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log–log blow up solutions blow up at exactly m points
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Abstract

We study the focusing mass-critical nonlinear Schrödinger equation, and construct certain solutions which blow up at exactly m
points according to the log–log law.
© 2016 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions l’équation de Schrödinger non linéaire focalisante de masse critique, et construisons certaines solutions avec 
exactement m points d’explosion d’après la loi de log–log.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the Cauchy Problem for the mass-critical focusing nonlinear Schrödinger equation (NLS) on Rd for 
d = 1, 2:

(NLS)

{
iut = −�u − |u| 4

d u,

u(0) = u0 ∈ H 1(Rd).
(1.1)

Problem (1.1) has three conservation laws:

– Mass:

M(u(t, x)) :=
∫

|u(t, x)|2dx = M(u0), (1.2)
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– Energy:

E(u(t, x)) := 1

2

∫
|�u(t, x)|2dx − 1

2 + 4
d

∫
|u(t, x)|2+ 4

d dx = E(u0), (1.3)

– Momentum:

P(u(t, x)) := �(

∫
�u(t, x)u(t, x))dx = P(u0), (1.4)

and the following symmetry:

1. Space–time translation: If u(t, x) solves (1.1), then ∀t0 ∈R, x0 ∈Rd , we have u(t − t0, x − x0) solves (1.1).
2. Phase transformation: If u solves (1.1), then ∀θ0 ∈ R, we have eiθ0u solves (1.1).

3. Galilean transformation: If u(t, x) solves (1.1), then ∀β ∈Rd , we have u(t, x − βt)ei
β
2 (x− β

2 t) solves (1.1).
4. Scaling: If u(t, x) solves (1.1), then ∀λ ∈R+, we have uλ(t, x) := 1

λ
d
2
u( t

λ
, x

λ
) solves (1.1).

5. Pseudo-conformal transformation: If u(t, x) solves (1.1), then 1

t
d
2
ū( 1

t
, x

t
)ei

|x|2
4t solves (1.1).

1.1. Setting of the problem and statement of the main result

The equation (1.1) is mass-critical since the conserved quantity given by the mass is invariant under scaling sym-
metry. It is called focusing since the conserved quantity given by the energy is not coercive.

The NLS (1.1) was proved to be locally well-posed (LWP) in H 1 by Ginibre and Velo in [5]. This means that for 
any initial data in H 1, gives rise to a unique solution u ∈ C([0, T ]; H 1), for some time T and the solution depends 
continuously on the initial data. See also [1] for a L2 local theory.

Since this equation is mass-critical, and H 1 is a norm subcritical with respect to the L2 norm, one can take T =
T (‖u0‖H 1) > 0. By LWP it is not hard to see that if the solution is defined in [0, T0) and cannot be extend beyond T0, 
then it has to be that limt→T0 ‖u(t)‖H 1 = ∞. In this case we say that u blows up in finite time in T0. A solution that 
does not blow up in finite time is called global.

It turns out that not all solutions of (1.1) are global. The classical virial identity ([6]) indicates the existence of 
solutions which blow up in finite time. By direct calculation one has:

∂2
t

∫
|x|2|u|2 = 4∂t�(

∫
x∇uū) = 16E(u0), (1.5)

and (1.5) immediately indicates that if xu0 ∈ L2 and E(u0) < 0, then the solution u must blow up in finite time.
Some questions are then natural: If a solution blows up in finite time, what is the mechanism for singularity 

formation, i.e. how does one describes the reason for a solution to blow up and how does one describe the behavior of 
the solution when it approaches the blow up time?

Virial identity (1.5) on its own does not give the answer to these questions, and up to the best of our knowledge, 
blow up solutions to (1.1) blow up way faster than the blow up time predicted by (1.5).

Before we continue, let’s first introduce the ground state, which is one typical object appearing in the study of 
focusing equations. The ground state Q = Q(x) is the unique positive solution in L2(Rd) that solves

−�W + W = |W | 4
d W. (1.6)

Q is an explicit function when d=1, Q(x) =
(

3
ch2x

) 1
4
, and Q is smooth and decays exponentially for d = 1, 2. It is a 

direct calculation to check that Q(x)eit is a solution of (1.1). In general we call solutions to (1.1) of the form W(x)eit

soliton solutions. We have several quick remarks:

– W(x)eit solves (1.1) if and only if W(x) solves (1.6).
– A pure variational argument ([29]) shows that any H 1 solutions to (1.1) which initial data u0 has mass below the 

mass of the ground state, does not blow up.
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– To compare with (1.5), one can use variational arguments ([29]) to show that for any function f ∈ H 1 such that 
‖f ‖2 ≤ ‖Q‖2, one has E(f ) ≥ 0, and in particular one can derive from (1.6) that E(Q) = 0.

By applying the pseudo-conformal transformation to the global soliton solution Q(x)eit , one obtains the explicit 
blow up solution

S(t, x) := 1

|t | d
2

Q(
x

t
)e− |x|2

4t
+ i

t . (1.7)

We remark that ‖S(t, x)‖2 = ‖Q‖2, and this is (up to symmetries) the minimal mass blow up solution, [15] (recall no 
H 1 solution with mass below ‖Q‖2

2 can blow up in finite time). We also remark by an easy scaling argument, that if a 
solution u to (1.1) blows up in finite time T, then its blow up rate for ‖∇u(t)‖2 has a lower bound:

‖∇u(t)‖2 �
1√

T − t
, (1.8)

and the explicit blow up solution S(t, x) has blow up rate 1
|t | .

Despite the fact that the Schrödinger equation has the infinite speed of propagation, S(t, x) blows up locally in the 
physical space, and more precisely by looking at its explicit formula (1.7), we can say that the solution blows up at 
x0 := 0 ∈ Rd . Relying on the fact that the blow up behavior of S(t, x) is local, by a certain compactness argument 
and using S(t, x) as basic building blocks, Merle ([13]) constructed a solution u to (1.1) which blows up at k points 
in finite time T, and near blow up time T it has the following asymptotic:

u(t, x) ∼
k∑

i=1

S(
t − T

λ2
i

,
x − xi

λi

), λi > 0, xi = xj ,∀i = j. (1.9)

The goal of this paper is to use the log–log blow up solutions, that we recall below, as basic building blocks instead 
of S(t, x) in (1.7) to construct blow up solutions to (1.1). The so-called log–log blow up solutions are solutions to 

(1.1) which blow up in finite time T with blow up rate ‖∇u(t)‖2 ∼
(

ln | ln |T −t ||
T −t

) 1
2
. Such solutions had been suggested 

numerically by Landman, Papanocolaou, Sulem, Sulem, [11] and first constructed by Perelman, [22], and later in-
tensively studied by Merle and Raphaël, [21,16,20,17,24,19]. Merle and Raphaël consider the solutions to (1.1) with 
initial data u0 such that

‖Q‖2 < ‖u0‖2 < ‖Q‖2 + α, (1.10)

where α is a universal small positive constant.
Let’s give a quick summary of the Merle and Raphaël’s results relevant for this paper.
When (1.10) holds, they show that all solution with strict negative energy blow up in finite time T according to the 

log–log law: ‖∇u(t)‖2 ∼
(

ln | ln |T −t ||
T −t

) 1
2
. And more precisely, near blow up time T , the solution u can be decomposed 

as:

u(t, x) = 1

λ(t)
d
2

Q(t,
x − x(t)

λ(t)
) + �(t, x),

λ(t) ∈R+,
1

λ(t)
∼

√
ln | lnT − t |

T − t
,

lim
t→T

λ(t)‖�(t)‖H 1 = 0.

(1.11)

They also show that the log–log blow up solution is stable in the sense that the initial data, which generate log–log 
blow up solutions, is an open set in H 1.

Remark 1.1. Merle and Raphaël’s results are more general than what has been recalled above. For example the strict 
negative condition can be relaxed.
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As mentioned above, the log–log blow up behavior is stable under H 1 perturbation. What’s more, this log–log 
blow up behavior is local (in physical space) in a certain sense, in spite of infinity speed of propagation of the NLS 
equation. In [23], Planchon and Raphaël constructed a log–log blow up solutions on a bounded domain 	 of Rd with 
u(t) ∈ H 1

0 (	). In particular, if one looks at solutions of the form (1.11), they prove that x(t) has a limit as t approaches 
the blow up time, hence it makes sense to say that such solutions blow up at a certain point2 x∞ := limt→T x(t) in 
Rd . The key element in their proof is a very robust bootstrap argument. It turns out that the analysis of log–log blow 
up solutions has a very suitable bootstrap structure.

In this work, as an analogue of [13], we use log–log blow up solutions as building blocks to construct solutions 
which blow up at (exactly) m points. To be precise, we show:

Theorem 1.1. For d = 1, 2, for each positive integer m, and given any m different points x1,∞, . . . xm,∞ in Rd , there 
exists a solution u to (1.1) such that u blows up in finite time T , and for t close enough to T ,

u(t, x) =
m∑

j=1

1

λ
d
2
j (t)

Q(
x − xj,∞

λj (t)
)e−iγj (t) + �(t, x), (1.12)

where, for j = 1, . . . , m,

1

λj (t)
∼

√
ln | lnT − t |

T − t
, and λj‖�(t)‖H 1

t→T−−−→ 0, (1.13)

i.e. � can be viewed as an error term. In particular, since the m given points are arbitrary, the solutions do not 
necessarily have any symmetry restriction.

Remark 1.2. Essentially same construction as in the proof of Theorem 1.1, works on torus, Td , d = 1, 2.

Remark 1.3. The result of [23] already implies the existence of symmetric solutions which blow up at two points 
according to log–log law. In fact one first constructs a solution to NLS on the half line/plane H := Rd+, such that the 
solution blows up at one point according to log–log law and satisfies the Dirichlet condition u ≡ 0 on ∂Rd+, then, 
by extending this solution symmetrically, one easily derives the solution which blows up at two points in the whole 
line/plane. Similarly, one can construct solutions that blow up at a even number of points according to log–log law, 
but they will have a very strong symmetry. See Corollary 1 in [23].

Remark 1.4. The work of [13] uses idea of “integrate from infinity”, which means one needs to evolve the data 
backward. This does not seem to direct work in this setting because of the remainder term �(t, x). In this work, we 
will evolve the data forward.

Remark 1.5. We point out two applications of Theorem 1.1. First, it implies the existence of large mass log–log blow 
up solutions. More general results on this direction have been obtained in [18]. Second, for those who are familiar 
with standing ring blow up solutions, [25,26], our construction in 1 D case implies the existence of multiple-standing-
ring blow up solutions for quintic NLS on dimension N ≥ 2. To be precise, one can construct a radial solution u to 
the following Cauchy Problem:{

iut + �u = −|u|4u,

u0 ∈ HN2(N)(RN),
(1.14)

such that u blows up in finite time with log–log blow up rate and near blow up time T , u has the following asymptotic

u(t, x) = u(t, r) =
m∑

j=1

1

λj (t)1/2
P(

r − rj (t)

λj (t)
)e−iγj (t) + �(t, x), (1.15)

2 Note that we already remarked this property for explicit blow up solutions S(t, x).
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1

λj (t)
∼

√
ln | lnT − t |

T − t
, and λj‖�(t)‖H 1

t→T−−−→ 0, (1.16)

lim
t→T

rj (t) = rj,∞ > 0, (1.17)

where P is the unique positive L2 solution which solves (1.6) for d = 1.

From this point on, we fix m ∈N as the number of blow up points. We will do proof only for d = 2, the case d = 1
follows similarly.

To construct a solution satisfying Theorem 1.1 without relying on certain symmetry property of the initial data, the 
most intuitive process to follow is that one first prepares m log–log blow solutions

uj (t, x) = 1

λ
d
2
j

Q(
x − xj (t)

λj

)e−iγj (t) + �j , j = 1, . . . ,m

satisfying (1.11). Then one shows that the solution to (1.1) with initial data 
∑m

j=1 uj (0) evolves approximately as ∑m
j=1 uj (t), if one assumes that at the initial time all solutions are very close to blowing up, i.e. λj(0), j = 1, . . . , m

is very small, and they are physically separated, i.e. minj =j ′ |xj (0) − xj ′(0)| is very large. To achieve this, one needs 
some mechanism to decouple u1, u2, . . . um. Our choice is to require extra smoothness outside the (potential) singular 
points. Roughly speaking, we find neighborhoods Uj of xj,0 ≡ xi(0), j = 1, . . . , m, and show that the solutions keep 
very high regularity outside these m neighborhoods. This approach is motivated by the work of Raphaël and Szeftel, 
[26]. They consider the focusing quintic NLS on Rd and they require their data to be radial and in Hd . By the radial 
symmetry assumption, the problem can be understood in polar coordinates as a perturbation of the 1D-focusing-quintic 
NLS. The goal of Raphaël and Szeftel is to construct solutions that blow up at a sphere (or a ring). The crucial point 
in their paper is to understand the propagation of singularity/regularity. They show that all the singularities are kept 
around the sphere where the solution is supposed to blow up, and the solution is kept bounded in H

d−1
2 outside the 

sphere. Note that, thanks to the radial assumption, the authors are using the 1D NLS to model their solutions [26]. See 
also [25], which indeed has the same spirit as [26], but in the setting [25], one does not need to pursue high regularity.

We show the following theorem.

Theorem 1.2 (Propagation of regularity). For any given K1 > 1, K2 > 2, not necessarily integers, if K1 < K2
2 , then 

we construct a solution u in HK2 to (1.1) that blows up according to the log–log law as (1.11) at finite time T and 
such that

– supt∈(0,T )|x(t) − x(0)| < 1
1000 .

– u(t, x) is bounded in HK1 when restricted in |x − x0| ≥ 1/2.

Remark 1.6. The choice of special numbers 1
2 , 1/1000 is (of course) just for concreteness and simplicity.

Remark 1.7. When d = 1, and K2 is an integer, and one can prove Theorem 1.2 for K1 ≤ K2−1
2 by sightly modifying 

the language of [26]. Their method is based on a bootstrap argument and a certain pseudo-energy. When d = 2, 
Raphaël and Szeftel’s method does not seem to directly work, and one should be able to use the argument in [30] to 
prove Theorem 1.2 for K1 ≤ K2−1

2 when K2 is integer. Our proof improves the previous results in the two aspects. 
We can take K1 < K2

2 and we do not require K2 to be integer. Our proof is written more in a harmonic analysis style, 
relying on the (upside-down) I-method, [2,27], interpolation and Strichartz estimate.

Remark 1.8. When K2 ≥ K1 = 1, Theorem 1.2 is implied by the work of Holmer and Roudenko in [8].

One should understand Theorem 1.2 as a proof for the fact that the log–log blow up behavior is local, in the sense 
that it does not propagate singularity outside the blow up point. This will help us to decouple the m “solitons” (we 
sometimes also call them bubbles), in our construction of blow up solution.
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Remark 1.9. Because of the good localized property of log–log blow up, one can even work on manifolds, see [7] for 
work in this direction.

Remark 1.10. It is not always true in this kinds of problems (if one doesn’t put some restriction on the data), that the 
m “solitons” or m bubbles will be decoupled. Different bubbles may interact with each other in a strong way. See very 
recent work [12] for this direction.

Once one can somehow decouple the m soliton u1, . . . um, then we will use some topological argument to construct 
initial data, and balance those m bubbles and make them blow up in the same time. And, prescription of the blow 
up points is actually more subtle than making m bubbles blow up at the same time. Fortunately, by taking advantage 
of the sharp dynamic of log–log blow up, it can still be achieved by certain topological argument. We remark, it is 
typical that one may rely on soft topological argument rather than pure analysis to prove things like this, see [14,23,4], 
through one needs to find different topological argument in different settings.

1.2. Notation

Throughout this article, α is used to denote a universal small number, δ(α) is a small number depending on α such 
that limα→0 δ(α) = 0. We use δ0, δ1, . . . to denote universal constant (they are usually small, but don’t depend on α). 
We use C to denote a large constant, it usually changes line by line. We also use c, η and a to denote small constants. 
For any constant r , we use r± to mean r ± δ where δ is a small positive constant.

We write A � B when A ≤ CB , for some universal constant C, we write A � B if B � A. We write A ∼ B if 
A � B and B � A. As usual, A �σ B means that A ≤ Cσ B , where Cσ is a constant depending on σ .

We use � to denote the operator d2 + y∇ on H 1(Rd). We use the notation

ε1 := �ε, ε2 := �ε, i.e. ε = ε1 + iε2, (1.18)

where � is the real part and � is the imaginary part.
We use usual functional spaces Lp, C1, . . . , Ck and C∞, we will also use Sobolev space Hs , s ∈R.
If not explicitly pointed out, Lp means Lp(Rd), so for the other spaces. We also use L

q
t L

p
x to denote 

Lq(R; Lp(Rd)). When a certain function is only defined on I ×Rd , we also use the notation Lq(I ; Lp(Rd)). Some-
times we use ‖f ‖p to denote ‖f ‖Lp .

We use (, ) to denote the usual L2 (complex) inner product.
Finally, for a solution u(t, x), we use (T −(u), T +(u)) to denote its lifespan.

1.3. A quick review of Merle and Raphaël’s work and heuristics for the localization of log–log blow up

Let us quickly review the work of Merle and Raphaël and highlight the bootstrap structure related to it. At the 
starting point of their series of work, in [21], they consider a solution u to (1.1) with initial data u0 ∈ H 1 satisfies 
(1.10), with zero momentum and strictly negative energy. They rely on the following variational argument:

Lemma 1.1 (Lemma 1 in [21]). For an arbitrary function f ∈ H 1, with energy E(f ) ≤ 0, if also f satisfies (1.10), 
then one can find parameters λ0 ∈R+, x0 ∈Rd , γ0 ∈R and ε ∈ H 1, such that

eiγ0λ
d
2
0 f (λ0x + x0) = Q + ε, (1.19)

and

‖ε‖H 1 ≤ δ(α). (1.20)

This lemma implies that for the special solution u(t) to (1.1) considered by Merle and Raphaël, one has the 
geometric decomposition

u(t) = 1

λ(t)
d
2

(Q + ε(t))

(
x − x(t)

λ(t)

)
e−iγ (t), (1.21)

‖ε(t)‖H 1 ≤ δ(α). (1.22)
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Note that one has some freedom in choosing the three parameters λ(t), x(t) and γ (t). Because of this freedom one 
can further use the modulation theory to derive the next lemma.

Lemma 1.2 (Lemma 2 in [21]). Let u(t) be the solution to (1.1) with initial data u0, which has zero momentum, 
strictly negative energy and let u0 satisfy (1.10). Then within the lifespan of u(t), there are three unique parameters 
λ(t), x(t), γ (t) and ε = ε1 + iε2 ∈ H 1, such that

u(t) = 1

λ(t)
d
2

(Q + ε(t))

(
x − x(t)

λ(t)

)
e−iγ (t), (1.23)

‖ε(t)‖H 1 ≤ δ(α), (1.24)

(ε1,�Q) = (ε1, yQ) = (ε2,�
2Q) = 0. (1.25)

Now the study of (1.1) is transferred to the study of the evolution of system {ε(t), x(t), λ(t), γ (t)}. We remark here 
that the blow up rate is determined by the parameter λ(t).

In this setting, Merle and Raphaël are using the ground state Q to approximate the solution u(t) (up to space trans-
lation, scaling and phase transformation). It turns out that sharper results can be obtained by using Q̃b, a modification 
of Q, [16,20]. Let’s give a brief description of Q̃b, see Proposition 1 in [20] for details.

Let b ∈R, η ∈ R+ be small enough, η is fixed. Let us define

Rb := 2

|b|
√

1 − η, R−
b := √

1 − ηRb, (1.26)

and let φb be a smooth cut-off function which equals 1 on |x| ≤ R−
b and vanishes for |x| ≥ Rb . Then the modified 

profile Q̃b := Qbφb , where Qb solves the equation{
�Qb − Qb + ib�Qb + |Qb|4/dQb = 0,

Pb ≡ Qbe
i
b|y|2

4 > 0 in BRb
,Qb(0) ∈ (Q(0) − ε∗(η),Q(0) + ε∗(η)),Qb(Rb) = 0.

(1.27)

Here we also define �b

�b = −�Q̃b + Q̃b − ib�Q̃b − Q̃b|Q̃b|4/d , (1.28)

that will be used later.
We now list some useful estimates for Q̃b:

1. Q̃b is uniformly close to Q in the sense:

‖e(1−η)
θ(|b||y|)

|b| (Q̃b − Q)‖C3 + ‖e(1−η)
θ(|b||y|)

|b| (
∂

∂b

Q̃b + i
|y|2

4
Q)‖ b→0−−−→ 0, (1.29)

where

θ(r) = 10≤r≤2

r∫
0

√
1 − z2

4
dz + 1r>2

θ(2)

2
r. (1.30)

2. Q̃b is supported in |y| � 1
|b| .

3. Q̃b has strictly super critical mass:

0 <
d

d|b|2 ‖Qb‖2 < ∞, (1.31)

i.e. ‖Qb‖2 − ‖Q‖2
2 ∼ b2.

4. Q̃b is uniformly bound in Hs, s ∈ R for all b small enough (recall we only consider d = 1, 2)

‖Q̃b‖Hs �s 1. (1.32)
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Remark 1.11. θ(2) = π
2 .

Remark 1.12. Estimate (1.32) is implied by estimate (1.29) when s ≤ 3. However, Merle and Raphaël consider the 
C3 rather than the general Ck convergence in (1.29) only due to the fact the nonlinearity |Q| 4

d Q itself is not smooth 
enough when d ≥ 3. Thus for d = 1, 2, since the nonlinearity is algebraic, (1.32) holds for all s. And indeed it is not 
hard to directly use standard elliptic estimates to prove (1.32) for s ≥ 3 once we know this holds for s ≤ 3. This fact 
is already implicitly used in [26] for d = 1.

Remark 1.13. Later in this work many terms will involve Cη but we will be able to fix η, such that Cη is as small as 
we want.

Remark 1.14. Note that since Q decays exponentially and Q̃b is uniformly close to Q, it is standard that for given 
N ∈ N, terms of the form (f, Q̃b), (∇Nf, Q̃b), (yNf, Q̃b) are controlled by 

∫
(|∇f |2 + |f |2e−|y|) 1

2 . This is widely 
used in [16,20].

With Q̃b , Merle and Raphaël modify the Lemma 1.2 to the following:

Lemma 1.3 (Lemma 2 in [16]). Let u(t) be the solution to (1.1) with initial data u0, which has zero momen-
tum, strictly negative energy and satisfies (1.10). Then within the lifespan of the u(t), there are unique parameter 
{b(t), λ(t), x(t), γ (t)} ∈ R ×R+ ×Rd ×R such that

u(t, x) = 1

λ(t)
1
2

(Q̃b + ε)

(
x − x(t)

λ(t)

)
e−iγ (t), (1.33)

‖ε‖H 1 + |b| ≤ δ(α), (1.34)

(ε1, |y|2�b) + (ε2), |y|2�b(t)) = 0, (1.35)

(ε1, y�b) + (ε2, y�b) = 0, (1.36)

−(ε1,�
2�b) + (ε2,�

2�b) = 0, (1.37)

−(ε1,��b) + (ε2,��b) = 0. (1.38)

Here Q̃b := �b + i�b .

We note that (1.34) a priori assures that the whole analysis is of perturbative nature. Again, the study of (1.1)
is transferred to the study of the system {ε(t), λ(t), γ (t), b(t), x(t)}. To analyze this system it is essential that one 
considers the slowly varying time variable s rather than the t :

dt

ds
= 1

λ2
. (1.39)

Note that this change of variable changes the lifespan of u (in t variable) to the whole R (in s variable), no matter if 
the original solution u blows up in finite time or not.

Now u satisfying (1.1) is equivalent to ε1, ε2, b(s), λ(s), x(s), γ (s) satisfying the system3:

bs

∂�

∂b
+ ∂sε1 − M−(ε) + b�ε1 =

(
λs

λ
+ b)�� + γ̃s� + xs

λ
∇� + (

λs

λ
+ b)(�ε1) + γ̃sε2 + xs

λ
(∇ε1) + ��b − R2(ε) (1.40)

bs

∂�

∂b
+ ∂sε2 + M+(ε) + b�ε2 =

(
λs

λ
+ b)�� − γ̃s� + xs

λ
∇� + (

λs

λ
+ b)�ε2 − γ̃sε1 + xs

λ
(∇ε2) − ��b + R1(ε). (1.41)

3 Here we slightly abuse notation. For example, x(s) actually means x(t (s)).
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Here4 we have γ̃ (s) = −s − γ (s), Q̃b = �b + i�b and M = (M+, M−) is the linearized operator near the profile Q̃b

and R1, R2 are nonlinear terms. Interested readers may consult (2.31), (2.32) in [20] for more details.
Now if one plugs in the four orthogonality condition (1.35), (1.36), (1.37), (1.38), one can obtain a system for the 

parameters {λ, x, γ̃ , b}, i.e. four ordinary equations involving {λ(s), x(s), γ̃ (s), b(s)}5:

d

ds
{(ε1(t), |y|2�b(t)) + (ε2(t), |y|2�b(t))} = 0, (1.42)

d

ds
{(ε1(t), y�b(t)) + (ε2(t), y�b(t))} = 0, (1.43)

d

ds
{−(ε1(t),�

2�b(t)) + (ε2(t),�
2�b(t))} = 0, (1.44)

d

ds
{−(ε1(t),��b(t)) + (ε2(t),��b(t))} = 0. (1.45)

To write down the above ODE system explicitly it requires elementary but involved algebraic computation (see (71), 
(72), (73), (74) in [24]). A more compact way of writing (1.42), (1.43), (1.44), (1.45) is

(bs, λs, xs, γs) = F(bs, λs, xs, γs, ε1, ε2), (1.46)

which justifies the name of ODE system. We call (1.42), (1.43), (1.44), (1.45) modulational ODE.
Now assume that all conclusions in Lemma 1.3 hold. Then by applying them into the modulational ODE, one 

obtains the so-called modulational estimates in the following lemma.

Lemma 1.4 (Lemma 5 in [20]). Let the assumption of Lemma 1.3 hold, and let (1.42), (1.43), (1.44), (1.45) hold, then

|λs

λ
+ b| + |bs | ≤ C

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
+ �

1−Cη
b + Cλ2|E0|, (1.47)

|γ̃s − 1

‖�Q‖2
2

(ε1,L+�2Q)| + |xs

λ
| ≤δ(α)(

∫
|∇ε|2e−2(1−η)

θ(b|y|)
|b| +

∫
|ε|2e−|y|)

1
2

+ C

∫
|∇ε|2 + �

1−Cη
b + Cλ2|E0|.

(1.48)

The �b term will naturally appear in the definition of the linear radiation term ζ̃b, which we will discuss later. 
However, most of the time one only needs to know that

e
−(1+Cη) π

|b| ≤ �b ≤ e
−(1−Cη) π

|b| . (1.49)

We point out that (1.49) is (2.17) in [20].
By applying the conservation laws (Energy and Momentum), one can obtain two more crucial estimates in the 

following lemma.

Lemma 1.5 (Lemma 5 in [20]). The following two estimates hold:

|2(ε1,�) + 2(ε2,�)| ≤ C(

∫
|∇ε|2 +

∫
|ε|2e−|y|) + �

1−Cη
b + Cλ2|E0|, (1.50)

|(ε2,∇�)| ≤ Cδ(α)(

∫
|∇ε|2 +

∫
|ε|2e−|y|)

1
2 . (1.51)

To derive the blow up rate for the blow up solution u, one performs the following three steps:

1. Based on (1.47), explore the fact that b ∼ −λs

λ
, and then transfer the evolution of λ (which determines the blow 

up rate) to the evolution of b.

4 The evolution of γ is of course equivalent to the evolution of γ̃ .
5 Note d

ds
= λ2 d

dt
.
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2. Obtain a lower bound for bs , which gives the upper bound for the blow up rate, [16].
3. Obtain an upper bound for bs , which gives the lower bound for the blow up rate, [20].

The lower bound of bs is given by the following lemma:

Lemma 1.6 (Proposition 2 in [20]). Let the results of Lemma 1.3 hold, let (1.42), (1.43), (1.44), (1.45) hold, let (1.47), 
(1.48), (1.50), (1.51) hold, then one has the estimate

bs ≥ δ0(

∫
|∇ε|2 +

∫
|ε|2e−|y|) − Cλ2E0 − �

1−Cη
b . (1.52)

The inequality (1.52) is called local virial estimate, it is one of the key estimates in the work of Merle and Raphaël. 
The lower bound of bs involves the construction of a certain Lyapounouv functional. For this construction one needs 
to introduce a certain tail term ζb or more precisely its cut-off version ζ̃b, [17,20].

Let us first quickly describe ζb, one may refer to Lemma 2 in [20] for more details. Let b, η, Rb, R
−
b , φb be as in 

(1.26). Let ζb be the unique radial solution to{
�ζb − ζb + ib�ζb = �b,∫ |∇ζb|2 < ∞.

(1.53)

Here �b is defined in (1.28). Note, as mentioned previously, that the �b term appears naturally when one constructs ζ̃b , 
see (2.17) in [20].

What Merle and Raphaël actually use in [20] is the cut-off version6 of ζb, that here we denote by ζ̃b. See their 
discussion before formula (3.4) in [20]. Since later we will use ζ̃b in several places, we write here the precise definition. 
Let A = A(b) = e

a π
|b| , where a is some universal small constant, we let χA be a smooth cut-off function that vanishes 

outside |x| ≥ A. Then one defines ζ̃b := ζbχA. Clearly ζ̃b is supported in {|y| � A}. In the rest of this paper, the 
notation A means A(b) = e

a π
|b| and note that A � 1

|b| .
The tail term ζ̃b is introduced to improve the local virial inequality (1.52). Essentially, one wants to change the 

term −�
1−Cη
b in (1.52) to c�b . Let

f1(s) := b

4
‖yQ̃b‖2

2 + 1

2
�(

∫
y∇ ζ̃

¯̃
ζ ) + (ε2,�(ζ̃re)) − (ε1,�ζ̃im). (1.54)

Then (this is highly nontrivial, and is one of the key point in [20])

{f1(s)}s ≥ δ1(

∫
|∇ ε̃|2 +

∫
|ε̃|2e−|y| + C�b − Cλ2E0 − 1

δ1

∫
A≤|x|≤2A

|ε|2. (1.55)

Here ε̃ = ε − ζ̃b .
With this, one constructs the Lyapounov functional J , [20] that we write explicitly as

J (s) = (

∫
|Q̃b|2 −

∫
|Q|2) + 2(ε1,�) + 2(ε2,�) +

∫
(1 − φA)|ε|2

− δ1

800

⎛
⎝bf̃1(b) −

b∫
0

f̃1(v)dv + b{(ε2, (ζ̃re)1) − (ε1, (ζ̃im)1)}
⎞
⎠ ,

(1.56)

where

f̃1(b) = b

4
‖yQ̃b‖2

2 + 1

2
�(

∫
y∇ ζ̃

¯̃
ζ ). (1.57)

One has the following inequality:

6 The main reason for the introduction of this cut-off is that ζb itself is not in L2.
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d

ds
J (s) ≤ −Cb

⎛
⎝�b +

∫
|∇ ε̃|2 +

∫
|ε̃|2e−|y| +

2A∫
A

|ε|2 − λ2E0

⎞
⎠ + C

λ2

|b|2 E0. (1.58)

Inequality (1.58) finally leads to the lower bound of bs .
In [23] and other related works, one can see that the analysis of the log–log blow up solutions can be decomposed into 
two stages:

1. At a certain time t0, the initial data evolves into some well prepared data.
2. The well-prepared data admits a suitable bootstrap structure, and analysis can be significantly simplified.

One can show for the solution u(t) considered by Merle and Raphaël, that there exists some t0 such that u(t0) satisfies 
the following:

u(t0, x) = 1

λ
d
2
0

(Q̃b0 + ε0)(
x − x0

λ0
)e−iγ0 . (1.59)

Also u(t0, x) satisfies the following:

1. orthogonality conditions: (1.35), (1.36), (1.37), (1.38),
2. the sign condition of b:

b0 := b(t0) > 0, (1.60)

3. closeness to Q

‖ε0‖H 1 + b0 < α, (1.61)

4. smallness condition of the error ε0:∫
|∇ε0|2 + |ε0|2e−|y| < �

6
7
b0

, (1.62)

5. renormalized energy/momentum control7:

λ2
0|E0| + λ0|P0| < �100

b0
, (1.63)

6. log–log regime

e−e
2π
b0

< λ0 < e−e
π

2b0
. (1.64)

Without loss of generality (by translation in time), we can assume t0 = 0. Now let us focus on the initial data of the 
form u(t0), which from now on we denote with u0. It turns out that the evolution of the data after t0(= 0) is described 
by the following lemma.

Lemma 1.7. Assume u solves (1.1) with initial data u0 as (1.59). For all T < T +(u), the following bootstrap argument 
holds:

Let the rescaled time s be defined as s = ∫ t

0
dτ

λ2(τ )
+s0, s0 = e

3π
4b0 , if one assumes the bootstrap hypothesis for t ∈ [0, T ],

b(t) > 0, b(t) + ‖ε(t)‖H 1 ≤ 10α1/2, e−e
10π
b(t) ≤ λ(t) ≤ e−e

π
10b(t)

,

π

10 ln s
≤ b(t (s)) ≤ 10π

ln s
,

∫
‖∇ε(t)‖2 + |ε(t)|2e−|y| ≤ �

3
4
b(t),

λ(t2) ≤ 3λ(t1), ∀T > t2 > t1 > 0 (almost monotonicity),

|x(t)| ≤ 1/1000,

(1.65)

7 In this case, this condition is actually implied by the log–log regime condition below, we still keep it to make the notation consistent.
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then one has the bootstrap estimate for t ∈ [0, T ]:

b(t) > 0, b(t) + ‖ε(t)‖H 1 ≤ 5α1/2, e−e
5π
b(t) ≤ λ(t) ≤ e−e

π
5b(t)

,

π

5 ln s
≤ b(t (s)) ≤ 5π

ln s
,

∫
‖∇ε(t)‖2 + |ε(t)|2e−|y| ≤ �

4
5
b(t),

λ(t2) ≤ 2λ(t1), ∀T > t2 > t1 > 0 (almost monotonicity),

|x(t)| ≤ 1/2000.

(1.66)

Remark 1.15. The special numbers 5, 4/5 . . . appearing above, are of course only for technical reason, by sharpening 
the initial conditions at t0, one can push the bootstrap estimates to

∫
|∇ε|2 + |ε|2e−|y| ≤ �

1−c1
b , e−e

(1+c1)π

b ≤ λ(t) ≤ e−e
(1−c1)π

b

for arbitrary c1 > 0.

We refer to [25,26,23] for a proof. See in particular Proposition 1 in [26]. Under the bootstrap regime, the analysis 
is made easier since one can simplify (1.47), (1.48), (1.50), (1.51), (1.52), (1.58) following the observation below:

For any polynomial P, b >> P(�b),�b >> P(λ). (1.67)

Now, the first step of the analysis leading to the log–log blow up solution listed above, that is b ∼ −λs

λ
, is quite clear 

since by (1.47), one has:

|λs

λ
+ b| � �

1
10
b . (1.68)

The local virial inequality (1.52), which is used to show the lower bound of bs , is simplified further to

bs ≥ −�
1−Cη
b , (1.69)

and the Lyapounov functional (1.58), which is used to show the upper bound of bs , is simplified to

d

ds
J ≤ −Cb�b. (1.70)

Basically, all those terms involving λ2E0 can be neglected since λ is much smaller than b. This is actually one of the 
key observation in [23,3].

Recall from the geometric decomposition (1.34)

u(t, x) = 1

λ(t)
d
2

(Q̃b + ε)

(
x − x(t)

λ(t)

)
e−iγ (t).

Since Q̃b is supported in |y| � 2
|b| , and the tail radiation term ζ̃b is supported in |y| � A ≡ �−a

b , then the analysis 

in work of Merle and Raphaël is taking place in |x − x(t)| � λ(t)�−a
b � 1. The only part which connects the local 

dynamics and the information outside the potential blow up point x(t) is given by the conservation laws (energy and 
momentum). Thus, if one considers the local momentum and local energy, one could localize the dynamics, paying the 
prize that the local energy and momentum are no longer conserved. However, since in the analysis any term appearing 
with the energy or the momentum is multiplied by a power of λ, and λ is so small as mentioned above, ultimately we 
do not really need that the energy and momentum are conserved, but rather that they are bounded. This is the reason 
we need to investigate whether the log–log blow up regime may keep the solution u(t) very smooth away from the 
blow up point. This would of course imply that the local momentum and local energy are varying in a bounded (not 
necessarily small) way, thus finally totally localizing the dynamics and decoupling what happens in the region near 
the blow up point and away from it.
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1.4. Strategy and structure of the paper

All arguments and results are valid for both dimensions d = 1 and 2. For simplicity, from now on, we work on 
d = 2. The main result in Theorem 1.1 is proven by describing the dynamics for well-prepared initial data of the form

u0(x) =
m∑

j=1

1

λj,0
Q̃bj,0(

x − xj,0

λj,0
)e−γj,0 + �. (1.71)

We call this data a “multi-solitions model”. We sometimes call each “soliton” as bubble.
We show that, under certain conditions, m bubbles 1

λj,0
Q̃bj,0(

x−xj,0
λj,0

) + �, j = 1, . . . , m evolve as if they do not 
feel the existence of each other, then we use a topological argument to show the existence of a blow up solution which 
blows up at m prescribed points according to log–log law.

As mentioned previously, one key element in the proof is to show that solutions generated by the well prepared 
data in (1.71) will keep high regularity outside a small neighborhood of xj,0, j = 1, . . . , m.

To make the proof more accessible, we will first discuss an easier model (we call it “one soliton model”), i.e. we 
show that 1

λ0
Q̃b0(

x
λ0

) + � blows up according to the log–log law without propagating singularity outside a small 
neighborhood of the origin, which is essentially a restatement of Theorem 1.2.

We organize the rest of this paper as follows:
In Section 2, we introduce the well prepared data for the “one soliton model” and describe its dynamics in 

Lemma 2.2. In Section 3, we introduce the well prepared data for the “multi-solitons model” and describe its dynamic 
in Lemma 3.1. In Section 4, we prove Lemma 2.2 for the “one soliton model”. In Section 5, we prove Lemma 3.1 for 
the “multi-solitons model”. In Section 6, we use topological argument to prove the main Theorem 1.1.

2. Description of initial data and dynamic/modification of system: one soliton model

Let us recall that throughout the paper α will be used to denote a universal small number, though its exact 
value will be chosen at the very end of work. Also δ(α) is used to denote small constant which depends on α and 
limα→0 δ(α) = 0.

2.1. Description of initial data

We start with the “one soliton model”. We define initial data u0 in the following form:

u0 = 1

λ0
(Q̃b0 + ε0)(

x

λ0
), (2.1)

which satisfies all the property of data described in (1.59), i.e. orthogonality conditions (1.35), (1.36), (1.37), (1.38), 
and the bounds (1.60), (1.61), (1.62), (1.63), (1.64). Moreover we assume that outside the origin the data is smooth in 
the sense that for some K2 > 1, we have

‖u0‖HK2 (|x|≥ 1
3 )
� 1, (2.2)

and u0 in HK2 .

Remark 2.1. For non-integer values K2, formula (2.2) means that, there exists a smooth cut-off function χ equals 1
in |x| ≥ 1

3 such that ‖χu0‖HK2 � 1.

Now let us restate Theorem 1.2.

Lemma 2.1. Let u solve (1.1), with initial data prepared as in (2.1). Then

∀K1 <
K2

2
, ‖u(t)‖

HK1 (|x|≥ 1
2 )
� 1

within the lifespan of u.
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Remark 2.2. One should understand Theorem 1.2 and Lemma 2.1 in the following way: if the initial data is smooth, 
then partial smoothness will be kept during the log–log blow up process.

2.2. Modification of system

Let us point out here that Lemma 1.7 cannot directly be applied to u that solves (1.1) with the prepared data u0. In 
fact we cannot even say that u satisfies the geometric decomposition in (1.34) for t = 0.

Recall that previously a geometric decomposition was obtained via a variational argument, Lemma 1.1 (and a 
further modulation argument), all relying on a negative energy condition and on (1.10). In our case, for data described 
as (2.1) we don’t even know if they have the negative energy condition.

This does not really matter in the “one soliton model”, since one may modify Lemma 1.21 relying on the so-called 
orbital stability of the soliton and re-establish Lemma 1.3 without negative energy condition.

We do not use this approach here, since we will later deal with “multi-solitons model” and general orbital stability 
for multi-solitons is a very hard open problem.

Let us consider now a system for {u(t), b(t), λ(t), x(t), γ (t)}. We define ε(t) = ε1 + iε2 :=
u(t) − 1

λ(t)
Q̃b(t)(

x−x(t)
λ(t)

)ei−γ (t), and we consider the system as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut = −�u − |u|2u,
d
dt

{(ε1(t), |y|2�b(t)) + (ε2(t), |y|2�b(t))} = 0,
d
dt

{(ε1(t), y�b(t)) + (ε2(t), y�b(t))} = 0,
d
dt

{−(ε1(t),�
2�b(t)) + (ε2(t),�

2�b(t))} = 0,
d
dt

{−(ε1(t),��b(t)) + (ε2(t),��b(t))} = 0.

{u(t), b(t), λ(t), x(t), γ (t)}|t=0 = {u0, b0, λ0,0,0}.

(2.3)

The local well posedness of (2.3) is straightforward, see Appendix A for more details. Note now the following geo-
metric decomposition automatically holds due to the definition of ε.

u(t, x) = 1

λ(t)
(Q̃b + ε)

(
x − x(t)

λ(t)

)
e−iγ (t). (2.4)

As pointed out by Merle and Raphaël, such system should be studied in rescaled time variable rather than in its 
original time variable. So we define the re-scaled time s as ds

dt
= 1

λ2(t)
, and if one rewrites (2.3) in rescaled time 

variable, ε automatically solves (1.40), (1.41). Since the orthogonality conditions (1.35), (1.36), (1.37), (1.38) hold at 
t = 0, by (2.3), they hold for all t ∈ [0, T ], the life span of (2.3).

What’s more, the life span of (2.3) is exactly the lifespan of the problem (1.1) with initial data u0. This is not a 
trivial fact. Indeed (2.3) is an NLS coupled with four ODEs involving {b, λ, x, γ } and there is the possibility that b
may become large, and then this system no longer makes sense since Q̃b is only defined for small b. However, as long 
as (2.3) holds, then the bootstrap Lemma 1.7 works, and this will ensure that b stays bounded and small, and thus the 
lifespan of (2.3) coincides with that of the NLS problem with initial data u0. There is of course another possibility, 
that the coupled ODE breakdown, i.e. λ becomes 0 and this of course, means that the NLS equation blows up.

To summarize, during the study of the NLS (1.1) with initial data u0 as in (2.1), for any [0, T ] in the lifespan of 
u(t), u(t) satisfies geometric decomposition:

u(t) = 1

λ(t)
(Q̃b(t)+ε(t))

(
x − x(t)

λ(t)

)
e−iγ (t),

and orthogonality conditions (1.35), (1.36), (1.37), (1.38). In particular the bootstrap Lemma 1.7 works for these kinds 
of data.

2.3. Description of the dynamic

Now, we can (equivalently) restate Lemma 2.1 in the following way.
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Lemma 2.2. Consider the system (2.3) with initial data {u0, b0, λ0, 0, 0} described in subsection 2.1, then for any 
T < T +(u0), we have the following bootstrap argument:

Let the rescaled time s be defined as s = ∫ t

0
dτ

λ2(τ )
+ s0, s0 = e

3π
4b0 , if one assumes bootstrap hypothesis (1.65) for 

t ∈ [0, T ], then one has bootstrap estimate (1.66) for t ∈ [0, T ], and following regularity estimate holds for any fixed 
K1 < K2

2 ,

‖u(t)‖
HK1 (|x|≥ 1

2 )
� 1, t ∈ [0, T ]. (2.5)

3. Description of initial data and dynamic: multi-soliton model

Now we turn to “multi-solitons model”.
We introduce some notations. Let χ0,loc, χ1,loc be two smooth cut-off functions such that

χ0,loc(x) =
{

1, |x| ≤ 3/4,

0, |x| ≥ 1,
(3.1)

χ1,loc(x) =
{

1, |x| ≤ 2/3,

0, |x| ≥ 3/4.
(3.2)

Let’s define the local version of energy and momentum. For any f ∈ H 1(R2), x0 ∈ R2, let

Eloc(f, x0) :=
∫
R2

χ0,loc(x − x0)

(
1

2
|∇f |2 − 1

4
|f |4

)
, (3.3)

Ploc(f, x0) :=
∫
R2

∇f f̄ χ0,loc(x − x0). (3.4)

3.1. Description of the initial data

We define an initial data u0 of the following form:

u0 :=
m∑

j=1

uj,0 + �0, (3.5)

where

uj,0 = 1

λj,0
Q̃bj,0

(
x − xj,0

λj,0

)
e−iγj,0 , j = 1, . . . ,m (3.6)

�0 ∈ H 1(R2), (3.7)

and the properties of �0 are implicitly encoded below.
We let

ε
j

0 := λj,0�0(λj,0x + xj,0)e
iγj,0 ,

ε
j

0 ≡ ε
j

1,0 + iε
j

2,0, j = 1, . . . ,m.
(3.8)

We require the orthogonality condition:

(ε
j

1,0, |y|2�bj,0) + (ε
j

2,0, |y|2�bj,0) = 0, j = 1, . . . ,m (3.9)

(ε
j

1,0, y�b1,0) + (ε
j

2,0, y�bj,0) = 0, j = 1, . . . ,m (3.10)

−(ε1,0,�
2�bj,0) + (ε

j

2,0,�
2�bj,0) = 0, j = 1, . . . ,m (3.11)

−(ε
j

1,0,��bj,0) + (ε
j

2,0,��bj,0) = 0, j = 1, . . . ,m, (3.12)

where Q̃b ≡ �b + i�b .
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We further require the following:

1. Non-interaction of any two different solitons:

|xj,0 − xj ′,0| ≥ 10,∀j = j ′, (3.13)

2. Sign condition and smallness condition of bj,0:

α > bj,0 > 0, j = 1, . . . ,m. (3.14)

3. Smallness condition:

m∑
j=1

λj,0 +
m∑

j=1

‖εj‖H 1 ≤ α. (3.15)

4. Log–log regime condition:

e−e

2π
bj,0

< λj,0 < e−e

π
2bj,0

, j = 1, . . . ,m. (3.16)

5. Smallness of the local error∫
|x|≤ 10

λj,0

|∇ε
j

0 |2 + |εj

0 |2e−|y| ≤ �
6
7
bj,0

, j = 1, . . . ,m. (3.17)

6. Tameness of local energy and local momentum

λ2
j |Eloc(u0, xj,0)| ≤ �1000

bj
, j = 1, . . . ,m. (3.18)

λj |Eloc(u0, xj,0)| ≤ �1000
bj

, j = 1, . . . ,m. (3.19)

7. Smoothness outside the singularity, here we fix a large N2, which would be chosen later.

|u0|HN2 (min1≤j≤m{|x−xj,0|}≥ 1
3 )

≤ α. (3.20)

8. u0 in HN2 .

Remark 3.1. Such data can be constructed similarly as those constructed in [26].

3.2. Modification of system

Now let u be the solution to (1.1) with initial data u0 described as in Subsection 3.1. We are expecting that 
throughout the lifespan of the evolution, we can find parameters {bj (t), λj (t), xj (t), γj (t)}mj=1 and a function �(t, x)

such that the following geometric decomposition holds:

u(t, x) =
m∑

j=1

1

λj (t)
Q̃bj

(
x − xj (t)

λj (t)
)e−iγj (t) + �(t, x), (3.21)

|bj (t)| ≤ δ(α),‖εj‖H 1 ≤ δ(α),1 ≤ j ≤ m,εj = λj ξ(λjx + xj )e
iγj , (3.22)

as well as the orthogonality condition:

(ε
j

1 , |y|2�bj
) + (ε

j

2 , |y|2�bj
) = 0, j = 1, . . . ,m, (3.23)

(ε
j

1 , y�bj
) + (ε

j

2 , y�bj
) = 0, j = 1, . . . ,m, (3.24)

−(ε1,�
2�bj

) + (ε
j

2 ,�2�bj
) = 0, j = 1, . . . ,m, (3.25)
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−(ε
j

1 ,��bj
) + (ε

j

2 ,��bj
) = 0, j = 1, . . . ,m. (3.26)

Again Q̃b = �b + i�b , εj = ε
j

1 + iε
j

2 .
Since at this point we do not know that the general multi-solitons orbital stability holds, we consider the system for 

{u(t, x), {bj (t), λj (t), xj (t), γj (t)}mj=1} as in Subsection 2.2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + �u = −|u|2u,
d
dt

{(εj

1 , |y|2�bj
) + (ε

j

2 , |y|2�bj
)} = 0, j = 1, . . . ,m,

d
dt

{(εj

1 , y�bj
) + (ε

j

2 , y�bj
)} = 0, j = 1, . . . ,m,

d
dt

{−(ε1,�
2�bj

) + (ε
j

2 ,�2�bj
)} = 0, j = 1, . . . ,m,

d
dt

{−(ε
j

1 ,��bj
) + (ε

j

2 ,��bj
)} = 0, j = 1, . . . ,m,

u(0, x) = u0, λj (0) = λj,0, bj (0) = bj,0, xj (0) = xj,0, γj (0) = γj,0, j = 1, . . . ,m,

(3.27)

where εj , εj

1 , εj

2 is defined by �, as previously noted, and � is defined by

�(t, x) ≡ u(t, x) −
m∑

j=1

1

λj

Q̃bj
(
x − xj

λj

)e−iγj (t). (3.28)

By the orthogonality conditions (3.23), (3.24), (3.25), (3.26) of the initial data, one has the orthogonality condition 
within the lifespan of (3.27):

(ε
j

1 , |y|2�bj
) + (ε

j

2 , |y|2�bj
) = 0, j = 1, . . . ,m, (3.29)

(ε
j

1 , y�b1) + (ε
j

2 , y�bj
) = 0, j = 1, . . . ,m, (3.30)

−(ε1,�
2�bj

) + (ε
j

2 ,�2�bj
) = 0, j = 1, . . . ,m, (3.31)

−(ε
j

1 ,��bj
) + (ε

j

2 ,��bj
) = 0, j = 1, . . . ,m. (3.32)

We discussed previously that the lifespan of (2.3) is the same as the lifespan of u. With the same argument one also 
has that the lifespan of (3.27) is the same as lifespan of u.

We perform one final simplification. Let us define8:

�j(x) := �(x)χ1,loc(x − xj ), ε
j (t, y) := λj�

j (λjy + xj )e
−iγj ,

εj (t, y) ≡ ε
j

1 + iε
j

2 , j = 1, . . . ,m.
(3.33)

We point out that our analysis will be performed under the condition λj � bj (see Lemma 3.1 below). Now, by 
definition, one has εj = εjχ1,loc(

x
λj

), and recall Q̃b is supported in |y| � 1
b

. It is not hard to see the following 

orthogonality condition for εj .

(ε
j

1 , |y|2�bj
) + (ε

j

2 , |y|2�bj
) = 0, j = 1, . . . ,m, (3.34)

(ε
j

1 , y�b1) + (ε
j

2 , y�bj
) = 0, j = 1, . . . ,m (3.35)

−(ε1,�
2�bj

) + (ε
j

2 ,�2�bj
) = 0, j = 1, . . . ,m, (3.36)

−(ε
j

1 ,��bj
) + (ε

j

2 ,��bj
) = 0, j = 1, . . . ,m. (3.37)

Under the hypothesis λj � bj , the system (3.27) is exactly:

8 Please note ε and ε are different notations.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut + �u = −|u|2u,
d
dt

{(εj

1 , |y|2�bj
) + (ε

j

2 , |y|2�bj
)} = 0, j = 1, . . . ,m,

d
dt

{(εj

1 , y�b1) + (ε
j

2 , y�bj
)} = 0, j = 1,2, . . . ,m,

d
dt

{−(ε
j

1 ,�2�bj
) + (ε

j

2 ,�2�bj
)} = 0, j = 1, . . . ,m,

d
dt

{−(ε
j

1 ,��bj
) + (ε

j

2 ,��bj
)} = 0, j = 1, . . . ,m

u(0, x) = u0, λj (0) = λj,0, bj (0) = bj,0, xj (0) = xj,0, γj (0) = γj,0, j = 1, . . . ,m.

(3.38)

3.3. Description of the dynamic

We are now ready to present the main lemma which contains a bootstrap argument used to describe the dynamics 
of (3.38), where the initial data {u0, {bj,0, λj,0, xj,0, γj,0}mj=1} is described as in Subsection 3.1.

Lemma 3.1. Consider the system (3.38) with initial data described as in Subsection 3.1 (with the universal constant 
α is small enough), then ∀T < T +(u), the following bootstrap argument holds (and all the estimates are independent 
of T ):

Let sj,0 := e
3π

4bj,0 , and define the re-scaled time sj := ∫ t

0
1
λ2

j

+ sj,0, j = 1, . . . , m. If for t ∈ [0, T ) the bootstrap 

hypotheses hold:

– smallness of bj and ε:

m∑
j=1

|bj | +
m∑

j=1

‖εj‖H 1 ≤ 10α1/2, (3.39)

– log–log regime, part I:

e−e

10π
bj (t) ≤ λj (t) ≤ e−e

π
10bj (t)

, j = 1, . . . ,m, (3.40)

– log–log regime, part II:

π

10 ln sj
≤ bj ≤ 10π

ln sj
, j = 1, . . . ,m, (3.41)

– smallness of the local error:∫
|∇εj |2 + |εj |2e−|y| ≤ �

3
4
bj

, j = 1, . . . ,m, (3.42)

– almost monotonicity:

∀T > t2 ≥ t1 ≥ 0, λj (t2) ≤ 3λj (t1), j = 1, . . . ,m, (3.43)

– control of translation parameters:

∀0 < t < T, |xj (t) − xj,0| ≤ 1

1000
, j = 1, . . . ,m, (3.44)

– local control of conserved quantity: for all 0 < t < T , j = 1, . . . , m:

|Eloc(xj (t), u(t)) − Eloc(xj,0, u0)| ≤ 1000, (3.45)

|Ploc(xj (t), u(t)) − Ploc(xj,0, u0)| ≤ 1000, (3.46)

– outside-smoothness:

‖u‖
HN1 (minj {|x−xj,0|≥ 1

2 }) ≤ 1

maxj {λj,0} , (3.47)

where N1 is some fixed large constant, N1 < N2 .
2
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Then for t ∈ [0, T ), the bootstrap estimates hold:

– smallness of bj and ε:

m∑
j=1

|bj | +
m∑

j=1

‖εj‖H 1 ≤ 5α1/2, (3.48)

– log–log regime, part I:

e−e

5π
bj (t) ≤ λ(t) ≤ e−e

π
5bj (t)

, j = 1, . . . ,m, (3.49)

– log–log regime, part II:

π

5 ln sj
≤ bj ≤ 5π

ln sj
, j = 1, . . . ,m, (3.50)

– smallness of the local error:∫
|∇εj |2 + |εj |2e−|y| ≤ �

4
5
bj

, j = 1, . . . ,m, (3.51)

– almost monotonicity:

∀T > t2 ≥ t1 ≥ 0, λj (t2) ≤ 2λj (t1), j = 1, . . . ,m, (3.52)

– control of translation parameter:

∀0 < t < T, |xj,t − xj,0| ≤ 1

2000
, j = 1, . . . ,m, (3.53)

– local control of conserved quantity: for all 0 < t < T , j = 1, . . . , m:

|Eloc(xj (t), u(t)) − Eloc(xj,0, u0)| ≤ 500, (3.54)

|Ploc((xj (t), u(t)) − Ploc(xj,0, u0)| ≤ 500, (3.55)

– outside smoothness:

‖u‖
HN1 (minj {|x−xj,0|≥ 1

2 }) � 1. (3.56)

Remark 3.2. According to our notation, (3.56) means that

‖u‖
HN1 (minj {|x−xj,0|≥ 1

2 }) ≤ C

for some universal constant C. Also by (3.15) we have limα→0
1

maxj {λj,0} = ∞. Thus, when α is small enough, (3.56)
is stronger than (3.47), i.e. this is a bootstrap estimate.

Remark 3.3. The Lemma 3.1 itself implies that T +(u) ≤ δ1(α). Indeed, Lemma 3.1 implies that the solution blows 
up in finite time and according to the log–log law. Similarly for the solutions in Lemma 1.7 and Lemma 2.2. This is a 
standard argument, for details see for example [23]. One may also directly look at Subsection 6.2, see Remark 6.3.

Remark 3.4. Note that Lemma 3.1 implies that minj =j ′ |xj (t) − xj ′(t)| > 5 for all t < T +(u).

3.4. Further remarks on Lemma 3.1

Lemma 3.1 means that all the bootstrap estimates hold within the lifespan of u generated by the initial data de-
scribed in Subsection 3.1. In particular for initial data of the form

u(t, x) =
m∑ 1

λj

Q̃bj,0(
x − xj,0

λj

)e−iγj,0 + �0(t, x)
j=1
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with orthogonality conditions (3.9), (3.10), (3.11), (3.12) and with bounds (3.13), (3.14) . . . (3.20), the associated 
solution is smooth in the area minj |x − xj,0| ≥ 1

2 (i.e. estimate (3.56) holds).
Furthermore, if one looks9 at χ1,loc(x − xj (t))u(t, x), j = 1, . . . , m, then

χ1,loc(x − xj (t))u(t, x) := 1

λj

(Q̃bj
+ εj )(

x − xj

λj

)e−iγj , j = 1, . . . ,m (3.57)

and the bootstrap estimates stated in Lemma 3.1 simply mean that χ(x−xj (t))u(t, x) evolves according to the log–log 
law described in the series of work of Merle and Rapahel (until at least one soliton blows up).

4. Proof of Lemma 2.2: one soliton model

This section is devoted to the proof of Lemma 2.2, and we need only to show (2.5) since we already have (1.7). Fix 
[0, T ], all the estimates below are independent of the choice of T .

4.1. Setting up

Recall that u is the solution to (1.1) with initial data u0 as described in (2.1). Recall as discussed in Subsection 2.2, 
that we consider the system (2.3) for {u(t), b(t), λ(t), x(t), γ (t)}, and the geometric decomposition (2.4) holds. Also 
Lemma 1.7 holds. We finally point out that the bootstrap hypothesis (1.65) itself implies

t∫
0

1

λ(τ)μ
dτ ≤

{
C(μ) for μ < 2,
| ln λ(t)|101

λ(t)μ−2 for μ ≥ 2,
(4.1)

for any t < T . See (51) in [26].

Remark 4.1. Note here that we may also use the bootstrap estimate (1.66) to show (4.1), since we know that (1.65)
implies (1.66). However, all the arguments in this section only rely on the bootstrap hypothesis (1.65), this will become 
important when we work on multi-solitons model.

4.2. An overview of the proof

Recall that for all t ∈ [0, T +(u)), the geometric decomposition holds

u(t) = 1

λ(t)
(Q̃b + ε)(

x − x(t)

λ(t)
)e−iγ (t),

and by the bootstrap hypothesis (1.65), we know |x(t)| ≤ 1
1000 for t ∈ [0, T ]. Now we fix χ0, such

χ0(x) :=
{

0, |x| ≤ a0 ≡ 1
500 ,

1, |x| ≥ d0 ≡ 1
250 .

(4.2)

The key to proving that a log–log blow up solution can propagate some regularity outside its potential blow up point 
x(t) is the following control:

∀T < T +(u),

T∫
0

‖∇(χ0u(t))‖2
2 � 1. (4.3)

This is pointed out in [26], see formula (63) in [19] for a proof.
We first use the I-method to show the rough control,

9 We note that by the definition of χ1,loc and the bootstrap estimate |xj (t) − xj,0| ≤ 1
1000 , then u(t, x) = χ1,loc(x − xj (t))u(t, x) in the region 

|x − xj,0| ≤ 1
2 .
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Lemma 4.1. In the setting of Lemma 2.2, the following estimates hold for t ∈ [0, T ], for any σ > 0,

‖u(t)‖HK2 �σ (
1

λ(t)
)K2+σ . (4.4)

For a proof see Subsection 4.3.
Next, we introduce a sequence of cut off functions {χl}Ll=0, where L is a large but fixed number which will be 

chosen later:

χl =
{

0, |x| ≤ al,

1, |x| ≥ bl.
(4.5)

Here we require al < bl < al−1, bL ≤ 1
2 .

The idea is to retreat from χl−1u to χlu for each l, showing that χlu has higher regularity than χl−1u. For convenience 
of notation we set vi := χiu. We use the crucial control (4.3), Strichartz estimates and interpolation techniques to 
show:

Lemma 4.2. For all 0 < ν < 1 and for t ∈ [0, T ], we have

∀σ > 0,‖∇νv2(t)‖L2 �σ

1

λ(t)σ
. (4.6)

For a proof see Subsubsection 4.4.2.
This lemma gives a better L∞ estimate of v2, which of course implies a better L∞ estimate of vi, i ≥ 2.
We also show:

Lemma 4.3. For any 0 < ν < 1 and for t ∈ [0, T ], we have

∀σ > 0,‖v2‖L∞ �σ

1

λ(t)σ
. (4.7)

For a proof see Subsubsection 4.4.3.

Remark 4.2. This lemma should be understood as an improvement of the L∞ estimate. Indeed, from the viewpoint 
of Sobolev embedding, H 1+(R2) ↪→ L∞, thus the trivial L∞ estimate is ‖v2‖L∞ � ‖u(t)‖L∞ � 1

λ(t)1+ .

Lemma 4.3 improves Lemma 4.2 immediately:

Lemma 4.4. For all 0 < ν < 1 and for t ∈ [0, T ], we have

‖∇νv3(t)‖L2 � 1. (4.8)

For a proof see Subsubsection 4.4.4.
Finally, we have the following lemma (which is analogue to Lemma 4 in [26]) to iterate the gain of regularity for 

large K2.

Lemma 4.5. If the following estimate holds for some r > 0 and some i, 1 ≤ i ≤ L − 1,

‖vi(t)‖Hr � 1, t ∈ [0, T ], (4.9)

then there is a gain of regularity on vi+1, that is

∀r̃ <
2(K2 − r)

K2
− 1 + r,‖vi+1‖Hr̃ �r̃ 1, t ∈ [0, T ]. (4.10)
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For a proof see Subsubsection 4.4.5.
Now we are ready to end the proof of Lemma 2.2, i.e. to prove (2.5).

Proof of (2.5) in Lemma 2.2. Lemma 4.5 is enough for us to obtain the regularity estimate (2.5) for K1 < K2
2 . To 

see this consider the end point case in (4.10), i.e. if one considers r = r̃ = 2(K2−r)
K2

− 1 + r , then one obtains r = K2
2 . 

Thus, when K1 < K2
2 , by choosing the iteration time L large, the desired estimate (2.5) follows. �

4.3. Rough control

This subsection is devoted to the proof of Lemma 4.1, similar type of estimates are derived in [26] by considering 
some pseudo energy. Here, we rely on I-method. Without loss of generality, we only show:

‖u(T )‖HK2 �σ (
1

λ(T )
)K2+σ . (4.11)

4.3.1. LWP interval
Let’s introduce the so-called LWP interval as in [3]. To make the argument easier, we observe that, under the 

bootstrap hypothesis (1.65), we can show that λ(t) is actually strictly decreasing. Indeed, by (1.65), b > 0, λ � b in 
the sense of (1.67). Thus by (1.69) and (1.67), we obtain − λs

λ
≥ 1

2b > 0, thus λ(t) is strictly decreasing.
We define k0, kT as:

1

2k0
≤ λ(0) <

1

2k0−1
,

1

2kT
≤ λ(T ) <

1

2kT −1
, (4.12)

and for k0 ≤ k ≤ kT , let tk be the (unique) time such that

λ(tk) = 1

2k
. (4.13)

Then as in [3], we can perform a bootstrap argument:

Lemma 4.6. In [0, T ], assuming the bootstrap hypothesis

tk+1 − tk ≤ kλ2(tk), (4.14)

we obtain the bootstrap estimate

tk+1 − tk ≤ √
kλ2(tk). (4.15)

This estimate is not sharp, indeed, morally one should have tk+1 − tk ∼ (ln ln k)λ(tk)
2 according to the log–log law. 

We refer to (2.39) in Lemma 2.4 of [3].
As in [3], we divide all intervals [tk, tk+1] into disjoint intervals ∪Jk−1

j=0 [τ j
k , τ j+1

k ], where

tk = τ 0
k < τ 1

k · · · < τ
Jk−1
k < τ

Jk

k = tk+1,

τ
j+1
k − τ

j
k = δ1

4
λ(tk+1)

2,∀j ≤ Jk − 2,

τ
Jk

k − τ
Jk−1
k ≤ δ1

4
λ(tk+1)

2,∀j ≤ Jk − 2.

(4.16)

Here δ1 is a fixed constant which will be chosen later. Now, by Lemma 4.6, using the bootstrap estimate (4.15) (indeed, 
we only use the bootstrap hypothesis (4.14), which is weaker), we have

Jk ≤ 10k2,
∑

k

Jk ≤ 10k3
T � | lnλ(T )|3. (4.17)
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4.3.2. A quick introduction of upside-down I-method
We point out without proof the following classical fact on any LWP interval:

∀[τ j
k , τ

j+1
k ], sup

t∈[τ j
k ,τ

j+1
k ]

‖u(t) − u(τ
j
k )‖HK2 � ‖u(τ

j
k )‖HK2 , (4.18)

and directly iterate this over all the LWP intervals (recall we have about | lnλ(T )|3 such intervals), to obtain the 
estimate ‖u(T )‖HK2 � C| ln λ(T )|3 for some C > 1, which is clearly weaker than (4.11) but actually quite close.

The idea of the original I-method [2] or up-side down I-method [27] are both to improve the estimate (4.18) on a 
LWP interval by working on certain a slowly varying/almost conserved quantity.

We introduce the upside-down I-operator DN :

D̂Nf (ξ) := M(
ξ

N
)f̂ (ξ), (4.19)

where M(ξ) is a smooth function such that

M(ξ) :=
{

(|ξ |)K2 , |ξ | ≥ 2,

1, |ξ | ≤ 1.
(4.20)

It is easy to see that for any f ∈ HK2 we have

‖DNf ‖L2 � ‖f ‖HK2 � NK2‖DNf ‖l2 . (4.21)

Now for some v that solves NLS, the idea of the upside-down I-method is to use ‖DNv‖2
L2 to model ‖v‖2

HK , and show 
that E1(v) := ‖DNv‖2

2 is slow varying, see [27].

Lemma 4.7 (Proposition 3.4, Lemma 4.5 in [27]). There exists a higher modified energy E2 (or to be more pre-
cise, E2

N ), such that for any f in HK2 ,

|E2(f ) − ‖DNf ‖2
2|�

1

N1− ‖DNf ‖2
2, (4.22)

∀M > 0, there exists δ0 = δ0(M) > 0 such that if v solves (1.1) with initial data v0 and ‖v0‖H 1 ≤ M , then [0, δ0] is 
in the lifespan of v and E2(v) is slow varying in the following sense:

sup
0≤τ≤δ0

|E2(v(τ )) − E2(v0)| � 1

N
7
4 − E2(v0), (4.23)

and

sup
0≤τ≤δ0

‖DNv(t)‖2
L2 ≤ (1 + C

1

N
7
4 − )(1 + C

1

N1− )‖DNv(t0)‖2
L2(R2)

, (4.24)

where C is some universal constant.

Actually in [27] one finds only (4.22) and (4.23), but (4.24) is directly implied. Formula (4.22) can be found in the 
last formula of the proof of the Proposition 3.4 in [27].

Remark 4.3. In [27], the equation is defocussing, while here we are working with a focusing equation. However, when 
one restricts analysis locally, the two problems actually have no real difference. In [27], the defocussing condition is 
only used to ensure that any Hs , s > 1 solution considered is global. Note [27] deals with both Euclidean case and 
Torus case.



1452 C. Fan / Ann. I. H. Poincaré – AN 34 (2017) 1429–1482
4.3.3. Proof of Lemma 4.1
Now we are ready to finish the proof of Lemma 4.1.

Proof. Recall we need only to show (4.11). Let

N = (
1

λ(T )
)1+σ1 . (4.25)

Here σ1 = σ1(σ ) is a small positive constant chosen later.
We have the following estimate on LWP interval:

sup
t∈[τ j

k ,τ
j+1
k ]

‖DNu(t)‖2
L2 ≤ (1 + C

1

(Nλ(T ))
1
2

)‖DNu(τ
j
k )‖2

L2 . (4.26)

The constant C is independent of j, k. We now assume (4.26) temporarily and we finish the proof of (4.11). By our 
choice of N, we immediately obtain from (4.26) that

sup
t∈[τ j

k ,τ
j+1
k ]

‖DNu(t)‖2
L2 ≤ (1 + C

1

(λ(T )−σ1)
1
2

)‖DNu(τ
j
k )‖2

L2 . (4.27)

Then we iterate this estimate and we recall that the total number of LWP intervals is controlled by (4.17), thus we 
obtain

‖DNu(T )‖2
2 � (1 + Cλ(T )

σ1
2 )C(| ln λ(T )|)3‖u0‖HK2 � 1. (4.28)

Thus, we arrive to the estimate

‖u‖HK2 � NK2‖DNu‖2 �
1

λ(T )K2(1+σ1)
. (4.29)

The desired estimate (4.4) clearly follows if we choose σ1 ≤ σ/K2.
What is now left is to prove (4.26). We indeed show that

sup
t∈[τ j

k ,τ
j+1
k ]

‖DNu(t)‖2
L2 ≤ (1 + C

1

(Nλ(t
j
k ))

1
2

‖DNu(τ
j
k )‖2

L2 . (4.30)

Since, λ(T ) ≤ λ(tk+1), clearly (4.26) follows from (4.30).
We now prove (4.30). Indeed, by scaling or direct computation, let

uj,k(t, x) := λ(tk+1)u(λ(tk+1)
2(τ

j
k + t), λ(tk+1x)),

then uj,k solves (1.1) with initial data λ(tk+1)u(τ
j
k , λ(tk+1)x). A direct computation leads to

‖λ(tk+1)u(τ
j
k , λ(tk+1)x)‖H 1 = ‖Q + ε‖H 1 ≤ 2‖Q‖H 1 .

To apply the upside-down I-method in Lemma 4.7, we first choose δ0 in Lemma 4.7 as δ0(2‖Q‖2
H 1) and then we 

choose δ1 in (4.16) as δ1 = δ0
2 , and as a consequence for all j, k,

τ
j
k − τ

j+1
k

λ(tk+1)2
< δ0.

By the upside-down I-method (4.24), we have:

sup
t∈[0,

τ
j
k

−τ
j+1
k

λ(tk+1)2
]
‖DNλ(tk)uj,k(t)‖2

≤(1 + C
1

(Nλ(t
j
k ))

7
4 − (1 + C

1

(Nλ(t
j
k ))1− ‖D

Nλ(t
j
k )

uj,k(t)‖2
L2

≤(1 + C
1

(Nλ(t
j
))

1
2

))‖D
Nλ(t

j
k )

uj,k(t)‖2
L2 .

(4.31)
k
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We now observe that for any λ > 0 and for any function f we have

λ(DNf )(λx) =DNλ (λf (λx)) ,

‖f ‖2 = ‖λf (λx)‖2.
(4.32)

(4.30) clearly follows. �
Remark 4.4. It is not hard to see that the proof only relies on the fact that one can divide [0, T ] into disjoint intervals 
∪j,kIk,j such that

1. ‖u(t)‖H 1 ∼ 2−k for t ∈ Ik,j (this is equivalent to λ(t) ∼ 2−k for t ∈ Ik,j );
2. |Ik,j | ∼ 1

22k , ∀k, j ;

3. �{Ik,j } � | lnλ(T )|3;
4. λ(T ) � λ(t), t ∈ [0, T ]

and u(0) ∈ HK2 .
Note that condition 3 follows from the bootstrap Lemma 4.6.
We finally remark that by further dividing Ik,j , it is very easy to improve condition 2 to |Ik,j | ≤ δ

22k for any fixed 
δ > 0.

4.4. Propagation of regularity

In this subsection, we give the proof of Lemma 4.2, Lemma 4.3, Lemma 4.4 and Lemma 4.5. Since our proof relies 
on the Strichartz estimates, for completeness we recall them below.

4.4.1. Strichartz estimates
Consider the equation:{

iUt + �U = F,

U(0, x) = U0.
(4.33)

We write it in the integral form using the Duhamel Formula:

U(t) = eit�U0 − i

t∫
0

ei(t−s)�F (s)ds, (4.34)

where eit� is the propagator of linear Schrödinger equation. For notation convenience, let:

�F := −i

t∫
0

ei(t−s)�F (s)ds.

Then one has the following Strichartz estimates:

∀ 2

q
+ 2

r
= 2

2
,2 < q ≤ ∞,

‖eit�U0‖Lq([0,∞],Lr (R2)) �q,r ‖U0‖2,

‖�F‖Lq([0,t],Lr (R2)) �q,r ‖F‖
Lq′

([0,t],Lr′ (R2))
,

(4.35)

where (q ′, r ′) is the dual of (q, r), i.e. 1
q
+ 1

q ′ = 1, 1
r
+ 1

r ′ = 1. We call (q, r) an admissible pair if and only if 2
q
+ 2

r
= 2

2 , 
2 < q ≤ ∞. We refer to [28,9] and the references within for a proof.
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4.4.2. Proof of Lemma 4.2
We fix ν < 1, and we estimate ‖∇νv2‖2. Note that v2 satisfies:{

i∂t v2 + �v2 = �χ2v1 + 2∇χ2∇v1 − v2|v1|2. (4.36)

As in previous section, we only need to show:

‖∇νv2(T )‖2 � (
1

λ(T )
)σ . (4.37)

We explain some heuristics for this estimate. We view the system as a perturbation of the linear Schrödinger equation, 
and the dominating term in the perturbation is the last term on the right side of (4.36). We can view (4.36) as:

i∂t v2 + �v2 ≈ O(|v1|2v2). (4.38)

From the viewpoint of persistence of regularity one gets:

‖∇νv2(T )‖2 � ‖∇νv2(0)‖2e
‖v1(t)‖4

L4([0,t],L4) . (4.39)

By estimating

‖v1(t)‖L4(R2) � ‖u(t)‖
H

1
2
� 1

λ
1
2 (t)

,

one obtains by (4.1)

‖∇νv2(T )‖2 � e

∫ T
0

1
λ2(t) � e| ln λ(T )|101

. (4.40)

This estimate though is too weak, of course. On the other hand we didn’t even use the key estimate (4.3) in the log–log 
regime. To obtain the stronger estimate (4.37) instead of the L4

t,x norm in (4.39) we use a more flexible Lq
t L

r
x . More 

precisely we replace ‖v1(t)‖4
L4([0,t],L4)

by some ‖v1(t)‖q

Lq([0,T ],Lr (R2))
such that (q, r) is an admissible pair. Now, we 

make the key observation that L2Ḣ 1 and L4
t L

4
x have the same scaling as Lq

t L
r
x whenever (q, r) is an admissible pair. 

Thus, by interpolating the two estimates

T∫
0

‖v1(t)‖4
4 � | lnλ(t)|101,

T∫
0

‖∇v1(t)‖2
2 � 1,

(4.41)

we derive

T∫
0

‖u(t)‖q
Lr � (| lnλ(t)|)1/100, (4.42)

for an admissible (q, r) carefully picked. Then we obtain

‖∇νv2(T )‖2 � ‖∇νv2(0)‖2e
‖v1(t)‖q

Lq ([0,T ],Lr ) � e| ln(λ(T )|) 1
100

, (4.43)

which implies the desired estimate (4.37).
We now go to the details. We need the following technical lemmata.

Lemma 4.8. Let 2
q0

+ 2
r0

= 1, let q ′
0, r ′

0 be their dual, let p0 be defined by 1
r ′
0

= 1
2 + 1

p0
, let h0 be defined by h0 = 1 − 1

p0
, 

then we have the following estimate uniform with respect to any time interval I
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‖|v1|2∇νv2‖
L

r ′0 � ‖∇νv2‖L2‖v1‖2
L2p0

, (4.44)

‖|v1|2∇νv2‖
L

q′
0 (I ;Lr′0 )

� ‖∇νv2‖L∞(I ;L2)‖v1‖2

L
2q′

0 (I ;L2p0 )
, (4.45)

‖v1‖L2p0 � ‖v1‖Hh0 , (4.46)

‖v1‖
L

2q′
0 (I ;Hh0 )

� ‖v1‖
h0−1/2

1/2

L2(I ;H 1)
‖v1‖

1−h0
1/2

L4(I ;H 1
2 )

. (4.47)

Moreover we can choose q0 large enough such that 1 − 1
10000 < h0 < 1, q ′

0 ≤ 2.

Lemma 4.9. Let 2
q1

+ 2
r1

= 1, let q ′
1, r

′
1 be their dual, let g1, g̃1 be defined by ν − 1 = − 2

g1
, −ν ≡ (1 − ν) − 1 = − 2

g̃1
, 

let p1 be defined as 1
r ′
1

= 1
2 + 1

p1
, let h1 be defined as h1 − 1 = − 2

p1
and let w1 be defined as 1

q ′
1

= 1
2 + 1

w1
, then we 

have the following estimates uniform with respect to any time interval I

‖|v1||∇νv1|v2‖
L

r′1 � ‖∇νv1‖Lg̃1 ‖v1‖Lp1 ‖v2‖Lg1 , (4.48)

‖∇νv1‖Lg̃1 � ‖v1‖H 1,‖v2‖Lg1 � ‖∇νv2‖L2, (4.49)

‖|v1||∇νv1|v2‖
L

q′
1 (I ;Lr′1 )

� ‖v2‖L∞(I ;Hν)‖v1‖L2(I ;H 1)‖v1‖Lw1 (I ;Lp1 ), (4.50)

‖v1‖Lp1 � ‖v1‖Hh1 , (4.51)

‖v1‖Lw1 (I ;Hh1 ) � ‖v1‖
h1−1/2

1/2

L2(I ;H 1)
‖v1‖

1−h1
1/2

L4(I ;H 1
2 )

. (4.52)

Moreover we can choose q1 large such that 1 − 1
10000 < h1 < 1, w1 ≤ 4.

The proofs are a direct consequence of Sobolev and Hölder inequalities as well as standard interpolation

‖u‖Hs � ‖u‖
s2−s

s−s1
Hs1 ‖u‖

s−s1
s2−s1
Hs2 , s1 < s < s2.

We finally remark that all the indices happen to coincide because of scaling reasons. Indeed, we can check that 
(2q ′

0, 2p0), (w1, p1) are both admissible pairs.
Now, we pick (q0, r0), (q1, r1) as in Lemma 4.8 and Lemma 4.9, and we let all the other associated indices be 

determined as in these two lemmas. By estimating ‖u(t)‖
H

1
2
� 1

λ(t)
1
2

, we have ‖v1(t)‖
H

1
2
� 1

λ(t)
1
2

. Thus, by (4.1) we 

have:

T∫
0

‖v1(t)‖4
4 � | lnλ(t)|101. (4.53)

Also from (4.3), we have

T∫
0

‖∇v1(t)‖2
2 � 1. (4.54)

Using (4.53), (4.54) and (4.46), (4.47) in Lemma 4.8 we obtain

‖v1‖2q ′
0

L
2q′

0 ([0,T ];L2p0 )
≤ | lnλ(T )|1/2,

and using (4.53), (4.54) and (4.51), (4.52) in Lemma 4.9 we obtain

‖v1‖w1
Lw1 ([0,T ];Lp1 )

≤ | lnλ(T )|1/2.

Thus, we are able to divide [0, T ] into Jk disjoint intervals [τk, τk+1], k = 1, . . . , Jk , such that
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Jk ∼ε | ln(λ(T ))| 1
2 ,

‖v1‖
L

2q′
0 ([0,T ];L2p0 )

≤ ε,

‖v1‖Lw1 ([0,T ]);Lp1 ≤ ε,

(4.55)

where ε > 0 is a fixed small constant, to be chosen later.
Now we use the Duhamel formula (4.34) for (4.36) in [τk, τk+1], and we obtain for any t ∈ [τk, τk+1],

‖v2(t) − v2(τk)‖Ḣ ν

≤ C

T∫
0

‖v1‖Hν + C

T∫
0

‖v(t)‖H 1+ν + ‖
t∫

τk

ei(t−τ)�∇ν(|v1|2v2)(τ )dτ‖2

≤ C

T∫
0

‖u(t)‖H 1+ν + C‖|v1|2∇νv2||‖
L

q′
0 ([tk,τ ];Lr′0 )

+ C‖∇ν(|v1|2)v2‖
L

q′
1 ([tk,τ ]);Lr′1 )

,

(4.56)

where in the last step we have used Strichartz estimates and Fractional Leibniz rule (see Theorem A.8, [10]). We 
remark it is not hard to see that we can choose (q0, r0) = (q1, r1). Now we plug in the estimates in (4.45), (4.49) into 
(4.56), to obtain

‖v2(t) − v2(τk)‖Ḣ ν

≤ C

T∫
0

‖u(t)‖H 1+ν

+ C(‖v1‖2

L
2q′

0 ([τk,τk+1];L2p0 )
+ ‖v1‖

L
2q′

0 ([τk,τk+1];L2p0 )
‖v1‖L2([0,T ];H 1)) sup

[κ∈[τk,t]]
‖v2‖Hκ ,

(4.57)

i.e.

‖v2(t) − v2(τk)‖Hν ≤ C + C

T∫
0

‖u(t)‖H 1+ν + Cεsupt∈[tk,τ ]‖u(t)‖Hν . (4.58)

The term 
∫ T

0 ‖u(t)‖H 1+ν is not hard to control. Interpolating between ‖u‖H 1 and ‖u‖
HK2 , we obtain

‖u(t)‖H 1+ν � ‖u(t)‖
K2−1−ν

K2−1

H 1 ‖u(t)‖
ν

K2−1

HK2
. (4.59)

Now we plug in the estimate ‖u(t)‖H 1 � 1
λ(t)

and ‖u(t)‖HK2 �σ
1

λ(t)K2+σ from Lemma 4.1, and we obtain

‖u(t)‖H 1+ν �σ

1

λ1+ν+Cσ (t)
. (4.60)

By choosing σ small enough such that 1 + ν + Cσ < 2, and using (4.1), we have

T∫
0

‖u(t)‖H 1+ν � 1. (4.61)

We plug in (4.61) into (4.56), and we choose ε small enough to obtain

supt∈[tk,tk+1]‖u(t)‖Hν ≤ 2‖u(tk)‖Hν + C. (4.62)

Iterating this over the Jk ∼ | lnλ(T )| 1
2 intervals, we obtain the estimate

‖u(T )‖Hν � eC| ln λ(T )| 3
4
, (4.63)

which implies the desired estimate (4.37).
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4.4.3. Proof of Lemma 4.3
We now prove Lemma 4.3. Indeed, by Lemma 4.1 and Lemma 4.2, we obtain for any ν < 1, σ̃ > 0 the estimates

‖v2(t)‖HK2 �σ̃

1

λK2+σ̃ (t)
, (4.64)

‖v2(t)‖Hν �σ̃

1

λσ̃ (t)
. (4.65)

Now, by Sobolev embedding and interpolation, we obtain

‖v2(t)‖L∞(R2) �σ̃ ‖v2(t)‖H 1+σ̃ �σ̃

1

λCσ̃ (t)

1

λ
K2−K2ν

K2−ν (t)

. (4.66)

Since σ̃ > 0 is arbitrary and we can choose ν as close to 1 as we want, this clearly gives Lemma 4.3.

4.4.4. Proof of Lemma 4.4
Now we prove Lemma 4.4. We fix ν and we point out that all the constants in the proof will depend the choice 

of ν. By choosing σ small enough, Lemma 4.3 gives for some small c = cν > 0

‖v2(t)‖L∞ � 1

λ1−cν(t)
. (4.67)

By choosing σ even smaller, by Lemma 4.2, we have

‖v2(t)‖Hν � 1

λcν/10(t)
. (4.68)

Clearly v3 also satisfies the estimate (4.67), (4.68), and also it satisfies the equation

i∂t v3 + �v3 = �χ3v2 + 2∇χ3∇v2 − v3|v2|2. (4.69)

By the Duhamel’s formula, we obtain

v3(t) = eit�(v3(0)) + i

t∫
0

ei(t−s)�(�χ3v2 + 2∇χ3∇v2 − v3|v2|2)(s)ds. (4.70)

Thus,

‖v3(t)‖Hν � ‖v3(0)‖Hν +
t∫

0

‖v2‖Hν +
t∫

0

‖v2‖H 1+ν +
t∫

0

‖v3|v2|2‖Hν . (4.71)

As argued previously in (4.61), 
∫ t

0 ‖v2‖H 1+ν � 1. Thus, to finish the proof of Lemma 4.4, we only need to show

T∫
0

‖v3|v2|2(t)‖Hν � 1. (4.72)

Indeed,

‖v3|v2|2‖Hν � ‖v3‖Hν ‖v2‖2
L∞ + ‖v3‖L∞‖v2‖L∞‖v2‖Hν . (4.73)

Now we plug the estimates (4.67) and (4.68) into (4.73) and we recall that v3 also satisfy estimate (4.67) and (4.68), 
we have

‖v3|v2|2(t)‖Hν � 1

λ2−cν(t)
. (4.74)

Thus, by (4.1), estimate (4.72) follows.
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4.4.5. Proof of Lemma 4.5
Finally we prove Lemma 4.5. This is quite straightforward. First, one can directly check (again) that vj+1 satisfies:

i∂t vj+1 + �vj = �χj+1vj + 2∇χj+1∇vj − vj+1|vj |2. (4.75)

Since we assume that K2 > 2, then by Lemma 4.3, we have (for j ≥ 2):

‖vj (t)‖∞ �σ

1

λσ (t)
. (4.76)

Clearly the same estimates hold for vj+1.
Again by the Duhamel’s formula:

vj+1(t) = eit�(χj+1u0) + i

t∫
0

ei(t−τ)�(�χj+1vj + 2∇χj+1∇vj − vj+1|vj |2)(τ )dτ . (4.77)

We remark here that the main term to control is 2∇χj+1∇vj . Directly from (4.77), we obtain:

‖vj+1(t)‖Hr̃ � ‖χju(0)‖Hr̃ +
t∫

0

‖vj (τ )‖Hr̃ +
t∫

0

‖vj (τ )‖Hr̃+1 +
t∫

0

‖vj+1|vj |2(τ )‖Hr̃ . (4.78)

Clearly, to finish the proof we only need to show

t∫
0

‖vj (τ )‖Hr̃+1 � 1, (4.79)

and

t∫
0

‖vj+1|vj |2‖Hr̃ � 1. (4.80)

We first prove (4.80). By interpolating between the estimates

‖vj‖Hr � 1 and ‖u(τ)‖HK2 �σ

1

λK2+σ (τ )
,

we obtain

‖vj (τ )‖Hr̃ �σ

1

λ1+Cσ (τ )
. (4.81)

Note that the same estimates hold for vj+1. Thus,

‖vj+1|vj |2(τ )‖Hr̃ � ‖vj‖Hr̃ ‖vj‖2
L∞ �σ

1

λ(τ)1+Cσ
. (4.82)

By choosing σ small enough, such that 1 + Cσ < 2, (4.80) clearly follows from (4.1). Finally, we turn to the proof of 
(4.79). Again by interpolation, we obtain

‖vj‖Hr̃+1 � ‖vj (τ )‖
K2−r̃−1
K2−r

H r ‖vj (τ )‖
r̃+1−r

K2
−r

HK2 �σ

(
1

λ(τ)

)K2(r̃+1−r)

K2−r
+Cσ

. (4.83)

The key point is our choice of r̃ that ensures K2(r̃+1−r)
K2−r

< 2, thus by choosing σ small enough, we have K2(r̃+1−r)
K2−r

+
Cσ < 2. Finally by (4.1) estimate (4.79) follows.
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5. Proof of Lemma 3.1: multi solitons model

This section is devoted to the proof of Lemma 3.1.
The proof is involved, hence we first discuss some heuristics. Lemma 3.1 is the consequence of the following facts.

1. From previous work, [20,23], the solution uj to (1.1) with initial data χ1,loc(x − xj,0)u0, j = 1, . . . , m, blows up 
according to log–log law.

2. Assume some solution v to (1.1) blows up according to log–log law, and assume t0 is close enough to the blow 
up time T +(v). Let F = F(t, x) be some smooth perturbation. Then, the solution ṽ to the following Cauchy 
problem{

iṽt = −�ṽ − |ṽ|2ṽ + F,

ṽ(0) = v(t0),
(5.1)

still blows up according to the log–log law.
3. By our smoothness condition (3.20), we can show that solution to (1.1) with initial data χ1,loc(x − xj,0)u0 is 

smooth in the region |x − xj | ≥ 1
2 for j = 1, . . . , m.

4. For j = 1, . . . , m the function uj := χ1(x − xj (t)) satisfies the following equation

i∂tuj = −�uj − |uj |2uj + Fj , (5.2)

where

Fj = − ∇χ1,loc(x − xj )
dxj

dt
+ �χ1,loc(x − xj )u(t, x) + 2∇χ1,loc(x − xj )∇u

+ (χ3
1,loc − χ1,loc)(x − xj )|u|2u.

(5.3)

The idea is the following loop argument, which is false of course, but it can be made rigorous by bootstrap argu-
ment. If we assume uj evolves according to the log–log law for each j , we basically know that u is smooth in the 
region minj {|x − xj |} ≥ 1/2. And since ∇χ1,loc(x − xj ) and χ1,loc(x − xj ) are supported in |x − xj | ≥ 2

3 , this implies 
that Fj above is smooth. Thus fact 4 and fact 2 imply that uj actually evolves according to the log–log law for each j . 
Thus, the assumption, that uj evolves according to log–log law, is right.

Let us turn to the details and a rigorous mathematical proof.

5.1. Outline of the Proof

Recall that the re-scaled time sj satisfies dt
dsj

= λ2
j for j = 1, . . . , m. The system (3.38) implies the following:

d

dsj
{(εj

1 , |y|2�bj
) + (ε

j

2 , |y|2�bj
)} = 0, j = 1, . . . ,m,

d

dsj
{(εj

1 , y�b1) + (ε
j

2 , y�bj
)} = 0, j = 1, . . . ,m,

d

dsj
{−(ε

j

1 ,�2�bj
) + (ε

j

2 ,�2�bj
)} = 0, j = 1, . . . ,m,

d

dsj
{−(ε

j

1 ,��bj
) + (ε

j

2 ,��bj
)} = 0, j = 1, . . . ,m.

(5.4)

Now, by pure algebraic computation as in [24], one is able to write down almost the same modulation ODE for 
{bj , λj , xj , γ̃j } for j = 1, . . . , m as in formulas (71), (72), (73), (74) in [24], where γ̃j (sj ) := γj − sj . Basically, the 
only difference is that the λ2E term in [24] is replaced10 by E(Q̃bj

+ εj ).

10 Because in [24], the solution u has the form u := 1
λ(t)

(Q̃b + ε)(
x−x(t)

λ(t)
)e−iγ , thus all the term E(Q̃b + ε) is equal to λ2E. In our model, we 

cannot make this substitution and have to keep the term of form E(Q̃bj
+ εj ).
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5.1.1. Modulation estimates
Now, by exactly the same argument as the proof of Lemma 5 in [20] we have the analogue of Lemma 1.4

Lemma 5.1. In the setting of Lemma 3.1, the following modulation estimates hold for t ∈ [0, T ], and j = 1, . . . , m:

| 1

λj

dλj

dsj
+ bj | + |dbj

dsj
| ≤ C

(∫
|∇εj |2 +

∫
|εj |2e−|y|

)
+ �

1−Cη
bj

+ C|E(Q̃bj
+ εj )|, (5.5)

|dγ̃j

dsj
− 1

|Q1|2 (ε
j

1 ,L+Q2| + | 1

λj

dxj

dsj
|

≤ δ(α)(

∫
|∇εj |2e−2(1−η)

θ(bj |y|)
bj +

∫
|εj |2e−|y||) 1

2 + C

∫
|∇εj |2 + �

1−Cη
bj

+ C|E(Q̃bj
+ εj )|.

(5.6)

The proof follows exactly as the proof of (2.36), (2.37) in Lemma 5 of [20].

5.1.2. Estimates by the conservation law
Similarly, following the proof of Lemma 5 in [20], we have the analogue of Lemma 1.5,

Lemma 5.2. In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ], for j = 1, . . . , m

|2(ε
j

1 ,�bj
) + 2(ε

j

2 ,�bj
)| ≤ C

(∫
|∇εj |2 + |εj |2e−|y|

)
+ �

1−Cη
bj

+ C|E(Q̃bj
+ εj )|, (5.7)

|(εj

2 ,∇�bj
)| ≤ Cδ(α)(

∫
|∇εj |2 +

∫
|εj |2e−|y|)

1
2 + CP(Q̃bj

+ εj ). (5.8)

Proof. The proof of (5.7) is exactly the same as the proof of (2.35) in Lemma 5 in [20]. The proof of (5.8) is a little 
different, since in [20] the authors use the zero-momentum condition which is not used here. A direct simple algebraic 
computation shows that

P(Q̃bj
+ εj ) = −(∇�bj

, ε
j

2) + (∇�bj
, ε

j

1) − 2(∇ε
j

1 , ε
j

2).

By a point-wise control |∇�bj
|(y) � e−|K||y| and Cauchy Schwartz, one has:

|(∇�bj
, ε)| ≤ C(

∫
|εj |2e−K|y|)

1
2 .

From here one has that |(∇ε
j

1 , εj

2)| ≤ ‖ε‖2‖∇ε‖2.
Using the general functional analysis fact11

∫
|εj |2e−K|y| ≤ CK(

∫
|∇εj |2 +

∫
|εj |2e−|y|),

the bootstrap hypothesis (3.39) and (3.42):

‖εj‖L2 ≤ δ(α),

∫
|∇εj |2 +

∫
|εj |2e−|y| ≤ δ(α),

we have that (5.8) follows. �
11 This estimate holds for all H 1 functions, see (2.38) in Lemma 5 in [20].
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5.1.3. Control of local quantity
We use the bootstrap hypothesis (in particular, the control of local conserved quantity) to show the following

Lemma 5.3. In the setting of Lemma 3.1, for t ∈ [0, T ] and j = 1, . . . , m the following estimates hold

|E(εj + Q̃bj
)| � λ2−

j , (5.9)

|P(εj ) + Q̃bj
| � λ1−

j . (5.10)

Proof. We only prove (5.9), and the second inequality follows by a similar argument.
Direct computation shows that

|E(εj + Q̃bj
)(t) − λ2

j (t)Eloc(xj (t), u(t))|
= λ2

j |E(uχ1,loc(x − xj )) − Eloc(xj (t), u(t))|
≤ λ2

j

∫
2
3 ≤|x−xj |≤1

|∇u|2 + |u|4.
(5.11)

Note that by a standard Sobolev imbedding and by the bootstrap hypothesis (3.47), we have:∫
2
3 ≤|x−xj |≤1

|∇u|2 + |u|4 ≤ ‖u‖4
HN1 (minj {|x−xj,0|}≥ 1

2 }) ≤ (
1

maxj {λj,0} )
4.

(We will choose N2 large enough, and thus N1 < N2
2 can be chosen large enough so that all the desired Sobolev 

embedding holds.)
On the other hand, by the bootstrap hypothesis (3.45), and the assumption on initial data (3.18), we obtain

λ2
j |Eloc(xj (t), u(t))| � λ2

j .

We plug these two estimates into (5.11), and we obtain

|E(εj + Q̃bj
)| � λ2

j

(
1 + (

1

maxj {λj,0} )
4
)

. (5.12)

Finally, by the bootstrap hypothesis (3.43), we have λj (t) � maxj {λj,0} for j = 1, . . . , m. Thus, (5.9) clearly follows 
from (5.12). �
5.1.4. Modulation estimates and estimates by conservation law, restated

In this section we summarize what we have found above.

Lemma 5.4. In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ], and for j = 1, . . . , m

| 1

λj

dλj

dsj
+ bj | + |dbj

dsj
| ≤ C

(∫
|∇εj |2 +

∫
|εj |2e−|y|

)
+ �

1−Cη
bj

, (5.13)

|dγ̃j

dsj
− 1

|Q1|2 (ε
j

1 ,L+Q2| + | 1

λj

dxj

dsj
|

≤ δ(α)(

∫
|∇εj |2e−2(1−η)

θ(bj |y|)
bj +

∫
|εj |2e−|y||) 1

2 + C

∫
|∇εj |2 + �

1−Cη
bj

,

(5.14)

|2(ε
j

1 ,�bj
) + 2(ε

j

2 ,�bj
)| ≤ C

(∫
|∇εj |2 + |εj |2e−|y|

)
+ �

1−Cη
bj

, (5.15)

|(εj

2 ,∇�bj
)| ≤ Cδ(α)(

∫
|∇εj |2 +

∫
|εj |2e−|y|). (5.16)
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Proof. We just need to combine Lemma 5.1, Lemma 5.2, Lemma 5.3. �
5.1.5. Local virial estimate and Lyapounov functional control

Below we combine the orthogonality conditions (3.34), (3.35), (3.36), (3.37), modulation estimates (5.13), (5.14)
and estimates induced by the (local) conservation laws (5.15), (5.16), following the work of Merle and Raphaël to 
obtain the analogue of Lemma 7 in [20].

Lemma 5.5 (Local virial). In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ], and j = 1, . . . , m

dbj

dsj
≥ δ1(

∫
|∇εj |2 +

∫
|εj |2e−|y|) − �

1−Cη
bj

, (5.17)

where δ1 is a universal constant.

Proof. This lemma is highly nontrivial, and it is actually one of the key elements in the work of Merle and Raphaël. 
However, by applying exactly the same argument, which they used to derive Lemma 7 in [20], one can derive

dbj

dsj
≥ δ1(

∫
|∇εj |2 +

∫
|εj |2e−|y|) − �

1−Cη
bj

− C|E(Q̃bj
+ εj )|, j = 1, . . . ,m. (5.18)

Now using estimate (5.9) in Lemma 5.3, one obtains |E(Q̃bj
+ εj )| � λ2−

j , which is negligible compared to �1−Cη
bj

, 
since we have (3.40). Thus, (5.17) clearly follows from (5.18). �

Next, we recover the Lyaponouv functional, which is essential to establish the sharp log–log regime. This is the 
analogue of Proposition 8 in [20].

Lemma 5.6. In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ], and for j=1,. . . , m

dJj

dsj
≤ −Cbj {�bj

+
∫

|∇ ε̃j |2 +
∫

|ε̃j |2e−|y| +
2Aj∫

Aj

|εj |2}, (5.19)

with

Jj :=
(∫

|Q̃bj
|2 −

∫
Q2

)
+ 2(ε

j

1 ,�bj
) + 2(ε

j

2 ,�bj
) +

∫
(1 − φAj

)|εj |2

− δ1

800

⎛
⎜⎝bf̃1(bj ) −

bj∫
0

f̃1(v)dv + b{(εj

2 ,��ζ̃bj
) − (ε

j

1 ,��ζ̃bj
)}

⎞
⎟⎠ ,

(5.20)

where

f̃1(b) := b

4
|yQ̃b|22 + 1

2
�(

∫
y∇ ζ̃b

¯̃
ζb), (5.21)

ε̃j = εj − ζ̃bj
, (5.22)

and φAj
is a non-negative smooth cut-off function, j = 1, . . . , m⎧⎪⎪⎨

⎪⎪⎩
φAj

(x) = 0, |x| ≤ Aj

2 ,
1

4Aj
≤ |∇φAj

| ≤ | 1
2Aj

|,Aj ≤ |x| ≤ 2Aj ,

φAj
(x) = 1, |x| ≥ 3Aj ,

(5.23)

where Aj = A(bj ) = �−a .
bj
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Most parts of the proof follows directly the proof of Proposition 8 in [20], however, some extra technical elements 
need to be treated hence for completeness we will explain the proof in Subsection 5.2.

We have the following control for the scale of the Lyapounouv functional:

Lemma 5.7. In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ], and for j = 1, . . . , m,

Jj

b2
j

= C∗(1 + O(δ(α)), (5.24)

where C∗ is some fixed constant.

Proof. Following the proof of (5.15) in [20], one can derive Jj ∼ b2
j . Further refined analysis, will give (5.24), see 

the formula between (5.24) and (5.25) in [20]. �
5.1.6. Bootstrap estimates except (3.56)

So far, we already have all the ingredients to prove most of the bootstrap estimates. In fact for (3.48), (3.49), 
(3.50), (3.51), (3.52), (3.53) one can follow the arguments of Planchon and Raphaël in [23], which we will review for 
completeness in Subsection 5.4. Here we prove instead (3.54), (3.55). Actually we only show the details for (3.54), 
since (3.55) is similar.

Proof of (3.54). A direct computation (using u that solves (1.1)) shows that for j = 1, . . . , m

|Eloc(xj (t), u(t)) − E(xj,0)|

≤
t∫

0

| d

dτ
Eloc(xj (τ ), u(t))|dτ

≤
T∫

0

| d

dt
Eloc(xj (t), u(t))|dt

≤E1 + E2,

(5.25)

where

E1 =
T∫

0

∫
R2

|
(

1

2
|∇u|2 − 1

4
|u|4

)
∇χ0,loc(x − xj (t))

dxj

dt
|, (5.26)

E2 =
T∫

0

∫
1

2
|∇χ0,loc(x − xj (t))

(
2i��u∇ū + 2i�|u|2u∇ū

)
|. (5.27)

Recall that χ0,loc(x − xj ) vanishes for 3
4 ≤ |x − xj | ≤ 1. Using the bootstrap hypothesis (3.44), and Sobolev embed-

ding, we obtain∫
|
(

1

2
|∇u|2 − 1

4
|u|4

)
∇χ0(x − xj (t))

dxj

dt
|� ‖u‖4

HN(minj {|x−xj,0|}≥ 1
2 )

,∫
1

2
|∇χ0(x − xj )

(
�u∇ū − ∇u�ū + |u|2u∇u − |u|2ū∇u

)
|� ‖u‖4

HN(minj {|x−xj,0}≥ 1
2 )

.

(5.28)

Thus,

E1 + E2 �
T∫
(1 + d

dt
xj )‖u‖4

HN(minj {|x−xj,0|}≥ 1
2 )

. (5.29)
0
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By the bootstrap hypothesis (3.47), we have that

‖u‖4
HN(minj |x−xj,0|≥ 1

2 )
≤ 1

maxj {λj,0} .

Note also that by the bootstrap hypothesis (3.43), also 1
maxj {λj,0} �

1
λj (t)

1
2 for all j .

By the modulation estimate (5.14), | 1
λj

dxj

dsj
| � 1. Thus, | dxj

dt
| = | 1

λ2
j

dxj

dsj
| � 1

λj
, hence

E1 + E2 �
T∫

0

1

λj (t)1.5
dt � λ0.1

j,0

T∫
0

λj (t)
1.6. (5.30)

Here we use λj (t) � λj,0, i.e. (3.43).
Finally we have for j = 1, . . . , m that

T∫
0

1

λ
μ
j

� Cμ,∀μ < 2. (5.31)

This is the analogue of (4.1), and it follows exactly the same proof that only relies on the bootstrap hypotheses (3.40), 
(3.41). Clearly (5.30) and (5.31) end the proof. �
5.1.7. Propagation of regularity and end of bootstrap estimate

To end the bootstrap estimate, we still have to show (3.56), and it will be done in Subsection 5.3.

5.2. Recovering the Lyapounouv functional under bootstrap hypothesis

This subsection is devoted to the proof of Lemma 5.6. We emphasize again that this proof follows the computation 
in [20] except for two points:

– We do not use the global energy, and all those λ2E terms in [20] are replaced by E(εj + Q̃bj
).

– In the definition of the original Lyapounov functional J in (1.56), there is a term ‖Q̃b‖2
2 − ‖Q‖2

2 + (ε1, �) +
(ε2, �) + ‖ε‖2

2, that is actually a constant in [20], thanks to the conservation of L2 mass. In our case, since we 
analyze the dynamics locally, the natural substitution is the local mass, which is no longer a constant. So we need 
to show that the local mass is slowly varying.

We need the following two lemmas.

Lemma 5.8 (Analogue of Lemma 6 in [20]). In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ]
for some universal constant δ1 and j = 1, . . . , m

d

dsj
f

j

1 ≥ δ1

(∫
|∇ ε̃j |2 +

∫
|ε̃j |2e−|y|

)
+ c�bj

− 1

δ1

2Aj∫
Aj

|εj |2, (5.32)

with

f
j

1 (s) = bj

4
‖yQ̃bj

‖2
2 + 1

2
�

(
y∇ ζ̃bj

¯̃
ζbj

)
+ (ε

j

2 ,��ζ̃bj
) − (ε

j

1 ,��ζ̃bj
). (5.33)

Proof. This lemma is one of the most fundamental points in [20]. We quickly recall its proof. If 1
λ(t)

(Qb +
ε)(

x−x(t)
λ(t)

)e−iγ solves (1.1), then one is able to derive two equations for ε := ε1 + iε2, i.e. (1.40), (1.41).

Then one takes the inner product of (1.41) with �(�b + ��ζ̃ ) and of (1.41) with −�(−�b + ��ζ̃ ) and sums. 
The detailed computation is displayed in Appendix B of [20].
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Here we follow exactly the same procedure. We pick j = 1, . . . , m and we recall that by definition,

1

λj

(Q̃bj
+ εj )(

x − xj

λj

)e−iγj = χ1,loc(x − xj )u,

and χ1,loc(x − xj )u almost solves (1.1). One may derive similar equations for εj (y) = ε
j

1(y) + iεj (y) as in (1.40), 
(1.41) with some extra terms in right hand side. Since χ1,loc(x − xj ) ≡ 1 in |x − xj | ≤ 2

3 , these extra terms are 
supported in |y| ≥ 1

2λj
(i.e. |x − xj | ≥ 1

2 ). Since Q̃bj
, ζ̃bj

is supported in |y| ≤ �−a
bj

and by the bootstrap hypothesis 

(3.40), �−a
bj

� 1
λj

, then when one pairs these equations with �(�bj
+ ��ζ̃bj

) or −�(−�bj
+ ��ζ̃bj

), these extra 
terms automatically cancel.

As a consequence all the algebraic computations in the appendix B of [20] follow. There is one more difference 
compared to Appendix B of [20]. There the authors use the energy conservation (formula (4.17) in [20]), here instead 
we need to replace term λ2E0 in that formula by the term E(εj + Q̃bj

). Once this is done we follow the argument in 
[20] to recover the virial type estimate

d

dsj
f

j

1 ≥ δ1

(∫
|∇ ε̃j |2 +

∫
|ε̃j |2e−|y|

)
+ c�bj

− 1

δ1

2Aj∫
Aj

|εj |2 − CE(εj + Q̃bj
), j = 1, . . . ,m. (5.34)

By Lemma 5.3 and the bootstrap hypothesis (3.40), we obtain

|E(εj + Q̃bj
)| � λ2−

j � �10
bj

, (5.35)

and as a consequence formula (5.32). �
We have the following Lemma.

Lemma 5.9 (Analogue of Lemma 7 in [20]). In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ], 
and for j = 1, . . . , m

d

dsj
{
∫

|φAj
|εj |2} ≥ bj

400

2Aj∫
Aj

|ε|2 − �
1+z0
bj

− �
a
2
bj

∫
|∇εj |2. (5.36)

Proof. The proof follows as the proof of Lemma 7 in [20] except, as above, for replacing λ2E with E(εj + Q̃bj
), 

which is much smaller than �100
bj

by the bootstrap assumption, and thus negligible. �
The following lemma illustrates the fact that the local mass is slowly varying with respect to the rescaled time vari-
able sj .

Lemma 5.10 (Slow varying of local mass). With the same assumptions as in Lemma 3.1, the following estimate holds

| d

dsj
{
∫

|Q̃bj
|2 + 2(ε

j

1 ,�bj
) + 2(ε

j

2 ,�bj
) +

∫
|εj |2}| ≤ �10

bj
. (5.37)

Proof. First we observe that

{
∫

|Q̃b|2 + 2(ε1,�) + 2(ε2,�) +
∫

|ε|2} ≡ ‖Q̃bj
+ εj‖2

2. (5.38)

By (3.28), one has the geometric decomposition

u(t, x) =
m∑ 1

λj

Q̃bj
(
x − xj

λj

)e−iγj + �. (5.39)

j=1
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Also recall that εj (y) = χ1,loc(λjy)εj (y) and that Q̃bj
is supported in |x| � 2

bj
. Note that by the bootstrap assumption 

(3.40), 1
λj

� 1
bj

. We then obtain

‖Q̃bj
+ εj‖2

2

= ‖Q̃bj
χ1,loc(λy) + εjχ1,loc(λy)‖2

2 = ‖u(χ1,loc(x − xj ))‖2
2.

(5.40)

Thus,

| d

dsj
{
∫

|Q̃bj
|2 + 2(ε

j

1 ,�bj
) + 2(ε

j

2 ,�bj
) +

∫
|ε|2}|

� |dxj

dsj
|‖u‖2

2 + 2λ2
j

∫
2
3 ≤|x−xj |≤ 3

4

|∇χ1,loc||u||∇u|. (5.41)

Recall now that d
dsj

= λ2
j

d
dt

. The first term on left hand side is controlled by the modulation estimate (5.14), and the 
conservation of mass ‖u(t)‖2 = ‖u0‖2,

|dxj

dsj
|‖u‖2

2 � | 1

λj

dxj

dsj
|λj . (5.42)

The second term on the left hand side is controlled by the bootstrap assumption (3.47),

2λ2
j

∫
2
3 ≤|x−xj |≤ 3

4

|∇χ1,loc||u||∇u| � λ2
j . (5.43)

We finally use the bootstrap assumption (3.40) to control λj and the desired estimate easily follows. �
Now we are in good position to finish the proof of Lemma 5.19.

Proof of Lemma 5.19. With Lemma 5.32 and Lemma 5.9, we follow the proof of Proposition 4 in [20] and we obtain

d

dsj

⎛
⎜⎝∫

−φA|εj |2 − δ1

800

⎛
⎜⎝bf̃1(bj ) −

bj∫
0

f̃1(v)dv + b{(εj

2 ,��ζ̃bj
) − (ε

j

1 ,��ζ̃bj
)}

⎞
⎟⎠

⎞
⎟⎠

≤ −C

(∫
|∇εj |2 + |εj |2e−|y|

)
+ �

1−Cη
bj

.

(5.44)

Now plug in the estimate in Lemma 5.10 above and the desired estimate follows. �
5.3. Propagation of regularity under bootstrap hypothesis

This subsection mostly follows from the arguments in Section 4, indeed, the reason why we write Section 4 is to 
make this subsection more accessible.
First, the analogue of (4.1) holds,

Lemma 5.11. In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ]
t∫

0

⎛
⎝ m∑

j=1

1

λ
μ
j (τ )

⎞
⎠dτ �

⎧⎨
⎩

Cμ,μ < 2,∑m
j=1

| ln λj (t)|101

λj (t)μ−2 ,μ ≥ 2.
(5.45)

Proof. The proof of (5.45) only relies on the bootstrap hypothesis (3.40), (3.41), and it is similar to the proof of 
(4.1). �
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We again introduce a sequence of cut-off functions12 {χl}Ll=0

χl =
{

0, |x − xj,0| ≤ al, j = 1 or 2,

1, |x − xj,0| ≥ bl, j = 1 and 2,
(5.46)

such that al < bl < al−1, a0 = 1
250 � 1, bL = 2

5 < 1
2 .

The idea is (again) that we want to retreat from χl−1u to χlu for each l, showing that χlu has higher regularity than 
χl−1u. We still use the notation vi = χiu.
The key to gain regularity in Section 4 is formula (4.3). Similar estimates also hold here:

Lemma 5.12. In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ],
T∫

0

‖∇(χ0u(t))‖2dt � 1. (5.47)

Proof. First recall that by the bootstrap hypothesis (3.44), if x ∈ suppχ0, then minj {|x − xj |} ≥ 1
500 . Thus we need 

only to control

T∫
0

∫
minj {|x−xj |}≥ 1

500

‖∇(χ0u)‖2
2.

Secondly, since u is bounded in L2 and T is bounded (indeed T < δ(α), see Remark 3.3), we need only to control

T∫
0

∫
minj {|x−xj |}≥ 1

500

‖∇u‖2
2.

Indeed

T∫
0

∫
minj {|x−xj |}≥ 1

500

|∇u|2

≤
T∫

0

∫
minj {|x−xj |}≥ 3

5

|∇u|2 +
T∫

0

m∑
j=1

∫
1

500 ≤|x−xj |≤ 3
5

|∇u|2

:=E1 + E2.

(5.48)

The first term is controlled by the bootstrap hypotheses (3.47) and (3.43). In fact we easily have:

E1 �
T∫

0

min
j

{| lnλj,0|}

�
T∫

0

∑
j

| lnλj (t)|

�1.

(5.49)

12 We still use the notation of χ , but the definition of χ is different from Section 4.
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In last step we have applies (5.45). The second term E2 is estimated by using the Lyapounov functional Jj in (5.19). 
This is actually one of the key estimates in [19]. We recall it here. Note that

χ1,loc(x) ≡ 1 for |x| ≤ 2

3
and χ1,loc(x − xj ) = 1

λj

(Q̃bj
+ εj )(

x − xj

λj

)e−iγj .

We make the observation that since λj � e−e

π
10bj

by the bootstrap hypothesis (3.40), when |x − xj | ≥ 1
500 we have 

Q̃bj
(
|x−xj |

λj
) ≡ 0, since suppQ̃bj

⊂ {|y| � 1
bj

}. Similarly, in this region the radiation term ζ̃bj
(
x−xj

λj
) also vanishes. 

Thus, for j = 1, . . . , m

E2 =
∫

1
500 ≤|x−xj |≤ 3

5

|∇u|2 =
∫

1
500 ≤|x−xj |≤ 3

5

|∇ 1

λj

(Q̃bj
+ εj )(

x − xj

λj

)e−iγj |2

= λ−2
j

∫
1

500λj
≤|x|≤ 3

5λj

|∇εj |2 = λ−2
j

∫
1

500λj
≤|x|≤ 3

5λj

|∇ ε̃j |2.
(5.50)

As a consequence

E2 ≤
sj (t2)∫

sj (t1)

|∇ ε̃j |2 � supt∈[0,T )

√
Jj ∼ bj � 1. (5.51)

In the last step, we use (5.19) and the fact that the Lyapounov functional Jj ∼ b2
j , see Lemma 5.7. This is enough to 

end the proof. �
We now again use I-method to recover a rough control:

Lemma 5.13. In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ],

‖u(t)‖HN2 �σ

⎛
⎝∑

j

1

λj (t)

⎞
⎠

N2+σ

. (5.52)

Proof. Without loss of generality, we only show (5.52) for t = T . We remark that if one defines λ̃ = minj {λj }, then 

‖u(t)‖H 1 ∼ 1
λ̃(T )

, and (5.52) is equivalent to ‖u(t) ∼
(

1
λ̃(t)

)N2+σ

.

The proof is almost the same as the proof of (4.37) in Lemma 4.1. Following Remark 4.4 we only need to show that 
we can divide [0, T ] into disjoint intervals ∪Ik,h, such that

– ‖u(t)‖H 1 ∼ 2k for t ∈ Ik,j .
– |Ik,h| ∼ 1

22k , ∀k, h.

– �{Ik,h} � (| ln λ̃(T )|)3.

These clearly follow from the facts below. Fix j , we can divide [0, T ] into disjoint intervals ∪I
j
k,h, such that

– λj (t) ∼ 2−k for t ∈ Ik,j

– |I j
k,h| ∼ 1

22k

– �{I j
k,h} � (| lnλj (T )|)3

Now we prove these facts. Then by the bootstrap hypothesis (3.43), we can divide [0, T ] into 0 = tk0 < . . . tk <

. . . tK(T ) = T such that λ1(t) ∼ 2−k for t ∈ [tk, tk+1], then relying on the bootstrap hypothesis (3.40), (3.41), similarly 
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as in the proof of Lemma 4.6, one can show that tk+1 − tk ≤ √
kλ

2(tk)
1 ∼ √

k2−2k . This estimate is enough for us to 
further divide [tk, tk+1] into disjoint intervals ∪Jh

h=1[τh
k , τh+1

k ] such that our desired Ik,h can be chosen as [τh
k , τh+1

k ], 
see (4.16), (4.17). �

We now remark that the bootstrap estimate (3.56) follows from the lemma below.

Lemma 5.14. In the setting of Lemma 3.1, the following estimates hold for t ∈ [0, T ],

1. ∀ν < 1, ‖v1‖Hν � 1.
2. If there holds estimate for some r > 0, and some 1 ≤ i ≤ L − 1

‖vi‖Hr � 1, (5.53)

then we will have a gain of regularity on vi+1,

∀r̃ <
2(K2 − r)

K2
− 1 + r,‖vi‖Hr̃ � 1. (5.54)

The proof follows as the proof of Lemma 4.2, Lemma 4.3, Lemma 4.4, Lemma 4.5, see also Proof of (2.5) in 
Lemma 2.2.

5.4. Proof of bootstrap estimate except (3.56), (3.54), (3.55)

The proof of these estimates can be found (up to a small modification) in [23,26] and the references therein. See in 
particular Proposition 1 in [26]. We quickly review those estimates for the convenience of the readers.

5.4.1. Proof of (3.48)
We bound the left hand side of (3.48) by Cα. The control of bj directly follows from the bootstrap hypothesis 

(3.41), which implies 0 ≤ bj ≤ 10π
ln sj,0

� bj,0 and we note that by the initial condition (3.14), we have bj,0 ≤ α. Thus 

|bj | � α � α. The control of ‖∇εj‖2 follows from the bootstrap hypothesis (3.42), therefore we have ‖∇εj‖2 �
γ

1
100

bj
� α. The control of ‖εj‖2 comes from the L2 conservation law. Indeed

m∑
j=1

‖εj‖2
2 +

m∑
j=1

‖Q̃bj
‖2

2 ≤ ‖u‖2
2 + O

⎛
⎝ m∑

j=1

(|εj |, |Q̃bj
|)
⎞
⎠ .

Note that

(|εj |, |Q̃bj
|) ≤

∫
|∇εj |2 +

∫
|εj |2e−|y|, (5.55)

‖Q̃bj
‖2

2 = ‖Q‖2
2 + O(|bj |2), (5.56)

‖u‖2
2 = ‖u0‖2

2. (5.57)

Thus the control of ‖∇εj‖2 follows easily from the bootstrap hypothesis (3.42) and our choice of initial data.

5.4.2. Proof of (3.49), (3.50)
We first show (3.50). It follows from the local virial estimate (5.17) and the control of the Lyapounouv functional 

(5.19). We first show the lower bound of (3.50). Note that by (5.17), one obtains dbj

dsj
≥ −�

1−Cη
bj

, which implies

⎛
⎝de

π(1−Cη)
bj

dsj

⎞
⎠ ≤ 1.

Recall that sj ≥ sj,0 ≡ e
3π

4bj,0 , thus we have:
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e
π(1−Cη)

bj ≤ sj − sj,0 + e
π(1−Cη)

bj,0 ≤ sj + e
π(1−Cη)

bj,0 ≤ s
4
3
j . (5.58)

Therefore one obtains bj,0 ≥ π
5 ln sj

, which is the lower bound of (3.50).
Now we turn to the upper bound of (3.50). The control (5.19) for the Lyapounov functional directly implies

dJj

dsj
≤ −Cbj�bj

. (5.59)

From Lemma 5.7, we know that there exists a C∗ such that

Jj

b2
j

= C∗(1 + O(δ(α)). (5.60)

Let gj = √
Jj , then by combining (5.59) and (5.60), one obtains:

dgj

dsj
= 1

2

dJj

sj

1

gj

≤ −Cgj × 1

2
C∗e

π(1+Cη)
√

C∗(1−O(δ(α))
gj . (5.61)

One obtains

d

dsj

(
e

π
√

C∗(1+O(δ(α)))
gj

)
≥ 1. (5.62)

Thus

e
π(1+O(δ(α)))

bj ≥ sj − sj,0 + e
π(1+O(δ(α)))

bj,0 ≥ sj , (5.63)

where we recall that sj,0 = e
3π

4bj,0 . This implies the lower bound of (3.50).
Now we turn to the proof of (3.49). By (5.58), (5.63), we have

3π

4 ln sj
≤ bj ≤ 4π

3 ln sj
. (5.64)

We only show the upper bound of (3.49), the lower bound will be similar.
The computation follows from the proof of Lemma 6 in [25], in fact formula (2.68) mentioned in that lemma is 

exactly the upper bound we want.
The modulation estimate (5.5) plus the bootstrap hypothesis (3.42) imply that

| 1

λj

dλj

dsj
+ bj | ≤ C�

1
2
bj

. (5.65)

Thus

dλj

dsj
= −(1 + O(δ(α)))bj ,

and from here

λj ((t)) ≤ λj (sj (t)) ≡ λj (sj ) ≤ λj,0 +
s∫

sj,0

1

2 ln s
.

(Note that according to our notation λj,0 = λj (sj,0).)
A direct calculation implies that

− lnλj (sj ) ≥ −1

2
lnλj (sj,0) + π

3

s

lns
,

which further implies that sjλ(sj ) ≤ e−e

3π
8bj

. (See (3.106), (3.107) in [25] for more details.)
This already implies our desired upper bound.
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5.4.3. Proof of (3.51)
This is exactly the step 3 of the proof of Proposition 5 in [20], called pointwise control of ε by b.

5.4.4. Proof of (3.52)
The modulation estimate (5.5) plus the bootstrap hypothesis (3.42) imply

| 1

λj

dλj

dsj
+ bj | ≤ C�

1
2
bj

. (5.66)

Thus

dλj

dsj
= −(1 + O(δ(α)))bjλj < 0

(since bj > 0 due to hypothesis (3.41)). This clearly implies (3.52).

5.4.5. Proof of (3.53)
This easily follows from the modulation estimate (5.6) and the bootstrap hypotheses (3.40) and (3.41), as in [23]. 

We quickly review it for completeness.
For all t ∈ [0, T ],

|xj − xj,0| ≤
t∫

0

|dxj

dt
|dt

=
t∫

0

dxj

dsj

1

λ2
j

dt=
sj (t)∫

sj,0

| 1

λj

dxj

dsj
|λjds.

(5.67)

Note that by (5.6), | 1
λj

dxj

dsj
| ≤ δ(α), and by (3.40) and (3.41), one has λj (s) ≤ s−100

j . Thus one clearly has |xj −xj,0| �
δ(α), which easily implies (3.53).

Remark 5.1. The above computation indeed shows

T +(u)∫
0

|dxj

dt
|dt < ∞, (5.68)

which of course implies limt→T + xj (t) exists.

6. Proof of Main Theorem

We will need several parameters throughout the whole section.

1 � a0 � a1 � a2 > 0.

Recall our goal is to construct log–log blow up solution u, which blows up at m prescribed points x1,∞, . . . xm,∞, 
and has asymptotic near blow up time as (1.11). We will still focus on dimension d = 2. And since we have scaling 
symmetry, we assume without loss of generality

|xj,∞ − xj ′,∞| ≥ 20, j = j ′. (6.1)

It is clear that by Lemma 3.1, all initial data u0 describe in Subsection 3.1, the associated solution u have the following 
geometric decomposition for t < T +(u).

u(t, x) =
∑ 1

λj (t)
Q̃bj

(
x − xj (t)

λj

)e−iγj (t) + �(t, x), (6.2)

j
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such that for each j ,

χ1,loc(x − xj )u(t, x) ≡ 1

λj

(Q̃bj
+ εj )(

x − xj

λj

)e−iγj ,

and � ≡ (1 − ∑
j χ1,loc)u in the region {x||x − xj,0| ≥ 1

2 , j = 1, . . . , m} and bounded in HN1 in this region.
To finish the construction in Theorem 1.1, we need to construct initial data u0 such that

– (a) The associated solution u blows up in finite time according to the log–log law.
– (b) The m points blows up simultaneously, i.e.

λj (t)
t→T +−−−−→ 0, j = 1, . . . ,m. (6.3)

– (c) The blow up points are as prescribed, i.e.

xj (t)
t→T +−−−−→ xj,∞. (6.4)

It is easy to check once we get (a), (b), (c), then other requirements in the Theorem 1.1 will be automatically satisfied. 
To see this, just observe

1. λj → 0 ⇒ bj → 0 since we have (3.49).
2. Thus, Q̃bj

converges strongly to Q in the sense of (1.29).
3. εj is bounded in L2 by (3.48) and converges to 0 in Ḣ 1 as bj → 0 by (3.51).

Now let us turn to condition (a), (b), (c). Indeed, Lemma 3.1 already implies for all data u0, the associated solution u
will blow up in finite time with log–log blow up rate

‖∇u(t)‖2 ∼
√

ln | lnT − t |
T − t

. (6.5)

Not all data described as in Subsection 3.1 will give a solution satisfy condition (b), (c). Morally speaking, the initial 
data in Subsection 3.1 has two types of parameters, λj,0 and xj,0. λj,0 describes how concentrated the j-th bubble 
is and the xj,0 describes the initial position of j th bubble. Lemma 3.1 says the m bubbles evolve with very weak 
interaction with each other. Thus, we need to choose λj carefully to make all the bubbles to blow up at the same time, 
and choose initial position xj,0 to make the bubbles blow up at the prescribed points xj,∞. This is achieved by certain 
topological argument. If one does not want to prescribed the blow up points and only wants to get condition (b), an 
argument similar to the topological argument in [4] will suffice. However, if one wants to further prescribe the blow 
up points, then the problem is actually more tricky, since the choice of λj,0 and xj,0 will be coupled.

Before we continue, we point out it is not hard to show limt→T + xj (t) exists. Indeed, as remarked, we actually 
have

T +∫
0

|dxj

dt
|dt < ∞. (6.6)

The hard part here is to prescribe the limit, i.e. for given x1,∞, . . . xm,∞, we want to construct solution such that

lim
t→T + xj (t) = xj,∞. (6.7)

6.1. Preparation of data

Let us first fix a smooth-cut off function

χ(x) =
{

1, |x| ≤ 1,

0, |x| ≥ 2.
(6.8)
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Let u0 = 1
λ0

Q̃b0(
x
λ0

) + ε0 as described in Subsection 2.1. Note Lemma 1.7 and Lemma 2.2 hold for those data. We 
need to choose K2 large enough for later use. We also require u0 be radial. The associated solution will have the 
geometric decomposition

u(t, x) = 1

λ(t)
(Q̃b(t) + ε(t))(

x

λ(t)
)e−iγ (t) (6.9)

such that the conclusion of Lemma 1.7 and Lemma 2.2. And in the spirit of Remark 1.15, we may further sharpen the 
initial condition such that u further satisfies∫

|∇ε|2 + |ε|2e−|y| ≤ �
1−a2
b , e−e

(1+a2)π

b ≤ λ(t) ≤ e−e
(1−a2)π

b
.

Recall a2 is the parameter we have fixed at the beginning of this Section.
Note λ, b, γ, ε(t) depend on t in an continuous way. u(t, x) can be understood as a family of data continuously 

depending on t . By (1.69) and (1.67), we obtain −λs

λ
≥ 1

2b > 0, since λt = λ2λs < 0. Thus, the map from t → λ(t) is 
a homeomorphism. Thus u(t, x) in (6.9) can also be understood as a family of data indexed by λ. To summarize, we 
have a family of data index by λ small enough,

uλ(x) = 1

λ
(Q̃b(λ) + ε(λ))(

x

λ
)e−iγ (λ), (6.10)

with

λ + b < α/10, b > 0, ee
− (1+a2)π

b
< λ < ee

− (1−a2)π

b
,∫

|x|≤ 10
λ(t)

‖∇ε(t)|2 + |ε(t)|2 ≤ �
1−a2
b(t) ,

λ2|
∫

χ0,loc(x − x(t))

(
1

2
|∇u(t)|2 − 1

4
|u|4

)
| ≤ �10000

b(t) ,

λ(t)|�
∫

χ0,loc(x − x(t)) (∇u(t)ū(t))| ≤ �10000
b(t) ,‖u(t)‖

HN2 (|x−x1,0|≥ 1
10000 )

≤ α/10,

(6.11)

and b, γ, ε depending on λ continuously. Recall χ0,loc is defined in (3.1).
We will consider a family of data

u0,λ,x ≡ uλ1,0,λ2,0,..λm,0,x1,0,x2,0,..xm,0

≡
m∑

j=1

χ(x − xj,0)uλj,0(x − xj,0).
(6.12)

Here uλ is defined as in (6.10). And we also require |xj,0 − xj,∞| ≤ 1. Note this implies |xj,0 − xj ′,0| ≥ 10, j = j ′, 
since we have (6.1).

Now let us consider (1.1) with initial data u0,λ,x . Lemma 3.1 will work for u0,λ,x . Thus the associated solution 
uλ.x will satisfy the geometric decomposition in its lifespan

uλ,x(t, x) = 1

λj,λ,x
Q̃bj,λ,x (

x − xj,λ,x

λj,λ,x
)e−iγj,λ,x + �λ,x (6.13)

and all the bootstrap estimates in Lemma 3.1 holds. For notation convenience, we will write uλ,x as u, write λj,λ,x

as λj , write xj,λ,x as xj , write γj,λ,x as γj .
Again, in the spirit of Remark 1.15, we can further sharpen the condition on (6.11), i.e. make a2 small enough, 

such that

e−e

(1+a1)π

bj ≤ λj ≤ e−e

(1−a1)π

bj
. (6.14)
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6.2. log–log blow up and almost sharp blow up dynamic

We first show the solution u with initial data uλ,x blows up according to the log–log law, indeed, we show every 
bubble itself evolves according to the log–log law, and for later use, we need the almost sharp dynamic, and keep in 
mind condition our data has already been sharpened so that (6.14) holds for the associated solution.

Lemma 6.1. Let u be the solution with initial data uλ,x as in (6.12), then for each j = 1, . . .m, there is a Tj such that

λ2
j,0 ln | lnλj,0| = 2π (1 + O(a1)) Tj , (6.15)

λj (t)
2 ln | lnλj (t)| = 2π (1 + O(a1)) (Tj − t). (6.16)

In particular, since the blow up rate is modeled by minj λj , we have that the solution blow up in finite time T + and

‖∇u(t)‖2 ∼
√

ln | ln(T + − t)|
T + − t

. (6.17)

Remark 6.1. We implicitly require α to be small enough, as the whole paper.

Remark 6.2. Note Lemma 3.1 says the m bubbles evolve according to the log–log law without really seeing each 
other. Tj is the time that the j th bubble which is supposed to blow up. The solution will blow up at T + = minj Tj , 
and the dynamic will be stopped at T +. In particular, if Tj > Tj ′ , then it means j ’th bubble ‘blows’ up faster than j th 
bubble, though they may both not blow up.

Remark 6.3. The proof of Lemma 6.1 needs to use the bootstrap estimate rather than bootstrap hypothesis in 
Lemma 3.1 since we need to get control in term of O(a1). It is not hard to see one can argue as the proof below, 
and with bootstrap hypothesis rather than bootstrap estimate to show

λ2
j,0 ln | lnλj,0| ∼ Tj , (6.18)

λj (t)
2 ln | lnλj (t)| ∼ (Tj − t) (6.19)

which in particular shows the associated solution u blows up in finite time T + < δ(α).

Proof of Lemma 6.1. We will follow the computation in [20], which is used to show the exact log–log law.

| 1

λj

dλj

dsj
+ bj | ≤ �

1
2 −Cη

bj
, (6.20)

which immediately implies

(1 − δ(α))bj ≤ − 1

λj

dλj

dsj
≤ (1 + δ(α))bj . (6.21)

Note also (6.14) implies

bj = (1 + O(a1))π

ln | lnλj | . (6.22)

Thus

d

dt
λ2

j ln | lnλj | = 2
dλj

λ2
j ds

λj ln | lnλj |(1 + δ(α)) = 2 (1 + δ(α))
dλj

λjdsj
ln | lnλj |. (6.23)

Now, plug in (6.21) and (6.22), and choosing α small enough, we get

d

dt
λ2

j ln | lnλj | = −2π (1 + O(a1)) . (6.24)

which immediately implies (6.15), (6.16). �
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6.3. A quick discussion of blow up at same time

Now, we have a family of data uλ,x , and the strategy is to adjust parameters to make the m bubbles to blow up at 
the same time at the prescribed position. If one only wants to make the m bubble to blow up at same time and does 
not track the final blow up points, then a topological argument similar to the one in [4] will be enough. We quickly 
illustrate this. We will fix x1,0, . . . xm,0 and λ1,0. And we will adjust λ2,0, . . . λm,0 to make the m bubbles blow up 
simultaneously.

Lemma 6.2. Fixed x1,0, . . . xm,0 and λ1,0 (|xj,0 − xj ′,0| ≥ 10, j = j ′), there exist (β2,0, . . . βm,0) ∈ [(1 − a0)λ1,0, (1 +
a0)λ1,0]m−1 such that, the associated solution u to (1.1) with initial data uλ1,0,β2,0,..βm,0,x1,0,...xm,0 as in (6.9), will blow 
up simultaneously at m points, i.e.

λj (t) ∼ λj ′(t), t ∈ [0, T +). (6.25)

For notation convenience, we write uλ1,0,β2,0,..βm,0,x1,0,...xm,0 as uβ2,...βm , and we further write uβ2,0,..βm,0 as uβ . We 
rewrite (6.13) as

uβ(t, x) =
m∑

j=1

1

λj,β(t)
Q̃bj,β (t)(

x − xj,β(t)

λj,β
)e−iγj,β (t) + �β(t, x). (6.26)

Now we prove Lemma 6.2 by contradiction. Assume (6.25) is not true for any β ∈ [(1 − a0)λ1,0, (1 + a0)λ1,0]m−1. 
We consider several maps as following:

– Let F(t, β) ≡ F(t, β2, . . . , βm) ≡ (
λ2,β (t)

λ1,β (t)
, 

λ3,β (t)

λ1,β (t)
, . . . , 

λm,β (t)

λ1,β
).

– Let Tβ be the first time F(t, β) hits ∂[(1 − a0), (1 + a0)]m−1.
– Let G(β) be F(Tβ , β).

Here β ∈ [(1 − a0)λ1,0, (1 + a0)λ1,0]m−1.
Since we assume (6.25) is not true for any β ∈ [(1 − a0)λ1,0, (1 + a0)λ1,0]m−1, then Tβ is always well defined, 

i.e. Tβ < ∞. The key point here is that Tβ depends on β continuously. Assume this for the moment and let us 
finish the proof by deriving a contradiction. Note that F is clearly continuous (by standard well posedness theory 
of NLS). Since we assume that Tβ depends on β continuously, G is also continuous. Make the observation Tβ = 0
for β ∈ ∂[(1 − a0)λ1,0, (1 + a0)λ1,0]m−1, and then it is easy to see G|∂[(1−a0)λ1,0,(1+a0)λ1,0]m−1 is an homeomorphism

from ∂[(1 − a0)λ1,0, (1 + a0)λ1,0]m−1 to ∂[(1 − a0), (1 + a0)]m−1. Then we have constructed a continuous map from 
[(1 − a0)λ1,0, (1 + a0)λ1,0]m−1 to ∂[(1 − a0), (1 + a0)]m−1 such that its restriction on [(1 − a0)λ1,0, (1 + a0)λ1,0]m−1

is a homeomorphism, which is clearly false by classical Homology theory. A contradiction!
We need to check Tβ does depend on β continuously. Note that by LWP of NLS, the map F(t, β) is continuous 

and differentiable. Thus, to show that Tβ depends on β continuously, we need only to show that ∂tF (Tβ , β) points 

outward ∂[1 − a0, 1 + a0]m−1. In order to show this, without loss of generality, we assume λ2,β

λ1,β
(Tβ) = 1 + a0 and 

check

d

dt
(
λ2,β

λ1,β
)(Tβ) > 0.

This clearly follows from the fact that

1

λ2,β

d

dt
λ2,β − 1

λ1,β

d

dt
λ1,β > 0,

which is equivalent to

− 1

(λ1,β)3

d

ds1
λ1,β > − 1

(λ2,β)3

d

ds2
λ2,β , (6.27)

when t = Tβ . Note that by (6.21) and (6.22) (again, we will choose α small enough),
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− 1

(λj,β)3

d

dsj
λj,β = (1 + O(a1))

1

(λj,β)2

1

ln | lnλj,β | . (6.28)

Note λ2,β

λ1,β
(Tβ) = 1 + a0, and a0 � a1, (6.27) follows once one plugs in (6.28).

This concludes the proof of Lemma 6.2.

6.4. Prescription of blow up points

To prescribe the blow up points, i.e., to make the solution blows up exactly at the given points x1,∞, . . . xm,∞ is 
more tricky. We will need a topological argument inspired by [14], see also [23]. Morally speaking, we are dealing 
with a family of initial data with parameters λ1,0, λ2,0, . . . λm,0, x1,0, . . . xm,0, and the goal is to adjust those parameters 
to make the solution blow up at m points and the m points should be the given x1,∞, . . . xm,∞. The analysis in 
Subsection 6.3 basically says for any given initial parameter x1,0, . . . xm,0, one will be able to find λ1,0, . . . λm,0 to 
make the solution blow up at m points. If one can choose λ1,0, . . . λm,0 according to x1,0, . . . xm,0 in a continuous 
way, then the argument in [14] will be able to help us adjust x1,0, . . . xm,0 to make the m blow up points be exactly 
the prescribed x1,∞, . . . xm,∞. However, with our arguments in Subsection 6.3, the choice of λ1,0, . . . λm,0 is not even 
uniquely determined by the x1,0, . . . xm,0. Though this can be somehow fixed, it is very unclear whether one can 
choose λ1,0, . . . λm,0 in a continuous way13 according to x1,0, . . . xm,0. Before we continue, let us first make several 
important observations

– The sharp dynamic of log–log blow up is known, we should make full use of it.
– The impact of parameters of x1,0, . . . xm,0 is of lower order than λ1,0, . . . λm,0.

Our strategy is to choose all the parameters x1,0, . . . xm,0, λ1,0, ..λm,0 simultaneously to make the solutions blow up at 
exactly m points x1,∞, . . . xm,∞. Finally, at the technique level, in [14] and [23], they rely on the following topological 
lemma (they call it index Theorem).

Lemma 6.3. Let f be a continuous map from Rn to Rn, let r > 0 and suppose

|f (y) − y| < |y|,∀y ∈ ∂Br . (6.29)

Then there is y0 ∈ Br such f (y0) = 0.

We will need a modified version

Lemma 6.4. Let f be a map from 	 ⊂ Rn to Rn. Let 	 be a convex domain and let ∂	 be a closed surface which 
is homeomorphic to the sphere. We assume the original point is in the 	. Let us further assume for each y in ∂	, we 
have

0 /∈ {(1 − t)y + tf (y)|t ∈ [0,1]}. (6.30)

Then 0 ∈ f (	̄).

We will prove Lemma 6.4 in Appendix B, we point out Lemma Appendix B actually implies Lemma 6.3.
Now, we turn to the prescription of blow up points. As previous mentioned in (6.1), we assume

|xj,∞ − xj ′,∞| ≥ 20, j = j ′. (6.31)

We will still consider the data as in (6.9) and we will fix λ1,0 and adjust parameters λ2,0, . . . λm,0, x1,0, . . . xm,0 to 
make the m bubbles blow up at the same time in x1,∞, . . . , xm,∞.

13 If one wants to direct borrow the arguments in [14], one will need an maximal principle type argument, which says the following: Fixed 
x1,0, . . . xm,0, let λ1,0, . . . λm,0 be chosen such that the m bubbles blow up at the same time, then if one further adjusts λ1,0 to be smaller and keep 
other parameters unchanged, then the first bubble will blow up first. This is not clear in our setting, and we even think this argument may not hold 
for log–log blow up solutions.
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Lemma 6.5. Fix λ1,0, there exists (β2, . . . βm, d1, . . . dm) ∈ [−a0λ1,0, a0λ1,0]m−1 × (B1)
m (here B1 ⊂ R2 is the unit 

ball) such that the associated solution u to (1.1) with initial data

uλ,x := uλ1,0,λ1,0+β2,..λ1,0+βm,0,x1,0+d1,...xm,0+dm

will blow up at m given prescribed points x1,∞, ..xm,∞, i.e.

lim
t→T +(u)

λj (0) = 0, j = 1, . . . ,m,

lim
t→T +(u)

xj (t) = xj,0,j = 1, . . . ,m.
(6.32)

Here, we use λj , xj to denote λj,λ,x , xj,λ,x for notation convenience.

Proof of Lemma 6.5. As we previously did in the proof of Lemma 6.2, we write uλ1,0,λ1,0+β2,..λ1,0+βm,0,x1,0+d1,...xm,0+d0

as uβ2,...βm,d1,...dm . And we further write uβ2,...βm,d1,...dm as uA, where A = (β2, . . . βm, d1, . . . dm) ∈ Rm−1 ×R2m.We 
rewrite (6.13) as

uA(t, x) =
m∑

j=1

1

λj,A(t)
Q̃bj,A(t)(

x − xj,A(t)

λj,A
)eiγj,A(t) + �A(t, x). (6.33)

Let TA be the blow up time of uA. We now consider the following map:

F : [−a0λ1,0, a0λ1,0]m−1 × (B1)
m →Rm−1 ×R2m

F(A) := (y2,A, . . . ym,A, z1,A, . . . zm,A)

yi,A = λi,A(TA) − λ1,A(TA), zj,A = xj,A(TA) − xj,∞, i = 2, . . .m, j = 1, . . . ,m.

(6.34)

Here B1 ⊂R2 is the unit ball. And λj,A(TA) and xj,A(TA) are defined as

λj,A(TA) = lim
t→TA

λj,A(t), j = 1, . . . ,m,

xj,A(TA) = lim
t→TA

xj,A(t), j = 1, . . . ,m.
(6.35)

λj,A(TA) is well defined as we have (6.21), which implies λj,A is strictly decreasing. xj,A(TA) is well defined as 
mentioned in Subsection 6.3, see also Remark 5.1. The point is

Lemma 6.6. The map A → λj,A(TA) and the map A → xj,A(TA) is continuous.

We will prove Lemma 6.6 in Appendix C.
Note if F(A) = 0 for some A, then uA is the desired solution which blows up according to log–log law at exactly 

m prescribed points.
Lemma 6.6 implies the map F is continuous and we will use Lemma 6.4 to show

0 ∈ F([−a0λ1,0, a0λ1,0]m−1 × (B1)
m). (6.36)

To achieve this, we need to show if A in ∂{[−a0λ1,0, a0λ1,0]m−1 × (B1)
m}, then

0 /∈ {tA+ (1 − t)F(A), t ∈ [0,1]}. (6.37)

Note if A ∈ ∂{[−a0λ1,0, a0λ1,0]m−1 × (B1)
m}, then at least one of the following holds (recall the notation A =

(β2, . . . βm))

– Case 1: |βj | = a0λ1,0, for some j = 2, . . . , m.
– Case 2: |dj | = 1, for some j = 1, . . .m.

We first show (6.37) holds in Case 2. Indeed, by bootstrap estimate (3.53) in Lemma 3.1, we have supt<TA |xj,A(t) −
xj,0 − dj | ≤ 1

2000 , which implies |dj − zj,A ≤ 1
2000 |. (Recall our notation F(A) := (y2,A, . . . ym,A, z1,A, . . . zm,A).) 

Since |dj | = 1, this implies
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tdj + (1 − t)zj,A = 0,∀ ∈ [0,1]
In particular (6.37) holds in Case 2.

Next we show (6.37) also holds in Case 1. Without loss of generality, we assume β2 = (a0)λ1,0. Using Lemma 6.1, 
we can find T1,A, T2,A such that

λ2
j,A(t) ln | lnλj,A(t)| = 2π(1 + O(a1))(Tj,A − t), t < TA,

T1,A = 2π(1 + O(a1))(λ
2
1,0 ln | lnλ1,0|),

T2,A = 2π(1 + O(a1))
(
(1 + a0)

2λ2
1,0 ln | ln(1 + a0)λ1,0)|

) (6.38)

(Note this also implies TA ≤ min(T1,A, T2,A), and since a1 � a0, T1,A < T2,A.)
Since a0 � a1, it is easy to see

inf
t≤T1,A

(
λ2

1,A(t) ln | lnλ1,A(t)| − λ2
2,A(t) ln | lnλ2,A(t)|

)
< 0 (6.39)

(Note it is important here we have < rather than ≤.)
In particular, we have λ2,A(TA) > λ1,A(TA) (since TA ≤ T1,A).
Thus, since β2 > 0, and y2,A = λ2,A(TA) − λ1,A(TA) > 0,

tβ2 + (1 − t)y2,A = 0, t ∈ [0,1].
which recovers (6.37). This concludes the proof. �
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Appendix A. The local wellposedness of the modified system

We explain briefly why one can always locally solve (2.3), (3.27). We only explain the case about (2.3) here, (3.27)
is similar. Indeed, the system is NLS couples with 4 ODEs. Since NLS is locally well posed and ODE is always locally 
well posed, it is no surprise (2.3) is locally well posed. To construct a solution, one first solves NLS iut = −�u −|u|2u
in a time interval [0, T1], and plugs this u(t, x) (which is not unknown in [0, T1]) into the last 4 equations, we will 
obtain 4 ODEs about {λ(t), b(t), x(t), γ (t)}. We just do some computation to illustrate this, say, the equation

d

dt
{(ε1(t), |y|2�b(t)) + (ε2(t), |y|2�b(t))} = 0

is now equivalent to

d �(
1

ε(
x − x(t)

)e−iγ (t),
1

(|y|2Q̃b)(
x − x(t)

)e−iγ (t)) = 0,

dt λ(t) λ(t) λ(t) λ(t)
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which is equivalent to

d

dt
�(u − 1

λ(t)
Q̃b(

x − x(t)

λ(t)
),

1

λ(t)
(|y|2Q̃b)(

x − x(t)

λ(t)
))e−iγ (t)) = 0,

which is equivalent to

�(i�u + i|u|2, 1

λ(t)
(|y|2Q̃b)(

x − x(t)

λ(t)
)e−iγ (t))

+�(u,
d

dt

1

λ(t)
(|y|2Q̃b)(

x − x(t)

λ(t)
)e−iγ (t))

− d

dt
�(

1

λ(t)
Q̃b(

x − x(t)

λ(t)
),

1

λ(t)
(|y|2Q̃b)(

x − x(t)

λ(t)
)e−iγ (t))

= 0.

(A.1)

Though (A.1) is complicate, it is an ODE about {λ(t), b(t), x(t), γ (t)}.
Similarly, the last 3 equations in (2.3) can also be transformed into ODEs about {λ(t), b(t), x(t), γ (t)}.
Thus the local well posedness theory about (2.3) is equivalent to the local well posedness theory about NLS.

Appendix B. Proof of Lemma 6.4

Let us turn to the proof of Lemma 6.4 now. This is very standard in algebraic topology. Note 	̄ − {0} is the retract 
of ∂	, i.e. there is a map

r :Rn − {0} → ∂	,

such that

r ◦ ι = id∂	, (B.1)

here ι : ∂	 → Rn − {0} is the natural inclusion map.
Now we prove Lemma 6.4 by contradiction. Assume 0 /∈ f (	̄). Then g := r ◦ f is well defined and continuous. 

Note g is map from 	̄ to ∂	.
On the other hand g|∂	 is homotopic to the id|∂	. Indeed, we may write down the homotopy explicitly

r ◦ (tf + (1 − t)id).

We emphasize here this homotopy is well defined since tf (y) + (1 − t)y = 0 for t ∈ [0, 1] and y ∈ ∂	.
Now we have constructed a map g from 	̄ to ∂	, and g|∂	 is homotopic to id|∂|	 . Note 	 is convex domain and 

∂	 is homeomorphic to the sphere. This is a clear contradiction from standard homology theory.

Appendix C. Proof of Lemma 6.6

Before we go to the proof, let us point out Lemma 6.6 basically say the blow up point (model by xj,A(t)) and the 
blow up time (modeled by λj,A(t)) depending on the initial data (modeled by A) in a continuous way. We remark 
here, in general, the problem whether blow up point and blow up time depend on the initial data in a continuous 
way is not an easy problem. Indeed, if one has a sequence initial data u0,n, whose associated solution to (1.1) blows 
up according to the log–log law, and one assumes u0,n converges to u0 in H 1, it is not always right the associated 
solution u to (1.1) will blow up according to the log–log law. And for NLS, if we don’t have some information about 
the dynamic near the blow up time, we cannot even define the blow up point. However, see [17] for this direction.

The proof of Lemma 6.6 is much easier, because we are only working on data with finite parameter A. And if 
An → A, clearly uA still blows up according the log–log law with dynamic described by Lemma 3.1. Let us turn to 
the proof. We recall

A ∈ [−a0λ1,0, a0λ1,0]m−1 × (B1)
m.
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Proof. Recall to understand the evolution of xj,A(t), λj,A(t), one needs to consider system (3.27) or equivalently 
(3.38). As explained in Appendix A, the system is NLS coupled with 4 ODEs. Use the standard stability arguments 
for NLS and stability argument of ODEs, we have that for any T < TA (recall TA is the blow up time of uA) the map 
A → xj,A(T ), λj,A(T ) is continuous. Now, Lemma 6.6 easily follows from the following lemma

Lemma 6.7. Given A, for any ε > 0, there is T < TA and δ = δ(A) such that for any A′ with

|λj,A′(T ) − λj,A(T )| < δ, (C.1)

then

sup
t∈[T ,T ′

A]
|λj,A′(t) − λj,A′(T )| < ε, j = 1, ..,m, (C.2)

sup
t∈[T ,TA′ ]

|xj,A′(t) − xj,A′(T )| < ε, j = 1, . . .m. (C.3)

We now prove Lemma 6.7.
Note A is given, and we only need to prove (C.2) and (C.3) for every given j . We discuss the two cases.

– Case 1: the j th bubble of uA blows up, i.e. λj,A(TA) = 0.
– Case 2: the j th bubble of uA blows up, i.e. λj,A(TA) = 0.

We first discuss Case 1. In this case, we can choose T close to TA enough, and δ small enough, such that λj,A′(T ) is 
small enough,

λj,A′(T ) ≤ ε0 � ε100. (C.4)

Then (C.2) follows since d
dt

λj,A′ < 0 and λj,A′(t) > 0, ∀t < TA′ . To prove (C.3), one needs modify a little bit the 
analysis in Subsubsection 5.4.5, as argued in Subsubsection 5.4.5.

|xj,A′(t) − xj,A′(T )| ≤
t∫

T

dxj

dsj

1

λ2
j

dτ≤
TA′∫
T

1

λj,A
(τ )dτ (C.5)

(We have use | 1
λj,A′

dxj,A′
dsj

| � 1 by (5.6).) And recall (5.45), we further have

|xj,A′(t) − xj,A′(T )| � λ
1/2
j,A′(T )

TA′∫
T

1

λ
3/2
j,A

� λ
1/2
j,A′(T ) � ε50. (C.6)

This gives (C.3).
Now we discuss Case 2. Without loss of generality, we assume λj,A′(T ) ≥ ε0 ≥ ε100, otherwise we just argue as 

Case 1. Note since uA blows up at TA, at least one bubble blows up at TA, let us assume limt→TA λj0,A = 0. Thus, 
we are able to choose T close enough to TA and δ small enough such that

λj,A′(T )≫ λj0(T ), (C.7)

and of course λj0,A′(T ) � ε100.
We remark here we actually may need

λj0,A′(T ) � exp(− exp exp exp exp{ 1

λj,A′(T )
}), (C.8)

and don’t worry about the special form because our arguments are kinds of soft.
The idea is uA is going to blow up so fast that the j th bubble does not have much time to change.
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Note it is not clear whether the j0th bubble will blow up when uA′ blows up, however, we can still estimate blow 
up time by Lemma 6.1, i.e. the blow up time TA′ of uA′ is controlled by Tj0,A predicted by Lemma 6.1, we have14

TA′ − T � λ2
j0,A′(T ) ln | lnλj0,A′(T )|. (C.9)

And, using Lemma 6.1 again, we can ensure

λj,A′(t) ∼ λj,A′(T ), t ∈ [T ,TA′ ]. (C.10)

Now we use estimate (we need (6.21), (6.22))

0 < − d

dt
λj,A′ ∼ − 1

λ3
j,A′

dλj,A′

dsj
∼ 1

λ3
j,A′

bj,A′ ∼ 1

λ3
j,A′

ln | lnλj,A| (C.11)

Combine (C.11) and (C.10), plug in (C.9), we have

sup
t∈[T ,TA′ )

|λj,A′(T ) − λj,A′(t)| ≤ λ−3
j,A′(T ) ln | lnλj,A(T )|λ2

j0,A′(T ) ln | lnλj0,A′(T )| (C.12)

The desired estimate (C.2) follows since we have (C.8).
Similar arguments work for (C.3). �
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