡ �s,p(N, C)

where s ∈R and 1 ≤ p < ∞.

Proposition C.4. Suppose f : �
s,p
+ → �s,p , 1 ≤ p < ∞, s ∈ R, is a real analytic map with the properties that

(i) dzf − Id : �
s,p

C
→ �

s,p

C
is compact for every z ∈ �

s,p
+ ,

(ii) f is a local diffeomorphism at some point of �s,p
+ .

Then f is a local diffeomorphism on a dense open subset of �s,p
+ . �

Proof. To simplify notation write Tz = dzf − Id�
s,p

C

. By assumption (i), Tz is a compact operator on �s,p

C
for every 

z ∈ �
s,p
+ . In particular, the image of the unit ball in �s,p

C
is relatively compact in �s,p

C
. By Lemma C.3 there exists N � 1

(which might depend on z) so that 
∥∥π⊥

N Tz

∥∥
L(�

s,p

C
)
≤ 1/4. Since 

∥∥π⊥
N Tz

∥∥
L(�

s,p

C
)

depends continuously on z, there exists 

an complex neighborhood V of z within �s,p

C
so that 

∥∥π⊥
N Tw

∥∥
L(�

s,p

C
)
≤ 1/2 for all w ∈ V .

Let W be any nontrivial open subset of �s,p
+ and denote by z0 ∈ �

s,p
+ the point of assumption (ii) at which the 

differential of f is invertible. For any z1 ∈ W the straight line [z0, z1] is compact in �s,p
+ and hence can be covered 

by finitely many neighborhoods V as constructed above. Consequently, there exists a complex neighborhood U of 
[z0, z1] within �s,p

C
and an integer NU � 1 so that∥∥∥π⊥

NU
Tz

∥∥∥
L(�

s,p

C
)
≤ 1/2, ∀z ∈ U.

Write �s,p

C
= XNU ⊕ YNU where XNU = πNU

(�
s,p

C
) and YNU = π⊥

NU
(�

s,p

C
). We can decompose for any z ∈ U the 

operator Tz according to (99). Since for any z ∈ U
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∥∥∥DNU
z

∥∥∥
L(XNU )

≤
∥∥∥π⊥

NU
Tz

∥∥∥
L(�

s,p

C
)
≤ 1/2,

by Corollary C.2 the differential dzf is invertible for all z ∈ U with

λ(z) = detSNU
z �= 0.

Note that

U → L(XNU ), z �→ SNU
z = IdXNU − ANU

z + BNU
z (IdYNU + DNU

z )−1CNU
z ,

is analytic, hence the function λ : U → C is analytic. Since λ(z0) �= 0, it follows that λ does not vanish identically 
on U ∩ W . Consequently, the set � = {z ∈ �

s,p
+ : dzf is invertible

}
has nontrivial intersection with W . Since W was 

arbitrary, it follows that � is dense in �s,p
+ . Since � is open the claim follows. �

Appendix D. Birkhoff normal form

In this appendix we review the Birkhoff normal form of the KdV and KdV2 Hamiltonian provided in [18].

Theorem D.1.

(i) On H1(T, R), the Birkhoff normal form of the KdV Hamiltonian H1(u) of order four is given by

H1(u) =
∑
n�1

(2nπ)3In + 6[u]H0 − 3
∑
n�1

I 2
n + · · · ,

where H0 =∑n�1(2nπ)In.

(ii) On H2(T, R), the Birkhoff normal form of the KdV2 Hamiltonian H2(u) of order four is given by

H2(u) =
∑
n�1

(2nπ)5In + 10[u]
∑
n�1

(2nπ)3In + 30[u]2H0

+ 10H 2
0 − 10

∑
n�1

(2nπ)2I 2
n − 30[u]

∑
n�1

I 2
n + · · · . �

For a proof of item (i) we refer to [18, Theorem 14.2]. Concerning item (ii), it turns out that some of the coefficients 
in the expansion of H2, given in [18, Theorem 14.5], need to be corrected. We therefore present a detailed derivation.

Given u ∈Hs by choosing c = [u] we have that q = u − c ∈ Hs
0 and the KdV2 Hamiltonian satisfies the relation

H2(u) = H2(q) + 10cH1(q) + 30c2H0(q) + 5

2
c4,

where

H0(q) =
∑
n�1

(2nπ)In, H1(q) =
∑
n�1

(2nπ)3In − 3
∑
n�1

I 2
n + · · · .

It thus suffices to compute the Birkhoff normal form of H2(q) up to order four.
To begin denote by Pk the space of homogenous polynomials of order k and write H2 = H 2 + H 3 + H 4 with 

Hk ∈ Pk . Putting H2 into Birkhoff normal form of order four amounts to the construction of a coordinate change �
so that

H2 ◦ � = H 2 + N4 + · · ·
where N4 ∈ P4, {H 2, N4} = 0, and · · · comprises terms of order at least five. The map � is obtained as the compo-
sition of two time-1-maps of Hamiltonian vector fields whose Hamiltonians are chosen properly. More to the point, 
� = F3 ◦ F4 with Fk ∈Pk .

By the chain rule and the fact that {Fk, Fl} ∈Pk+l−2 one has

H 2 ◦ F3 = H 2 + H 3 + {H 2,F3} + H 4 + 1 {{H 2,F3},F3} + {H 3,F3} + · · · ,

2
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where · · · comprises terms of at least order five. Moreover,

H 2 ◦ F3 ◦ F4 = H 2 + H 3 + {H 2,F3}
+ H 4 + 1

2
{{H 2,F3},F3} + {H 3,F3} + {H 2,F4} + · · ·

Since H ◦ � is in Birkhoff normal form we have H 3 + {H 2, F3} = 0, so that

H 2 ◦ � = H 2 + H 4 + 1

2
{H 3,F3} + {H 2,F4} + · · ·

Denote by N4 the kernel of the map χ4 : P4 → P4, F �→ {H 2, F }. The condition {H 2, N4} = 0 is tantamount to N4

being an element of N4, and the term {H 2, F4} is used to remove the contributions of the complement. Therefore,

N4 = 1

2
πN4{H 3,F3} + πN4H

4. (100)

In the sequel we proceed by computing the coefficients of the two terms of N4.
We note two combinatorial properties which can be easily verified by direct computation.

Lemma D.2. Suppose k, l, m �= 0 with k + l + m = 0 then

k5 + l5 + m5 = 5

2
klm(k2 + l2 + m2) �= 0. �

Lemma D.3. Suppose k, l, m, n �= 0 with k + l + m + n = 0 then

k5 + l5 + m5 + n5 = 5(k + l)(k + m)(k + n)ξklm

and ξklm = (k2 + kl + l2 + km + lm + m2) does not vanish. �

To compute the coefficients of (100) we make the ansatz

u =
∑
m �=0

γmume2m, γm =√2 |m|π.

A straightforward computation gives first

H 2 = 1

2

∑
k,l �=0
k+l=0

(2kπ i)2(2lπ i)2γkγlukul

= 1

2

∑
k �=0

(2 |k|π)5uku−k =
∑
k�1

λkuku−k, λk = (2kπ)5,

(101)

second

H 3 = −5
∑

k+l+m=0

(2kπ)(2lπ)γkγlγmukulum

= 10π2

3

∑
k+l+m=0

(k2 + l2 + m2)γkγlγmukulum

(102)

where we used that kl + lm + mk = − 1
2 (k2 + l2 + m2) given k + l + m = 0, and third

H 4 = 5

2

∑
k+l+m+n=0

γkγlγmγnukulumun. (103)

Since H ◦ � does not contain terms of order three, we have H 3 = −{H 2, F3}. To compute the coefficients of F3, 
write F3 =∑k+l+m=0 F 3 ukulum, then
klm
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10π2

3

∑
k+l+m=0

(k2 + l2 + m2)γkγlγmukulum

= i
∑

k+l+m=0

(λk + λl + λm)F 3
klmukulum

so that

F 3
klm = 10π2

3 · 25π5

k2 + l2 + m2

k5 + l5 + m5
γkγlγm

= −i
1

3 · 23π3

1

klm
γkγlγm = − i

3

1

γ̃kγ̃l γ̃m

, γ̃k = σkγk.

These coefficients match those of (14.4) in [18].

Lemma D.4. For any smooth u with [u] = 0,

1

2
πN4{H 3,F3} = −20

∑
k,l�1

(2kπ)(2lπ) |uk|2 |ul |2 + 5
∑
n�1

(2nπ)2 |un|4 . �

Proof. First we compute from (102)

3

10π2
∂jH

3 = 3
∑

l+m=−j

(j2 + l2 + m2)γj γlγmulum

and second

∂−jF3 = 3
∑

l+m=j

− i

3

1

γ̃−j γ̃l γ̃m

.

Together this gives

{H 3,F3} = i10π2(−i)
∑
j �=0

σj

⎛
⎝ ∑

k+l=−j

(j2 + k2 + l2)γj γkγlukul

⎞
⎠
⎛
⎝ ∑

m+n=j

1

γ̃−j γ̃mγ̃n

umun

⎞
⎠

= −10π2
∑
j �=0

⎛
⎝ ∑

k+l=−j

(j2 + k2 + l2)γkγlukul

⎞
⎠
⎛
⎝ ∑

m+n=j

1

γ̃mγ̃n

umun

⎞
⎠

= −10π2
∑
j �=0

⎛
⎜⎜⎝ ∑

k+l=−j
m+n=j

(j2 + k2 + l2)
γkγl

γ̃mγ̃n

ukulumun

⎞
⎟⎟⎠

= −10π2
∑

k+l+m+n=0
k+l �=0

((k + l)2 + k2 + l2)
γkγl

γ̃mγ̃n

ukulumun.

Note that on N4 in view of Lemma D.3 we either have k + l = 0 or k + m = 0 or k + n = 0. We first compute∑
k+l+m+n=0

k+l �=0, k+m=0

((k + l)2 + k2 + l2)
γkγl

γ̃mγ̃n

ukulumun

=
∑

σ−kσ−l((k + l)2 + k2 + l2) |uk|2 |ul |2

k+l �=0
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= 2
∑

k,l�1

((k + l)2 + k2 + l2) |uk|2 |ul |2 − 2
∑

k,l�1
k �=l

((k − l)2 + k2 + l2) |uk|2 |ul |2

= 12
∑
n�1

n2 |un|4 + 8
∑

k,l�1
k �=l

kl |uk|2 |ul |2 ,

and second ∑
k+l+m+n=0

k+l �=0, k+m �=0, k+n=0

((k + l)2 + k2 + l2)
γkγl

γ̃mγ̃n

ukulumun

=
∑

k+l �=0
k−l �=0

σ−kσ−l((k + l)2 + k2 + l2) |uk|2 |ul |2

= 2
∑

k,l�1
k �=l

((k + l)2 + k2 + l2) |uk|2 |ul |2 − 2
∑

k,l�1
k �=l

((k − l)2 + k2 + l2) |uk|2 |ul |2

= 8
∑

k,l�1
k �=l

kl |uk|2 |ul |2 .

So that we arrive at

1

2
πN4{H 3,F3} = −5

⎛
⎜⎜⎝3
∑
n�1

(2nπ)2 |un|4 + 4
∑

k,l�1
k �=l

(2kπ)(2lπ) |uk|2 |ul |2
⎞
⎟⎟⎠

= −20
∑

k,l�1

(2kπ)(2lπ) |uk|2 |ul |2 + 5
∑
n�1

(2nπ)2 |un|4 . �

Lemma D.5. For any smooth u with [u] = 0,

πN4H
4 = 30

∑
k,l�1

γ 2
k γ 2

l |uk|2 |ul |2 − 15
∑
n�1

γ 4
n |un|4 . �

Proof. Recall from (103) that

H 4 = 5

2

∑
k+l+m+n=0

γkγlγmγnukulumun.

On N4 we either have k + l = 0 or k + m = 0 or k + n = 0. Therefore, the projection of 2
5H 4 onto N4 is given by∑

k+l+m+n=0
k+l=0

γkγlγmγnukulumun +
∑

k+l+m+n=0
k+l �=0, k+m=0

γkγlγmγnukulumun

+
∑

k+l+m+n=0
k+l �=0, k+m �=0, k+n=0

γkγlγmγnukulumun

= 4
∑

k,l�1

γ 2
k γ 2

l |uk|2 |ul |2 + 2
∑

k,l�1

γ 2
k γ 2

l |uk|2 |ul |2 + 2
∑

k,l�1

γ 2
k γ 2

l |uk|2 |ul |2
k �=l
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+ 4
∑

k,l�1
k �=l

γ 2
k γ 2

l |uk|2 |ul |2

= 12
∑

k,l�1

γ 2
k γ 2

l |uk|2 |ul |2 − 6
∑
n�1

γ 4
n |un|4 .

Consequently,

πN4H
4 = 30

∑
k,l�1

γ 2
k γ 2

l |uk|2 |ul |2 − 15
∑
n�1

γ 4
n |un|4 . �

Altogether we find

H2 ◦ � = H 2 + 10
∑

k,l�1

(2kπ)(2lπ) |uk|2 |ul |2 − 10
∑
n�1

(2nπ)2 |un|4 + · · ·

Addendum: nondegeneracy of the KdV2 frequencies Since some of the coefficients in the Birkhoff normal form of 
H2 in [18, Theorem 14.5] had to be corrected, the analysis of the KdV2 frequencies presented in [18, Appendix J]
needs to be adapted accordingly. It turns out that the results stated in Appendix J continue to hold but their proofs have 
to be slightly modified as explained in detail in what follows.

The Birkhoff normal form of H2 may also be written in the from

H2 =
∑
n�1

λ(2)
n In − 1

2

∑
i,j�1

C
(2)
ij IiIj + · · · ,

with

λn ≡ λ(2)
n = (2nπ)5 + 10c(2nπ)3 + 30c2(2nπ),

Cij ≡ C
(2)
ij =

{
60c, i = j,

−20(2iπ)(2jπ), i �= j,

so that

ω(2)
n = λn −

∑
j�1

Cnj Ij + · · · . �

For any finite set A ⊂N let Z =N \ A and

P�A = {xA = (xj )j∈A : xj � 0
}
.

We may decompose any k ∈ ZN into k = kA + kZ , where kA denotes the projection on A and kZ the projection on Z, 
respectively.

Proposition D.6. For every finite index set A ⊂N, the following holds on P�A.

(i) There exists an |A|-point set SA ⊂R such that for c /∈ SA,

det(∂Ii
∂Ij

H2)i,j∈A �≡ 0.

The subset SA may be chosen in such a way that 0 /∈ SA if |A| �= 1 and SA = {0} if |A| = 1.
(ii) There exists an at most countable subset EA ⊂R accumulating at most at the points of SA such that for c /∈ EA,

k · ω(2) �≡ 0

for any k = kA + kZ ∈ ZN with 1 ≤ |kZ| :=∑j∈Z

∣∣kj

∣∣≤ 2.

(iii) The KdV2 Hamiltonian at c = 0 is nondegenerate in the sense that for any k �= 0 in ZN with |kZ| ≤ 2 one has

k · ω(2) �≡ 0. �
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Items (i)–(iii) of Proposition D.6 follow from Lemma D.7, Lemma D.9, and Lemma D.10, respectively.
For any finite set A ⊂N let CA = (Cij )i,j∈A.

Lemma D.7. For every finite set A ⊂N, there exists an |A|-point set SA ⊂R such that

detCA = 0 ⇐⇒ c ∈ SA.

In particular, if A = {i}, then SA = {0}, while for A = {i1 < · · · < in} one has

SA =
{
cn
A < · · · < c2

A < 0 < c1
A

}
with

−4

3
π2i2

ν < cν
A < −4

3
π2i2

ν−1, 2 ≤ ν ≤ n,

and c1
A → ∞ as |A| → ∞. �

Proof. The matrix CA can be written in the form CA = D − B , where D = diag(Di)i∈A and B = (Bij )i,j∈A with 
coefficients

Di = 80π2i2 + 60c, Bij = 80π2ij.

Since B has rank one,

detCA = detD −
∑
i∈A

Bii

∏
j∈A, j �=i

Di.

If one of the Dj vanishes, say Dl = 0, then all other Dj do not vanish, and we have

detCA = −Bll

∏
j �=l

Dj �= 0.

Otherwise,

detCA = detD

(
1 −

∑
i∈A

Bii/Di

)

and the determinant vanishes if and only if

1 =
∑
i∈A

Bii

Di

=
∑
i∈A

1

1 + cfi

, fi = 3

4π2i2
.

Each summand is a hyperbola in c which is monotonically decreasing on (−∞, ci) and (ci, ∞) with ci = −4π2i2/3
being the single pole. Furthermore, each summand has value 1 at c = 0, and asymptotic value 0 as c → ±∞. This 
proves the claim. �
Remark D.8. The lemma shows that for any given A ⊂N the Jacobian of the frequency map IA �→ ω

(2)
A of the KdV2 

Hamiltonian does become singular, at least at IA = 0 for c ∈ SA. This is in contrast to the first KdV Hamiltonian, 
where the Jacobian is always regular at IA = 0.

We now fix a finite set A ⊂ N and consider for 0 �= k ∈ ZN the frequency combinations k · ω(2) as functions of IA

on P�A. In view of ω(2)(I ) = λ − CI + · · · and the symmetry of the matrix C, we have

k · ω(2) = k · λ − (Ck)A · IA + · · ·
on P�A. To prove that k · ω(2) �≡ 0 on P�A, it is thus sufficient to show that

k · λ �= 0 or (Ck)A �= 0. (104)

We first prove a general statement to this fact. Recall that C depends on the parameter c ∈R.
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Lemma D.9. For each k ∈ ZN with 1 ≤ |kZ| ≤ 2, there exists at most one ck ∈ R such that the alternative (104) does 
not hold. This ck is a rational multiple of π2. Moreover, within every compact subset R \ SA there are only finitely 
many such ck . �

Proof. We have

(Ck)A = CAkA + CAZkZ,

where CAZ = (Cij )i∈A, j∈Z . The diagonal elements of CA are linear functions of c, namely 60c, while all other coeffi-
cients of both matrices are integer multiples of π2, namely −80π2ij . In particular, the vector CAZkZ has coefficients 
−80π2ip, i ∈ A, where

p = kZ · λo
Z, λo

Z = (j)j∈Z.

Clearly, p does not vanish since 1 ≤ |kZ| ≤ 2. Thus (Ck)A does not vanish if kA = 0. On the other hand, if kA �= 0, 
then (Ck)A can vanish for at most one value of c, and this value must be a rational multiple of π2.

To prove the remaining statements, suppose that (Ck)A = 0, and that c belongs to some compact set F ⊂ R \ SA. 
Then CA is invertible,

kA = −C−1
A CAZkZ,

and, since F is compact, we can bound C−1
A uniformly for c ∈ F . Consequently, for any c ∈ F ,

|kA| ≤
∣∣∣C−1

A

∣∣∣ |CAZkZ| ≤ K
∣∣kZ · λo

Z

∣∣ , (105)

where here and below, K stands for various constants bigger than 1 that depend only on A and the compact set F .
Now suppose also that

k · λ = kA · λA + kZ · λZ = 0.

In view of λn = (2nπ)5 + 10c(2nπ)3 + 30c2(2nπ), it is a routine estimate to show that for 1 ≤ |kZ| ≤ 2 one has

|kZ · λZ|� K−1
∣∣kZ · λo

Z

∣∣5 − K
∣∣kZ · λo

Z

∣∣3 .

It follows from Cauchy–Schwarz and (105) that K
∣∣kZ · λo

Z

∣∣ |λA| � |kA · λA| and hence in view of k · λ = 0 and the 
preceding estimate

K
∣∣kZ · λo

Z

∣∣ |λA| � |kZ · λZ|� K−1
∣∣kZ · λo

Z

∣∣5 − K
∣∣kZ · λo

Z

∣∣3 . (106)

In particular, 
∣∣kZ · λo

Z

∣∣ ≤ K with a different constant. Combining this estimate with estimates (105) and (106), we 
find

|kA| ≤ K, |kZ · λZ| ≤ K.

Thus, for c ∈ F there can be only finitely many k ∈ ZN with 1 ≤ |kZ| ≤ 2 for which alternative (104) does not hold. 
Consequently, there can be at most finitely many exceptional values ck in F . �
Lemma D.10. For every finite set A ⊂ N, the KdV2 Hamiltonian at c = 0 satisfies (104) for any k �= 0 in ZN with 
|kZ| ≤ 2 and is thus nondegenerate. �

Proof. Let n = |A|. We first consider the case n = 1 that is A = {i} for some i ∈ N. If k �= 0 and kZ = 0, then k · λ =
ki(2iπ)5 �= 0. On the other hand, if kZ �= 0, then (Ck)i = −80π2ip where p =∑j∈Z jkj �= 0 since 1 ≤ |kZ| ≤ 2. 
Thus (104) holds for n = 1.

Next consider the case where n � 2. If kZ = 0, then kA �= 0. Since detCA �= 0 by Lemma D.7, we have (Ck)A =
CAkA �= 0, hence (104) holds. So it remains to consider the case 1 ≤ |kZ| ≤ 2. In view of (104) assume in addition 
that (Ck)A = 0. It is to show that then k · λ �= 0. At c = 0, the coefficients of C are, up to a common multiplicative 
factor, (δij − 1)ij . Hence, the coefficients of k satisfy

iki =
∑

jkj , i ∈ A.
j�1
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It follows that iki = r is independent of i for i ∈ A. Substituting these identities into the above sum, we obtain

r =
∑
i∈A

r +
∑
j∈Z

jkj = nr + p,

where p =∑j∈Z jkj . Since 1 ≤ |kZ| ≤ 2, it follows that p �= 0 and without loss we may assume that p > 0, since 
otherwise we may choose −k instead of k. As an immediate consequence,

iki = r = − p

n − 1
, i ∈ A. (107)

In particular, all ki are distinct and strictly negative.
Now consider

k · λ = (2π)5
(∑

i∈A

i5ki +
∑
j∈Z

j5kj

)
.

Solving (107) for i and ki we have

−
∑
i∈A

i5ki = p

n − 1

∑
i∈A

i4 =
(

p

n − 1

)5∑
i∈A

1

k4
i

.

To show that k · λ �= 0, it thus suffices to show that the two terms

I =
∑
i∈A

1

k4
i

> 0 and II =
(

n − 1

p

)5∑
j∈Z

j5kj

are not equal. Using 1 ≤ |kZ| ≤ 2, one easily checks that∣∣∣∣∑
j∈Z

j5kj

∣∣∣∣� 1

24

(∑
j∈Z

jkj

)5

= p5

24
.

Consequently, II � (n−1)5

24 . On the other hand, since all ki are distinct and have the same sign,

I =
∑
i∈A

1

k4
i

≤
n∑

ν=1

1

ν4
≤ 4

3
− 1

3n3
,

and the right hand side is strictly less than 1
24 (n − 1)5 if n � 3.

For n = 2, the above argument is still valid when kZ has only one nonzero component. In this case, kZ = lej0 with 
1 ≤ l ≤ 2 since by assumption p = j0l > 0. Then,

∑
j∈Z

j5kj = (j0l)
5

l4
= p5

l4

and hence

II = IIl = 1

l4
, l = 1,2.

However, since n = 2 and the ki are distinct, one checks that neither 1 = II1 nor 1/24 = II2 are possible values of I .
It thus remains to discuss the case kZ = ej1 ± ej2 with j1 > j2. Since the ± cases are treated similarly, we concen-

trate on kZ = ej1 + ej2 only. If |ki | � 3 for i ∈ A, then I ≤ 1
34 + 1

44 < 1
24 ≤ II , hence we only need to consider the 

case where mini∈A |ki | ≤ 2. More precisely, with A = {i1, i2}, 1 ≤ i2 < i1, there remain the two cases to be studied:

(i) ki1 = −1, ki2 ≤ −2, (ii) ki1 = −2, ki2 ≤ −3.

Suppose I = II , then in either case it follows that

i4
1 + i4

2 = p4I = p4II = j5
1 + j5

2 .

p
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Let q = j1 − j2 � 1 and substitute 2j1 = p + q , 2j2 = p − q into the latter expression to get

24(i4
1 + i4

2) = p4 + 10p2q2 + 5q4. (108)

(i): Let μ = −k2, then p = i1 = μi2, and hence (108) takes the form

24i4
2 = −15p4 + 10p2q2 + 5q4 = 5(q4 + 2p2q2 − 3p4).

Consequently, 5|i4
2 and hence 5|i2. Therefore, also 5|p and it follows that

53|q2(q2 + 2p2).

Since 5|p it follows that 5|q . Let p = 5p̃, q = 5q̃ , and i2 = 5ĩ2, then

24 ĩ4
2 = 5(q̃4 + 2p̃2q̃2 − 3p̃4).

We are now in the same position as in the beginning with p̃ = μĩ2. Thus, we conclude 5|p̃ and 5|q̃ . This, of course, 
can be repeated ad infinitum giving a contradiction. Therefore, I �= II in this case.

(ii): Let μ = −k2, then p = 2i1 = μi2, and hence (108) takes the form

24i4
2 = 5q2(2p2 + q2).

Again, it follows that 5|i2 and hence 5|p so that also 5|q . This argument can be repeated ad infinitum which shows 
that I �= II . �
Appendix E. Frequency flow in sequence spaces

Suppose 1 ≤ p < ∞, σ ∈ R, and let Xσ,p be any subset of �σ,p . In this appendix, we consider the flow generated 
by a sequence of frequency functions ωn : Xσ,p → R, n � 1. The corresponding flow in �σ,p is denoted by ϕt(z) =
(ϕt

n(z))n�1, where z ∈ Xσ,p denotes the initial value and

ϕt
n(z) := eiωn(z)t zn, n� 1. (109)

To simplify notation, we denote the constant part of ωn by ωo
n and write

ωn(z) = ωo
n + ω�

n.

Further, ω = (ωn)n�1 denotes the frequency map.

Theorem E.1. Let 1 ≤ p < ∞, σ ∈ R, and Xσ,p ⊂ �σ,p be a subset invariant by the flow (109).

(i) The map R → Xσ,p , t �→ ϕt (z) defines a continuous curve in Xσ,p for any z ∈ Xσ,p .
(ii) If each ω�

n : Xσ,p → R is continuous, then for any T > 0 the map

S : Xσ,p → C([−T ,T ],Xσ,p), z �→ (t �→ ϕt (z)), (110)

is continuous and has the group property S(t + s, z) = S(t, S(s, z)) for all t, s ∈ R and z ∈ Xσ,p . In particular, 
for any t ∈R, ϕt : Xσ,p → Xσ,p is a homeomorphism.

(iii) If ω� : Xσ,p → �∞ is real analytic, then for any T > 0, the map S is real analytic. It means that for any z ∈ Xs,p

there exists a complex neighborhood V of z in �s,p

C
so that ω� : V → �∞

C
and S : V → C([−T , T ], �s,p

C
) are 

analytic maps.
(iv) If ω� : Xσ,p → �∞ is uniformly continuous on bounded subsets of Xs,p, then for any T > 0, the map S is 

uniformly continuous on bounded subsets of Xs,p. �

Remark E.2. In our applications, the frequencies can be written in the form

ωn(z) = αn + βn(z) + ρn(z),

where αn is constant in z, βn(z) is a polynomial in n whose coefficients are integrals of the equation, and ρn(z)

satisfies certain decay estimates. To invoke items (i) and (ii) of Theorem E.1, we can choose Xσ,p = �σ,p and ωo
n = αn
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as well as ω�
n = βn(z) + ρn(z) since no decay of ω�

n is needed. To apply items (iii) and (iv), however, we have to 
restrict to certain invariant subspaces Xσ,p of �σ,p on which the integrals involved in βn are fixed. Then the constant 
part of the frequencies is given by ωo

n = αn + βn and ω�
n(z) = ρn(z). �

Proof. (i): Fix any z ∈ Xσ,p . All coordinate functions R → C, t �→ ϕt
n(z) are continuous and 

∣∣ϕt
n(z)

∣∣ = |zn| = �
σ,p
n

uniformly in t ∈ R. Consequently, R → Xσ,p , t �→ ϕt (z) defines a continuous curve in Xσ,p.
(ii): Fix any T > 0. All coordinate functions Xσ,p → C([−T , T ], C), z �→ (t �→ ϕt

n(z)) are continuous. Since 
supt∈[−T ,T ]

∣∣ϕt
n(z)

∣∣ = |zn| = �
σ,p
n , we conclude that S : Xσ,p → C([−T , T ], Xσ,p) is continuous as well. The group 

property then follows from the representation (109) and the homeomorphism property is an immediate consequence.
(iii): By assumption, each z ∈ Xσ,p admits a complex neighborhood V so that ω� : V → �∞

C
is analytic and 

supn�1

∣∣ω�
n(w)

∣∣ < ∞ uniformly on V . Consequently, each coordinate function V → C0([−T , T ], C), w �→ ϕt
n(w)

is analytic and

ϕt
n(w) = eiωo

nteiω�
n(w)tn−σ �

p
n = n−σ �

p
n ,

uniformly on [−T , T ] × V . Therefore, S : V → C0([−T , T ], �σ,p

C
) is analytic.

(iv): Fix R � 1. For any z, w ∈ BR(0) ⊂ Xσ,p , we have∥∥ϕt (z) − ϕt (w)
∥∥

�σ,p ≤ ‖z − w‖�σ,p + R sup
n�1

∣∣∣ei(ωn(z)−ωn(w))t − 1
∣∣∣ .

Since ω� : Xσ,p → �∞ is uniformly continuous on bounded subsets, for any ε > 0 there exists 0 < δ ≤ ε so that for 
all z, w ∈ BR(0) with ‖z − w‖�σ,p ≤ δ,

sup
n�1

|ωn(z) − ωn(w)| = sup
n�1

∣∣ω�
n(z) − ω�

n(w)
∣∣≤ ε.

Since 
∣∣eix − 1

∣∣= ∣∣∣∫ 1
0 ixeixs ds

∣∣∣≤ |x| for all x ∈ R, we conclude that for any z, w ∈ BR(0) with ‖z − w‖�σ,p ≤ δ, and 
any −T ≤ t ≤ T ,∥∥ϕt (z) − ϕt (w)

∥∥
�σ,p ≤ δ + ε |t |R ≤ ε(1 + T R),

which proves that S is uniformly continuous on bounded subsets. �
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