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Abstract

We prove that codimension two surfaces satisfying a nonlinear curvature condition depending on normal curvature smoothly 
evolve by mean curvature flow to round points.
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1. Introduction

We consider two dimensional surfaces of codimension two immersed in Euclidean four-space, which includes, for 
example, the Clifford torus when viewed as a submanifold of R4. The main theorem we present asserts that surfaces 
satisfying a curvature pinching depending on normal curvature are deformed by the mean curvature flow to round 
points. In contrast to hypersurfaces, very little progress has been made on mean curvature flow in high codimension 
owing to the nontrivial structure of the normal bundle. The best result to date is due to Andrews and Baker [1], 
where it is shown that, for suitable values of a constant k depending on dimension but not codimension, submanifolds 
satisfying the pinching condition |A|2 ≤ k|H |2 evolve under the mean curvature flow to round points, which can be 
considered a high codimension analogue of Huisken’s seminal result on mean curvature flow of hypersurfaces [5]. 
In this paper we show for the first time that inclusion of normal curvature in the pinching cone enables improved 
geometric estimates, expanding the class of surfaces known to be diffeomorphic to round spheres.

The submanifold estimates are much more difficult than their hypersurface counterparts, being complicated by 
the presence of normal curvature. The main theorem of [1] is optimal for submanifolds of dimension four and greater 
(independent of the codimension), where the tori Sn−1(ε) ×S(1) ⊂ R

n×R
2 are obstructions to improving the pinching 
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constant beyond 1/(n − 1). The theorem is suboptimal in dimensions two and three, with pinching constant k =
4/(3n), because of unfavourable reaction terms. With the inclusion of normal curvature, the new pinching condition 
turns out to be optimal for the reaction terms, but the gradient terms still obstruct the attainment of optimal pinching, 
similar to the flow of hypersurfaces in a spherical background [6]. The main result we obtain in this article is as 
follows:

Theorem 1.1. Suppose �0 = F0(�
2) is a closed surface smoothly immersed in R4. If �0 satisfies |H |min > 0 and 

|A|2 + 2γ |K⊥| ≤ k|H |2, where γ = 1 − 4/3k and k ≤ 29/40, then the mean curvature flow of �0 has a unique smooth 
solution �t on a finite maximal time interval t ∈ [0, T ). There exists a sequence of rescaled mean curvature flows 
Fj : �2 × Ij → R

4 containing a subsequence of mean curvature flows (also indexed by j ) that converges to a limit 
mean curvature flow F∞ : �2∞ × (−∞, 0] → R

4 on compact sets of R4 × R as j → ∞. Moreover, the limit mean 
curvature flow is a shrinking sphere.

This theorem improves the pinching constant of [1] from 2/3 to 3/4 − 1/40, which is, similar to the hypersurface 
theory, almost the best constant thought to be achievable with the mean curvature flow. The inclusion of normal 
curvature in the pinching condition cancels the unfavourable reaction terms encountered in [1], however, the gradient 
of the normal curvature prohibits pushing the pinching constant all the way to 3/4. We conjecture that the Clifford 
torus viewed as a two-surface of codimension two in R4 is the true obstruction to the theorem, corresponding to an 
optimal pinching constant of k = 1. The Clifford torus is still intrinsically flat but no longer minimal in R4 and satisfies 
|A|2 = |H |2.

We take this opportunity to announce another new result of independent interest, discovered in the course of 
estimating the nonlinearity in the Simons identity (see Proposition 5.3). Obtaining a positive lower bound on the 
nonlinearity in Simons’ identity is a crucial step in the integral estimates used to prove convergence to a round point. 
In the case of two-surfaces of codimension two (in this case immersed in a Euclidean background), it is possible to 
compute the nonlinearity exactly with the result that Z = 2K| ◦

A|2 − 2|K⊥|2. The Simons identity plays a key role 
in a series of classification results initiated in a famous paper by Chern, do Carmo and Kobayashi [3], where they 
prove that if a n-dimensional submanifold of a (n + p)-dimensional sphere satisfies |A|2 ≤ n/(1 − 1/p), then the 
submanifold is totally geodesic, or if the equality holds identically, then it is the Clifford torus or Veronese surface. 
With our refined understanding of the Simons identity nonlinearity we are able to provide a new classification result 
depending not on the length of the second fundamental form, but rather on a pointwise pinching of the intrinsic and 
normal curvatures.

Theorem 1.2. Suppose a two surface �2 minimally immersed in S4 satisfies |K⊥| ≤ 2|K|. Then either

i) |A|2 ≡ 0 and the surface is a geodesic sphere; or
ii) |A|2 �≡ 0, in which case either

(a) |K⊥| = 0 and the surface is the Clifford torus, or
(b) K⊥ �= 0 and it is the Veronese surface.

We intend to investigate the motion of submanifolds of a sphere in a sequel to this paper, where a proof of the above 
theorem more naturally resides. The argument involves careful examination of the curvature terms and an application 
of the strong maximum principle.

2. Notation and preliminary results

We adhere to the notation of [1] and in particular use the canonical space–time connections introduced in that 
paper. A fundamental ingredient in the derivation of the evolution equations is Simons’ identity:

�hij = ∇i∇jH + H · hiphpj − hij · hpqhpq + 2hjq · hiphpq − hiq · hqphpj − hjq · hqphpi. (1)

The timelike Codazzi equation combined with Simons’ identity produces the evolution equation for the second fun-
damental form:

∇∂t hij = �hij + hij · hpqhpq + hiq · hqphpj + hjq · hqphpi − 2hip · hjqhpq. (2)



C. Baker, H.T. Nguyen / Ann. I. H. Poincaré – AN 34 (2017) 1599–1610 1601
The evolution equation for the mean curvature vector is found by taking the trace with gij :

∇∂t H = �H + H · hpqhpq. (3)

The evolution equations of the squared lengths of the second fundamental form and the mean curvature vector are

∂

∂t
|A|2 = �|A|2 − 2|∇A|2 + 2

∑
α,β

(∑
i,j

hijαhijβ

)2

+ 2
∑

i,j,α,β

(∑
p

hipαhjpβ − hjpαhipβ

)2

(4)

∂

∂t
|H |2 = �|H |2 − 2| ⊥∇H |2 + 2

∑
i,j

(∑
α

Hαhijα

)2

. (5)

The last term in (4) is the squared length of the normal curvature, which we denote by |Rm⊥|2. For convenience we 
label the reaction terms of the above evolution equations by

R1 =
∑
α,β

(∑
i,j

hijαhijβ

)2

+ |Rm⊥|2

R2 =
∑
i,j

(∑
α

Hαhijα

)2

.

The following existence theorem holds for the mean curvature flow of �0 under the conditions of Theorem 1.1:

Theorem 2.1. The mean curvature flow of �0 exists on a finite maximal time interval 0 ≤ t < T < ∞. Moreover, 
max�t |A|2 → ∞ as t → T .

The proof that the maximal time of existence is finite follows easily from the evolution equation for the position 
vector F : ∂

∂t
|F |2 = �|F |2 − 2n. The maximum principle implies |F(p, t)|2 ≤ R2 − 2nt and thus T ≤ R2/2n, where 

R = max {|F0(p)| : p ∈ �}. The proof of the second part of the theorem can be found in [1].

3. Evolution of normal curvature

In this section we compute the evolution equation for the normal curvature. The normal curvature tensor in local 
orthonormal frames for the tangent {ei : i = 1, 2} and normal {να : α = 1, 2} bundles is given by

R⊥
ijαβ = hipαhjpβ − hjpαhipβ. (6)

We often compute in a local orthonormal normal frame {να : α = 1, 2} where ν1 = H/|H |. As the normal bundle is two 
dimensional ν2 is then determined by ν1 up to sign. With this choice of frame the second fundamental form becomes{ ◦

A1 = A1 − |H |
n

Id
◦

A2 = A2
(7)

and {
trA1 = |H |
trA2 = 0.

It is also always possible to choose the tangent frame {ei : i = 1, 2} to diagonalise A1. We often refer to the orthonor-
mal frame {e1, e2, e3, e4} = {e1, e2, ν1, ν2}, where {ei} diagonalises A1 and ν1 = H/|H |, as the ‘special orthonormal 
frame’. Codimension two surfaces have four independent components of the second fundamental form, which still 
makes it tractable to work with individual components, similar to the role of principal curvatures in hypersurface the-
ory. Working in the special orthonormal frame, we often find it convenient to represent the second fundamental form 
by

hij =
[ |H |

2 + a 0
0 |H |

2 − a

]
ν1 +

[
b c

c −b

]
ν2, (8)

so that h111 = |H |/2 + a, h221 = |H |/2 − a, h112 = b, h122 = c and so on. Note that | ◦
A|2 = 2a2 + 2b2 + 2c2.
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Just as a surface has only one sectional curvature K , a codimension two surface also has only one normal curvature, 
which we denote by K⊥. In the special orthonormal frame the normal curvature is

K⊥ = R⊥
1234 =

∑
p

(
h1p1h2p2 − h2p1h1p2

)
= h111h212 − h211h112 + h121h222 − h221h122

= (h111 − h221)h122 + h121(h222 − h112)

= 2ac.

(9)

Note also that |Rm⊥|2 = 16a2c2. Differentiating (6) and using equation (2) we have

∂

∂t
R⊥

ijαβ = �R⊥
ijαβ − 2

∑
p,r

(∇qhipα∇qhjpβ − ∇qhjpα∇qhipβ

)

+
∑
p

(
d

dt
hipαhjpβ + hipα

d

dt
hjpβ − d

dt
hjpαhipβ − hjpα

d

dt
hipβ

)

or

∂

∂t
R⊥

ijαβ = �R⊥
ijαβ − 2

∑
p,r

(∇qhipα∇qhjpβ − ∇qhjpα∇qhipβ

)
+

∑
(hipγ · hrqγ hrqα + hiqγ · hqrγ hrpα + hpqγ · hqrγ hriα − 2hirγ · hpqγ hrqα)hjpβ

+
∑

hipα(hjpγ · hrqγ hrqβ + hjqγ · hqrγ hrpβ + hpqγ · hqrγ hrjβ − 2hjrγ · hpqγ hrqβ)

−
∑

(hjpγ · hrqγ hrqα + hjqγ · hqrγ hrpα + hpqγ · hqrγ hrjα − 2hjrγ · hpqγ hrqα)hipβ

−
∑

hjpα(hipγ · hrqγ hrqβ + hiqγ · hqrγ hrpβ + hpqγ · hqrγ hriβ − 2hirγ · hpqγ hrqβ).

(10)

Computing in the special orthonormal frame and denoting the reaction terms by d
dt

K⊥, the nonlinearity for codimen-
sion two surfaces simplifies to

d

dt
K⊥ = 4ac

(( |H |
2

− a

)2

−
( |H |

2
+ a

)( |H |
2

− a

)
+ 2b2 + 3c2 +

( |H |
2

+ a

)2
)

= K⊥ (
|A|2 + 2| ◦

A|2 − 2b2
)

.

For notational convenience we set

∇evolK
⊥ :=

∑
p,q

(∇qhipα∇qhjpβ − ∇qhjpα∇qhipβ

)
and

R3 := K⊥ (
|A|2 + 2| ◦

A|2 − 2b2
)

.

Substituting the simplified nonlinearity into (10) we obtain the evolution equation for the normal curvature

∂

∂t
K⊥ = �K⊥ − 2∇evolK

⊥ + K⊥ (
|A|2 + 2| ◦

A|2 − 2b2
)

,

and a little more computation shows the length of the normal curvature evolves by

∂

∂t
|K⊥| = �|K⊥| − 2

K⊥

|K⊥|∇evolK
⊥ + |K⊥|

(
|A|2 + 2| ◦

A|2 − 2b2
)

.

We remark that the complicated structure of the gradient terms prevents an application of the maximum principle to 
conclude flat normal bundle is preserved.
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4. Preservation of curvature pinching

The first step towards Theorem 1.1 is to show a certain quadratic curvature condition involving the normal curvature 
is preserved by the mean curvature flow. Note that due to the ε in the following proposition, as an automatic corollary 
we see |H | > 0 is also preserved along the flow.

Proposition 4.1. If a solution F : � × [0, T ) → R
4 of MCF satisfies |A|2 + 2γ |K⊥| + ε < k|H |2 where γ = 1 − 4/3k

and 1/2 < k < 29/40 then this remains true for all 0 ≤ t < T .

With exception of the last estimate, the following gradient estimates are well-known; the third estimate is new.

Proposition 4.2. We have the following gradient estimates:

|∇A|2 ≥ 3

n + 2
|∇H |2 (11a)

|∇A|2 − 1

n
|∇H |2 ≥ 2(n − 1)

3n
|∇A|2 (11b)

|∇A|2 ≥ 2∇evolK
⊥ if n = 2 . (11c)

Proof. The first two inequalities are proven in [5], motivated by similar estimates in the Ricci flow [4]. They are 
established by decomposing the tensor ∇A into orthogonal components ∇ihjk = Eijk + Fijk , where

Eijk = 1

n + 2
(gij∇kH + gik∇jH + gjk∇iH),

from which it follows that |∇A|2 ≥ |E|2 = 3
n+2 |∇H |2. The second estimate follows from the first. In order to prove 

the third inequality, we use the Codazzi equation to evaluate

∑
p,q

(∇qh1p1∇qh2p2 − ∇qh2p1∇qh1p2
) = ∇1h111∇1h122 − ∇1h112∇2h111 + 2∇1h222∇2h111

− 2∇1h122∇1h222 + ∇1h221∇2h222 − ∇1h222∇2h221.

Writing down all the terms in |∇A|2 we get

|∇A|2 = (∇1h111)
2 + 3(∇2h111)

2 + 3(∇1h122)
2

+ 3(∇1h222)
2 + (∇2h221)

2 + (∇2h222)
2 + 3(∇1h221)

2 + (∇1h112)
2,

and the estimate follows by applying the Cauchy–Schwarz inequality and comparing terms. �
Proof of Proposition 4.1. Suppose the submanifold satisfies |A|2 + 2γ |K⊥| − k|H |2 < 0 at the initial time. As the 
submanifold is compact and the inequality is strict, we can find an ε > 0 such that Q := |A|2 +2γ |K⊥| −k|H |2 +ε < 0
also holds at the initial time. Combining the evolution equations for |A|2, |K⊥| and |H |2 we have

∂

∂t
Q = �Q− 2

(
|∇A|2 + 2γ

K⊥

|K⊥|∇evolK
⊥ − k|∇H |2

)
+ 2R1 + 2γR3 − 2kR2.

We deal with the gradient terms first. Using the gradient estimates (11a) and (11c) we have

−2

(
|∇A|2 + 2γ

K⊥

|K⊥|∇evolK
⊥ − k|∇H |2

)
≤

(
−2 + 2γ + 2

4

3
k

)
|∇A|2,

which is less than zero provided γ < (1 − 4/3k).
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Next we deal with the reaction terms:

d

dt
Q = 2

∑
α,β

(∑
i,j

hijαhijβ

)2

+ 2|Rm⊥|2 − 2k
∑
i,j

(∑
α

Hαhijα

)2

+ 2γR3

= 2| ◦
A1|4 − 2

(
k − 2

n

)
| ◦
A1|2|H |2 − 2

n

(
k − 1

n

)
|H |4

+ 4

(∑
i,j

◦
hij1

◦
hij2

)2

+ 2

(∑
i,j

◦
hij2

◦
hij2

)2

+ 2|Rm⊥|2

+ 2γ |K⊥|
(
|A|2 + 2| ◦

A|2 − 2b2
)

. (12)

Written in the special orthonormal frame, the bracketed terms on the second last line above are

4

(∑
i,j

◦
hij1

◦
hij2

)2

= 16a2b2, 2

(∑
i,j

◦
hij2

◦
hij2

)2

= 2(2b2 + 2c2)2.

Now suppose, for a contradiction, that there exists a first point in time where Q = 0. Computing at this point, as Q = 0

we have 
(
k − 1

n

)
|H |2 = (| ◦

A|2 + 2γ |K⊥| + ε), and substituting this into (13) to eliminate the |H |2 terms we obtain 
after some computation

d

dt
Q =

(
− 1

k − 1/2
+ 2

)
4a2b2 +

(
− 1

k − 1/2
+ 2

)
γ |K⊥|| ◦

A1|2

+
(

− 3

k − 1/2
+ 6

)
γ |K⊥|| ◦

A2|2 +
(

− 1

k − 1/2
+ 2

)
| ◦
A2|4

+
(

− (1 + 2γ 2)

k − 1/2
+ 6

)
|K⊥|2

− ε

(
2 + 1

k − 1/2

)
| ◦
A1|2 − 2ε

k − 1/2
| ◦
A2|2 − 3εγ |K⊥|

k − 1/2
− ε2

k − 1/2
.

(13)

where we have we used | ◦
A1|2|

◦
A2|2 = 4a2b2 + |K⊥|2. With the exception of the |K⊥|2 term, all terms are negative 

provided k < 1, which is the best constant we expect. We group the remaining terms into two quadratic forms to 
exploit the negative terms to control the |K⊥|2 term, the most restrictive term. Discarding the negative terms not 
useful in controlling normal curvature, expanding and grouping terms we have

d

dt
Q ≤ 4c2

{(
− 1

k − 1/2
+ 2

)
c2 + η1

(
− 3

k − 1/2
+ 6

)
γ |ac| + η2

(
− (1 + 2γ 2)

k − 1/2
+ 6

)
a2

}

+ 4|ac|
{(

− 1

k − 1/2
+ 2

)
γ a2 + (1 − η2)

(
− (1 + 2γ 2)

k − 1/2
+ 6

)
|ac|

+ (1 − η1)

(
− 3

k − 1/2
+ 6

)
γ c2

}
.

We now substitute γ = 1 − 4/3k − δ in order to keep the gradient term negative, and use the parameters η1, η2 to 
shift as much bad normal curvature into the first curly bracket to consume all of the good c4 term. As it does not seem 
possible to reach k = 3/4, we have numerically explored the parameter values, with the result that the above term is 
strictly negative for k = 29/40. Choosing k ≤ 29/40 and γ = 1 − 4

3k − δ ensures that both the gradient and reaction 
terms of the evolution equation for Q are negative, which via the maximum principle provides a contradiction, and we 
conclude Q < 0 is preserved by the flow. �
Remarks 4.3. In fact, not taking into account the gradient term so that we can choose γ and k independently, referring 
to (13), we see the nonlinearity is non-positive if γ = 1, k = 1, which equates to |A|2 + 2|K⊥| ≤ |H |2 or equivalently 
|K⊥| ≤ K . This estimate for the nonlinearity is optimal, as the Clifford torus embedded in R4 satisfies as K⊥ = 0 and 
|A|2 = |H |2.
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5. Improvement of curvature pinching

While we saw in the previous section that curvature pinching is preserved by the mean curvature flow, here we prove 
that curvature pinching actually improves along the flow. We show that in regions where mean curvature becomes 
large, the evolving surface becomes increasingly totally umbilic, ultimately allowing us to conclude convergence to a 
sphere.

Theorem 5.1. There exist constants c0 < ∞ and δ > 0 both depending only on �0 such that for all time t ∈ [0, T ) we 
have the estimate

| ◦
A|2 + 2γ |K⊥| ≤ c0|H |2−δ. (14)

We seek to bound the function fσ := (| ◦
A|2 + 2γ |K⊥|)/|H |2(1−σ), where σ > 0 and small. The reaction terms of 

the evolution equation for fσ contain a small positive quantity, impeding the use of the maximum principle to conclude 
the desired result. Following Huisken [5], we proceed by exploiting a favourable gradient term with a Poincaré-type 
inequality and bounding fσ in L∞ by a Stampacchia iteration procedure. The derivation of the Poincaré-type in-
equality from integrating Simons’ identity and the Stampacchia iteration are well-known in the mean curvature flow 
literature. However in our case, we must also control the normal curvature.

Proposition 5.2. For every σ ∈ (0, 1) and ε∇ := 1 − 4/3k − γ we have the evolution equation

∂

∂t
fσ ≤ �fσ + 2(1 − σ)

|H |2 〈∇i |H |2,∇ifσ 〉 − 2ε∇
|H |2(1−σ)

|∇A|2 + 2σ |A|2fσ .

Proof. Differentiating fσ in time and substituting in the relevant evolution equations we get

∂

∂t
fσ = �|A|2 − 2|∇A|2 + 2R1

(|H |2)1−σ
+ 2γ

(
�|K⊥| − 2K⊥/|K⊥|∇evolK

⊥ + R3
)

(|H |2)1−σ

− 1

n

(�|H |2 − 2|∇H |2 + 2R2)

(|H |2)1−σ

− (1 − σ)(|A|2 + 2γ |K⊥| − 1/n|H |2)
(|H |2)2−σ

(�|H |2 − 2|∇H |2 + 2R2).

(15)

After some computation, we find the Laplacian of fσ is

�fσ = �(|A|2 + 2γ |K⊥| − 1/n|H |2)
(|H |2)1−σ

− 2(1 − σ)

(|H |2)2−σ

〈∇i (|A|2 + 2γ |K⊥| − 1/n|H |2),∇i |H |2〉
− (1 − σ)(|A|2 + 2γ |K⊥| − 1/n|H |2)

(|H |2)2−σ
�|H |2

+ (2 − σ)(1 − σ)(|A|2 + 2γ |K⊥| − 1/n|H |2
(|H |2)3−σ

|∇|H |2|2,

(16)

and the gradients satisfy

− 2(1 − σ)

(|H |2)2−σ

〈∇i (|A|2 + 2γ |K⊥| − 1/n|H |2),∇i |H |2〉

= −2(1 − σ)

|H |2
〈∇i |H |2,∇ifσ

〉 − 2(1 − σ)2

(|H |2)2
fσ |∇|H |2|2. (17)

With the aid of these two formulae, equation (15) can be manipulated into the form
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∂

∂t
fσ = �fσ + 2(1 − σ)

|H |2
〈∇i |H |2,∇ifσ

〉 + 2σR2fσ

|H |2

− 2

(|H |2)1−σ

(
|∇A|2 + 2γK⊥/|K⊥|∇evolK

⊥ − |A|2 + 2γ |K⊥|
|H |2 |∇H |2

)

− σ(1 − σ)

(|H |2)2
fσ |∇|H |2|2 − 2σ(|A|2 + 2γ |K⊥| − 1/n|H |2)

(|H |2)2−σ
|∇H |2

+ 2

(|H |2)1−σ

(
R1 + γR3 − |A|2 + 2γ |K⊥|

|H |2 R2

)
.

We discard the terms on the last two lines as these are non-positive under our pinching assumption. We estimate the 
last term on the first line by R2 ≤ |A|2|H |2, and the gradient terms on the second line by

− 2

(|H |2)1−σ

(
|∇A|2 + 2γK⊥/|K⊥|∇evolK

⊥ − |A|2 + 2γ |K⊥|
|H |2 |∇H |2

)

≤ −2(1 − 4/3k − γ )

(|H |2)1−σ
|∇A|2 ≤ −2δ

|∇A|2
(|H |2)1−σ

. � (18)

As devised by Huisken [5], we exploit the negative gradient term involving ε∇ with a Poincaré-type inequality, 
derived by integrating Simons’ identity. Contracting the Simons identity (1) with Aij we obtain

1

2
�|A|2 = Aij · ∇i∇jH + |∇A|2 + Z, (19)

where

Z =
∑

i,j,p,α,β

Hαhipαhijβhpjβ −
∑
α,β

(∑
i,j

hijαhjiβ

)2

− |Rm⊥|2.

A lower bound on Z was obtained in [1,2] by an inelegant series of estimates that obscures the dependence of the non-
linearity on the submanifold intrinsic and normal curvature. Below, we provide a new estimate for surfaces immersed 
in R4 that makes transparent the dependence of the nonlinearity on the submanifold intrinsic and normal curvature.

Proposition 5.3. For a two-dimensional submanifold �2 immersed in R4, the nonlinearity in the contracted Simons 
identity satisfies

Z = 2K| ◦
A|2 − 2|K⊥|2.

Proof. The nonlinearity in the contracted Simons identity is

Z =
∑

i,j,p,α,β

Hαhipαhijβhpjβ −
∑
α,β

(∑
i,j

hijαhijβ

)2

− |Rm⊥|2.

Splitting the first term on the right into diagonal and off-diagonal summations, and using hij1 = 0 for i �= j , we get∑
i,j,p,α,β

Hαhipαhijβhpjβ =
∑

i

hiiα

∑
i,j

hiiα(hii1)
2 +

∑
i

hiiα

∑
i,j

hiiα(hii2)
2

+
∑

i

hiiα

∑
i �=j

hiiα(hij2)
2 +

∑
i

hiiα

∑
i �=p

hipαhijβhpjβ.

The final term on the right is zero, as computing in the special orthonormal frames we see∑
i

hiiα

∑
i �=p

hipαhijβhpjβ = H
∑
i �=p

hip1hijβhpjβ

= 0,
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since hip1 = 0 for i �= p. We similarly split the second term on the right of Z into diagonal and off-diagonal sums, and 
putting all terms together we have

Z =
∑

i

hiiα

∑
i,j

hiiα(hii1)
2 +

∑
i

hiiα

∑
i,j

hiiα(hii2)
2 +

∑
i

hiiα

∑
i �=j

hiiα(hij2)
2

−
∑
α

(∑
i

hii1hiiα

)2

−
∑
α

(∑
i

hii2hiiα

)2

−
∑
α

(∑
i �=j

hij2hijα

)2

− 2
∑
α,β

(∑
i=j

hijαhijβ

∑
i �=j

hijαhijβ

)
− |Rm⊥|2.

We estimate these terms in pairs, gathering the first, second and third terms of lines one and two, respectively. Dealing 
with the first pair of terms, we follow [7] but keep track of the normal curvature terms to find

∑
i

hiiα

∑
i,j

hiiα(hii1)
2 −

∑
α

(∑
i

hii1hiiα

)2

=
(

K +
∑
α

(h12α)2

)
(h111 − h221)

2

= K(4a2) + 4a2c2.

We estimate the second pair of terms in the same way, obtaining

∑
i

hiiα

∑
i,j

hiiα(hii2)
2 −

∑
α

(∑
i

hii2hiiα

)2

=
(

K +
∑
α

(h12α)2

)
(h112 − h222)

2

= K(4b2) + 4b2c2.

For the third pair of terms, as there are no diagonal terms to easily factor into the intrinsic curvature, we proceed by 
computing in the special orthonormal frames from the outset:

∑
i

hiiα

∑
i �=j

hiiα(hij2)
2 −

∑
α

(∑
i �=j

hij2hijα

)2

= 4c2
( |H |2

4
− c2

)

= 4c2
( |H |2

4
− a2 − b2 − c2

)
+ 4c2(a2 + b2)

= 4c2K + 4c2(a2 + b2).

With the final term, as hij1 = 0 the only non-zero contribution comes from α, β = 2 and we see

2
∑
α,β

(∑
i=j

hijαhijβ

∑
i �=j

hijαhijβ

)
= 2

(∑
i=j

hij2hij2

∑
i �=j

hij2hij2

)

= 2(2b2)(2c2) = 8b2c2.

Collecting all the terms together, and recalling |Rm⊥|2 = 16a2c2 = 4|K⊥|2, we achieve

Z = 2K(2a2 + 2b2 + 2c2) + 8a2c2 + 8b2c2 − 16a2c2 − 8b2c2

= 2K| ◦
A|2 − 2|K⊥|2. �

Proposition 5.4 (cf. Lemma 5 [1]). For a two-dimensional submanifold �2 immersed in R4, if the second fundamental 
form of �2 satisfies |A|2 < 5/6|H |2, then there exists a strictly positive constant εZ depending only on �0 such that 
Z ≥ εZ(| ◦

A|2 + 2γ |K⊥|)|H |2.
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Proof. We can simply estimate |K⊥| ≤ 1/2| ◦
A|2, in which case

Z ≥ 2| ◦
A|2(K − 1

4
| ◦
A|2).

For a surface K = 1/2(|H |2 − |A|2), and therefore K − 1
4 | ◦

A|2 > 0 so long as |A|2 < 5/6|H |2. �
Remarks 5.5. The estimate can be optimised by more careful use of the pinching inequality.

The lower bound on Z furnishes the following Poincaré-type inequality. The proof of this estimate is similar to the 
proof of the corresponding estimate in [5,1], except for the appearance of the Laplacian of the normal curvature. We 
only show how to deal with this last term and refer the reader to [1] and [2] for the remainder of the calculations.

Proposition 5.6 (cf. Proposition 11 [1]). For every p ≥ 2 and η > 0 we have the estimate

∫
�

f p
σ |H |2dμg ≤ (4pη + 10)

εZ

∫
�

f
p−1
σ

|H |2(1−σ)
|∇A|2dμg + 3(p − 1)

εZη

∫
�

f p−2
σ |∇fσ |2 dμ. (20)

Proof. Using the contracted form of Simons’ identity, the Laplacian of fσ can be expressed as

�fσ = 2

|H |2(1−σ)

〈 ◦
Aij ,∇i∇jH

〉 + 2

|H |2(1−σ)
|∇ ◦

A|2 + 2

|H |2(1−σ)
Z

− 2(1 − σ)

|H |2 〈∇i |H |2,∇ifσ 〉 − σ(1 − σ)

(|H |2)2
fσ |∇|H ||2 − (1 − σ)fσ �|H |2

+ 2γ�|K⊥|
|H |2(1−σ)

.

We now multiply by f p−1
σ and estimate the terms on the first two lines in the same manner as [1], the only difference 

being we estimate in terms of |∇A|2 instead of |∇H |2, which is easily done as a final step by |∇H |2 ≤ 4/3|∇A|2. We 
now show how to deal with the new term on the last line involving the normal curvature. In the first step, we integrate 
and use Green’s first identity to get∫

f p−1�|K⊥|
|H |2(1−σ)

dμ

=
∫

∇i

(
f p−1

|H |2(1−σ)

)
∇i |K⊥|dμ

= (p − 1)

∫
f

p−2
σ ∇ifσ ∇i |K⊥|

|H |2(1−σ)
dμ − 2(1 − σ)

∫
f

p−1
σ ∇i |H |∇i |K⊥|

|H |2(1−σ)+1
dμ. (21)

Inspection of the formula for the normal curvature (9) reveals we can estimate |∇K⊥| ≤ 4| ◦
A||∇A|. We use this last 

inequality and the Peter–Paul inequality to estimate equation (21) by

∫
f p−1�|K⊥|
|H |2(1−σ)

dμ ≤ 4(p − 1)

η

∫
f p−2

σ |∇fσ |2 dμ + (4(p − 1)η + 10)

∫
f

p−1
σ |∇A|2
|H |2(1−σ)

dμ.

The proposition follows by combining this last estimate with the aforementioned estimates of [1]. �
The Poincaré-type inequality (20) allows us to prove sufficiently high Lp-norms of fσ are non-increasing in time, 

and crucially, that σ decays like 1/
√

p as p → ∞.

Proposition 5.7. There exist constants c3 and c4 depending on �0 such that if p ≥ c3 and σ ≤ c4√
p

then for all time 
t ∈ [0, T ) we have
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d

dt

∫
�

f p
σ dμ ≤ 0.

The following estimate, which states that higher powers of mean curvature can be absorbed into fσ , depends on 
the refined decay enabled by the Poincaré-type inequality.

Proposition 5.8. There exist constants c5 and c6 depending only on �0 such if p ≥ c5 and σ ≤ c6/
√

p), then for all 
time t ∈ [0, T ) we have the estimate∫

�

|H |nf p
σ dμ ≤

∫
�

f
p

σ ′ dμ.

With the last estimate in place, we can proceed by a Stampacchia iteration argument to bound fσ in L∞. We refer 
the reader to [5] for the details.

6. Convergence to a round point

The estimate of the previous section enables us to characterise the asymptotic shape of the evolving submanifolds 
as t → T . We achieve this by performing a type I blowup and utilising the compactness theorem for mean curvature 
flow as proven in [2]. The interested reader may like to compare the following argument with the corresponding 
argument for the Ricci flow, a clear account of which can be found in [9]. Here the Codazzi equation performs the 
same role as the contracted second Bianchi identity, and the Codazzi Theorem that of Schur’s Theorem. For a proof 
of the Codazzi Theorem we refer the reader to [8]. Since we are mainly concerned with showing that the surface is 
diffeomorphic to a sphere, we only prove the convergence for a subsequence. An alternative is to use the rescaled flow 
as in [5].

Theorem 6.1. Let F : �2 ×[0, T ) → R
4 be a solution of the mean curvature flow. Assume that the initial submanifold 

�0 is closed and satisfies |H |min > 0 and |A|2 + 2γ |K⊥| ≤ k|H |2, where γ = 1 − 4/3k and k ≤ 29/40. Then there 
exists a sequence of rescaled mean curvature flows Fj : �2 × Ij → R

4 containing a subsequence of mean curvature 
flows (also indexed by j ) that converges to a limit mean curvature flow F∞ : �2∞ × (−∞, 0] → R

4 on compact sets 
of R4 ×R as j → ∞. Moreover, the limit mean curvature flow is a shrinking sphere.

Proof. Pick any sequence of times (tj )j∈N such that tj → T as j → ∞. Proposition 4.1 implies that |A|2 and |H |2
have equivalent blow-up rates, so we can in fact rescale by |H |2. Since �2 is assumed to be closed, we can pick a 
sequence of points (pj )j∈N defined by

|H |(pj , tj ) = max
p∈�2

|H |(p, tj ).

Set λj := |H |(pj , tj ) and define a sequence of rescaled and translated flows by

Fj (q, s) = λj

(
F(q, tj + s/λ2

j ) − F(pj , tj )
)
.

This is easily checked to be a parabolic rescaling and consequently for each j , the rescaled flow Fj : �2 ×[λ2
j T , 0] →

R
4 is a solution of the mean curvature flow (in the time variable s). The second fundamental form of the rescaled flows 

is uniformly bounded above independent of j and we can apply the compactness theorem for mean curvature flows 
(see [2]) to obtain a smooth limit solution of the mean curvature flow F∞ : M∞ × (−∞, 0] → R

4. Furthermore, by 
construction of the sequence Fj , the limit solution satisfies |H |2∞(·, 0) = 1 at some point. The estimate of Theorem 5.1
rescales as

| ◦
A|2j + 2γ |K⊥|j ≤ c0λ

−δ
j |H |2j ,

and upon taking the limit j → ∞ we find

| ◦
A|2∞ + 2γ |K⊥|∞ = 0.
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The previous line implies | ◦
A|2∞ = 0 and hence F∞(M∞, t) is totally umbilic. By the Codazzi Theorem, F∞(M∞, t)

is a plane or a 2-sphere lying in a 3-dimensional affine subspace of R4. We know the limit solution has positive mean 
curvature at some point and therefore must be a sphere. �
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