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Abstract

This paper deals with higher gradient integrability for σ -harmonic functions u with discontinuous coefficients σ , i.e. weak
solutions of div(σ∇u) = 0 in dimension two. When σ is assumed to be symmetric, then the optimal integrability exponent of the
gradient field is known thanks to the work of Astala and Leonetti and Nesi. When only the ellipticity is fixed and σ is otherwise
unconstrained, the optimal exponent is established, in the strongest possible way of the existence of so-called exact solutions, via
the exhibition of optimal microgeometries.

We focus also on two-phase conductivities, i.e., conductivities assuming only two matrix values, σ1 and σ2, and study the
higher integrability of the corresponding gradient field |∇u| for this special but very significant class. The gradient field and its
integrability clearly depend on the geometry, i.e., on the phases arrangement described by the sets Ei = σ−1(σi). We find the
optimal integrability exponent of the gradient field corresponding to any pair {σ1, σ2} of elliptic matrices, i.e., the worst among all
possible microgeometries.

We also treat the unconstrained case when an arbitrary but finite number of phases are present.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω be a bounded, open and simply connected subset of R2 with Lipschitz continuous boundary. We are inter-
ested in elliptic equations in divergence form with L∞ coefficients, specifically,

div(σ∇u) = 0 in Ω. (1.1)

Here σ is a matrix valued coefficient, referred to as conductivity, and any weak solution u ∈ H 1
loc(Ω) to the equation

is called a σ -harmonic function. The case of discontinuous conductivities σ is particularly relevant in the context of
non-homogeneous and composite materials. With this motivation, we only assume ellipticity. Denote by M

2×2 the
space of real 2 × 2 matrices and by M

2×2
sym the subspace of symmetric matrices.

Definition 1.1. Let λ ∈ (0,1]. We say that σ ∈ L∞(Ω;M2×2) belongs to the class M(λ,Ω) if it satisfies the following
uniform bounds

σξ · ξ � λ|ξ |2 for every ξ ∈R
2 and for a.e. x ∈ Ω, (1.2)

σ−1ξ · ξ � λ|ξ |2 for every ξ ∈R
2 and for a.e. x ∈ Ω. (1.3)

We denote by Msym(λ,Ω) the set of functions in M(λ,Ω) which are a.e. symmetric.
Finally, we say that σ is elliptic if it belongs to the class M(λ,Ω) for some positive λ.

The reader may wonder why to use the notion of ellipticity given in Definition 1.1. The reason is the interest in
one class of applications related to the theory of the so-called composite materials. Physically this takes into account
the possible presence of several well separated length scales. From the mathematical point of view one is forced to
consider sequences of problems of type (1.1) and to study the limiting equation in a sense that has later been called
homogenization. This process has been first undertaken, historically, in the case of symmetric conductivities giving
rise to the notion of G-limit. Later, the study has been extended to the non-necessarily symmetric case and called
H -convergence. It is exactly at this point that Murat and Tartar (see [18]) observed that only the ellipticity given in
Definition 1.1 has the property to give H -stability. In other words, a class of pdes with uniform bounds of the latter
type, H -converge to a pde with the same ellipticity as opposed to what happens if different notions of ellipticity are
assumed. For a detailed explanation related to the relationship between composite materials and H -convergence we
refer the reader to [2].

It is well known that the gradient of σ -harmonic functions locally belongs to some Lp with p > 2. Any σ -harmonic
function u can be seen as the real part of a complex map f : Ω �→C which is a H 1

loc solution to the Beltrami equation

fz̄ = μfz + νfz, in Ω, (1.4)

where the so-called complex dilatations μ and ν, both belonging to L∞(Ω,C), are given by

μ = σ22 − σ11 − i(σ12 + σ21)
, ν = 1 − detσ + i(σ12 − σ21)

, (1.5)

1 + trσ + detσ 1 + trσ + detσ
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and satisfy the ellipticity condition∥∥|μ| + |ν|∥∥
L∞ < 1. (1.6)

Let us recall that weak solutions to (1.4) are called quasiregular mappings. They are called quasiconformal if, in
addition, they are injective. The ellipticity (1.6) is often expressed in a different form. Indeed, it implies that there
exists 0 � k < 1 such that ‖|μ| + |ν|‖L∞ � k < 1 or equivalently that∥∥|μ| + |ν|∥∥

L∞ � K − 1

K + 1
, (1.7)

for some K > 1. The corresponding solutions to (1.4) are called K-quasiregular, and K-quasiconformal if, in addition,
they are injective. In 1994, K. Astala [3] proved one of the most important pending conjectures in the field at that time,
namely that planar K-quasiregular mappings have Jacobian determinant in L

K/(K−1)

weak . Astala’s work represented a
benchmark for the issue of determining the optimal integrability exponent which was previously studied in the work
of Bojarski [8] and Meyers [14].

Summarizing, to any given σ ∈M(λ,Ω) one can associate a corresponding pair of complex dilations via (1.5) and
therefore, via the Beltrami equation (1.4) a quasiregular mapping. Therefore, given λ ∈ (0,1) and given σ ∈ M(λ,Ω)

one can find K = K(σ) by using (1.5) and (1.7) in such a way that the σ -harmonic function u, solution to (1.1) is the
real part of a K-quasiregular mapping. The Astala regularity result in this context reads as |∇u| ∈ L

pK

weak(Ω), where
pK := 2K

K−1 . A more refined issue is to determine weighted estimates for the Jacobian determinant of a quasiconformal
mapping. A first result in this direction was given in [7]. A much finer and more recent result is given in [6, formula
(1.6)]. Throughout the present paper we focus on the simpler framework of the classical Lp spaces.

The first question is to determine the best possible (i.e. the minimal) constant K(σ) such that if u is σ -harmonic
with σ ∈ M(λ,Ω), then u is the real part of a K(σ)-quasiregular mapping. Astala writes in his celebrated paper that
his result implies sharp exponents of integrability for the gradient of solutions of planar elliptic pdes of the form (1.1),
and he also remarks that K (and therefore the optimal integrability exponent) depends in a complicated manner on all
the entries of the matrix σ rather than just on its ellipticity. Alessandrini and Nesi [2], in the process of proving the
G-stability of Beltrami equations, made a progress which can be found in their Proposition 1.8. Let us rephrase it here
(see also [1] for the estimate (1.9)).

Proposition 1.2. Let λ ∈ (0,1]. Then

Kλ := sup
σ∈M(λ,Ω)

K(σ) = 1 + √
1 − λ2

λ
, (1.8)

K
sym
λ := sup

σ∈Msym(λ,Ω)

K(σ) = 1

λ
. (1.9)

In Section 2.2 we give a simpler and more geometrical proof of Proposition 1.2 based on the real formulation of
the Beltrami equation (see Propositions 2.2 and 2.3). As a straightforward corollary, it follows that any σ -harmonic
function with σ ∈ M(λ,Ω) satisfies the property |∇u| ∈ L

pKλ

weak, where Kλ is given by (1.8) and pKλ := 2Kλ

Kλ−1 . This
has to be compared with the version that holds true assuming a priori that σ ∈ Msym(λ,Ω); in that case Kλ can be
replaced by K

sym
λ defined in (1.9) (see Theorem 2.7).

A natural question is whether the bounds (1.8), (1.9) are optimal. Optimality in the symmetric case (1.9) was proved
by Leonetti and Nesi [13]; optimality means that there exists σ ∈Msym(λ,Ω) for which the estimate |∇u| ∈ L

pKλ

weak is
sharp. The optimal microgeometry for σ constructed in [13] is given by a polycrystal: σ is symmetric, the eigenvalues
are λ and λ−1 but the eigenvectors change from point to point.

The original question implicitly raised by Astala to prove optimality in the general case when σ ∈ M(λ,Ω),
namely, without assuming that σ is symmetric, was apparently forgotten. One of the goals of this paper is to analyze
this case. In fact, we will give a complete answer to the problem of finding the best integrability exponent in this
unconstrained class showing optimality of (1.8). This is our Theorem 1.5 in which we show that there exists a con-
ductivity σ taking only two special values for which the corresponding solution has the desired critical exponent. In
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fact we also prove a sort of converse statement under the mild assumption that σ takes a finite number of values. This
is our Theorem 1.6.

The case when σ is symmetric has been explored in depth. There has been a number of increasingly refined results
showing optimality of Astala’s theorem for specific classes of symmetric matrices σ . Specifically Faraco [9] treats the
case of two isotropic materials, i.e. when σ takes values in the set of only two matrices of the form {KI, 1

K
I }, with

I the identity matrix, which was originally conjectured to be optimal for the exponent 2K
K−1 in a remarkable paper by

Milton [15]. In a further advance a more refined version was given in [4], where the authors proved optimality in the
stronger sense of exact solutions (see Definition 1.3 below). This is a very strong result the proof of which requires a
machinery called the Baire category method.

In order to present our results we need first to explain why two-phase conductivities are representative for our
problem. Recall that when σ is smooth, the corresponding σ -harmonic function is necessarily smooth and hence with
bounded gradient. So the issue of higher exponent of integrability is really related to discontinuous coefficients. The
simplest class of examples is when one has a conductivity taking only two values. We therefore ask the following
question. Given two elliptic matrices, σ1 and σ2, consider the class of matrices σ ∈ M(λ,Ω) of the special form
σ(x) = σ1χE1 + σ2χE2 , where {E1,E2} is a measurable partition of Ω and χEi

denotes the characteristic function
of the set Ei . In the jargon of composite materials this is called a two-phase composite. What is the best possible
information one can extrapolate from Astala’s theorem? As already explained, to the ellipticity λ of σ there corre-
sponds a suitable constant K(σ) in the Beltrami equation. We are naturally led to the following related question:
given μ,ν ∈ L∞(Ω;C) satisfying (1.7) with K(μ,ν) > 1, is it possible to transform μ and ν, by a suitable change
of variables, specifically, by affine transformations, in order to decrease K and thus gain a better integrability for the
solution of the transformed Beltrami equation? The key observation here is that the integrability of solutions of the
Beltrami equation is invariant under such transformations, while K(μ,ν) is not. It is then well defined the minimal
Beltrami constant Kmin attainable under such transformations (see Definition 2.8). This issue has been addressed by
Faraco in [10] in the framework of Beltrami equation (1.4), in the canonical case when ν = 0. The author observes
that affine transformations correspond to Moebius transformations of μ, and expresses Kmin in terms of the diameter
(in the hyperbolic metric) of the range of μ. In terms of elliptic systems, Faraco’s result corresponds to σ symmetric
and with determinant constantly equal to one. Moreover, for two-phase conductivities in the latter class, his result is
sharp.

In the present work, we consider the class of two-phase conductivities, without further restrictions, and we find an
explicit formula for Kmin in terms of all the entries of σ1 and σ2, see Proposition 4.2. Moreover, Kmin gives a sharp
measure of the integrability properties of solutions to (1.1). In order to clarify this issue, we will need the following
definition.

Definition 1.3. Let σ1, σ2 ∈ M
2×2 be elliptic. We say that p∗ = p∗(σ1, σ2) ∈ (2,+∞) is critical for σ1, σ2 if the

following two conditions hold.

1) For every boundary condition u0 ∈ H
1
2 (Ω), p < p∗ and every ball B compactly contained in Ω , there exists a

constant c > 0 such that the solution u to{
div(σ∇u) = 0 in Ω,

u(x) = u0 on ∂Ω,
(1.10)

with σ any (measurable) two-phase conductivities with values in {σ1, σ2}, satisfies∫
B

|∇u|p dx � c.

2) There exist a boundary condition u0 ∈ H
1
2 (Ω) and a sequence σj of (measurable) two-phase conductivities with

values in {σ1, σ2} such that the solutions uj to (1.10) (with σ replaced by σj ) satisfy∫
B

|∇uj |p∗
dx → ∞ as j → ∞ for every ball B ⊂ Ω.
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Finally, we say that p∗ is critical in the stronger sense of exact solutions if 1) holds and 2) is replaced by the following
stronger condition:

2s) There exist a boundary condition u0 ∈ H
1
2 (Ω) and a two-phase conductivity σ such that the corresponding

solution u of (1.10) satisfies∫
B

|∇u|p∗
dx = ∞ for every ball B ⊂ Ω.

The optimality result for two-phase conductivities is stated in Theorem 1.4 below.

Theorem 1.4. Let σ1, σ2, be elliptic. Then pKmin is the critical integrability exponent corresponding to σ1, σ2 in the
sense of exact solutions as given by Definition 1.3, 1) and 2s). Hence, we have p∗ = pKmin .

The strategy to prove 2) and 2s) is to describe the problems in terms of differential inclusions, following the
program of Gromov, as developed by Kirchheim in the context of pdes and exploited in [4] and [9]. Specifically, to
prove the weaker form of Theorem 1.4, namely the existence of so-called approximate solutions, we exhibit explicit
laminates microgeometries, adapting the construction in [9]. To prove the stronger statement of existence of exact
solutions, we rely on the methods of convex integrations and Baire category approach following [4]. In fact, we have
to extend the results in [4,9] to a larger class of symmetric conductivities, specifically, to matrices of the form

σ = χE1 diag
(
S1, λ

−1) + χE2 diag(S2, λ), with λ� S1, S2 � λ−1, (1.11)

thus generalizing the isotropic case S1 = λ−1, S2 = λ, considered in [4] and [9]. The proof of the existence of approx-
imate solutions is comparatively simpler then that of exact solutions. For the reader convenience, both are presented
in Appendix A.

Our next theorem is really a corollary of Theorem 1.4, but we state it separately since it answers the general
question to prove that the bound (1.8) is optimal in the unconstrained case when no symmetry assumptions are made
on σ .

Theorem 1.5. Let λ ∈ (0,1) and let σ1, σ2 be defined by

σ1 =
(

a b

−b a

)
, σ2 =

(
a −b

b a

)
, with a = λ, b = ±

√
1 − λ2. (1.12)

The exponent pKλ := 2Kλ

Kλ−1 , with Kλ given by (1.8), is critical in the sense of Definition 1.3, i.e, p∗(σ1, σ2) = pKλ .

More precisely, there exist a two-phase conductivity σ : Ω �→ {σ1, σ2} and a corresponding solution u ∈ H 1
loc(Ω) of

(1.1) with affine boundary conditions such that ∇u /∈ LpKλ (B) for every disk B ⊂ Ω .

Clearly, up to relabeling of the σi ’s, one can always choose b positive.
Finally, a natural question, both in the symmetric and in the unconstrained case, is whether there are other two-phase

critical coefficients, that is to say, two-phase coefficients σ for which the bounds in Proposition 1.2 are attained and
optimal in the sense of Definition (1.3). In Theorem 4.1 we give a complete answer to this question, characterizing
all the critical conductivities with fixed ellipticity. In the symmetric case, the critical conductivities are given (up
to rotations) exactly by those in (1.11) (for suitable partitions E1, E2). In the unconstrained case, the only critical
conductivities are as in (1.12).

We believe that the results proved in this paper for two-phase conductivities could give some hints to treat the
general case when σ takes an arbitrary number of values. Such generalization would require a specific analysis that
is beyond the purposes of this paper. Nevertheless, we state here a simple generalization of our results in the uncon-
strained case, for conductivities taking an arbitrary finite number of values (see Section 4 for its proof).
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Theorem 1.6. Assume that σ ∈M(λ,Ω) takes a finite number of values. Suppose there exists a σ -harmonic function
u (solution to (1.1)) such that for each ball B ⊂ Ω ,∫

B

|∇u|pKλ = +∞.

Then, there exist two dense subsets E1, E2 of Ω with positive measure, such that σi := σ Ei , i = 1,2 are as in (1.12).

2. More about σ -harmonic functions and the Beltrami system

In the present section we review some well-known connections between σ -harmonic functions and the Beltrami
system which we use in the rest of the paper. We refer the interested reader to [2] for a more detailed presentation of
the argument, and to [5] for a general and comprehensive treatment.

2.1. Complex vs real formulation of a Beltrami system

Consider the Beltrami equation (1.4). It can be rewritten in the equivalent form

Df tHDf = GdetDf, (2.1)

where G and H are real matrix fields depending on μ and ν. Specifically,

G = 1

d

( |1 + μ|2 − |ν|2 2�(μ)

2�(μ) |1 − μ|2 − |ν|2
)

,

H = 1

d

( |1 − ν|2 − |μ|2 −2�(ν)

−2�(ν) |1 + ν|2 − |μ|2
)

, (2.2)

where

d =
√(

1 − (|ν| − |μ|)2)(1 − (|ν| + |μ|)2)
.

We will refer to (1.4) as well as to (2.1) as the Beltrami system. Let SL(2) be the subset of M2×2 of the invertible
matrices with determinant one, and let SLsym(2) = M

2×2
sym ∩ SL(2). Notice that G and H belong to SLsym(2) and

that they are positive definite. In fact injective solutions to (2.1) have a very neat geometrical interpretation. They are
mapping f : Ω → Ω ′ which are conformal, i.e., they preserves angles, provided one uses the right scalar products,
namely the one induced by G in Ω and H in Ω ′. This interpretation has many consequences. We will get back to this
point later in the paper. Inversion of the above formulas yields

μ = G11 − G22 + 2iG12

G11 + G22 + H11 + H22
, ν = H22 − H11 − 2iH12

G11 + G22 + H11 + H22
. (2.3)

By combining (2.2) and (1.5) we obtain a formula for G and H as functions of σ ,

G(σ) = 1√
detσS

(
σ22 −σ12+σ21

2−σ12+σ21
2 σ11

)
, H(σ ) = 1√

detσS

(
detσ −σ12+σ21

2−σ12+σ21
2 1

)
, (2.4)

where σS = σ+σT

2 . Inversion of (2.4) gives

σ = 1

H22

(
G−1 + H12J

)
(2.5)

where

J =
(

0 −1
1 0

)
. (2.6)

Moreover, we can express σ as a function of μ,ν inverting the algebraic system (1.5),

σ =
⎛⎝ |1−μ|2−|ν|2

|1+ν|2−|μ|2
2�(ν−μ)

|1+ν|2−|μ|2
−2�(ν+μ) |1+μ|2−|ν|2

⎞⎠ . (2.7)
|1+ν|2−|μ|2 |1+ν|2−|μ|2
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Let us clarify the relationship between the Beltrami equation and σ -harmonic maps. Given positive definite matrices
G and H in L∞(Ω;SLsym(2)), let f = (u, v) be solution to (2.1). Then, the function u is σ -harmonic, with σ defined
by (2.5). Conversely, given σ satisfying the ellipticity conditions (1.2)–(1.3) and given a σ -harmonic function u, the
map f := (u, v) solves (2.1), where G and H are defined by (2.4), v is such that

J T ∇v = σ∇u, (2.8)

and J T is the transpose of J defined in (2.6). The function v is called stream function of u, and is defined up to
additive constants. Moreover, ‖∇f ‖Lp is finite if and only if ‖∇u‖Lp is finite.

2.2. Different formulations of ellipticity and higher gradient integrability

Here we introduce classical notions of ellipticity for elliptic and Beltrami equations, and we recall the fundamental
summability results due to Astala [3] and some of its consequences due to Leonetti and Nesi [13]. From now on, we
will always assume that the values of μ, ν, G, H and σ are related according to (1.5) and (2.2).

The ellipticity corresponding to any pair μ,ν ∈ L∞(Ω;C) satisfying (1.6) is the positive constant k(μ, ν) defined
by

k(μ, ν) := ∥∥|μ| + |ν|∥∥
L∞ . (2.9)

An alternative measure of ellipticity, that will be most convenient in our analysis, is provided by the following quantity

K(μ,ν) := 1 + k(μ, ν)

1 − k(μ, ν)
. (2.10)

By a slight abuse of notation, we identify k(G,H) and K(G,H) in the natural way, i.e.,

k(G,H) = k(μ, ν), K(G,H) = K(μ,ν), (2.11)

and whenever no confusion may arise, we will omit the dependence on their argument. In the sequel we will repeatedly
use the following result relating the eigenvalues of the matrices G and H with the ellipticity inherited by the Beltrami
equation as defined in (2.10).

Proposition 2.1. Let G,H ∈ L∞(Ω;SLsym(2)) be positive definite. Denote by g(x) and h(x) the maximum eigen-
value of G(x) and H(x), respectively. Then

K(G,H) = ‖gh‖L∞(Ω). (2.12)

Proof. A direct computation shows that the maximum eigenvalues of G and H are given by

g =
√

(1 − |ν| + |μ|)(1 + |ν| + |μ|)√
(1 + |ν| − |μ|)(1 − |ν| − |μ|) , h =

√
(1 + |ν| − |μ|)(1 + |ν| + |μ|)√
(1 − |ν| + |μ|)(1 − |ν| − |μ|) .

Therefore gh = 1+|μ|+|ν|
1−(|μ|+|ν|) , which yields

‖gh‖L∞ = 1 + ‖|μ| + |ν|‖∞
1 − ‖|μ| + |ν|‖∞

= 1 + k

1 − k
= K. �

Next, we relate the ellipticity bounds for the second order elliptic operator (1.1) with the ellipticity of the associated
Beltrami equation. Following the notation of (2.11), we set K(σ) := K(G,H), where G,H and σ are related by
(2.4)–(2.5). The following result has been proved in [13] and [2]; for the reader’s convenience, we give here a proof
based on Proposition 2.1.

Proposition 2.2. Let λ ∈ (0,1]. For each σ ∈M(λ,Ω) we have

K(σ) � 1 + √
1 − λ2

. (2.13)

λ
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If in addition σ is symmetric, then

K(σ) � 1

λ
. (2.14)

Proof. Let λ1, λ2 be the eigenvalues of σS , with λ1 � λ2. Then, from the assumption σ ∈M(λ,Ω) and the relation-
ship (

σ−1)S = detσS

detσ

(
σS

)−1
,

it follows

λ2 � λ1 � λ, (2.15)

detσS

λ2 detσ
= λ1

detσ
� λ. (2.16)

Next let g and h be the largest eigenvalue of G and H , respectively. By (2.5), it is readily seen that

σS = 1

H22
G−1,

and hence

g = 1

H22

1

λ1
=

√
detσS

λ1
. (2.17)

From (2.4) it follows

h + 1

h
= 1√

detσS
(detσ + 1). (2.18)

Set P := det σ+1√
det σS

. Solving (2.18) and choosing the root which is bigger than one, yields

h = P + √
P 2 − 4

2
. (2.19)

Then, using (2.17)–(2.19) and the inequalities (2.15)–(2.16), we obtain the following upper bound for gh,

gh = 1

2λ1

[
detσ + 1 +

√
(detσ + 1)2 − 4 detσS

]
� 1

2λ1

[
λ1

λ
+ 1 +

√(
λ1

λ
+ 1

)2

− 4λ2
1

]
= 1

2

(
1

λ
+ 1

λ1
+

√
1

λ2
+ 1

λ2
1

+ 2

λλ1
− 4

)

� 1

2

(
2

λ
+

√
4

λ2
− 4

)
= 1 + √

1 − λ2

λ
.

Now suppose that σ is symmetric and denote by λ1 and λ2 its eigenvalues, with λ1 � λ2. Since σ ∈ M(λ,Ω), we
have

λ� λ1 � λ2 �
1

λ
. (2.20)

Formula (2.4) reduces itself to

G = √
detσσ−1, H = 1√

(
detσ 0

0 1

)
.

detσ
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Therefore

g = 1

λ1

√
detσ , h = 1√

detσ
max{λ1λ2,1}. (2.21)

In the case when λ1λ2 < 1, we find

K =
∥∥∥∥ 1

λ1

∥∥∥∥
L∞

� 1

λ
.

If otherwise λ1λ2 � 1, we have

K = ‖λ2‖L∞ � 1

λ
. �

In the next proposition we look at conductivities σ attaining the bounds (2.13) and (2.14).

Proposition 2.3. Let σ ∈ M(λ,Ω) for some λ ∈ (0,1). Then the bound (2.13) is attained if and only if on a set of
positive measure there holds

σ =
(

a b

−b a

)
, with a = λ, b = ±

√
1 − λ2. (2.22)

Moreover, if σ is symmetric (2.14) is attained if and only if either (1.2) or (1.3) is attained on a set of positive measure.

Proof. Keeping the notation introduced in the proof of Proposition 2.2, one can see that the bound (2.13) is attained
if and only if the inequalities (2.15)–(2.16) hold as equalities, namely,

λ2 = λ1 = λ,
λ1

detσ
= λ.

It is readily seen that this is equivalent to (2.22). The symmetric case is straightforward. �
We now recall the higher integrability results for gradients of solutions to (1.1) and (1.4). For K > 1, set pK :=

2K
K−1 . We start with the celebrated result in [3].

Theorem 2.4. Let f ∈ H 1
loc(Ω;C) be solution to (1.4) with K(μ,ν) � 1. Then

∇f ∈ L
p

loc(Ω) ∀p ∈ [2,pK(μ,ν)).

Remark 2.5. In fact one can show that (see [3,13,9]), for each p < pKmin(σ ) and each ball B compactly contained
in Ω , there exists a positive constant c such that

‖∇f ‖Lp(B) � c‖∇f ‖L2(Ω).

Remark 2.6. In fact, one has the following striking optimal result as proved in [6, Corollary 4.1]

1

|Ω|
∫
Ω

|∇f |p dx � 2K(μ,ν)

2K(μ,ν) − p(K(μ,ν) − 1)
for 2 � p <

2K(μ,ν)

K(μ,ν) − 1
,

for solutions f to (1.4) continuous up to the boundary, and equal to the identity on the boundary.

Recall that Kλ and K
sym
λ are defined by (1.8) and (1.9), respectively. A straightforward computation yields

pKλ = 2 + 2
√

1 − λ2

1 − λ + √
1 − λ2

, pK
sym
λ

= 2

1 + λ
. (2.23)

As a consequence of Proposition 2.2 and Theorem 2.4, we obtain the following result which was proved in [13,2].
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Theorem 2.7. Let σ ∈M(λ,Ω) for some λ ∈ (0,1). Then, any solution u ∈ H 1
loc(Ω) to (1.1) satisfies

∇u ∈ L
p

loc(Ω) ∀p ∈ [2,pKλ),

and, if σ ∈ L∞(Ω;M2×2
sym),

∇u ∈ L
p

loc(Ω) ∀p ∈ [2,pK
sym
λ

),

where pKλ and pK
sym
λ

are given in (2.23).

2.3. Affine transformations in the Beltrami equation

Affine changes of variables both in the domain and in the target space do not change the exponent of integrability
of the gradient field. As explained in the introduction, this observation has been already made by Faraco in [10] in the
special case ν = 0, corresponding in the real formulation of Eq. (2.1) to H = I .

We begin with an optimization over affine transformations working with the real formulation of Eq. (2.1). Let
A,B ∈ SL(2) and set

f̃ (x) := A−1f (Bx), G̃(x) := BtG(Bx)B, H̃ (x) := AtH(Bx)A. (2.24)

A straightforward computation shows that, whenever f : Ω �→ R
2 is solution to (2.1), f̃ solves

Df̃ t H̃Df̃ = G̃detDf̃ in B(Ω). (2.25)

Clearly f̃ enjoys the same integrability properties as f . This motivates the following definition.

Definition 2.8. Given μ,ν as in (1.7), G,H and σ as in (2.2) and (2.7) respectively, we set

Kmin(σ ) ≡ Kmin(G,H) := min
A,B∈SL(2)

∥∥g̃(A,B)h̃(A,B)
∥∥

L∞, (2.26)

where g̃(A,B) = g̃(B) and h̃(A,B) = h̃(A) denote the maximum eigenvalue of G̃ and H̃ , respectively.

The above definition is well posed since the minimum in (2.26) is attained by ellipticity.
From now on, to ease notation, we will drop the superscript and write g(A,B),h(A,B) in place of g̃(A,B),

h̃(A,B). Recalling (2.12), a straightforward generalization of Theorem 2.4 (see also Remark 2.5) leads to the follow-
ing result.

Proposition 2.9. Let G,H ∈ SLsym(2) and let Kmin(G,H) be defined as in (2.26). Then any f ∈ H 1
loc(Ω;R2) solu-

tion to (2.1) satisfies

∇f ∈ L
p

loc(Ω) ∀p ∈ [2,pKmin(G,H)).

Moreover, for every ball B compactly contained in Ω and p ∈ [2,pKmin(G,H)), there exists c > 0 such that

‖∇f ‖Lp(B) � c‖∇f ‖L2(Ω).

In the language of σ -harmonic functions, Proposition 2.9 has the following counterpart: any solution u ∈ H 1
loc(Ω)

to (1.1), satisfies

‖∇u‖Lp(B) � c‖∇u‖L2(Ω),

for every ball B compactly contained in Ω and p ∈ [2,pKmin(σ )).

3. Two-phase Beltrami coefficients

In the present section we focus on two-phase Beltrami coefficients. In this class, we find the ellipticity Kmin defined
in (2.26) and we characterize the Beltrami coefficients for which K = Kmin. From now on, to ease notation, we will
omit the dependence on G and H in the ellipticity constants.
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3.1. Two-phase Beltrami equation

Let E1 be a measurable subset of Ω and let E2 := Ω \ E1. Fix {G1,G2,H1,H2} ⊂ SLsym(2) positive definite
(symmetric and with determinant one), and consider the functions

G := χE1G1 + χE2G2, H := χE1H1 + χE2H2, (3.1)

where χE1 and χE2 are the characteristic functions of E1 and E2, respectively. From (2.12) it follows that for G and
H of the form (3.1), one has

K = max
{|gh| E1, |gh| E2

} = max{g1h1, g2h2},
where gi and hi denote the largest eigenvalue in Ei of G and H , respectively. Set

K̂ := √
g1h1g2h2.

Lemma 3.1. The following inequality holds

Kmin � K̂ � K.

Proof. The inequality K̂ � K is trivial. Let us prove that Kmin � K̂ . Without loss of generality we may assume that
g1h1 � g2h2. Set

λ :=
√

g2h2

g1h1
� 1.

We can have either of the following cases: h1 < max{g1, g2, h1, h2} or h1 = max{g1, g2, h1, h2}. Suppose we are in
the first case. Up to a diagonalization, G1 is of the form

G1 =
(

g1 0
0 1

g1

)
.

We want to use the change of variables (2.24), and we recall that g(A,B) and h(A,B) denote the maximum eigenvalue
of G̃ and H̃ , respectively. We choose

B =
( √

λ 0
0 1√

λ

)
,

and A = I . Then g1(A,B) = λg1 and g2(A,B)� 1
λ
g2. Therefore

g1(A,B)h1(A,B) = K̂ and g2(A,B)h2(A,B)� K̂.

We deduce

Kmin � g1(A,B)h1(A,B) = K̂.

Suppose now that h1 = max{g1, g2, h1, h2}. Then, after diagonalization of H1, we choose B = I and A =
(

λ 0
0 1

λ

)
, and

we proceed as before. �
Remark 3.2. A direct consequence of Lemma 3.1 is that Kmin < K whenever g1h1 < g2h2.

Proposition 3.3. The following formula for Kmin holds:

Kmin(G,H) =
√

g2
(
G

−1/2
1 ,H

−1/2
1

)
h2

(
G

−1/2
1 ,H

−1/2
1

)
. (3.2)
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Proof. In view of Lemma 3.1, it is enough to prove that for each A,B ∈ SL(2) we have

g2
(
G

−1/2
1 ,H

−1/2
1

)
h2

(
G

−1/2
1 ,H

−1/2
1

)
� g1(A,B)h1(A,B)g2(A,B)h2(A,B). (3.3)

For this purpose, we show that if G1 = H1 = Id , then for each A,B ∈ SL(2),

g2 � g1(A,B)g2(A,B), (3.4)

h2 � h1(A,B)h2(A,B). (3.5)

Let B ∈ SL(2) and set

G̃1 := BT B, G̃2 := BT G2B.

For every v ∈ R
2 we have

1

g1(A,B)
‖v‖2 � 〈G̃1v, v〉 = ‖Bv‖2,

and hence

g2(A,B) = sup
‖v‖�1

〈G̃2v, v〉 = sup
‖v‖�1

〈G2Bv,Bv〉� g2

g1(A,B)
,

which proves (3.4). The proof of (3.5) is fully analogous. �
3.2. Characterization of critical coefficients

In the next proposition we will show that if the bound Kmin � K is achieved, then Gi and Hi can be simultaneously
diagonalized.

Proposition 3.4. Let G and H be as in (3.1) and assume that Kmin = K̂ . Then, there exist rotations A,B ∈ SO(2)

such that

AT G1A :=
(

g1 0
0 1

g1

)
, AT G2A :=

( 1
g2

0
0 g2

)
, (3.6)

BT H1B :=
(

h1 0
0 1

h1

)
, BT H2B :=

( 1
h2

0
0 h2

)
. (3.7)

Proof. We can always assume that G1 and H1 are as in (3.6)–(3.7). We prove that, in this case, also G2 is diagonal
(For H2 we argue exactly in the same way.) Set

B̂ := G
− 1

2
1 , Ĝ1 := B̂G1B̂ = I, Ĝ2 := B̂G2B̂,

Â := H
− 1

2
1 , Ĥ1 = ÂH1Â = I, Ĥ2 = ÂH2Â.

Since ĥ2 � h1h2, ĝ2 � g1g2 and recalling Proposition 3.3 we have(
Kmin)2 = ĝ1ĥ1ĝ2ĥ2 = ĝ2ĥ2 � ĝ2h1h2 � h1h2g1g2 = K̂2,

where ĝi and ĥi are the largest eigenvalues of Ĝi and Ĥi . Since Kmin = K̂ , all the above inequalities are indeed
equalities, and in particular ĝ2 = g1g2, that implies G2 diagonal.

We are left to show that e2 is the eigenvector associated with g2. Arguing by contradiction, we assume that

G2 =
(

g2 0
0 1

g2

)
.

Without loss of generality we may suppose that g1 � g2 and we set

B̂ := G
− 1

2 , Ĝ1 := B̂G1B̂ = I, Ĝ2 := B̂G2B̂.
1
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It can be easily checked that ĝi < gi , that (recall Kmin = K̂) provides the following contradiction(
Kmin)2 � ĝ1h1ĝ2h2 < g1h1g2h2 = K̂2. �

4. Two-phase conductivities

In this section we study the gradient summability of σ -harmonic functions corresponding to two-phase conduc-
tivities. Let E1 be a measurable subset of Ω and let E2 := Ω \ E1. We assume that both E1 and E2 have positive
measure. Given elliptic matrices σ1, σ2 ∈M

2×2, define

σ := χE1σ1 + χE2σ2. (4.1)

Set

Kmin = Kmin(σ ) := Kmin(G(σ),H(σ)
)
,

where G(σ) and H(σ) are defined according to (2.4), and Kmin(G,H) is defined by (3.2).

4.1. Main results and optimality of the bound (1.8)

Proof of Theorem 1.4. We have to prove that p∗ = pKmin satisfies conditions 1) and 2s) of Definition 1.3. Con-
dition 1) follows directly by Proposition 2.9, so we pass to the proof of 2s). By the definition of Kmin and by
Proposition 3.4, we know that, by means of affine transformations in the corresponding Beltrami equations, the
coefficients Gi(σi) and Hi(σi), i = 1,2 become diagonal as in (3.6), (3.7), with gihi = Kmin. A straightforward
computation shows that the corresponding transformed σ , defined according to (2.5), takes the form

σ1 := diag
(
S1,K

min), σ2 := diag

(
S2,

1

Kmin

)
, K−1 � Si � K. (4.2)

Therefore, without loss of generality, in order to prove 2s) we can assume that σ1, σ2 are as in (4.2). The case
S1 = Kmin, S2 = 1

Kmin was studied in [9], where the author exhibits a sequence of solutions with critical gradient
integrability, thus proving 2), and in [4] where the authors prove the existence of exact solutions (with boundary
condition u0(x) = x1), thus proving 2s). The general case is proved using the same strategy. The technical details are
presented in Theorems A.2 and A.3 in Appendix A. �

We now prove that the bound in (1.8) is achieved by a suitable conductivity σ = χE1σ1 + χE2σ2 with

σ1 =
(

a b

−b a

)
, σ2 =

(
a −b

b a

)
, with a = λ, b = ±

√
1 − λ2. (4.3)

Proof of Theorem 1.5. By (2.4) we have Gi(σ ) = I for i = 1,2, and

H1 = 1

λ

(
1

√
1 − λ2√

1 − λ2 1

)
, H2 = 1

λ

(
1 −√

1 − λ2

−√
1 − λ2 1

)
.

It is easy to check that K(σ) = Kmin(σ ) = 1+
√

1−λ2

λ
= Kλ. In view of Theorem 1.4 we conclude that p∗(σ1, σ2) =

pKλ , where pKλ is given by (2.23).
By an affine transformation we can diagonalize H . A straightforward computation shows that the corresponding

conductivity σ̂ is

σ̂ = KλIχE1 + 1

Kλ

IχE2 . (4.4)

For this case, the existence of an exact solution was proved in [4] (see also Theorem A.3). �
Next, we fix the ellipticity λ ∈ (0,1) and we characterize the pairs (σ1, σ2) corresponding to a critical integrability

exponent. In the following we write σi ∈ M(λ,Ω) with the obvious meaning that the constant function x �→ σi

belongs to M(λ,Ω).
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Theorem 4.1. The following properties hold.

i) Let σ1, σ2 ∈ M(λ,Ω) be such that p∗(σ1, σ2) = pKλ . Then σ1, σ2 are as in (4.3).
ii) Let σ1, σ2 ∈ Msym(λ,Ω) be such that p∗(σ1, σ2) = pK

sym
λ

Then, up to a constant rotation, σ1 and σ2 take the
following form

σ1 = diag
(
S1, λ

±1), σ2 = diag
(
S2, λ

∓1), with λ� S1, S2 � λ−1.

Proof. i) From Proposition 2.2 it follows that K � 1+
√

1−λ2

λ
= Kλ. On the other hand, Theorem 1.4 yields Kmin � Kλ.

Lemma 3.1 implies Kmin = K̂ = Kλ, thus yielding gihi = Kmin in both phases. Now apply Proposition 2.3 to con-
clude that i) holds true.

ii) Again from Proposition 2.2, Theorem 1.4 and Lemma 3.1 we deduce that Kmin = K̂ = 1
λ

. Hence Proposition 3.4
implies the thesis. �

We conclude the present section by proving Theorem 1.6 stated in the Introduction.

Proof of Theorem 1.6. Let B be a ball compactly contained in Ω . From Theorem 2.4 it follows that K(σ) = Kλ

on B . Therefore, there exists a subset E1 of B with positive measure where σ takes one of the values, say σ1, defined
in (4.3). Suppose by contradiction that σ �= σ2 a.e. in B . Then it is easy to see that Kmin(σ ) is strictly lower than Kλ

on B , which together with Proposition 2.9 yields a contradiction. �
4.2. The explicit formula for Kmin

Here we give a direct formula for Kmin depending on σ1 and σ2.

Proposition 4.2. Let σ1, σ2 ∈ M
2×2 be elliptic. Denote by Σ1 and Σ2 the symmetric part of σ1 and σ2 respectively,

and by d1 and d2 their determinant,

Σi := σS
i , di := detΣi, i = 1,2.

Then,

Kmin =
(

m + √
m2 − 4

2

) 1
2
(

n + √
n2 − 4

2

) 1
2

, (4.5)

where

m : = 1√
d1d2

tr(Σ2 AdjΣ1)

= 1√
d1d2

[
(σ2)11(σ1)22 + (σ1)11(σ2)22 − 1

2

(
(σ2)12 + (σ2)21

)(
(σ1)12 + (σ1)21

)];

n := tr(H2 AdjH1) = 1√
d1d2

[
detσ1 + detσ2 − 1

2

(
(σ1)21 − (σ1)12

)(
(σ2)21 − (σ2)12

)]
,

and H1, H2 are defined via (2.3). If in addition σ1, σ2 ∈ M
2×2
sym , then (4.5) reduces itself to

Kmin = max

{√
1

λ1
,
√

λ2

}
,

where λ1 � λ2 are the eigenvalues of σ
−1/2
1 σ2σ

−1/2
1 .

Proof. From Proposition 3.3 it follows that Kmin = √
g2h2 where g2 and h2 are the maximum eigenvalues of G̃2 :=

G
−1/2
1 G2G

−1/2
1 and H̃2 := H

−1/2
1 H2H

−1/2
1 respectively. Since by (2.4), Gi = 1√ AdjΣi , one has
di
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G̃2 =
√

d1√
d2

JΣ
−1/2
1 Σ2Σ

−1/2
1 J T .

The eigenvalues of G̃2 are solutions to the following equation in λ

det

(√
d1

d2
Σ2 − λΣ1

)
= 0.

Set M := Σ2 AdjΣ1. Since

det

(√
d1

d2
Σ2 − λΣ1

)
= 0 ⇔ λ2 − trM√

d1d2
λ + 1 = 0,

the maximum eigenvalue g2 is defined by

g2 =
tr M√
d1d2

+
√

(tr M)2

d1d2
− 4

2
.

A straightforward computation shows that

trM = (σ2)11(σ1)22 + (σ1)11(σ2)22 − 1

2

(
(σ2)12 + (σ2)21

)(
(σ1)12 + (σ1)21

) =: m.

Similarly, one finds that h2 is the largest root of the equation

det(H2 − λH1) = 0.

Therefore

h2 = trN + √
(trN)2 − 4

2
,

where N := H2 AdjH1. It is easily checked that

trN = 1√
d1d2

[
detσ1 + detσ2 − 1

2

(
(σ1)21 − (σ1)12

)(
(σ2)21 − (σ2)12

)] =: n.

Now assume that σ1, σ2 are symmetric. By (2.21) we find g2h2 = max{ 1
λ1

, λ2}, where λ1 � λ2 are the eigenvalues of

σ̃2 := 1

(H̃2)22
G̃−1

2 .

Since by (2.4), Gi = 1√
det σi

Adjσi , one has

σ̃2 = 1

(H̃2)22

√
detσ2√
detσ1

Jσ
1/2
1 σ−1

2 σ
1/2
1 J T

= 1

(H̃2)22

1√
det(σ 1/2

1 σ−1
2 σ

1/2
1 )

Adj
(
σ

1/2
1 σ−1

2 σ
1/2
1

)
= 1

(H̃2)22

√
det

(
σ

1/2
1 σ−1

2 σ
1/2
1

)(
σ

1/2
1 σ−1

2 σ
1/2
1

)−1
.

The eigenvalues of σ̃2 are those of σ
−1/2
1 σ2σ

−1/2
1 as soon as we prove that

(H̃2)22 =
√

det
(
σ

1/2
1 σ−1

2 σ
1/2
1

) =
√

detσ1

detσ2
.

This follows from the fact that H1 and H2 are diagonal and therefore

(H̃2)22 = (H2)22

(H1)22
=

√
detσ1√
detσ2

. �
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Remark 4.3. Notice that m,n ∈ [2,+∞). Define f : [2,+∞) → [1,+∞) by f (x) =
√

x+
√

x2−4
2 . With these nota-

tions we have Kmin = √
f (m)f (n). One easily checks that the function f is monotonically increasing and concave

in [2,+∞) and that Kmin = 1 ⇔ m = n = 2 ⇔ σ1 = σ2.

Remark 4.4. Keeping the notation of Proposition 4.2, if σ1, σ2 ∈ M
2×2
sym are positive definite, a straightforward com-

putation shows that

pKmin = 2

1 − min{
√

1
λ1

,
√

λ2}
.

5. Some G-closure results revisited

Quasiconformal mappings appear in many branches of mathematics. Only rather recently they have shown their
power in the theory of composites. In the composite material literature one of the typical goals is to determine the
so-called “G-closure of a set of conductivities”. Roughly speaking this means the following. Assume that two ma-
trices, called the conductivity of the “phases” and denoted by σ1, σ2 ∈ M(λ,Ω) are given. Consider a two-phase
composites, i.e. a conductivity σ of the form σ = σ1χE1 + χE2σ2 where E1 and E2 are a pair of disjoint measurable
sets with E1 ∪E2 = Ω . The task is to find the set of all possible “effective” tensors σ ∗ that can be obtained by mixing
these two-phases while letting E1 and E2 vary in all the admissible ways. To make this concept precise, one needs to
define an appropriate concept which is called H -convergence and was invented by Murat and Tartar. This notion was
a general framework which was necessary to treat the case non-symmetric conductivity σ which could not be treated
by the G-convergence previously introduced by Spagnolo. In both cases one can establish compactness results and a
notion of closure. We will continue to call it G-closure according to tradition even if, in this particular case, one really
needs to use the H -convergence because the tensor σ is not assumed to be symmetric a priori. We refer to the recent
book of Tartar [19] and reference therein for an extensive treatment.

In this context, an extensive use of certain special properties of solutions to (1.1) and therefore to (2.8), has been
made. For an accurate review, we refer to [17], see Chapter 4. As a particularly interesting case, we consider Milton’s
work computing the so-called G-closure of a mixture of two materials with arbitrary volume fractions [16]. In the
symmetric case, i.e. when both phases have a symmetric conductivity, the G-closure was found in the eighties. The
result has a long history which is reviewed in a very recent work by Francfort and Murat [11]. We refer the reader to
the reference therein for more details about the original work.

Milton studied the general case without assuming symmetry. He proved that one can recover the G-closure for
this case by first reducing the problem to the study of a two-phase composite in which, in addition, each phase is
symmetric, [16] and Chapter 4.3 in [17], and then applying the results for the symmetric case. Milton explained
how his work was generalizing previous work by many authors including Keller, Dykhne, Mendelsohn and that, in
turn, he was inspired by some work of Francfort and Murat and some unpublished work by Tartar now available in
[19], Lemma 20.3: In two dimensions “homogenization commutes with certain Moebius transformations”. Without
entering into too many details, we want to emphasize here that the basic ingredients behind these transformations have
an elegant geometrical counterpart when expressed in terms of the Beltrami equation.

When σ is two-phase, by (2.4), so are the matrices H and G. In particular H = H1χ1 + H2χ2. Consider now
Eq. (2.1) and make the affine change of variable f → F = Af , then F satisfies a new equation in which the matrix H

is replaced by HA := AT HA/(detA). Therefore choosing A = H− 1
2 RT

2 with R2 ∈ SO(2) and such that RT
2 H2R =:

D2 is diagonal, one has

HA = Iχ1 + D2χ2 (5.1)

so that HA is diagonal and thus (HA)12 is identically zero. This in turn implies, by (2.5) that the corresponding
conductivity

σA := G−1 + (HA)12J

(HA)22

is symmetric.
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We observe, in passing, that applying the same strategy to the domain of f one can independently reduce a two-
phase G to the form

GB = Iχ1 + G2χ2 (5.2)

with G2 a diagonal matrix by a linear transformation x → Bx.
In the work of Milton, the “symmetrization” property for a two-phase composites is obtained as follows. Let

λ ∈ [0,1) and let σ ∈ M(λ,Ω). Set

A =
(

a b

c d

)
, ΣA = (aσ + bJ )(cI + dJσ)−1 (5.3)

and let Uσ = (u1
σ , u2

σ ) be any solution to Eq. (2.8) i.e. σ∇u1
σ = J T ∇u2

σ .

Proposition 5.1. For any two-phase composites, there exists A as in (5.3) such that the corresponding ΣA is symmetric
and moreover for some λ′ ∈ [0,1) one has ΣA ∈ M(λ′,Ω).

To continue the argument Milton needs to prove that the G-closure problem relative to ΣA is mapped one to one
into that relative to σ . He uses the commutation of the linear fractional transformation σ → ΣA with homogenization
(see [16] and also [19], Lemma 20.3).

Our perspective is to use the following property.

Proposition 5.2. For any given A as in (5.3) for which ΣA ∈ M(λ′,Ω) for some λ′ ∈ [0,1), there exists

A′ =
(

a′ b′
c′ d ′

)
, (5.4)

such that any solution UΣA
= (u1

ΣA
,u2

ΣA
) to ΣA∇u1

ΣA
= J T ∇u2

ΣA
takes the form

UΣA
= A′Uσ . (5.5)

Proof. We need to prove that there exist {a′, b′, c′, d ′} such that

ΣA

(
a′∇u1

σ + b′∇u2
σ

) = J T
(
c′∇u1

σ + d ′∇u2
σ

)
,

which is equivalent to show that(
a′ΣA − c′J T

)∇u1
σ + (

b′ΣA − d ′J T
)∇u2

σ = 0.

We now use the equation σ∇u1
σ = J T ∇u2

σ and write the previous equation as[
a′ΣA − c′J T + (

b′ΣA − d ′J T
)
Jσ

]∇u1
σ = 0.

One possible solution (actually the only one) is found if the matrix in square brackets is zero i.e. if and only if

a′ΣA − c′J T + (
b′ΣA − d ′J T

)
Jσ = 0 ⇔ ΣA

(
a′I + b′Jσ

) = c′J T + d ′σ

⇔ ΣA = (
c′J T + d ′σ

)(
a′I + b′Jσ

)−1

and the latter is equivalent to make the following choice:

A′ =
(

c d

−b a

)
. � (5.6)

Proposition 5.2 is the key property to the commuting rule and it is, indeed, a linear change of variables in the target
space of the underlying quasiregular mapping U = (u, v), solution to (2.8).

Finally one may wonder whether (5.6) can be chosen in such a way to have ΣA ∈ M(λ′,Ω) for some λ′ > 0. To
check this we first note that
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ΣA = (aσ + bJ )(cI + dJσ)−1 = aσ + bJ

c2 detσ + d2
Adj(cI + dJσ)

= aσ + bJ

c2 detσ + d2

(
cI + dJ T

(
σT J T

)
J

) = aσ + bJ

c2 detσ + d2

(
cI + dJ T σT

)
= acσ + bcJ + adσJ T σT + bdσT

c2 detσ + d2
= acσ + bdσT + bcJ + ad detσJT

c2 detσ + d2
.

It follows that

(ΣA)S = ΣA + ΣT
A

2
= ac + bd

c2 detσ + d2
σS. (5.7)

Therefore, recalling (5.6), the first necessary condition to (1.2) can be expressed as follows

c2 + d2 > 0, ac + bd > 0 ⇔ ac + bd > 0 ⇔ detA′ > 0. (5.8)

Now we need to consider Σ−1
A ,

Σ−1
A = (cI + dJσ)(aσ + bJ )−1 = cI + dJσ

a2 detσ + b2
Adj(aσ + bJ )

= cI + dJσ

a2 detσ + b2

(
aJσT J T + bJ T

) = (cI + dJσ)(aJσT J T + bJ T )

a2 detσ + b2

= acJσT J T + adJσJσT J T + bcJ T + bdJσJ T

a2 detσ + b2

= acJσT J T + bdJσJ T + adJ T detσ + bcJ T

a2 detσ + b2
.

It follows that(
Σ−1

A

)S = ac + bd

a2 detσ + b2
JσSJ T . (5.9)

Therefore the second necessary condition to (1.3) is expressed as follows

a2 + b2 > 0, ac + bd > 0 ⇔ ac + bd > 0 ⇔ detA′ > 0. (5.10)

Putting (5.8) and (5.10) together we obtain

ΣA ∈M
(
λ′,Ω

)
for some λ′ > 0 ⇔ detA′ > 0. (5.11)

Again, this fact has a clear interpretation in the language of the Beltrami system, recalling that A′ represents a linear
change of variables in the target space and that ellipticity in this context is measured according to Proposition 2.1.

Acknowledgements

We thank Graeme Milton for an insightful discussion about this problem inspiring Theorem 1.5 and Stefan Müller
for valuable discussions. We also are grateful to the unknown referee that pointed our attention to reference [10]. He
also effectively suggested how to solve case 2 of Theorem A.3 by urging us to look at [4, Theorem 4.10].

Appendix A. Diagonal conductivities with critical integrability properties

In [9,4], the authors exhibit an example of weak solution to (1.1) with critical integrability properties. In their
construction the essential range of σ consists of only two isotropic matrices, namely, σ : Ω �→ {K−1I,KI } with K >

1. In this section we show that their arguments work also for non-isotropic matrices, generalizing their construction
to the case

σ1 := diag(K,S1), σ2 := diag
(
K−1, S2

)
,

1

K
� Si � K, (A.1)

thus proving optimality of Astala’s theorem for the whole class of matrices above. In Section 4 we have shown that
the case of diagonal matrices is indeed representative for any pair of conductivities and that, among diagonal matrices,
the class defined in (A.1) cannot be further enlarged.
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A.1. Reformulation of (1.1) as a differential inclusion

Recall that u is solution to (1.1) if and only if u = f1 where f = (f1, f2) is solution to the associated Beltrami
equation. It is easily checked that, for σ of the form (A.1), the latter condition is equivalent to

Df ∈ E := E1 ∪ E2, (A.2)

where

E1 =
{(

T

Jσ1T

)
, T ∈ R

2
}
, E2 =

{(
T

Jσ2T

)
, T ∈R

2
}
.

The goal is to find solutions f ∈ H 1(Ω;R2) to the differential inclusion (A.2) with critical gradient integrability, and
satisfying in addition the boundary condition f1(x) = x1 on ∂Ω .

We will need the following definition.

Definition A.1. The family of laminates of finite order is the smallest family of probability measures L(M2×2) on
M

2×2 such that

(i) L(M2×2) contains all Dirac masses;
(ii) if

∑n
i=1 αiδAi

∈ L(M2×2) and A1 = αB + (1 − α)C with rank(B − C) = 1, then the probability measure∑n
i=2 αiδAi

+ α1(αB + (1 − α)C) is also contained in L(M2×2).

Given ν ∈ L(M2×2), we define the barycenter ν̄ of ν as

ν̄ :=
∫

M2×2

M dν(M).

A.2. Approximate solutions

In [9], it has been proved that for any given M > 0, one can find solutions u of (1.1), for σ : Ω �→ {K−1I,KI },
uniformly bounded in H 1 and with ‖∇u‖pK

� M . This result is a consequence of an explicit construction, called
staircase laminates, proving that the identity matrix is the barycenter of a sequence of laminates of finite order νn ∈ L
such that νn

∗
⇀ ν with∫

M2×2

|M|pK dν(M) = ∞, (A.3)

and suppνn ⊂ ∂C, where

C := {
t diag(a, a/K) + (1 − t)diag(a,Ka): t ∈ (0,1), a ∈R

+}
. (A.4)

Since the set ∂C is contained in E1 ∪ E2 for every S1, S2, we readily see that the construction applies without
changes to our non-isotropic case.

For the reader convenience, we restate the main result in [9] in a form which is more convenient for our purposes.

Theorem A.2. Let σ1, σ2 be as in (A.1). Then, pK is critical for σ1, σ2 in the sense of Definition 1.3. More precisely,
there exists a two-phase conductivity σj : Ω → {σ1, σ2} such that the solutions uj ∈ H 1(Ω) to{

div(σj∇uj ) = 0 in Ω,

uj (x) = x1 on ∂Ω
(A.5)

satisfy∫
B

|∇uj |pK dx → ∞ as j → ∞ for every ball B ⊂ Ω.
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Proof. We follow the proof of [9], and in particular the proof suggested in [9, Remark 6.3]. Let νj
∗
⇀ ν be the

staircase laminate provided in [9] and described above. Each νj is generated by a sequence of so-called pre-laminates,
i.e., locally constant maps of the type

Mj(x) =
(

Tj (x)

Jσj (x)Tj (x)

)
,

with σj (x) ∈ {σ1, σ2} and with barycenter the identity matrix. It is well known that there exist matrices

Nj(x) =
(

Gj(x)

Hj (x)

)
→ 0 in W 1,∞(Ω)

such that Mj + Nj is curl free, and such that the first row of such matrices is the gradient of a function that agrees
with x1 on ∂Ω . Let Fj := J−1Hj − σjGj . Let vj be the solution of

div(σj∇vj ) = divFj

with zero boundary conditions. Notice that Fj → 0 in L2, and hence vj → 0 in H 1. By construction we have

Tj + Gj + ∇vj = ∇uj

where uj is the solution of{
div(σj∇uj ) = 0 in Ω,

uj (x) = x1 on ∂Ω.

Moreover, also

M̂j :=
( ∇uj

Jσj (x)∇uj

)
generates ν. The conclusion follows by the lower semicontinuity of the p-moment with respect to weak-star conver-
gence of Young measures, see [9, Lemma 6.1]. �
A.3. Exact solutions

The results of [9] have been improved in [4, Theorem 3.13] which establishes the existence of exact solutions by
an application of the Baire category method. While the methods used to construct approximate solutions can be easily
extended to our cases, as done in the previous paragraph, the methods developed in [4] cannot be applied straightfor-
wardly in our non-isotropic setting. The following theorem improves Theorem A.2, establishing the existence of exact
solutions for the case (A.1).

Theorem A.3. Let σ1, σ2 be as in (A.1). There exists a measurable matrix field σ : Ω → {σ1, σ2} such that the solution
u ∈ H 1(Ω) to{

div(σ∇u) = 0 in Ω,

u(x) = x1 on ∂Ω
(A.6)

satisfies for every ball B ⊂ Ω ,∫
B

|∇u|pK dx = ∞.

The proof is split into two parts.
1. The case S1 �= S2.
The proof follows the strategy in [4, Theorem 3.13], where the result is proved for σ1 = KI , σ2 = K−1I . Here the

main difference is that we work with coefficients that are not isotropic. For the reader’s convenience we shortly repro-
duce the arguments of [4], without providing a self contained proof, but only pointing out the essential modifications
needed in our case.
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First, we define a setting where to apply the Baire category method. Fix δ > 0 such that

δ <

(
(1 − 1/K)(K − 1)

4 max{S1, S2}K2

) 1
2

, (A.7)

and let

Ẽ := E ∩
{(

a11 a12
a21 a22

)
∈M

2×2: |a12| < δa11

}
. (A.8)

Notice that the introduction of the small parameter δ enforces the solutions to (A.6) to have gradient pointing in a
direction relatively close to (1,0). This property hides the anisotropy of the coefficients σi , and allows us to follow
the strategy of [4].

Define U as the interior of the quasiconvex hull of Ẽ (defined as the set of range of weak limits in L2 of solutions
to (A.2)). As in [4] it can be proved that U is not empty, containing for instance the identity matrix. We stress that it
is at this point that we use the assumption S1 �= S2. Indeed, if S = S1 = S2, then any anti-diagonal matrix M in the
quasiconvex hull of Ẽ satisfies M2,1 = −SM1,2, and then lies in a one dimensional line; in this case, the quasiconvex
hull of Ẽ has not full dimension, so that its interior U is empty.

The following characterization of U holds

Ẽlc,1 = U = Ẽpc,

where Ẽlc,1 and Ẽpc denote the first lamination hull and the polyconvex hull of Ẽ, respectively. We refer to [4,
Lemma 3.5] for the proof of the identity above and for the notion of first lamination hull and polyconvex hull. Set

X0 = {
f ∈ W 1,∞(

Ω;R2): f piecewise affine, Df ∈ U a.e., f |∂Ω = x
}
,

let X be its closure in the weak topology of H 1, and denote by (X,w) the set X endowed with the weak topology w

of H 1.
The existence of solutions to the differential inclusion is proved by an application of the Baire category method,

and is based on the fact that the gradient operator D : X �→ L2(Ω;M2×2) is a Baire-1 mapping, i.e., the pointwise
limit of continuous mappings. We refer to [12, page 57] and references therein for further clarifications on this subject.
The existence result is stated in the next theorem. We refer to [4, Lemma 3.7] for its proof.

Theorem A.4. The space (X,w) is compact and metrizable. Each f ∈ X satisfies f ∈ U and f |∂Ω = x. The metric
d on X is equivalent to the metrics induced by the L2 and L∞ norms. Moreover, the points of continuity of the
map D : (X,w) → L2(Ω;M2×2) form a residual set in (X,w). Finally, any point of continuity f ∈ X of D satisfies
Df ∈ E1 ∪ E2.

We deduce that the set of solutions to the differential inclusion (A.2) is residual in (X,w). The proof of Theo-
rem A.2 is then a consequence of Theorem A.4 and of the following theorem.

Theorem A.5. The set{
f ∈ X:

∫
B

|Df |pK = +∞ for all balls B ⊂ Ω

}
is residual in X.

Theorem A.5 is proved following the same strategy of the proof of Corollary 3.12 in [4], and is a direct consequence
of the following lemma.

Lemma A.6. Every A ∈ U is the barycenter of a sequence of laminates of finite order νn ∈ L such that suppνn ⊂ U
and

lim
n→∞

∫
M2×2

|M|pK dνn(M) = ∞. (A.9)
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Fig. 1. The rank-one connected points A and Q.

Proof. The proof of Lemma A.6 follows the strategy of the proof of [4, Proposition 3.10], where the particular case
of S1 = K and S2 = 1/K is considered. In [4] it is first showed that the identity matrix is the barycenter of a sequence
of laminates of finite order satisfying (A.9) and with support on ∂C, where C is the cone defined by (A.4). The proof
is based on the construction of the so-called staircase laminates, which was originally made in [9]. Then, they extend
the result to all other matrices by using the conformal invariance of the quasiconvex hull. In our case U does not enjoy
conformal invariance, due to the anisotropy of the coefficients σi . Therefore, we have to proceed in a different way.

For this purpose it is convenient to introduce some notation. Given a matrix A = (aij ) ∈ M
2×2, we denote by Ad

and Aa its diagonal and anti-diagonal part, namely

Ad :=
(

a11 0
0 a22

)
, Aa :=

(
0 a12

a21 0

)
. (A.10)

Moreover we will identify Ad and Aa with points of R2: Ad = (a11, a22), Aa = (a12, a21).
By slightly modifying the staircase construction in [9,4] (in fact only a finite number of steps at the beginning of

the staircase) one can easily show that each point in C can be obtained as the barycenter of a sequence of laminates of
finite order, satisfying (A.9) and with support on ∂C. Moreover, by a suitable shift of the support, one can obtain that
these measures have support in the interior of the cone C.

Now let A = (aij ) ∈ U . We claim that A is rank-one connected to a diagonal matrix Q = (qij ) = Qd ∈ C and we
conclude the proof. It is easy to show that Q ∈ U (that is to say, Q belongs to the interior of the quasiconvex hull),
and that A belongs to a suitable segment [P,Q] still contained in U , i.e., A = τP + (1 − τ)Q for some τ ∈ (0,1).
Since Q ∈ C, Q is the barycenter of a sequence of laminates νn = ∑

λj δAj
supported in U and satisfying (A.9). The

required laminates can then be defined as

ν̃n = τδP + (1 − τ)
∑

λj δAj
.

We conclude by proving the claim. From (A.8) it follows that Ad ∈ C. The condition of rank-one connectedness reads
as

(a11 − q11)(a22 − q22) = a21a12. (A.11)

This is equivalent to the fact that the two rectangles with sides parallel to the axis and diagonal QdAd and QaAa

have the same signed area (see Fig. 1). Notice that the sign of the areas is given by the sign of the slope of QdAd

and of QaAa , respectively. Define t (Ad,Qd) as the signed area of the corresponding rectangle and remark that it is a
continuous function. Given A, the problem is to find Qd such that

t (Ad,Qd) = a21a12. (A.12)
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Notice that{
t (Ad,Qd),Qd ∈ C

} = [m,∞)

for a suitable negative m < 0 depending on Ad . Therefore, if a21a12 > 0 we can always solve (A.12). Assume instead
that a21a12 < 0 like in Fig. 1. Let t̃ (Ad) be the infimum of h over Qd . For a fixed a11, it is easy to see that t̃ attains its
maximum for a22 = a11. In this case, the optimal Qd is given by

Qd = 1

2

(
a11 + a11

K
,Ka11 + a11

)
,

and

max
a22

t̃ (Ad) = −a2
11

4
(1 − 1/K)(K − 1).

Therefore (A.12) has a solution whenever

−a2
11

4
(1 − 1/K)(K − 1) < a21a12. (A.13)

From (A.8) it follows that

|a21| < max{S1, S2}Kδa22,

and hence

|a12a21| < max{S1, S2}Kδa22|a12| < max{S1, S2}Kδ2a11a22 < max{S1, S2}Kδ2Ka2
11.

By the very definition (A.7) of δ we deduce that

a2
11

4
(1 − 1/K)(K − 1) > max{S1, S2}K2δ2a2

11,

so that (A.13) holds, and the proof is completed.
2. The case S1 = S2.
By an affine change of variables one can reduce to the case when S1 = S2 = 1. (In fact one takes A = B =

diag(S
−1/4
1 , S

1/4
1 ) in (2.24).) The existence of solutions in this case follows from the following theorem which was

proved in [4] in the context of studying equations in non-divergence form.

Theorem A.7. There exists a measurable set E ⊂ Ω such that the solution v ∈ W 2,2(Ω;R2) to{
Tr(MD2v) = 0 in Ω,

v(x) = |x|2
2 on ∂Ω

(A.14)

with

M = χE

(
1√
K

0

0
√

K

)
+ (1 − χE)

( √
K 0
0 1√

K

)
,

satisfies

v(x) = x1 on ∂Ω, and
∫
B

∣∣D2v
∣∣pK dx = ∞ for every ball B ⊂ Ω.

Indeed, one can easily check that if v is the solution to (A.14) provided by Theorem A.7, then the function u := ∂x1v

satisfies (A.6) for σ = χσ1 + (1 − χ)σ2. �
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