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Abstract

We study dimension theory for dissipative dynamical systems, proving a conditional variational principle for the quotients of 
Birkhoff averages restricted to the recurrent part of the system. On the other hand, we show that when the whole system is con-
sidered (and not just its recurrent part) the conditional variational principle does not necessarily hold. Moreover, we exhibit an 
example of a topologically transitive map having discontinuous Lyapunov spectrum. The mechanism producing all these patholog-
ical features on the multifractal spectra is transience, that is, the non-recurrent part of the dynamics.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The dimension theory of dynamical systems has received a great deal of attention over the last fifteen years. 
Multifractal analysis is a sub-area of dimension theory devoted to study the complexity of level sets of invariant 
local quantities. Typical examples of these quantities are Birkhoff averages, Lyapunov exponents, local entropies and 
pointwise dimension. Usually, the geometry of a level set is complicated and in order to quantify its size or complexity 
tools such as Hausdorff dimension or topological entropy are used. Thermodynamic formalism is, in most cases, the 
main technical device used in order to describe the various multifractal spectra. In this note we will be interested in 
multifractal analysis of Birkhoff averages and of quotients of Birkhoff averages. That is, given a dynamical system 
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T : X → X and functions φ, ψ : X → R, with ψ(x) > 0, we will be interested in the level sets determined by the 
quotient of Birkhoff averages of φ with ψ . Let

αm = αm,φ,ψ := inf

{
lim

n→∞

∑n−1
i=0 φ(T ix)∑n−1
i=0 ψ(T ix)

: x ∈ X

}
and (1)

αM = αM,φ,ψ := sup

{
lim

n→∞

∑n−1
i=0 φ(T ix)∑n−1
i=0 ψ(T ix)

: x ∈ X

}
. (2)

For α ∈ [αm, αM ] we define the level set of points having quotient of Birkhoff average equal to α by

J (α) = Jφ,ψ(α) :=
{

x ∈ X : lim
n→∞

∑n−1
i=0 φ(T ix)∑n−1
i=0 ψ(T ix)

= α

}
. (3)

Note that these sets induce the so called multifractal decomposition of the repeller,

X =
αM⋃

α=αm

J (α) ∪ J ′,

where J ′ is the irregular set defined by,

J ′ = J ′
φ,ψ :=

{
x ∈ X : the limit lim

n→∞

∑n−1
i=0 φ(T ix)∑n−1
i=0 ψ(T ix)

does not exist

}
.

The multifractal spectrum is the function that encodes this decomposition and it is defined by

b(α) = bφ,ψ(α) := dimH (Jφ,ψ(α)),

where dimH denotes the Hausdorff dimension (see Section 2.3 or [11] for more details). Note that if ψ ≡ 1 then bφ,1
gives a multifractal decomposition of Birkhoff averages. If the set X is a compact interval, the dynamical system 
is uniformly expanding with finitely many piecewise monotone branches and the potentials φ and ψ are Hölder, 
it turns out that the map α �→ bφ,ψ(α) is very well behaved. Indeed, both αm,φ,ψ and αM,φ,ψ are finite and the map 
α �→ bφ,ψ(α) is real analytic (see the work of Barreira and Saussol [3]).

In the case where either φ = log |T ′| or ψ = log |T ′| the map α �→ bφ,ψ(α) can often be determined by looking at a 
Legendre or Fenchel transform of a suitable pressure function. In this case the results have been extended well beyond 
the uniformly hyperbolic setting, see [15,17,19,22,29,30,34,35,39,46]. However without the assumption of uniform 
hyperbolicity it is no longer always the case that α �→ bφ,ψ(α) will be analytic as shown in [17,28,34,35,46].

For more general functions φ and ψ the relationship to the Legendre or Fenchel transforms of certain pressure 
functions no longer holds. However in [3] it is shown α �→ bφ,ψ(α) can still be related to suitable pressure functions. 
Some of these results were extended by Iommi and Jordan [24] to the case of expanding full-branched interval maps, 
with countably many branches. However, as already mentioned, in this situation it is not always the case that the 
spectrum is real analytic. In [24] it is shown that there will be regions where the spectrum does vary analytically 
but the transitions between these regions may not be analytic or even continuous. In the situation where the map is 
non-uniformly expanding, for example the Manneville–Pomeau map, it was shown in [17,34,35,46] that the Lyapunov 
spectrum (equivalently the local dimension spectrum for the measure for maximal entropy) has a phase transition. 
In the general case the spectrum may be related to those studied in [24]. In this case it will not always be continuous, 
see Section 6 of [24]. The lack of uniform hyperbolicity of the dynamical system being the reason for the irregular 
behavior of the multifractal spectrum.

Another important result in the study of multifractal analysis are the so-called conditional variational principles. 
Indeed, it has been shown for a very large class of dynamical systems (not necessarily uniformly hyperbolic) and for 
a large class of potentials (not necessarily Hölder) that the following holds:

bφ,ψ(α) = sup

{
h(μ)∫

log |F ′| dμ
:

∫
φ dμ∫
ψ dμ

= α and μ ∈M
}

,
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where M denotes the set of T -invariant probability measures. See [3,8,13,14,16,20,23,27,36,38] for works where this 
conditional variational principle has been obtained with different degrees of generality.

The aim of the present paper is to study multifractal spectra of quotients of Birkhoff averages when the map is 
modeled by a topologically mixing countable Markov shift with no additional assumptions (e.g. the incidence matrix 
is not assumed to be finitely primitive). This allows us to study certain dissipative maps by which we mean maps 
where the Hausdorff dimension of the set of recurrent points is smaller than the Hausdorff dimension of the repeller 
of the map (see Sections 2.2 and 2.3 for precise definitions). Note that in this situation we cannot use the techniques 
from [23] and [24] since both these papers are restricted to maps which can be modeled by a full shift (under this 
assumption the thermodynamic formalism is very well behaved and understood [42]) and the techniques cannot be 
applied without additional assumptions on the incidence matrix.

The multifractal analysis for the local dimension of Gibbs measures in this setting has been studied in [22] but 
the technique of inducing used there does not work so well in the setting of Birkhoff averages and so we take a 
different approach. Let us point out that dimension spectra of quotients of Birkhoff averages has been studied in the 
particular case in which ψ = log |T ′| in the work of Barreira, Saussol and Schmeling [4] for uniformly hyperbolic 
systems defined over compact spaces and by Kesseböhmer and Urbański [30] for maps that can be coded by countable 
Markov shifts with finitely primitive incidence matrix. In both cases there exist Gibbs measures for sufficiently smooth 
potentials [33] which provides a powerful tool which simplifies the proofs. We stress that if the countable Markov 
shift does not have an finitely primitive incidence matrix then smooth potentials do not have corresponding Gibbs 
measures [43].

Dissipative maps arise naturally in a wide range of contexts, but the study of their dimension properties is still 
at an early stage. For example, in the context of rational maps Avila and Lyubich [1, Theorem D] have suggested 
the existence of a rational map with Julia set of positive area whose hyperbolic dimension (see the definition given in 
equation (10)) is strictly smaller than 2. In a different context, Stratmann and Falk and Stratmann and Urbański [12,45]
proved that there exist Kleinian groups G with limit set L(G) for which the critical exponent of the corresponding 
Poincaré series δ(G) satisfies δ(G) < dimH L(G). These results extend those obtained by Patterson [37]. In [22, 
Example 3.3] an explicit example of an interval Markov map with countably many branches for which the Hausdorff 
dimension of the recurrent set (see Definition 2.2) is strictly smaller than the corresponding dimension of the repeller 
is constructed. In all the above mentioned works the dissipation of the system is somehow measured by the difference 
between the Hausdorff dimension of the repeller with that of the conservative part of the system.

In this paper we exhibit some of the pathologies that can easily occur in the dimension theory of dissipative systems. 
We not only study the dimension of the conservative part of the system but also the multifractal decomposition of the 
whole repeller (see Section 4). The example to which we will devote most attention is a model for an induced map of 
a Fibonacci unimodal map (see Section 4) which has been studied by Stratmann and Vogt [44] and by Bruin and Todd 
(see [6,7]).

We prove that the conditional variational principle for quotients of Birkhoff averages holds under certain as-
sumptions when restricted to the recurrent set. Moreover, we exhibit a map for which the Birkhoff spectrum b(α)

is discontinuous. In this example the mechanism producing the discontinuity is transience. Note that the Birkhoff 
spectrum for this map does not satisfy the conditional variational principle for certain Hölder potentials. We stress 
that while recently in [24] examples of discontinuous Birkhoff spectra were found in the non-uniformly hyperbolic 
setting, the situation we treat here is of a completely different nature.

The study of transience in dynamical systems has attracted some attention recently and its implications in ther-
modynamic formalism has been explored (see [9,10,26,42]). In this note we study some of the consequences that 
transience has in dimension theory. Of particular interest is Proposition 4.4 where we exhibit a map having discontin-
uous Lyapunov spectrum. This particular case of Birkhoff spectrum has been thoroughly studied over the last years 
in a wide range of contexts. Examples have been found where it is not a real analytic map (see [17,34]). In other 
cases the domain of the spectrum is not an interval. Indeed, the Chebyshev map T (x) = 4x(1 − x) defined on the unit 
interval has only two Lyapunov exponents and hence the domain of the Lyapunov spectrum consists of two isolated 
points. More generally, Makarov and Smirnov [31] showed that there are rational maps T for which the domain of the 
Lyapunov spectrum consists of an interval together with finitely many isolated points. However, the dimension of the 
set of points having Lyapunov exponent equal to one of these isolated points is zero. The example we provide goes in 
the exact opposite direction. The domain is an interval but at the largest point in the domain the Hasudorff dimension 
jumps to 1.
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2. Notation and statement of our main result

This section is devoted to stating the conditional variational principle for the quotient of Birkhoff averages restricted 
to the recurrent set, followed by some preliminary results we will need to prove it. In order to do this, we will define the 
class of maps and potentials that we will consider as well as to recall some basic definitions from geometric measure 
theory.

2.1. Symbolic spaces

Let (�, σ) be a one-sided Markov shift over the countable alphabet N. This means that there exists a matrix 
(tij )N×N of zeros and ones (with no row and no column made entirely of zeros) such that

� := {
(xn)n∈N : txixi+1 = 1 for every i ∈N

}
.

The shift map σ : � → � is defined by σ(x1x2x2 . . .) = (x2x2 . . .). We will always assume the system (�, σ) to be 
topologically mixing. In this context this means that for every a, b ∈ N there exists a positive integer N such that for 
all n ≥ N there exists an admissible word a of length n such that a0 = a and an−1 = b. Unlike the finite state case, this 
does not imply that some power of the transition matrix is positive. The space � endowed with the topology generated 
by the cylinder sets

Ci1i2...in := {
(xn)n∈N ∈ � : xj = ij for j ∈ {1,2,3 . . . n}} ,

is a non-compact space. We define the n-th variation of a function φ : � → R by

varn(φ) = sup
(i1...in)∈Nn

sup
x,y∈Ci1i2 ...in

|φ(x) − φ(y)|.

A function φ : � → R is locally Hölder if there exists 0 < γ < 1 and C > 0 such that for every n ∈ N we have 
varn(φ) ≤ Cγ n (note that this condition allows φ to be unbounded).

2.2. The class of maps

Given a compact interval X ⊂ R, let {Xn}n ⊂ X be a countable collection of disjoint subintervals and let
T : ∪nXn → X be a map which is differentiable on the interior of each set Xn. The repeller of the map T is de-
fined by

X∞ := {x ∈ X : T n(x) is defined for all n ∈ N}.
We say that the map T is Markov if there exists a countable Markov shift (�, σ) and a continuous bijective map 
π : � → X∞ such that T ◦ π = π ◦ σ . We will use the notation [i1, . . . , in] := π(Ci1...in ). Let R denote the set of 
potentials φ : ∪nXn → R such that φ ◦ π is locally Hölder and let R0 denote the set of such potentials φ ∈ R for 
which there exists ε > 0 such that φ ≥ ε.

Given x ∈ X∞, define the lower pointwise Lyapunov exponent of T at x by λT (x) := lim infn 1
n

log |(T n)′(x)|. 
Denote by M the set of T -invariant probability measures. If μ ∈ M, we denote by λT (μ) := ∫

log |T ′| dμ the 
Lyapunov exponent of T with respect to the measure μ. Note that if μ is ergodic then λT (x) = λT (μ) for μ-a.e. x.

Definition 2.1. Given a bounded interval X ⊂ R, let {Xn}n be a countable collection of disjoint subintervals with 
dimH (∪n∂Xn) = 0. The map T : ∪nXn → X is called an EMV (Expanding Markov (summable) Variation) map if

1. it is C1 on int{Xn} for each n ∈N;
2. there exists ξ > 1 such that λT (x) > log ξ for all x ∈ X∞;
3. it is Markov and it can be coded by a topologically mixing countable Markov shift;
4. with R defined by the shift structure above, log |T ′| ∈ R.
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Observe that the second condition in Definition 2.1 means that for any μ ∈ M, 
∫

log |T ′| dμ > log ξ , and in 
particular that for any periodic orbit x, T x, . . . , T n−1x, we have |(T n)′(x)| > ξn. The fact that the system can be 
coded by a topologically mixing Markov shift means that there is a dense orbit, so T is topologically transitive.

The following set will play an important part in the rest of the note.

Definition 2.2. Let T be an EMV map. The recurrent set of T is defined by

XR := {
x ∈ X∞ : ∃Xn and nk → ∞ with T nk (x) ∈ Xn for all k ∈ N

}
.

We let φ ∈R and ψ ∈ R0. In this setting we define

αm = αm,φ,ψ := inf

{
lim

n→∞

∑n−1
i=0 φ(T ix)∑n−1
i=0 ψ(T ix)

: x ∈ X∞
}

,

αM = αM,φ,ψ := sup

{
lim

n→∞

∑n−1
i=0 φ(T ix)∑n−1
i=0 ψ(T ix)

: x ∈ X∞
}

and

J (α) = Jφ,ψ(α) :=
{

x ∈ X∞ : lim
n→∞

∑n−1
i=0 φ(T ix)∑n−1
i=0 ψ(T ix)

= α

}
.

We will consider the restriction of the level set J (α) to the recurrent set for T ,

JR(α) = JR,φ,ψ := Jφ,ψ(α) ∩ XR.

2.3. Hausdorff dimension

We briefly recall the definition of the Hausdorff measure (see [2,11] for further details). Let F ⊂R
d and s, δ ∈R

+,

Hs
δ (F ) := inf

{ ∞∑
i=1

|Ui |s : {Ui}i is a δ-cover of F

}
.

The s-Hausdorff measure of the set F is defined by

Hs(F ) := lim
δ→0

Hs
δ (F )

and the Hausdorff dimension by

dimH F := inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.
We call a measure μ on X dissipative if μ(XR) < μ(X∞). In the same spirit, we call the system dissipative if 

dimH (XR) < dimH (X∞). Note that a finite invariant measure cannot be dissipative.

2.4. Main results

Our main result establishes the conditional variational principle for the sets JR(α). In the final section of the note 
we will give an example to show that it is not always true for the sets J (α).

Theorem 2.3. Let T : ∪nXn → X be a EMV map and φ, ψ : ∪nXn → R be such that φ ∈ R and ψ ∈ R0. Let 
α ∈ (αm, αM). If there exists K > 0 such that for every x ∈ JR(α) we have that

lim sup
n→∞

Snψ(x)

n
< K, (4)

then

dimH (JR(α)) = sup

{
h(μ)

λT (μ)
:

∫
φ dμ∫
ψ dμ

= α,max

{
λT (μ),

∫
ψ dμ

}
< ∞,μ ∈M

}
.
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By taking ψ to be the constant function 1 we obtain the following corollary.

Corollary 2.4 (Birkhoff spectrum). Let T : ∪nXn → X be a EMV map and φ : ∪nXn → R be such that φ ∈ R. Let 
α ∈ (αm, αM) then

dimH (JR(α)) = sup

{
h(μ)

λT (μ)
:
∫

φ dμ = α,λT (μ) < ∞,μ ∈M
}

.

Remark 2.5. It is a direct consequence of results by Barreira and Schmeling [5] (see also [3, Theorem 11]) that if 
αm �= αM then

dimH XR = dimH

(
J ′ ∩ XR

)
.

2.5. Thermodynamic formalism

The proof of Theorem 2.3 uses tools from thermodynamic formalism. The main idea is to adapt the arguments 
of Barriera and Saussol to our setting. We briefly recall the basic notions and results that will be used. The Gure-
vich Pressure of a locally Hölder potential φ : ∪nXn → R was introduced by Sarig in [41], generalizing Gurevich’s 
definition of entropy [18]. It is defined by letting

Zn(φ) =
⎛
⎝ ∑

T nx=x

exp

⎛
⎝n−1∑

j=0

φ(T j (x))

⎞
⎠1Xi

(x)

⎞
⎠ ,

where 1Xi
(x) denotes the characteristic function of the cylinder Xi , and

P(φ) := lim
n→∞

log(Zn(φ))

n
.

The limit always exists and its value does not depend on the cylinder Xi considered. This notion of pressure satisfies 
the following variational principle: if φ is a locally Hölder potential then

P(φ) = sup

{
hσ (μ) +

∫
φ dμ : μ ∈ M and −

∫
min{φ,0} dμ < ∞

}
.

In this generality, this result is [25, Theorem 2.10]. Since the form of this statement is classical, in this note we refer to 
this as the Variational Principle. A measure attaining the supremum above will be called equilibrium measure for φ. 
An important property of the Gurevich pressure is that it can be approximated by considering functions restricted to 
certain compact invariant sets. Let

K := {M ⊂ X : M �=∅ is compact, T -invariant and T |M is Markov and mixing}.
Given any subset M ⊂ X, let PM ≤ P and MM ⊂ M respectively denote the pressure and the set of measures 
restricted to the set of points which never leave M .

Recall that an EMV map can be coded by a countable Markov shift. We may assume that the alphabet for this shift 
is N. We say that x ∈ X∞ is n-coded, if its code lies in {1, . . . , n}N. In [41, Theorem 2], Sarig approximates the full 
system from inside using the n-coded points, yielding the following.

Lemma 2.6. For each n ∈N, let Mn ∈ K be the set of n-coded points in X∞. Then

1. for any ψ ∈R we have that P(ψ) = limn→∞ PMn(ψ);
2. for any M ∈ K there exists n ∈N such that M ⊂ Mn.

Proof. The proof of [41, Theorem 2] gives this lemma. �
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3. Proof of Theorem 2.3

In this section we give the proof of the main result of this note, Theorem 2.3. The proof is similar to the one 
developed in [20] to study multifractal spectra for interval maps. It will be convenient to consider invariant measures 
supported on compact sets. Thus we define

MK := {μ ∈ M : there exists M ∈ K such that μ(X \ M) = 0}.
The following quantities will be crucial in our proof.

Definition 3.1. For α ∈ (αm, αM) let

V (α) := sup

{
h(μ)

λT (μ)
:

∫
φ dμ∫
ψ dμ

= α,max

{
λT (μ),

∫
ψ dμ

}
< ∞ and μ ∈M

}
and

E(α) := sup

{
h(μ)

λT (μ)
:

∫
φ dμ∫
ψ dμ

= α, and μ ∈MK is ergodic

}
.

To start the proof we first relate the quantity V (α) to the pressure function. To do this we need the following 
preparatory lemma which relies on approximating the pressure from below by the pressure for T restricted to compact 
sets where it is Markov.

Lemma 3.2. If α ∈ (αm, αM), δ > 0 and inf{P(q(φ − αψ) − δ log |T ′|) : q ∈ R} > 0 then there exists M ∈ K such 
that:

1. PM(q(φ − αψ) − δ log |T ′|) > 0 for every q ∈ R,
2. the following equality holds

lim
q→∞PM(q(φ − αψ) − δ log |T ′|) = lim

q→−∞PM(q(φ − αψ) − δ log |T ′|) = ∞.

Proof. We start with the second part. As in [3], the conclusion of Theorem 2.3 holds for any T : M → M for M ∈ K. 
Thus we need to show that for α ∈ (αm, αM), we can find large enough subsets K1, K2 ∈K, μ1 ∈MK1 and μ2 ∈MK2

such that∫
φ dμ1∫
ψ dμ1

< α <

∫
φ dμ2∫
ψ dμ2

. (5)

To find such a K1 ∈K for a fixed α we let γ ∈ (αm, α). We can then find a T -invariant probability measure μ such that ∫
φdμ∫
ψdμ

< γ and note that via the ergodic decomposition this measure can be assumed to be ergodic. Thus the ergodic 
theorem, the regularity of our potentials and the Markov structure of our system imply that we can find a periodic 
point x of period k such that Skφ(x)

Skψ(x)
< γ . Since the periodic point x is n-coded, for some n, by Lemma 2.6 we can find 

a set K1 ∈ K which contains x and the invariant measure, μ1, supported on the orbit of x will satisfy that μ1 ∈ MK1

and ∫
φ dμ1∫
ψ dμ1

= Skφ(x)

Skψ(x)
< α.

Exactly the same approach works to find the set K2. We will use Lemma 2.6 and the Variational Principle to show 
that there exists K3 ∈ K such that

lim
q→∞PK3(q(φ − αψ) − δ log |T ′|) = ∞ = lim

q→−∞PK3(q(φ − αψ) − δ log |T ′|). (6)

We begin by the applying the Variational Principle: for K3 ⊃ K2,

PK3(q(φ − αψ) − δ log |T ′|) ≥
(

h(μ2) − δ

∫
log |T ′| dμ2

)
+ q

∫
(φ − αψ) dμ2.
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Since by equation (5),∫
(φ − αψ) dμ2 > 0,

the first equality in (6) follows since

lim
q→∞q

∫
(φ − αψ) dμ2 = ∞.

An analogous argument using μ1 yields the second equality in (6). Hence by using Lemma 2.6 to choose K3 ∈ K
sufficiently large to contain K1 ∪ K2 we obtain part 2 of the lemma.

Now let γ := inf{P(q(φ − αψ) − δ log |T ′|) : q ∈ R} > 0 and I := {q ∈ R : PK3(q(φ − αψ) − δ log |T ′|) ≤ γ }. 
If I = ∅ then the proof is complete. If I �=∅ then by the convexity of pressure it is a compact set.

By Lemma 2.6 there exists an increasing sequence of sets {Mn}n ⊂ K where for some j ∈ N, K3 ⊂ Mi for all 
i ≥ j , such that

P(q(φ − αψ) − δ log |T ′|) = lim
n→∞PMn(q(φ − αψ) − δ log |T ′|).

Therefore, for each q ∈ I we have that limn→∞ PMn(q(φ − αψ) − δ log |T ′|) ≥ γ . Now suppose that for each n ∈ N

there exists qn ∈ I such that PMn(qn(φ − αψ) − δ log |T ′|) ≤ γ /2 then since I is compact we can assume, passing to 
a subsequence if necessary, that there exists q∗ = limn→∞ qn. By the continuity of the pressure, for any fixed n ∈ N

we have that

PMn(q∗(φ − αψ) − δ log |T ′|) = lim
k→∞PMn(qk(φ − αψ) − δ log |T ′|). (7)

On the other hand, since for every k ≥ n we have that Mn ⊂ Mk , we obtain

PMn((qk(φ − αψ) − δ log |T ′|) ≤ PMk
((qk(φ − αψ) − δ log |T ′|) ≤ γ

2
. (8)

Combining equations (7) with (8), we obtain

lim
n→∞PMn(q∗(φ − αψ) − δ log |T ′|) ≤ γ

2
.

Thus P(q∗(φ − αψ) − δ log |T ′|) ≤ γ /2 which is a contradiction. Therefore we can conclude that there exists M ∈ K
such that PM(q(φ − αψ) − δ log |T ′|) > 0 for all q ∈R and

lim
q→∞PM(q(φ − αψ) − δ log |T ′|) = lim

q→−∞PM(q(φ − αψ) − δ log |T ′|) = ∞. �
We can now relate V (α) to the pressure function in the following lemma, which is the main engine of the proof of 

Theorem 2.3.

Lemma 3.3. For any α ∈ (αm, αM),

E(α) = V (α) = sup
{
δ ∈R : inf{P(q(φ − αψ) − δ log |T ′|) : q ∈ R} > 0

}
.

Proof. Let ε > 0. By the definition of V (α), we can find μ ∈ M such that h(μ)∫
log |T ′| dμ

> V (α) − ε and 
∫

φ dμ∫
ψ dμ

= α. 
Then it is a consequence of the Variational Principle that

P
(
q(φ − αψ) − (V (α) − ε) log |T ′|) ≥ h(μ) +

∫
q(φ − αψ) dμ − (V (α) − ε)

∫
log |T ′| dμ

= h(μ) − (V (α) − ε)

∫
log |T ′| dμ > 0.

Therefore, sup
{
δ ∈ R : P(q(φ − αψ) − δ log |T ′|) > 0

} ≥ V (α) − ε for all ε > 0, so V (α) and hence E(α) are lower 
bounds.
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For the upper bound suppose that s ∈R satisfies

inf
q

P (q(φ − αψ) − s log |T ′|) > 0.

By Lemma 3.2 we can find M ∈ K such that

PM(q(φ − αψ) − s log |T ′|) > 0

for all q ∈R and such that

lim
q→∞PM(q(φ − αψ) − s log |T ′|) = lim

q→∞PM(q(φ − αψ) − s log |T ′|) = ∞. (9)

Since the function q �→ PM(q(φ − αψ) − s log |T ′|) is real analytic (see [3]), it is a consequence of (9) that there 
exists q0 ∈ R such that

∂

∂q
PM(q(φ − αψ) − s log |T ′|)

∣∣∣
q=q0

= 0.

Therefore, using Ruelle’s formula for the derivative of pressure (see [40, Lemma 5.6.4]), we obtain that∫
(φ − αψ) dμ0 = 0,

where μ0 denotes the equilibrium measure for the potential q0(φ − αψ) − s log |T ′| and the dynamical system T
restricted to M . Thus, we have that∫

φ dμ0∫
ψ dμ0

= α.

But it also follows from the Variational Principle that

h(μ0) +
∫

(φ − αψ) dμ0 − s

∫
log |T ′| dμ0 > 0.

That is,

h(μ0)∫
log |T ′| dμ0

> s.

Therefore, since μ0 is ergodic we obtain that V (α) ≥ E(α) ≥ s and the result follows. �
It is now straightforward to prove the lower bound.

Lemma 3.4. For all α ∈ (αm, αM) we have that dimH (JR(α)) ≥ V (α).

Proof. Let ε > 0. Since Lemma 3.3 implies that V (α) = E(α), there exists a compactly supported invariant ergodic 

measure μ ∈ MK such that 
∫

φdμ∫
ψdμ

= α and h(μ)
λT (μ)

> V (α) − ε. Thus since μ(Jφ,ψ(α) ∩ XR) = 1, the well known 
formula for the dimension of μ (see for example [21,32]) implies that

dimH (Jφ,ψ(α) ∩ XR) ≥ h(μ)

λT (μ)
> V (α) − ε,

and hence dimH (Jφ,ψ(α) ∩ XR) ≥ V (α). �
In order to prove the upper bound we will use a covering argument. To start with we set

J̃ (α, j) = J̃φ,ψ (α, j) := {
x ∈ X∞ : x ∈ Jφ,ψ(α) and #{n ∈N : T n(x) ∈ Xj } = ∞}

and

J (α, j) = Jφ,ψ(α, j) := J̃φ,ψ(α, j) ∩ Xj .

The following lemma can be immediately deduced from the definition and properties of Hausdorff dimension.
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Lemma 3.5. For all j ∈ N we have that

dimH J̃ (α, j) = dimH J (α, j)

and thus

dimH JR(α) = sup
j∈N

dimH J (α, j).

The next lemma is the main step in the proof of the upper bound.

Lemma 3.6. Let 0 < δ < 1, if there exists q ∈R such that

P(q(φ − αψ) − δ log |T ′|) ≤ 0

then dimH J (α, j) ≤ δ for all j ∈N.

Proof. Let ε > 0 be fixed. Note that since for every x ∈ X∞ we have λT (x) > log ξ > 0 and P(q(φ − αψ) −
δ log |T ′|) ≤ 0 we can conclude that

P(q(φ − αψ) − (δ + ε) log |T ′|) < 0.

Denote by B(x, r) the ball of center x and radius r . Letting j, n ∈N, we define

G(α,n, ε) :=
{
x ∈ Xj : T n(x) ∈ Xj ,

Snφ(x)

Snψ(x)
∈ B

(
α,

ε log ξ

q2K

)}

where K is defined in (4). Observe that J (α, j) ⊂ ⋂∞
r=1

⋃∞
n=r G(α, n, ε). Consider now the set of cylinders that 

intersect G(α, n, ε),

C(α,n, ε) := {[i1, . . . , in] : [i1, . . . , in] ∩ G(α,n, ε) �=∅} .

We can choose N such that for all n ≥ N if [i1, . . . , in] ∈ C(α, n, ε) then for any x ∈ [i1, . . . , in] we have

Snψ(x)

(
α − ε log ξ

q2K

)
≤ Snφ(x) ≤ Snψ(x)

(
α + ε log ξ

q2K

)

and Snψ(x) ≤ 2nK . Thus

Sn(q(φ − αψ))(x) = qSnφ(x) − αqSnψ(x)

≤ qSnψ(x)

(
α + ε log ξ

q2K

)
− αqSnψ(x)

= nε log ξ§nψ(x)

2K
≤ nε log ξ

and similarly

Sn(q(φ − αψ))(x) ≥ −nε log ξ.

We will also have that

log |[i1, . . . , in]| ≤ −Sn(log |T ′|)(x) +
n∑

k=1

vark(log |T ′|).

In particular, since [i1, . . . , in] ∈ C(α, n, ε), the Markov structure gives an n-periodic point y ∈ [i1, . . . , in] which must 
have log |(T n)′(y)| > n log ξ , so the Mean Value Theorem yields |[i1, . . . , in]| ≤ ξne

∑∞
k=1 vark(log |T ′|) := ξn.

Since Sn(q(φ − αψ))(x) ≥ −nε log ξ ≥ −εSn(log |T ′|)(x), for x ∈ G(α, n, ε) and N large enough that the deriva-
tive sufficiently dominates the sum of the variations (indeed we require N · infx{λT (x)} > ∑

n varn(log |T ′|)),
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Hδ+4ε
ξN

(∪n≥NG(α,n, ε)
) ≤

∑
n≥N

∑
C(α,n,ε)

|i1, . . . , in|δ+4ε

≤
∑
n≥N

∑
x∈G(α,n,ε):T n(x)=x

e−(δ+3ε)(Sn log |T ′|)(x)

≤
∑
n≥N

∑
x∈G(α,n,ε):T n(x)=x

eq(Snφ(x)−αSnψ(x))−(δ+2ε)(Sn log |T ′|)(x)

≤
∑
n≥N

∑
x∈Xj :T n(x)=x

eq(Snφ(x)−αSnψ(x))−(δ+2ε)(Sn log |T ′|)(x)

≤
∑
n≥N

enP (q(φ−αψ)−(δ+ε) log |T ′|) ≤
∞∑

n=1

enP (q(φ−αψ)−(δ+ε) log |T ′|) < ∞

For the penultimate inequality here we use the facts that we can make Zn(q(φ − αψ) − (δ + 2ε) log |T ′|) close, 
up to a subexponential error, to enP (q(φ−αψ)−(δ+2ε) log |T ′|) for n ≥ N , by choosing N sufficiently large; and that 
P(q(φ − αψ) − (δ + 2ε) log |T ′|) < P(q(φ − αψ) − (δ + ε) log |T ′|). By letting N → ∞ and then ε → 0 we have 
that dimH J (α, j) ≤ δ. �

We can now prove the upper bound.

Lemma 3.7. For all α ∈ (αm, αM) we have that dimH (Jφ,ψ(α) ∩ XR) ≤ V (α).

Proof. Let α ∈ (αm, αM) and ε > 0 and s ≥ V (α) + ε. By Lemma 3.3 we can conclude that

inf{P(q(φ − αψ) − s log |T ′|) : q ∈R} ≤ 0.

As in Lemma 3.2 we can find ergodic measures μ1, μ2 supported on periodic orbits where 
∫

φ − αψdμ1 < 0 and ∫
φ −αψdμ2 > 0. Thus by the Variational Principle (note that μ1 and μ2 have zero entropy and as they are supported 

on periodic orbits, the function q(φ − αψ) − s log |T ′| will be integrable with respect to both these measures) we will 
have that

lim
q→∞P(q(φ − αψ) − s log |T ′|) = lim

q→−∞P(q(φ − αψ) − s log |T ′|) = ∞

Thus since the function q �→ P(q(φ − αψ) − s log |T ′|) is continuous it will therefore achieve its infimum and so 
there will exist q ∈R such that

P(q(φ − αψ) − s log |T ′|) ≤ 0.

Therefore by Lemmas 3.5 and 3.6 it follows that dimH (Jφ,ψ(α) ∩ XR) ≤ V (α). �
This completes the proof of Theorem 2.3.

4. Discontinuous Birkhoff spectra

This section is devoted to exhibiting pathologies and new phenomena that occur when studying dimension theory 
of a specific dissipative map. We consider a piecewise linear, uniformly expanding map which is Markov over a 
countable partition and that has been studied in detail by Bruin and Todd (see [6,7]). This map was proposed by van 
Strien to Stratmann as a model for an induced map of a Fibonacci unimodal map. Stratmann and Vogt [44] computed 
the Hausdorff dimension of points that converge to zero under iteration of it. The map we consider is the following: 
let λ ∈ (1/2, 1) and consider the partition of the interval (0, 1] given by {Xn}n≥1, where Xn = (λn, λn−1]. The map 
Fλ : (0, 1] → (0, 1] is defined as follows,
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Fλ(x) :=
{

x−λ
1−λ

if x ∈ X1,

x−λn

λ(1−λ)
if x ∈ Xn, n ≥ 2,

for the intervals Xn := (λn, λn−1], which form a Markov partition.
We stress that the phase space is non-compact. Bruin and Todd [6] studied the thermodynamic formalism for this 

map. They showed that even though the map Fλ is expanding and transitive there is dissipation in the system and 
they were able to quantify it. It is a direct consequence of Theorem 2.3 that the conditional variational principle for 
quotients of Birkhoff averages holds when restricted to the recurrent set:

Theorem 4.1. Let φ ∈R and ψ ∈ R0. Then

dimH (JR,φ,ψ (α)) = sup

{
h(μ)

λFλ(μ)
:

∫
φ dμ∫
ψ dμ

= α and μ ∈ M
}

.

However, if we consider the whole repeller the situation is more complicated as the following theorem shows,

Theorem 4.2. Let φ : (0, 1] → R be a Hölder potential such that limx→0 φ(x) = a. The Birkhoff spectrum of φ with 
respect to the dynamical system Fλ satisfies

1. If α = a then dimH Jφ,1(α) = 1.

2. If α �= a then dimH Jφ,1(α) ≤ − log 4
log(λ(1−λ))

.

In particular the function bφ,1 is discontinuous at α = a. Moreover, the multifractal spectrum bφ,1 in the set 
[αm,αM ] \ {a} satisfies the following conditional variational principle

bφ,1(α) = sup

{
h(μ)

λFλ(μ)
:
∫

φ dμ = α and μ ∈M
}

.

For α = a the function bφ,1(α) does not satisfy the conditional variational principle.

We therefore exhibit a map for which the Birkhoff spectrum is discontinuous and does not satisfy the conditional 
variational principle in one point, α = a. However it does satisfy it in the complement of the point α = a.

In order to prove Theorem 4.2 we first recall the thermodynamic and dimension theoretic description that Bruin 
and Todd have made of the map Fλ. The escaping set of the map Fλ is defined by

�λ :=
{
x ∈ (0,1] : lim

n→∞Fn
λ (x) = 0

}
(so in particular �λ = (0, 1] \ XR), and the hyperbolic dimension is defined by

dimhyp(Fλ) := sup{dimH � : � ⊂ (0,1] compact, non-empty and Fλ-invariant}. (10)

It was proved in [6, Theorems A and C] that

Theorem 4.3 (Bruin–Todd). If λ ∈ (1/2, 1) for the map Fλ we have

1. The Lebesgue measure is dissipative.
2. The Hausdorff dimension of the escaping set is given by dimH �λ = 1.
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3. The Hausdorff dimension of the recurrent set is given by

dimhyp(Fλ) = − log 4

log(λ(1 − λ))
< 1.

We can now prove Theorem 4.2.

Proof of Theorem 4.2. If x ∈ �λ then

lim
n→∞

1

n

n−1∑
i=0

φ(F i
λx) = a.

By Theorem 4.3, dimH �λ = 1, so b(a) = 1. On the other hand, for every α �= a we have that J (α) ⊂ (0, 1] \ �λ. 
A direct consequence of Theorem 4.3 yields

b(α) = dimH J (α) ≤ − log 4

log(λ(1 − λ))
< 1.

Therefore, the multifractal spectrum, b(α), is discontinuous at α = a.
Since every μ ∈M must be supported on the recurrent set, the final part of Theorem 4.3 implies

dimH μ ≤ − log 4

log(λ(1 − λ))
< 1.

Therefore it is clear that the conditional variational principle does not hold for α = a. The fact that it does hold in the 
recurrent set follows from Theorem 4.1. �
4.1. Lyapunov spectrum

Perhaps the most important potential to consider is φ(x) = log |F ′
λ(x)|. In this context the Birkhoff spectrum is 

called the Lyapunov spectrum. In the example we are considering we can describe the spectrum in great detail. Indeed, 
we can show that it varies analytically in a half open interval and that it is discontinuous in one point. This is the first 
example where a discontinuous Lyapunov spectrum for a topologically transitive map has been explicitly calculated 
that we are aware of. Note that this phenomenon is likely to occur in situations where the hyperbolic dimension is 
different from the Hausdorff dimension of the repeller, see [45]. We stress that the domain of the spectrum is an 
interval and that it has no isolated points (compare with [31]).

Note that in this case we have that

αm = − log(1 − λ) and αM = − logλ(1 − λ) := a.

We also have an explicit form for the pressure of −tφ given in [6] which in particular says that

P(−tφ) = t log(1 − λ) − log(1 − λt ) for t ≥ − log 2

logλ
.

This allows us to deduce the following result, see Fig. 1.

Proposition 4.4. Consider the map Fλ for λ ∈ ( 1
2 , 1). Then for any t >

− log 2
log λ

,

dimH J

(
− log(1 − λ) − λt logλ

1 − λt

)
= t log(1 − λ) − log(1 − λt )

− log(1 − λ) − λt log λ

1−λt

+ t (11)

and dimH (J (− logλ(1 − λ))) = 1. In particular the function α → dimH J (α) is analytic in (αm, αM) but discontin-
uous at αM .

Proof. Given t >
− log 2
log λ

, set αt :=
(
− log(1 − λ) − λt log λ

1−λt

)
. Then defining g : (− log 2/ logλ, ∞) → R by g(t) =

P(−tφ), we obtain g′(t) = −αt . Moreover by the results in [6] it follows that for t in our specified range, the potential 
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Fig. 1. Lyapunov spectrum for λ = 0.9.

−tφ has an unique equilibrium state μt with λ(μt ) = αt and h(μt )
λ(μt )

= g(t)/αt + t . If we let μ be an Fλ invariant 

measure such that λ(μ) = αt then by the Variational Principle, h(μ) ≤ h(μt ). Therefore h(μ)
λ(μ)

≤ g(t)/αt + t and thus 
dimH (JR(α)) = V (α) = g(t)/αt + t . We next check the range of values of α for which equation (11) holds. Clearly, 
lim

t↘ − log 2
log λ

αt = αM and limt→∞ αt = αm, so we have analyticity of α �→ dimH J (α) on (αm, αM). Since λ �= 1
2 we 

have

lim
α→a

dimH J (α) =
(

log 2

logλ

)⎛
⎝ log

(
λ

1−λ

)
− log(λ(1 − λ))

− 1

⎞
⎠ < 1 = dimH J (αM),

so there is a discontinuity at αM , as claimed. �
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