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Abstract

We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible,
resistive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we study the existence of smooth solutions for the incompressible resistive Hall-
MagnetoHydroDynamics system (in short, Hall-MHD). While usual incompressible resistive MHD equations are
well understood for quite long time (see e.g. [6]), Hall-MHD has received little attention from mathematicians. How-
ever, in many current physics problems, Hall-MHD is required. The first systematic study of Hall-MHD is due to
Lighthill [10] followed by Campos [3]. The Hall-MHD is indeed needed for such problems as magnetic reconnection
in space plasmas [7,9], star formation [17,2], neutron stars [14] and geo-dynamo [12]. A physical review on these
questions can be found in [13]. Mathematical derivations of Hall-MHD equations from either two-fluids or kinetic
models can be found in [1] and in this paper, the first existence result of global weak solutions is given. In [4],
a stability analysis of a Vlasov equation modeling the Hall effect in plasmas is carried over.

Hall-MHD is believed to be an essential feature in the problem of magnetic reconnection. Magnetic reconnection
corresponds to changes in the topology of magnetic field lines which are ubiquitously observed in space. However,
in ideal MHD, due to ideal Ohm’s law, the magnetic field undergoes a passive transport by the fluid velocity and
its topology is preserved. The Hall term restores the influence of the electric current in the Lorentz force occurring
in Ohm’s law, which was neglected in conventional MHD. This term is quadratic in the magnetic field and involves
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second order derivatives. So its influence becomes dominant in the cases where the magnetic shear is large, which
precisely occurs during reconnection events. In laminar situations, this term is usually small and can be neglected,
which is why conventional MHD models ignore it.

In this paper, we focus on the mathematical analysis of this model and investigate the existence and uniqueness of
smooth solutions. We also prove a Liouville theorem for stationary solutions. The main results are stated in Section 2.
Theorem 2.1 provides the global existence of weak solutions for any data. Compared to [1] which dealt with a periodic
setting, the present result concerns the whole space case. However, the proof is identical and is omitted. Theorem 2.2
shows the local existence of smooth solutions for large data and provides a blow-up criterion. Theorem 2.3 proves
the global existence of smooth solutions for small data. Theorem 2.4 gives the uniqueness of the solution. Finally,
a Liouville theorem for stationary solutions is provided in Theorem 2.5. The main technical point is to control the
second order derivatives in the Hall term by the diffusion term induced by the resistivity. This can be done thanks to
the special antisymmetric structure of the Hall term. The proofs are carried over in Section 3.

2. Statement of the main results

We consider the following viscous or inviscid, resistivity incompressible MHD-Hall equations.

∂tu + u · ∇u + ∇p − ν�u = (∇ × B) × B, (2.1)

∇ · u = 0, (2.2)

∂tB − ∇ × (u × B) − �B = −∇ × (
(∇ × B) × B

)
, (2.3)

Eq. (2.1) represents the momentum conservation equation for the plasma fluid while (2.3) is the Maxwell–Faraday
equation for the magnetic field. The incompressibility condition (2.2) is what is left from the continuity equation when
the fluid density is a constant. The left-hand side of (2.1) is the standard Navier–Stokes equation while the right-hand
side describes the Lorentz force acting on a charged fluid. For the simplicity of the presentation, the density is assumed
to be equal to 1, along with all the physical parameters except for the viscosity ν. Keeping ν will allow us to distinguish
between inviscid flow (ν = 0) and viscous flow (ν > 0). The left-hand side of (2.3) is the standard Maxwell–Faraday
equation for standard MHD, while the right-hand side is the Hall term. The collection of (2.1), (2.2) and the left-hand
side of (2.3) makes the standard incompressible viscous resistive MHD. The addition of the Hall term at the right-hand
side of (2.3) gives rise to the incompressible viscous resistive Hall-MHD. The second term at the left-hand side of
(2.3) describes the passive transport of the magnetic field by the plasma velocity and arises from ideal Ohm’s law.
The third term at the left-hand side of (2.3) is added to Ohm’s law when finite resistivity effects are present. Here, the
resistivity term is essential for the well-posedness. Consequently, we set the resistivity equal to 1. Finally, the Hall
term restores the influence of the discrepancy between electron and ion velocities in Ohm’s law. This discrepancy is
usually neglected in conventional MHD models but it may become significant in some situations such as magnetic
reconnection and dynamo effects.

The following theorem is the first step of the present paper. It shows the existence of global weak solutions in the
whole space case.

Theorem 2.1 (Existence of global weak solutions). Let ν > 0 and u0,B0 ∈ L2(R3), with ∇ ·u0 = 0. Then, there exists
a global weak solution u,B ∈ L∞(R+;L2(R3)) ∩ L2(R+;H 1(R3)) satisfying energy inequality

1

2

(∥∥u(·, t)∥∥2
L2 + ∥∥B(·, t)∥∥2

L2

) + ν

t∫
0

∥∥∇u(·s)∥∥2
L2 ds +

t∫
0

∥∥∇B(·, s)∥∥2
L2 ds � 1

2

(‖u0‖2
L2 + ‖B0‖2

L2

)

for almost every t ∈ [0,∞). Furthermore, if ∇ · B0 = 0, then we have ∇ · B(·, t) = 0 for all t > 0.

A previous version of this theorem in the case of a periodic domain has been proved in [1] using a Galerkin
approximation. Here, in the whole space case, the proof is based on mollifiers (see Eqs. (3.1)–(3.3)) and the main
estimates will be given at Proposition 3.1 below. We note that this theorem does not require that ∇ · B0 = 0. However,
if ∇ · B0 = 0, the divergence free condition is propagated.



D. Chae et al. / Ann. I. H. Poincaré – AN 31 (2014) 555–565 557
The main results of this paper are the establishment of short-time existence of smooth solutions and a blow-up
criterion (Theorem 2.2). We also establish the existence of global smooth solutions for small data (Theorem 2.3).
Additionally, we show the uniqueness of solutions (Theorem 2.4). Finally, we state a Liouville theorem for smooth
stationary solutions.

For the sharp blow-up criterion, we need to introduce the following functional setting. We recall the homogeneous
Besov space Ḃ0∞,∞, which is defined as follows. Let {ψk}k∈Z be the Littlewood–Paley partition of unity, where the

Fourier transform ψ̂k(ξ) is supported on the annulus {ξ ∈R
N | 2k−1 � |ξ | < 2k} (see e.g. [5,16]). Then,

f ∈ Ḃ0∞,∞ if and only if sup
k∈Z

∥∥ψk ∗ f
∥∥

L∞ =: ‖f ‖Ḃ0∞,∞ < ∞.

The following is a well-known embedding result, cf. [16, pp. 244]

L∞(
R

N
)
↪→ BMO

(
R

N
)
↪→ Ḃ0∞,∞

(
R

N
)
, (2.4)

where BMO denotes the Bounded Mean Oscillation space [16]. Now, we state the theorems. The first one is the local
existence theorem for smooth solutions and the blow-up criterion:

Theorem 2.2 (Local existence and uniqueness of smooth solutions and blow-up criterion). Let m > 5/2 be an integer,
ν � 0 and u0,B0 ∈ Hm(R3) with ∇ · u0 = 0. Then:

(i) There exists T = T (‖u0‖Hm,‖B0‖Hm) such that there exists a unique solution u,B ∈ L∞([0, T );Hm(R3)) ∩
Lip(0, T ;Hm−2(R3)).

(ii) Define

X(t) := 1 + ∥∥B(·, t)∥∥2
Hm + ∥∥u(·, t)∥∥2

Hm, (2.5)

and

A(t) := ∥∥ω(t)
∥∥

Ḃ0∞,∞ + 1 + ‖u(t)‖2
L∞ + ‖B(t)‖2

L∞ + ‖∇B(t)‖2
L∞

1 + log(1 + ‖u(t)‖L∞ + ‖B(t)‖L∞ + ‖∇B(t)‖L∞)
(2.6)

where we denoted by ω = ∇ × u the vorticity. For T ∗ < ∞ then the following two statements are equivalent:

(i) X(t) < ∞, ∀t < T ∗ and lim sup
t→T ∗

X(t) = ∞, (2.7)

(ii)

t∫
0

A(s) ds < ∞, ∀t < T ∗ and

T ∗∫
0

A(s) ds = ∞. (2.8)

If such T ∗ exists, then T ∗ is called the first-time blow-up and (2.8) is a blow-up criterion.

Note that this theorem is valid in both the viscous (ν > 0) and inviscid (ν = 0) cases. Next, we state the global
existence theorem for smooth solutions with small data:

Theorem 2.3 (Global existence and uniqueness of smooth solutions for small data). Let m > 5/2 be an integer,
ν > 0, and u0,B0 ∈ Hm(R3) with ∇ · u0 = 0. There exists a universal constant K = K(m,ν) such that if ‖u0‖Hm +
‖B0‖Hm < K , then, there exists a unique solution u,B ∈ L∞(R+;Hm(R3)) ∩ Lip(R+;Hm−2(R3)).

This theorem is only valid in the viscous case (ν > 0). The next theorem states the uniqueness of the solution:

Theorem 2.4 (Weak-strong uniqueness). Let (u1,B1) and (u2,B2) be two weak solutions.

(i) Assume ν � 0, and (u2,B2) satisfies

T∫
0

(‖∇u2‖L∞ + ‖u2‖2
L∞ + ‖B2‖2

L∞ + ‖∇B2‖2
L∞

)
dt < ∞,

then we have u1 ≡ u2, and B1 ≡ B2 a.e., in (0, T ) ×R
3.
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(ii) Assume ν > 0, u2 ∈ L∞(0, T ;H 1(R3)) ∩ L2(0, T ;H 2(R3)), B2 ∈ L2(0, T ;W 1,∞(R3)). Then we have u1 ≡ u2,
and B1 ≡ B2 a.e., in (0, T ) ×R

3.

More precisely, this theorem states that, if two solutions exist with the same data and if one of them is smooth,
then they must coincide. The first statement is valid in both the viscous (ν > 0) and inviscid (ν = 0) cases but requires
stronger regularity on the smooth solution. The second result is only valid in the viscous case (ν > 0) and the regularity
for the u-component of the smooth solution reduces to that of the strong solution.

Finally, we state a Liouville type theorem for the smooth solutions of the following stationary Hall-MHD system.

u · ∇u + ∇p = (∇ × B) × B + ν�u, (2.9)

∇ · u = 0, (2.10)

−∇ × (u × B) + ∇ × (
(∇ × B) × B

) = �B, (2.11)

∇ · B = 0. (2.12)

The Liouville theorem reads as follows:

Theorem 2.5 (Liouville theorem for steady smooth solutions). Let (u,B) be a C2(R3) solution to (2.9)–(2.12) satis-
fying

∫

R3

|∇u|2 dx +
∫

R3

|∇B|2 dx < ∞, (2.13)

and

u,B ∈ L∞(
R

3) ∩ L
9
2
(
R

3). (2.14)

We assume ν > 0. Then, we have u = B = 0.

Remark 2.1. If we set B = 0 in the Hall-MHD system, the above theorem reduces to the well-known Galdi result [8]
for the Navier–Stokes equations.

3. Proofs of the main results

We use the mollifier technique as described in [11]. We consider the following mollifier operator:

Jεv = ρε ∗ v, ρε = ε−3ρ(x/ε),

where ρ is a nonnegative C∞
0 function, with unit integral. We introduce the regularized system as follows:

∂tuε +Jε

(
(Jεuε · ∇)Jεuε

) + ∇pε = Jε

(
(∇ ×JεBε) ×JεBε

) + ν�J 2
ε uε, (3.1)

∇ · uε = 0, (3.2)

∂tBε − ∇ × (
Jε(Jεuε ×JεBε)

) + ∇ × (
Jε

(
(∇ ×JεBε) ×JεBε

)) = �J 2
ε Bε, (3.3)

with initial condition

(uε,Bε)|t=0 = Jε(u0,B0).

First, we have

Proposition 3.1. Let m be an integer such that m > 5/2, let ε > 0, ν � 0 and u0,B0 ∈ Hm(R3), with ∇ ·u0 = 0. Then,
there exists a unique global solution uε,Bε ∈ C∞(R+;C∞ ∩ Hm(R3)) which satisfies:
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(i) Energy inequality:

1

2

(∥∥uε(·, t)
∥∥2

L2 + ∥∥Bε(·, t)
∥∥2

L2

) + ν

t∫
0

∥∥∇Jεuε(·, s)
∥∥2

L2 ds +
t∫

0

∥∥∇JεBε(·, s)
∥∥2

L2 ds

� 1

2

(‖u0‖2
L2 + ‖B0‖2

L2

) ∀t ∈ (0,∞). (3.4)

(ii) There are positive constants C depending only on m, and constant T depending only on m, ‖u0‖Hm , and ‖B0‖Hm

such that:∥∥(uε,Bε)
∥∥

L∞(0,T ;Hm(R3))∩Lip(0,T ;Hm−2(R3))
� C

(‖u0‖2
Hm + ‖B0‖2

Hm

)
. (3.5)

Sketch of proof. The existence and uniqueness comes directly from the abstract Picard iteration theorem in Hm (see
details in [11]). The energy estimate comes directly from (3.1), (3.3). The proof of estimate (3.5) is almost identical
as the proof of the a priori estimate (3.20) of Theorem 2.2 below and is skipped. �

We can now prove Theorem 2.1.

Sketch of proof of Theorem 2.1. Thanks to Proposition 3.1, we can construct a sequence of regularized solutions
to problem (2.1), (2.3) and the energy estimate (3.4) provides the required compactness allowing to pass to the limit
ε → 0 in the weak formulation and to get a global weak solution. The details of the functional analysis are the same
as in [1]. �

Property (ii) of Proposition 3.1 will be used as an a priori estimate for the construction of regularized solutions in
the proof of Theorem 2.2 below.

Proposition 3.2. Let m > 5/2 be an integer. Let (u,B) be a smooth solution to (2.1)–(2.3). Then, there are two positive
universal constants C1 and C2 such that the following a priori estimates hold:

d

dt

(‖B‖2
Hm + ‖u‖2

Hm

) + ‖∇B‖2
Hm + 2ν‖Du‖2

Hm

� C1
(
1 + ‖B‖2

L∞ + ‖∇B‖2
L∞ + ‖u‖2

L∞ + ‖∇u‖L∞
)(‖B‖2

Hm + ‖u‖2
Hm + 1

)
, (3.6)

d

dt

(‖B‖2
Hm + ‖u‖2

Hm

) + 2‖∇B‖2
Hm + 2ν‖Du‖2

Hm

� C2
(‖∇B‖2

Hm + ‖∇u‖2
Hm

)(‖B‖2
Hm + ‖u‖2

Hm + ‖u‖Hm + ‖B‖Hm

)
. (3.7)

Proof. We first concentrate ourselves on (3.6). Let α = (α1, α2, α3) ∈ N
3 be a multi-index. We operate Dα =

∂ |α|/∂x
α1
1 · · ·∂x

α3
3 (where |α| = α1 + · · · + α3) on (2.1) and (2.3) respectively and take the scalar product of them

with DαB and Dαu respectively, add them together and then sum the result over |α| � m. We obtain

1

2

d

dt

(‖u‖2
Hm + ‖B‖2

Hm

) + ν‖Du‖2
Hm + ‖∇B‖2

Hm

= −
∑

0<|α|�m

∫

R3

Dα
(
(∇ × B) × B

) · Dα(∇ × B)dx +
∑

0<|α|�m

∫

R3

Dα(u × B) · Dα(∇ × B)dx

−
∑

0<|α|�m

∫

R3

Dα(u · ∇u) · Dαudx +
∑

0<|α|�m

∫

R3

Dα
{
(∇ × B) × B

} · Dαudx

=: I1 + I2 + I3 + I4. (3.8)

Notice that the |α| = 0 terms on the right-hand side above have exactly cancelled each other by energy conservation.
The cancellation is crucially important for the existence of global smooth solution for small data. Then, we estimate
successively each of the I1–I4 terms. We have:
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I1 = −
∑

0<|α|�m

∫

R3

[
Dα

(
(∇ × B) × B

) − (
Dα(∇ × B)

) × B
] · Dα(∇ × B)dx

where the second term of the right-hand side is simply zero. Using the well-known calculus inequality,

∑
|α|�m

∥∥Dα(fg) − (
Dαf

)
g
∥∥

L2 � C
(‖f ‖Hm−1‖∇g‖L∞ + ‖f ‖L∞‖g‖Hm

)
, (3.9)

we get:

I1 � C
(‖B‖Hm‖∇B‖L∞ + ‖∇B‖L∞‖B‖Hm

)‖∇B‖Hm (3.10)

� 1

4
‖∇B‖2

Hm + C‖B‖2
Hm‖∇B‖2

L∞, (3.11)

On the other hand, using Leibnitz formula and the Sobolev inequality, we obtain

I2 �
∑

0<|α|�m

∥∥Dα(u × B)
∥∥

L2‖∇B‖Hm

� C
(‖u‖L∞‖B‖Hm + ‖u‖Hm‖B‖L∞

)‖∇B‖Hm

� 1

4
‖∇B‖2

Hm + C‖u‖2
L∞‖B‖2

Hm + C‖u‖2
Hm‖B‖2

L∞ . (3.12)

Then, we remark that

I3 = −
∑

0<|α|�m

∫

R3

[
Dα(u · ∇u) − u · ∇Dαu

] · Dαudx.

Indeed, the second term is zero by the fact that u is divergence free. Then, similarly to the above calculation, using
the calculus inequality (3.9), we obtain

I3 �
∑

0<|α|�m

∥∥Dα(u · ∇u) − u · ∇Dαu
∥∥

L2‖∇u‖Hm−1 � C‖∇u‖L∞‖∇u‖2
Hm−1 . (3.13)

From (3.8) we get

I4 �
∑

0<|α|�m

∥∥(∇ × B) × B
∥∥

Hm‖∇u‖Hm−1 .

Note that we can take ‖∇u‖Hm−1 instead of ‖u‖Hm because |α| > 0. This remark is important for the proof of the next
theorem about the global existence of smooth solutions for small data. Using Leibnitz formula, we derive

I4 � C
(‖∇B‖L∞‖B‖Hm + ‖∇B‖Hm‖B‖L∞

)‖∇u‖Hm−1 (3.14)

� C‖∇B‖L∞‖B‖Hm‖∇u‖Hm−1 + 1

2
‖∇B‖2

Hm + C‖B‖2
L∞‖u‖2

Hm. (3.15)

From estimates (3.11), (3.12), (3.13) and (3.15), we obtain

d

dt

(‖B‖2
Hm + ‖u‖2

Hm

) + ‖∇B‖2
Hm + 2ν‖Du‖2

Hm

� C
(‖B‖2

L∞ + ‖∇B‖2
L∞ + ‖u‖2

L∞
)(‖B‖2

Hm + ‖u‖2
Hm

)
+ C‖∇u‖L∞‖∇u‖2

Hm−1 + C‖∇B‖L∞‖B‖Hm‖∇u‖Hm−1, (3.16)

from which we easily deduce (3.6).
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We now turn towards estimate (3.7). It is deduced through a small change in the estimate (3.12) for I2. From
Leibnitz formula, we have:

I2 �
∑

0<|α|�m

∥∥Dα(u × B)
∥∥

L2‖∇B‖Hm

�
∑

0<|α|�m

3∑
j=1

∥∥Dα−ej (∂xj
u × B + u × ∂xj

B)
∥∥

L2‖∇B‖Hm

� C
(‖u‖L∞‖∇B‖Hm−1 + ‖∇u‖L∞‖B‖Hm−1 + ‖B‖L∞‖∇u‖Hm−1 + ‖∇B‖L∞‖u‖Hm−1

)‖∇B‖Hm

� C
(‖u‖Hm‖∇B‖Hm−1 + ‖B‖Hm‖∇u‖Hm−1

)‖∇B‖Hm. (3.17)

From estimates (3.10), (3.17), (3.13) and (3.14), we easily deduce (3.7). This completes the proof of Proposi-
tion 3.2. �

In order to prove Theorem 2.3, we need to use the following

Lemma 3.3. Assume that a is a positive constant, x(t), y(t) are two nonnegative C1(R+) functions, and D(t) is a
nonnegative function, satisfying

d

dt

(
x2 + y2) + D � a

(
x2 + y2 + x + y

)
D.

If additionally, the initial data satisfy

x2(0) + y2(0) +
√

2
(
x2(0) + y2(0)

)
<

1

a
, (3.18)

then, for any t > 0, one has

x2(t) + y2(t) + x(t) + y(t) < x2(0) + y2(0) +
√

2
(
x2(0) + y2(0)

)
<

1

a
.

Proof. Notice that
d

dt

(
x2 + y2) + D � a

(
x2 + y2 +

√
2
(
x2 + y2

))
D.

Since (3.18) is true initially, it is still true for short time, so that one has

x2(t) + y2(t) +
√

2
(
x2(t) + y2(t)

)
<

1

a
.

Then x2(t) + y2(t) is a decreasing function in this short period. Hence

x2(t) + y2(t) +
√

2
(
x2(t) + y2(t)

)
� x2(0) + y2(0) +

√
2
(
x2(0) + y2(0)

)
.

Then by an extension argument, it holds true for all time. �
Proof of Theorem 2.2. We construct a sequence of weak solutions of the regularized system (3.1)–(3.3) and remark
that such solutions do actually satisfy the a priori estimate (3.6). This allows us to pass to the limit in a subsequence
and show the existence of smooth solutions on short times.

Below we set

X(t) := ∥∥B(·, t)∥∥2
Hm + ∥∥u(·, t)∥∥2

Hm + 1.

Then, from (3.6), and using the Sobolev inequality, we have

d

dt
X � C

(
1 + ‖B‖2

L∞ + ‖∇B‖2
L∞ + ‖u‖2

L∞ + ‖∇u‖L∞
)
X

� C
(
1 + ‖B‖2

Hm + ‖u‖2
Hm + ‖u‖Hm

)
X

� CX2.
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Therefore, thanks to nonlinear Gronwall’s inequality, we have:

X(t) � X(0)

1 − C0X(0)t
.

Now, choose T = 1
2C0X(0)

. Then:

X(t) � 2X(0) ∀t ∈ [0, T ). (3.19)

This implies the following a priori estimate:∥∥(u,B)
∥∥

L∞(0,T ;Hm(R3))
� C

(‖u0‖2
m + ‖B0‖2

m

)
.

Now, thanks to a direct estimate on the time derivatives using Eqs. (2.1), (2.3), we have also the a priori estimate:∥∥(u,B)
∥∥

Lip(0,T ;Hm−2(R3))
� C

(‖u0‖2
m + ‖B0‖2

m

)
.

Adding these two inequalities together, we get the a priori estimate:∥∥(u,B)
∥∥

L∞(0,T ;Hm(R3))∩Lip(0,T ;Hm−2(R3))
� C

(‖u0‖2
m + ‖B0‖2

m

)
. (3.20)

Inequality (3.20) also holds true for the modified equations (3.1)–(3.3). This is exactly estimate (3.5) of Proposi-
tion 3.1. As in the proof of Theorem 2.1, there exists a subsequence, still denoted by (uε,Bε) whose limit gives rise
to a global weak solution (u,B). Using the lower-semicontinuity of the norm, one has that this weak solution satisfies
the inequality∥∥(u,B)

∥∥
L∞(0,T ;Hm(R3))∩Lip(0,T ;Hm−2(R3))

� C
(‖u0‖2

m + ‖B0‖2
m

)
,

which proves the local existence of a smooth solution on [0, T ). Uniqueness follows from the same kind of proof as
Theorem 2.4.

Next, in order to prove the blow-up criterion (2.8) we recall the following version of Beale–Kato–Majda type
logarithmic Sobolev inequality in R

3 (see [15, formula 14.2] or [5]),

‖f ‖L∞ � C
(
1 + ‖f ‖Ḃ0∞,∞

){
log

(
1 + ‖f ‖Hm−1

)}
, m > 5/2. (3.21)

Substituting f for ∇u in (3.21) and inserting the result into (3.16), we have

d

dt
X � C

(
1 + ‖B‖2

L∞ + ‖∇B‖2
L∞ + ‖u‖2

L∞
)
X + C

(
1 + ‖∇u‖Ḃ0∞,∞

)
X log(1 + X). (3.22)

We use the fact that the Calderon–Zygmund operator is bounded from the homogeneous Besov space Ḃ0∞,∞ into
itself [16], namely we have

‖∇u‖Ḃ0∞,∞ � C‖ω‖Ḃ0∞,∞ . (3.23)

We also use the Sobolev inequality to obtain

1 + ‖B‖2
L∞ + ‖∇B‖2

L∞ + ‖u‖2
L∞ � C

1 + ‖B‖2
L∞ + ‖∇B‖2

L∞ + ‖u‖2
L∞

1 + log(1 + ‖u‖L∞ + ‖B‖L∞ + ‖∇B‖L∞)
log(1 + X). (3.24)

Inserting (3.23) and (3.24) into (3.22), we get:

d

dt
X � CA(t)X ln(1 + X),

where A(t) is given by (2.6). We now recall that by Sobolev imbedding, there exists C > 0 such that we have A(t) �
CX(t). Then, by this inequality and Gronwall’s lemma, we obtain the equivalence of (2.7) and (2.8). �
Remark 3.1. By applying the same argument, we can show the local well-posedness for the simple Hall problem
without coupling to the fluid velocity u, which is written as follows:

∂tB + ∇ × (
(∇ × B) × B

) = �B,
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with an initial data B0. We can also extend the result to the following generalized Hall problem

∂tB + ∇ × ((
Λα∇ × B

) × B
) = −ΛβB,

where Λα is the fractional power of the Laplacian Λα = (−�)α/2, supplemented with an initial data B0. With the
same argument, we can show that if β � α + 2, α � 0, then this generalized Hall problem is also locally well posed.
When β < α + 2 it is an open problem to determine if this problem is well-posed or not.

Proof of Theorem 2.3. We use the inequality (3.7), and estimate, using the Sobolev inequality,

d

dt

(‖B‖2
Hm + ‖u‖2

Hm

) + 2‖∇B‖2
Hm + 2ν‖∇u‖2

Hm

� C
(‖B‖2

L∞ + ‖∇B‖2
L∞ + ‖u‖2

L∞
)(‖B‖2

Hm + ‖u‖2
Hm

)
+ C‖∇u‖L∞‖∇u‖2

Hm−1 + C‖∇B‖L∞‖B‖Hm‖∇u‖Hm−1

� C1
(‖∇B‖2

Hm + ‖∇u‖2
Hm

)(‖B‖2
Hm + ‖u‖2

Hm + ‖u‖Hm + ‖B‖Hm

)
. (3.25)

Therefore if

‖B0‖2
Hm + ‖u0‖2

Hm +
√

‖B0‖2
Hm + ‖u0‖2

Hm <
min{1,2ν}

C1
,

then, by Lemma 3.3, we have for any t > 0

d

dt

(∥∥B(·, t)∥∥2
Hm + ∥∥u(·, t)∥∥2

Hm

)
� 0, (3.26)

and
∥∥B(t)

∥∥2
Hm + ∥∥u(t)

∥∥2
Hm � ‖B0‖2

Hm + ‖u0‖2
Hm � min{1,2ν}

C1
,

for all t > 0. Hence the so obtained solution is global in time, which ends the proof. �
Proof of Theorem 2.4. The proof of this theorem uses the same estimates as for the proof of Theorem 2.2(i) applied
to u = u1 − u2 and B = B1 − B2. The details are omitted. �
Proof of Theorem 2.5. We first estimate the pressure in (2.9). Taking the divergence of (2.9), and using the identity,

(∇ × B) × B = −∇ |B|2
2 + (B · ∇)B , we obtain

�

(
p + |B|2

2

)
= −

3∑
j,k=1

∂j ∂k(ujuk − BjBk),

from which we have the representation formula of the pressure, using the Riesz transforms in R
3,

p =
3∑

j,k=1

RjRj (ujuk − BjBk) − |B|2
2

. (3.27)

By the Calderon–Zygmund inequality, one has

‖p‖Lq � C‖u‖2
L2q + C‖B‖2

L2q , 1 < q < ∞, (3.28)

if u,B ∈ L2q(R3). Let σR be the standard cut-off function defined as follows. Consider σ ∈ C∞
0 (RN) such that

σ
(|x|) =

{
1 if |x| < 1,

0 if |x| > 2,

and 0 � σ(x)� 1 for 1 < |x| < 2. Then, for each R > 0, let us define

σ

( |x|) := σR

(|x|) ∈ C∞
0

(
R

N
)
.

R
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We take the inner product of Eq. (2.9) with uσR and the inner product of Eq. (2.11) with BσR , add the result together
and integrate over R3. After integration by parts, we have

ν

∫

R3

|∇u|2σR dx +
∫

R3

|∇B|2σR dx = 1

2

∫

R3

|u|2(u · ∇)σR dx +
∫

R3

p(u · ∇)σR dx

−
∫

R3

u × B · ∇σR × B dx +
∫

R3

(∇ × B) × B · ∇σR × B dx

+ ν

2

∫

R3

|u|2�σR dx + 1

2

∫

R3

|B|2�σR dx

:= I1 + · · · + I6. (3.29)

We have the following estimates,

|I1|�
∫

{R�|x|�2R}
|u|3|∇σR|dx

� 1

2R
‖∇σ‖L∞

( ∫
{R�|x|�2R}

|u| 9
2 dx

) 2
3
( ∫

{R�|x|�2R}
dx

) 1
3

� C‖u‖3

L
9
2 (R�|x|�2R)

→ 0 as R → ∞.

Using the estimate (3.28), one has

|I2|�
∫

{R�|x|�2R}
|p||u||∇σR|dx

� 1

R
‖∇σ‖L∞

(∫

R3

|p| 9
4 dx

) 4
9
( ∫

{R�|x|�2R}
|u| 9

2 dx

) 2
9
( ∫

{R�|x|�2R}
dx

) 1
3

� C
(‖u‖2

L
9
2

+ ‖B‖2

L
9
2

)‖u‖
L

9
2 (R�|x|�2R)

→ 0 as R → ∞,

|I3|�
∫

{R�|x|�2R}
|u||B|2|∇σ |dx

� 1

R
‖∇σ‖L∞

(∫

R3

|u| 9
2 dx

) 2
9
(∫

R3

|B| 9
2 dx

) 4
9
( ∫

{R�|x|�2R}
dx

) 1
3

� C‖B‖2

L
9
2
‖u‖

L
9
2 (R�|x|�2R)

→ 0 as R → ∞,

|I4|�
∫

{R�|x|�2R}
|∇B||B|2|∇σ |dx

� 1

R
‖∇σ‖L∞‖B‖L∞‖∇B‖L2

( ∫
{R�|x|�2R}

|B|6 dx

) 1
6
( ∫

{R�|x|�2R}
dx

) 1
3

� C‖B‖L∞‖∇B‖L2‖B‖L6(R�|x|�2R) → 0 as R → ∞,

since ‖B‖L6 � C‖∇B‖L2 < ∞ by the Sobolev embedding. Then,
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|I5| + |I6| � C

∫
{R�|x|�2R}

(|u|2 + |B|2)|�σ |dx

� C

R2

∥∥D2σ
∥∥

L∞

( ∫
{R�|x|�2R}

(|u|2 + |B|2)3
dx

) 1
3
( ∫

{R�|x|�2R}
dx

) 2
3

� C
(‖u‖2

L6(R�|x|�2R)
+ ‖B‖2

L6(R�|x|�2R)

) → 0 as R → ∞.

Therefore, passing to the limit R → ∞ in (3.29), and using the dominated convergence theorem, one has∫

R3

|∇u|2 dx +
∫

R3

|∇B|2 dx = 0,

which implies the conclusion of the theorem. �
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