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Abstract

We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second
order differential operator �pu := div(|∇u|p−2∇u). Namely, if ρ is a nonnegative weight such that −�pρ � 0, then the Hardy
inequality

c

∫
M

|u|p
ρp

|∇ρ|p dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M),

holds. We show concrete examples specializing the function ρ.
Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli

inequalities, weighted Gagliardo–Nirenberg inequalities, uncertain principle and first order Caffarelli–Kohn–Nirenberg interpola-
tion inequality.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

An N -dimensional generalization of the classical Hardy inequality asserts that for every p > 1

c

∫
Ω

|u|p
wp

dx �
∫
Ω

|∇u|p dx, u ∈ C∞
0 (Ω),

where Ω ⊂R
N is an open set, and the weight w is, for instance, w(x) := |x| and p < N , or w(x) := dist(x, ∂Ω) and

Ω is convex (see for example [5,10,21,27,41–43,45] and references therein).
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The preeminent role of Hardy inequalities and the knowledge of the best constants involved is a well known fact,
as the reader can recognize from the wide literature that uses such a tool in Euclidean or in subelliptic setting as well
as on manifolds ([4,6,9,10,12,22,37,46] just to cite a few).

On the other hand, the knowledge of the validity of a Hardy or Gagliardo–Nirenberg or Sobolev or Caffarelli–
Kohn–Nirenberg inequality on a manifold M and their best constants allows to obtain qualitative properties on the
manifold M . For instance in [2,14,50] it was shown that if M is a complete open Riemannian manifold with nonnega-
tive Ricci curvature in which a Hardy- or Gagliardo–Nirenberg- or Caffarelli–Kohn–Nirenberg-type inequality holds,
then M is in some suitable sense close to the Euclidean space.

One of our aims is to prove some Hardy inequalities on Riemannian manifolds. In 1997, Carron in [16] studies
weighted L2-Hardy inequalities on a Riemannian manifold M under some geometric assumptions on the weight
function ρ, obtaining, among other results, the following inequality

c

∫
M

u2

ρ2
dvg �

∫
M

|∇u|2 dvg, u ∈ C∞
0 (M), (1.1)

where ρ is a nonnegative function such that |∇ρ| = 1, �ρ � γ
ρ

, ρ−1{0} is a compact set of zero capacity and c =
(
γ−1

2 )2. In [16] the author applies this result to several explicit examples of Riemannian manifolds. Under the same
hypotheses on the function ρ, Kombe and Özaydin in [38] extend Carron’s result to the case p �= 2 for functions
in C∞

0 (M \ ρ−1{0}), and the authors present an application to the punctured manifold Bn \ {0} with Bn the Poincaré
ball model of the hyperbolic space and ρ the distance from the point 0 and p = 2.

Li and Wang in [40] prove that if M is a hyperbolic manifold (i.e. there exists a symmetric positive Green function
Gx(·) for the Laplacian with pole at x), then

1

4

∫
M

|∇yGx(y)|2
G2

x(y)
u2(y) dvg �

∫
M

|∇u|2(y) dvg, u ∈ C∞
0

(
M \ {x}).

We also mention Miklyukov and Vuorinen, which in [44] prove that the inequality(∫
M

∣∣α(
ε(x)

)
u(x)

∣∣q dvg

)1/q

� λ

(∫
M

(
β
(
ε(x)

)∣∣∇u(x)
∣∣)p

dvg

)1/p

, u ∈ W
1,p

0 (M),

holds for q � p provided some conditions related to the isoperimetric profile of M are satisfied.
In [1], Adimurthi and Sekar use the fundamental solution of a general second order elliptic operator to derive

Hardy-type inequalities and then they extend their arguments to Riemannian manifolds using the fundamental solution
of p-Laplacian.

Bozhkov and Mitidieri in [7] prove the validity of (1.1) also for p �= 2 (1 < p < N ), provided there exists on M a
C1 conformal Killing vector field K such that divK = μ with μ a positive constant and ρ = |K|.

Let p > 1 and let ρ be a nonnegative function. Our principal result is a simple criterion to establish if there holds a
Hardy inequality involving the weight ρ. Namely, if ρ is p-superharmonic in Ω , that is −�pρ � 0, then

c

∫
M

|u|p
ρp

|∇ρ|p dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M), (1.2)

holds (see Theorem 2.1). Such a kind of criteria is already established in [20] for a quite general class of second
order operators containing, among other examples, the subelliptic operators on Carnot groups. For this goal we shall
mainly use a technique introduced by Mitidieri in [45] and developed in [18–20] and in [7,8]. The proof is based on
the divergence theorem and on the careful choice of a vector field.

Let us point out some interesting outcomes of our approach. A first issue is that, since it is quite general, our
approach includes Hardy inequalities already studied in [1,7,16,38,40] in the case p = 2 as well as their generalization
for p > 1. Indeed, in all these cited papers, the authors assume extra conditions on the function ρ or on the manifold.
Furthermore, in concrete cases, our result yields an explicit value of the constant c. Moreover, in several cases, this
value is also the best constant (see [20]). To this regard, we discuss if the best constant is achieved or not and, in the
latter case, we study the possibility to add a remainder term.
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Another aspect of our technique is that it allows to characterize the p-hyperbolic manifolds. We remind that a
manifold M is called p-hyperbolic if there exists a symmetric positive Green function Gx(·) for the p-Laplacian with
pole at x. We prove that M is p-hyperbolic if and only if there exists a nonnegative nontrivial function f ∈ L1

loc(M)

such that∫
M

f |u|p dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M).

Notice that one of the implications of this characterization for p = 2 is the result proved in [40]. During the review
process of this work, we have received the paper of Devyver, Fraas and Pinchover [23]. In [23] a general linear second
order differential operator P in the Euclidean framework is studied. The authors find a profound relation between
the existence of positive supersolutions of Pu = 0, Hardy-type inequalities involving P and a weight W and the
characterization of the spectrum of the weighted operator. We refer the interested reader to [23,24].

We also obtain a generalization of (1.2). Namely, for a nonnegative function ρ, the inequality( |p − 1 − α|
p

)p ∫
M

|u|p
ρp

ρα|∇ρ|p dvg �
∫
M

|∇u|pρα dvg, u ∈ C∞
0 (M), (1.3)

holds, provided −(p − 1 − α)�pρ � 0 (see Theorem 3.1). The above inequality contains, as special case, the Cac-
cioppoli inequality. Indeed, if ρ is a p-subharmonic function, that is �pρ � 0, then (1.3) holds for α > p − 1 and, in
particular, for α = p we have

1

pp

∫
M

|u|p|∇ρ|p dvg �
∫
M

|∇u|pρp dvg, u ∈ C∞
0 (M).

This is the so-called Caccioppoli inequality (see for instance [47] and the references therein for the version p = 2 on
manifolds).

Another advantage of our approach is that it allows to obtain also other new and known results, like wighted
Gagliardo–Nirenberg inequalities and the uncertain principle.

Finally we show that if (1.3) and a Sobolev-type inequality (that is c|u|Lp∗ � |∇u|Lp ) hold on M , then we obtain
an interpolation inequality involving, as weights, ρ and its gradient. As particular case, our results contain inequalities
on manifolds related to the celebrated Caffarelli–Kohn–Nirenberg inequality.

The paper is organized as follows. We present the proof of (1.2) in Section 2, where important consequences
and observations are derived. In Section 3 we show natural extensions of (1.2), obtaining also Hardy inequality with
weights, Caccioppoli-type inequalities, weighted Gagliardo–Nirenberg inequalities and the uncertain principle. Some
remarks on the best constant and if it is attained are discussed in Section 4. In Section 5 we present a first order
interpolation inequality. Finally Section 6 is devoted to present some concrete examples of Hardy-type inequalities on
manifolds.

Notation. In what follows (M,g) is a complete Riemannian N -dimensional manifold, Ω ⊂ M is an open set, dvg is
the volume form associated to the metric g, ∇u and divh stand respectively for the gradient of a function u and the
divergence of a vector field h with respect to the metric g (see [3] for further details). Throughout this paper p > 1.

2. Hardy inequalities

In order to state Hardy inequalities involving a weight ρ, the basic assumption we made on ρ is that ρ is
p-superharmonic in weak sense. Namely, we assume that ρ ∈ L1

loc(Ω), |∇ρ| ∈ L
p−1
loc (Ω), and −�pρ � 0 on Ω

in weak sense, that is for every nonnegative ϕ ∈ C1
0(Ω), we have∫

Ω

|∇ρ|p−2(∇ρ · ∇ϕ)dvg � 0. (2.4)

The main result on Hardy inequalities is the following:
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Theorem 2.1. Let ρ ∈ W
1,p

loc (Ω) be a nonnegative function on Ω such that

−�pρ � 0 on Ω in weak sense.

Then |∇ρ|p
ρp ∈ L1

loc(Ω), and the following inequality holds:

(
p − 1

p

)p ∫
Ω

|u|p
ρp

|∇ρ|p dvg �
∫
Ω

|∇u|p dvg, u ∈ C∞
0 (Ω). (2.5)

Before proving Theorem 2.1, we shall present some immediate consequences and extensions of the main result.

Definition 2.2. Let Ω ⊂ M be an open set. We denote by D1,p(Ω) the completion of C∞
0 (Ω) with respect to the norm

|u|D1,p =
(∫

Ω

|∇u|p dvg

)1/p

.

It is possible to extend the validity of (2.5) to function u ∈ C∞
0 (M). This extension is based on the inclusion

D1,p(M) ⊂ D1,p(Ω). (2.6)

The above inclusion is satisfied, for instance, when M \ Ω is a compact set of zero p-capacity (see Appendix A).

Corollary 2.3. Let ρ ∈ L1
loc(M) be a function satisfying the assumptions of Theorem 2.1. If (2.6) holds, then |∇ρ|p

ρp ∈
L1

loc(M), and the following inequality holds:(
p − 1

p

)p ∫
M

|u|p
ρp

|∇ρ|p dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M). (2.7)

Proof. The inequality (2.5) holds for every u ∈ C∞
0 (Ω), then it holds for every u ∈ D1,p(Ω). Since C∞

0 (M) ⊂
D1,p(M), by using (2.6) we conclude the proof. �

In order to illustrate further consequences of Theorem 2.1 we give the following:

Definition 2.4. A manifold M is said p-hyperbolic1 if there exists a symmetric positive Green function Gx(·) for the
p-Laplacian with pole at x,2 if it is not the case we call it p-parabolic.

Several equivalent definitions of p-parabolic manifolds can be given. For instance in [48] there is the following
(see also the literature therein and [35])

Proposition 2.5. Let p > 1. The following statements are equivalent:

a) M is p-parabolic;
b) there exists a compact set K ⊂ M with nonempty interior such that capp(K,M) = 0;
c) there is no nonconstant positive p-superharmonic function on M ;
d) there exists a sequence of functions uj ∈ C∞

0 (M) such that 0 � uj � 1, uj → 1 uniformly on every compact
subset of M and

∫
M

|∇uj |p dvg → 0.

1 Many authors call these manifolds non-p-parabolic.
2 That is −�pGx = δx where δx is the Dirac measure concentrated at point x.
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Other characterizations of p-parabolic manifolds are based on several properties, for instance on the volume
growth, on the isoperimetric profile of the manifold, on some properties of some cohomology, on the recurrence
of the Brownian motion. See [28–31,39,48] and the references therein.

From Theorem 2.1 we deduce the following characterization of p-hyperbolicity.

Theorem 2.6. A manifold M is p-hyperbolic if and only if there exists a nonnegative nontrivial function f ∈ L1
loc(M)

such that∫
M

f |u|p dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M). (2.8)

Proof. If M is p-hyperbolic then inequality (2.8) holds with f = (
p−1
p

)p
|∇Gx |p

G
p
x

. Indeed Gx is nonnegative and

satisfies the hypotheses of Theorem 2.1 (see Theorem 6.4 for further details).
Conversely, assume that M is p-parabolic and that (2.8) is valid for a function f � 0. Then from d) of Proposi-

tion 2.5 there exists a sequence of functions uj ∈ C1
0(M) such that 0 � uj � 1, uj → 1 uniformly on every compact

subset of M and∫
M

|∇uj |p dvg → 0 (as j → +∞).

It implies that
∫
D

f dvg = 0 for every compact subset D of M and then f ≡ 0. This concludes the proof. �
Remark 2.7. Since the p-hyperbolicity of M is equivalent to the existence of a nonconstant positive p-superharmonic
function ρ on M , then by Theorem 2.1 we obtain that inequality (2.8) holds with f = (

p−1
p

)p
|∇ρ|p

ρp .

Remark 2.8. Our Theorem 2.6 implies that if the manifold M admits a C1 conformal Killing vector field K (see
i.e. [7] for the definition) such that divK = μ �= 0 with μ constant and |K|−p ∈ L1

loc(M), then M is p-hyperbolic.
This follows combining Theorem 2.6 and Theorem 4 of [7] (see also Remark 2.11 ii) below).

In order to prove Theorem 2.1 we fix some notation. Let h ∈ L1
loc(Ω) be a vector field. We remind that the distri-

bution divh is defined as∫
Ω

ϕ divhdvg = −
∫
Ω

(∇ϕ · h)dvg, (2.9)

for every ϕ ∈ C1
0(Ω).

Let h ∈ L1
loc(Ω) be a vector field and let A ∈ L1

loc(Ω) be a function. In what follows we write A � divh meaning
that the inequality holds in distributional sense, that is for every ϕ ∈ C1

0(Ω) such that ϕ � 0, we have∫
Ω

ϕAdvg �
∫
Ω

ϕ divhdvg = −
∫
Ω

(∇ϕ · h)dvg. (2.10)

Remark 2.9. Let f ∈ C1(R) be a real function such that f (0) = 0. Taking ϕ = f (u) with u ∈ C1
0(Ω) in (2.9), we have∫

Ω

f (u)divhdvg = −
∫
Ω

f ′(u)(∇u · h)dvg.

In particular, choosing f (u) = |u|p , with p > 1, we get∫
Ω

|u|p divhdvg = −p

∫
Ω

|u|p−2u(∇u · h)dvg, u ∈ C1
0(Ω). (2.11)
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Lemma 2.10. Let h ∈ L1
loc(Ω) be a vector field and let Ah ∈ L1

loc(Ω) be a nonnegative function such that

i) Ah � divh,

ii) |h|p
A

p−1
h

∈ L1
loc(Ω).

Then for every u ∈ C1
0(Ω) we have∫

Ω

|u|pAh dvg � pp

∫
Ω

|h|p
A

p−1
h

|∇u|p dvg. (2.12)

Proof. We note that the right hand side of (2.12) is finite since u ∈ C1
0(Ω). Using the identity (2.11) and the Hölder

inequality we obtain∫
Ω

|u|pAh dvg �
∫
Ω

|u|p divhdvg

� p

∫
Ω

|u|p−1|h||∇u|dvg

= p

∫
Ω

|u|p−1A
(p−1)/p
h

|h|
A

(p−1)/p
h

|∇u|dvg

� p

(∫
Ω

|u|pAh dvg

)(p−1)/p(∫
Ω

|h|p
A

p−1
h

|∇u|p dvg

)1/p

.

This completes the proof. �
Specializing the vector field h and the function Ah, we shall deduce from (2.12) Hardy-type inequalities on Rie-

mannian manifolds.

Remark 2.11. Letting us to point out a strategy to get Hardy inequalities at least in some special cases. Under the
hypotheses of Lemma 2.10, if Ah = divh, then (2.12) reads as∫

Ω

|u|p divhdvg � pp

∫
Ω

|h|p
|divh|p−1

|∇u|p dvg. (2.13)

i) Let V be a function in L1
loc(Ω) such that its weak partial derivatives of order up to two are in L1

loc(Ω). If �V � 0,
choosing h = ∇V , we obtain Ah = divh = div(∇V ) = �V � 0. Then from (2.13)∫

Ω

|u|p|�V |dvg � pp

∫
Ω

|∇V |p
|�V |p−1

|∇u|p dvg. (2.14)

This kind of inequalities for the Euclidean setting Ω =R
N are already found by Davies and Hinz in [21].

At this point, in order to deduce from (2.14) an inequality like

c

∫
Ω

|u|p
ρp

dvg �
∫
Ω

|∇u|p dvg, (2.15)

we have to choose a suitable function V . Let us consider the case when ρ is the distance from a point o ∈ M and
|∇ρ| = 1. A suitable choice for V is V = ρ2−p if 1 < p < 2, V = lnρ if p = 2 and V = −ρ2−p if 2 < p < N .
Following [16], if we require that �ρ � γ

ρ
the above choices yield the inequality (2.15) with c = (

γ−p+1
p

)p . The
success of this strategy is deeply linked to the hypothesis |∇ρ| = 1. Indeed, it seems that such a strategy does not
work even in the subelliptic setting, where the analogous of the hypothesis |∇ρ| = 1 does not hold.
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Furthermore, the fact that the hypothesis |∇ρ| = 1 is sometimes restrictive even in the Euclidean case, can be
seen in the following example. In the Euclidean unit ball B1 ⊂R

N the inequality

c

∫
B1

|u|p
||x| ln |x||p dx �

∫
B1

|∇u|p dx (2.16)

holds for 1 < p � N (see Section 6.3, Section 6.6 and [20]). If we wish to deduce (2.16) from (2.15) we are forced
to choose ρ = −|x| ln |x|. However |∇ρ| �= 1.

ii) Let p < N . Assume that there exists a C1 conformal Killing vector field K (see i.e. [7] for the definition) such that
divK = N

2 μ > 0. Choosing h = K
|K|p , we have Ah := divh = N−p

2
μ

|K|p (see Lemma 3 in [7]) and the inequality
(2.13) reads as(

N − p

Np

)p ∫
Ω

divK

|K|p |u|p dvg �
∫
Ω

(divK)1−p|∇u|p dvg. (2.17)

Therefore, by Lemma 2.10, (2.17) holds for every u ∈ C1
0(Ω) provided |K|−p ∈ L1

loc(Ω). This last fact was
obtained in [7, Theorem 4].

Proof of Theorem 2.1. Let 0 < δ < 1, and ρδ := ρ + δ. In order to apply Lemma 2.10, we define h and Ah as

h := −|∇ρδ|p−2∇ρδ

ρ
p−1
δ

and Ah := (p − 1)
|∇ρδ|p

ρ
p
δ

. (2.18)

Since 1
ρδ

� 1
δ
, the fact that ρ ∈ W

1,p

loc (Ω) implies that h ∈ L1
loc(Ω) and Ah ∈ L1

loc(Ω). Moreover, by computation we
have

|h|p
A

p−1
h

= |∇ρδ|p(p−1)

ρδ
p(p−1)

ρδ
p(p−1)

|∇ρδ|p(p−1)

1

(p − 1)(p−1)
= 1

(p − 1)p−1
∈ L1

loc(Ω),

that is ii) of Lemma 2.10 is fulfilled.
The hypothesis i) of Lemma 2.10 is satisfied provided

(p − 1)

∫
Ω

|∇ρδ|p
ρ

p
δ

ϕ dvg �
∫
Ω

( |∇ρδ|p−2∇ρδ

ρ
p−1
δ

· ∇ϕ

)
dvg (2.19)

holds for every nonnegative function ϕ ∈ C1
0(Ω). Then, for a fixed ϕ ∈ C1

0(Ω) nonnegative, we have to prove (2.19).
Let K = suppϕ ⊂ Ω and let U be a neighborhood of K with compact closure in Ω . We note that both integrals in
(2.19) are finite since 1

ρδ
� 1

δ
and ρ ∈ W

1,p

loc (Ω). Since

|∇ lnρδ| = |∇ρδ|
ρδ

� |∇ρ|
δ

∈ L
p

loc(Ω), (2.20)

and lnρδ ∈ L
p

loc(Ω), we have that lnρδ ∈ W 1,p(U). Thus, for every n ∈ N there exists φn ∈ C∞(U) such that
|φn − lnρδ|W 1,p < 1/n, φn → lnρδ pointwise a.e. and ln δ � φn.3

3 Reminding that the Sobolev space W1,p(Ω) is the completion of the set{
u ∈ C∞(Ω):

∫
Ω

|u|p dvg < ∞ and
∫
Ω

|∇u|p dvg < ∞
}

with respect to the norm

|u|
W1,p =

(∫
Ω

|u|p dvg +
∫
Ω

|∇u|p dvg

)1/p

,

the approximation result follows by slight modification of classical arguments that the reader can find, for instance, in [3].
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Setting ψn = eφn we have that ψn ∈ C∞(U), δ � ψn, ψn → ρδ a.e. and∫
K

|lnψn − lnρδ|p dvg → 0,

∫
K

∣∣∣∣∇ψn

ψn

− ∇ρδ

ρδ

∣∣∣∣
p

dvg → 0 (as n → +∞). (2.21)

For every n ∈ N, the function ϕn defined as ϕn := ϕ

ψ
p−1
n

belongs to C1
0(Ω) and it is nonnegative since ϕ ∈ C1

0(Ω)

is nonnegative and ψn > 0. Using ϕn as a test function in (2.4) we have

0 �
∫
Ω

|∇ρ|p−2(∇ρ · ∇ϕn)dvg =
∫
Ω

|∇ρ|p−2
(

∇ρ · ∇
(

ϕ

ψ
p−1
n

))
dvg, (2.22)

which, since by computation ∇(
ϕ

ψ
p−1
n

) = ∇ϕ

ψ
p−1
n

− (p − 1)
∇ψn

ψ
p
n

ϕ, implies

(p − 1)

∫
Ω

|∇ρ|p−2∇ρ · ∇ψn

ψ
p
n

ϕ dvg �
∫
Ω

( |∇ρ|p−2∇ρ

ψ
p−1
n

· ∇ϕ

)
dvg. (2.23)

Now, letting n → +∞ we obtain by dominated convergence:∫
Ω

( |∇ρ|p−2∇ρ

ψ
p−1
n

· ∇ϕ

)
dvg →

∫
Ω

( |∇ρ|p−2∇ρ

ρ
p−1
δ

· ∇ϕ

)
dvg,

because | |∇ρ|p−2∇ρ·∇ϕ

ψ
p−1
n

|� C|∇ρ|p−1

δp−1 ∈ L1(U). Now we claim that

∫
Ω

|∇ρ|p−2∇ρ · ∇ψn

ψ
p
n

ϕ dvg =
∫
Ω

|∇ρ|p−2∇ρ

ψ
p−1
n

∇ψn

ψn

ϕ dvg →
∫
Ω

|∇ρ|p
ρ

p
δ

ϕ dvg.

Indeed,

|∇ρ|p−2∇ρ

ψ
p−1
n

→ |∇ρ|p−2∇ρ

ρ
p−1
δ

pointwise a.e.

and, since |∇ρ|p−2∇ρ

ψ
p−1
n

� |∇ρ|p−1

δp−1 ∈ Lp′
(U), by Lebesgue dominated convergence theorem we have that

|∇ρ|p−2∇ρ

ψ
p−1
n

→ |∇ρ|p−2∇ρ

ρ
p−1
δ

in Lp′
(U).

From this and the fact that

∇ψn

ψn

→ ∇ρ

ρδ

in Lp(U)

we get the claim. Therefore, letting n → +∞ in (2.23), we have

(p − 1)

∫
Ω

|∇ρ|p
ρ

p
δ

ϕ dvg �
∫
Ω

( |∇ρ|p−2∇ρ

ρ
p−1
δ

· ∇ϕ

)
dvg,

which is exactly (2.19), since ∇ρδ = ∇ρ.
An application of Lemma 2.10 gives(

p − 1

p

)p ∫
Ω

|u|p
ρ

p
δ

|∇ρδ|p dvg �
∫
Ω

|∇u|p dvg. (2.24)

Finally, letting δ → 0 in (2.24) and using Fatou’s Lemma, we conclude the proof. �
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3. Further inequalities

In this section we shall present some slight but natural extensions of Theorem 2.1 and Lemma 2.10. As byproducts
of these generalizations we shall obtain Hardy inequalities with a weight in the right hand side, Caccioppoli-type
inequalities, weighted Gagliardo–Nirenberg inequalities and the uncertain principle.

A first example of a possible generalization of Theorem 2.1 is the following:

Theorem 3.1. Let α ∈ R, and let ρ ∈ W
1,p

loc (Ω) be a nonnegative function satisfying the following properties:

i) −(p − 1 − α)�pρ � 0 on Ω in weak sense,

ii) |∇ρ|p
ρp−α , ρα ∈ L1

loc(Ω).

Then the following Hardy inequality holds( |p − 1 − α|
p

)p ∫
Ω

ρα |u|p
ρp

|∇ρ|p dvg �
∫
Ω

ρα|∇u|p dvg, u ∈ C∞
0 (Ω). (3.25)

The proof of the above theorem is similar to the one of Theorem 2.1 and it is based on a careful choice of the vector
field h and of the function Ah in Lemma 2.10.

Proof of Theorem 3.1. Let 0 < δ < 1, and ρδ := ρ + δ. In order to apply Lemma 2.10 we choose the vector field h

and the function Ah as

h := −(p − 1 − α)
|∇ρδ|p−2∇ρδ

ρ
p−1−α
δ

, Ah := (p − 1 − α)2 |∇ρδ|p
ρ

p−α
δ

. (3.26)

Arguing as in the proof of Theorem 2.1, we have to show that

(p − 1 − α)2
∫
Ω

|∇ρδ|p
ρ

p−α
δ

ϕ dvg � (p − 1 − α)

∫
Ω

( |∇ρδ|p−2∇ρδ

ρ
p−1−α
δ

· ∇ϕ

)
dvg, (3.27)

for every nonnegative function ϕ ∈ C1
0(Ω). Let K := suppϕ ⊂ Ω and let U ⊂⊂ Ω be a neighborhood of K . Let

k > δ, and define ρkδ := inf{ρδ, k}. Arguing as in the proof of Theorem 2.1, we have that there exists a sequence {ψn}
such that δ � ψn � k, and∫

K

|lnψn − lnρkδ|p dvg → 0,

∫
K

∣∣∣∣∇ψn

ψn

− ∇ρkδ

ρkδ

∣∣∣∣
p

dvg → 0 (as n → +∞). (3.28)

Then we use ϕn := ϕ

ψ
p−1−α
n

as a test function in the hypothesis i), obtaining

(p − 1 − α)2
∫
Ω

|∇ρ|p−2∇ρ · ∇ψn

ψ
p−α
n

ϕ dvg � (p − 1 − α)

∫
Ω

( |∇ρ|p−2∇ρ

ψ
p−1−α
n

· ∇ϕ

)
dvg. (3.29)

In the case α < p − 1 we obtain (3.27) from (3.29) by slight modifications of the proof of Theorem 2.1, so we will
omit the proof.

Let α > p − 1. We claim that, letting n → +∞ in (3.29), and eventually taking a subsequence, we get

(p − 1 − α)2
∫
Ω

|∇ρ|p−2∇ρ · ∇ρkδ

ρ
p−α
kδ

ϕ dvg � (p − 1 − α)

∫
Ω

( |∇ρ|p−2∇ρ

ρ
p−1−α
kδ

· ∇ϕ

)
dvg. (3.30)

In fact, for the right hand side the limit follows by dominated convergence, since∣∣∣∣ |∇ρ|p−2∇ρ

p−1−α
· ∇ϕ

∣∣∣∣ = |∇ρ|p−2|∇ρ · ∇ϕ|ψα−p+1
n � C|∇ρ|p−1kα−p+1 ∈ L1(U).
ψn
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Dealing with the left hand side of (3.29), we set

|∇ρ|p−2∇ρ · ∇ψn

ψ
p−α
n

= |∇ρ|p−2∇ρ

ψ
p−1
n

· ∇ψn

ψn

,ψα
n =: fn · gn.

As in the proof of Theorem 2.1, we have

fn → |∇ρ|p−2∇ρ

ρ
p−1
kδ

in Lp′
(U), (3.31)

while from the relations

|gn| �
∣∣∣∣∇ψn

ψn

∣∣∣∣ · kα →
∣∣∣∣∇ρkδ

ρkδ

∣∣∣∣ · kα in Lp(U)

we obtain that the sequence gn is bounded in Lp(U). Therefore, up to a subsequence, gn is weakly convergent in
Lp(U). Since

gn → ∇ρkδ

ρkδ

· ρα
kδ pointwise a.e.,

we have that the convergence is in the weak sense. This fact with (3.31) concludes the claim.
Next step is letting k → +∞ in (3.30). Let us rewrite the integrand in the right hand side as∣∣∣∣ |∇ρ|p−2∇ρ

ρ
p−1−α
kδ

· ∇ϕ

∣∣∣∣ = ∣∣|∇ρ|p−2∇ρ(ρkδ)
α−p

p′ (ρkδ)
α−p

p
+1 · ∇ϕ

∣∣� C|∇ρ|p−1(ρδ)
α−p

p′ (ρδ)
α
p ,

which is in L1(U), since C|∇ρ|p−1(ρδ)
α−p

p′ ∈ Lp′
(U) and (ρδ)

α
p ∈ Lp(U) by hypothesis ii). Thus we can use the

dominated convergence to obtain the limit for the right hand side of (3.30).
In order to pass to the limit for k → +∞ in the left hand side of (3.30), we rewrite the integrand as

|∇ρ|p−2∇ρ · ∇ρkδ

ρ
p−α
kδ

ϕ = |∇ρ|p−2∇ρ · ∇ρδ

ρ
p−α
kδ

χ{ρδ�k}ϕ = |∇ρ|p
ρ

p−α
kδ

χ{ρδ�k}ϕ, (3.32)

where we have used the fact that ∇ρδ = ∇ρ. Now, if α � p we apply the dominated convergence, since the term in
(3.32) is dominated by the function C

|∇ρ|p
δp−α ∈ L1(U). Whereas, if α > p we use the monotone convergence, since

|∇ρ|pρ
α−p
kδ χ{|ρδ |�k}ϕ is an increasing sequence of nonnegative functions.

Thus, letting k → +∞ in (3.30), we get

(p − 1 − α)2
∫
Ω

|∇ρ|p
ρ

p−α
δ

ϕ dvg � (p − 1 − α)

∫
Ω

( |∇ρ|p−2∇ρ

ρ
p−1−α
δ

· ∇ϕ

)
dvg, (3.33)

which is exactly (3.27), since ∇ρδ = ∇ρ.
As in Theorem 2.1, an application of Lemma 2.10 gives(

α − p + 1

p

)p ∫
Ω

ρα
δ

|u|p
ρ

p
δ

|∇ρδ|p dvg �
∫
Ω

ρα
δ |∇u|p dvg. (3.34)

Finally, letting δ → 0 in (3.34), we conclude the proof. Indeed we can use the dominated convergence for the right
hand side, since ρα

δ |∇u|p � C(ρ + δ)α � C(ρ + 1)α ∈ L1
loc(U), and apply Fatou’s Lemma for the left hand side. �

Remark 3.2. If α � p, then the hypothesis ii) in the above Theorem 3.1, can be avoided. Indeed, since ρ ∈ W
1,p

loc (Ω)

we get that ρα ∈ L1
loc(Ω) and from the proof it follows that |∇ρ|p

ρp−α ∈ L1
loc(Ω).

As a consequence of Theorem 3.1 (it suffices to take α = p + q), we obtain the following Caccioppoli-type in-
equality for p-subharmonic functions, which is worth of mention:
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Corollary 3.3 (Lp-Caccioppoli-type inequality). Let ρ ∈ L1
loc(M) and q > −1. Assume that ρ is nonnegative on an

open set Ω ⊂ M , and ρ ∈ W
1,p

loc (Ω), ρq |∇ρ|p,ρp+q ∈ L1
loc(Ω). If �pρ � 0 on Ω in weak sense, then we have(

q + 1

p

)p ∫
Ω

ρq |∇ρ|p|u|p dvg �
∫
Ω

ρp+q |∇u|p dvg, u ∈ C∞
0 (Ω). (3.35)

Notice that for q = 0 and p = 2 the above theorem is a version of the classical Caccioppoli inequality on manifolds.
See also [47] for a version of Caccioppoli inequality related to subharmonic functions on manifolds.

Now we present a possible generalization of Lemma 2.10, and some of its consequences, like the weighted
Gagliardo–Nirenberg inequality and the uncertain principle on manifolds.

Lemma 3.4. Let h ∈ L1
loc(Ω) be a vector field and let Ah ∈ L1

loc(Ω) be a nonnegative function such that

i) Ah � divh,

ii) |h|p
A

p−1
h

∈ L1
loc(Ω).

Then for every u ∈ C1
0(Ω), q ∈R, s > 0 and a > 1 we have

∫
Ω

|u|s |h|q dvg � pp/a

(∫
Ω

|h|p
A

p−1
h

|∇u|p dvg

)1/a(∫
Ω

|h|qa′

Aa′−1
h

|u| as−p
a−1 dvg

)1/a′

, (3.36)

provided |h|q ∈ L1
loc(Ω).

In particular, setting w := |h|A
1−p
p

h , we have

1. (∫
Ω

|u|s |h|q dvg

)1/s

� pq(p−1)/s

(∫
Ω

wp|∇u|p dvg

)b/p(∫
Ω

wtδ|u|δ dvg

)(1−b)/δ

, (3.37)

where t, δ > 0 and

1

s
= b

p
+ 1 − b

δ
,

1

q
= 1

p′ + 1

tδ
, b = t (p − 1)

1 + t (p − 1)
.

2. ∫
Ω

|u|s dvg � pp/a

(∫
Ω

wp|∇u|p dvg

)1/a(∫
Ω

1

Aa′−1
h

|u| as−p
a−1 dvg

)1/a′

, (3.38)

where s > 0 and a > 1.

Proof. By Hölder inequality with exponent a we have∫
Ω

|u|s |h|q dvg =
∫
Ω

|u|p/aA
1/a
h |h|qA

−1/a
h |u|s−p/a dvg

�
(∫

Ω

|u|pAh dvg

)1/a(∫
Ω

|h|qa′
A

−a′/a
h |u| as−p

a−1 dvg

)1/a′

,

which by using (2.12), implies (3.36).
From (3.36) we get (3.37) by choosing a = 1 + p′

, and (3.38) by choosing q = 0. �

tδ
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Specializing h and Ah we obtain from (3.37) and (3.38) a weighted Gagliardo–Nirenberg inequality and an uncer-
tain principle respectively. In particular, choosing h and Ah as in (2.18), we have the following

Theorem 3.5. Let ρ ∈ W
1,p

loc (Ω) be nonnegative. Assume that ρ is p-superharmonic function on Ω ⊂ M and satisfies
the hypotheses of Theorem 2.1. Let δ > 0 and 0 � b � 1. Then for every u ∈ C1

0(Ω), we have

(∫
Ω

|u|s |∇ρ|q(p−1)

ρq(p−1)
dvg

)1/s

�
(

p

p − 1

)q(p−1)/s(∫
Ω

|∇u|p dvg

)b/p(∫
Ω

|u|δ dvg

)(1−b)/δ

, (3.39)

where

1

s
= b

p
+ 1 − b

δ
,

1

q(p − 1)
= 1

p
+ 1 − b

bδ
.

In particular, if ρ = dα for some α �= 0 with |∇d| = 1, then we have

∫
Ω

|u|s
dp−1

dvg �
(

p

|α|(p − 1)

)(p−1)(∫
Ω

|∇u|p dvg

)1/p′(∫
Ω

|u|δ dvg

)1/p

, (3.40)

where s = p − 1 + δ
p

.

Notice that for s = p = 2 the inequality (3.40) is the weighted Gagliardo–Nirenberg inequality on manifold. Its
counterpart in Euclidean setting is largely studied by many authors, see for instance [25]. Further examples of mani-
folds and functions ρ satisfying the hypotheses of the above theorem are given in Section 6.

Theorem 3.6. Let ρ ∈ W
1,p

loc (Ω) be nonnegative. Assume that ρ is p-superharmonic function on Ω ⊂ M and satisfies
the hypotheses of Theorem 2.1. Let s > 0 and a > 1. Then for every u ∈ C1

0(Ω), we have

∫
Ω

|u|s dvg �
(

p

p − 1

)p/a(∫
Ω

|∇u|p dvg

)1/a(∫
Ω

|u| as−p
a−1

ρp(a′−1)

|∇ρ|p(a′−1)
dvg

)1/a′

. (3.41)

In particular, if ρ = dα for some α �= 0 with |∇d| = 1, then we have

∫
Ω

|u|s dvg �
(

p

|α|(p − 1)

)p/a(∫
Ω

|∇u|p dvg

)1/a(∫
Ω

|u| as−p
a−1 dp(a′−1) dvg

)1/a′

. (3.42)

Notice that if a = s = p = 2 the inequality (3.42) in the Euclidean setting coincides with the celebrated uncertain
principle with d = |x|, the Euclidean norm.

Remark 3.7. Different choices of the vector field h and of the function Ah in Lemma 3.4 produce inequalities different
than (3.39)–(3.42). For instance, one can define h and Ah as in (3.26), obtaining a version of (3.39)–(3.42) with further
weights.

To end this section, we want to point out that it is possible to extend all the results of this paper considering vector
fields of the type ∇μu := μ(∇u), where μ is a (1,1)-tensor (say C1). In this case, replacing ∇ with ∇μ, a Hardy-type
inequality like (2.5) holds provided ∇∗

μ(|∇μu|p−2∇μu) � 0, where ∇∗
μ stands for the adjoint of ∇μ. We leave the

details to the interested reader. Notice that the study of Hardy inequalities for the vector field ∇μ was already studied
in [20], when the support of the manifold is RN .
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4. Remarks on the best constant

Theorems 2.1 and 3.1 affirm the validity of some Hardy inequalities with an explicit value of the constants involved.
In many cases these constants, (

p−1
p

)p and (
|p−1−α|

p
)p , result to be sharp. For example in [20] the author proves the

sharpness of the constant (
|p−1−α|

p
)p involved in the inequality of Theorem 3.1 in several cases. Moreover the question

of the existence of functions that realize the best constant is analyzed in many papers (for the Euclidean case see for
instance [10,21,41–43]). On the other hand, the knowledge of the best constants for the inequalities plays a crucial
role in [2,14,50].

For the sake of simplicity, we shall focus our attention on the inequality (2.5). We denote by c(Ω) the best constant
in (2.5), namely

c(Ω) := inf
u∈D1,p(Ω),u �=0

∫
Ω

|∇u|p dvg∫
Ω

|u|p
ρp |∇ρ|p dvg

. (4.43)

Then, we have the following:

Theorem 4.1. Under the same hypotheses of Theorem 2.1 we have:

1) If ρ
p−1
p ∈ D1,p(Ω), then c(Ω) = (

p−1
p

)p and ρ
p−1
p is a minimizer.

2) If ρ
p−1
p /∈ D1,p(Ω), p � 2 and c(Ω) = (

p−1
p

)p , then the best constant c(Ω) is not achieved.

Proof. 1) From (2.5) we have c(Ω)� (
p−1
p

)p . Moreover, if ρ
p−1
p ∈ D1,p(Ω), by computation

∫
Ω

∣∣∇ρ
p−1
p

∣∣p dvg =
∫
Ω

(
p − 1

p

)p(
ρ−1/p

)p|∇ρ|p dvg

=
(

p − 1

p

)p ∫
Ω

|∇ρ|p
ρ

dvg

=
(

p − 1

p

)p ∫
Ω

|ρ p−1
p |p

ρp
|∇ρ|p dvg.

Thus, taking u = ρ
p−1
p , we obtain the infimum in (4.43).

2) Let u ∈ C∞
0 (Ω). We define the functional I as

I (u) :=
∫
Ω

|∇u|p dvg −
(

p − 1

p

)p ∫
Ω

|u|p
ρp

|∇ρ|p dvg.

We note that the functional I is nonnegative, since (2.5) holds, and the best constant will be achieved if and only if
I (u) = 0 for some u ∈ D1,p(Ω).

Let v be the new variable v := u
ργ with γ := p−1

p
. By computation we have

|∇u|2 = ∣∣∇(
vργ

)∣∣2

= |γ |2v2ρ2γ−2|∇ρ|2 + ρ2γ |∇v|2 + 2γ vρ2γ−1∇ρ · ∇v. (4.44)

(If ρ is not smooth enough, we can consider ψn as in the proof of Theorem 2.1 and after the computation take the
limit as n → +∞.)

We remind that the inequality

(ξ − η)s � ξ s − sηξ s−1 (4.45)
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holds for every ξ, η, s ∈ R, with ξ > 0, ξ > η and s � 1 (see [27]). Applying (4.45) and (4.44), with s = p/2,
ξ = |γ |2v2ρ2γ−2|∇ρ|2 and η = −2γ vρ2γ−1∇ρ · ∇v − ρ2γ |∇v|2, we have

|∇u|p � |γ |pvpρpγ−p|∇ρ|p + p|γ |p−2γ |v|p−2v|∇ρ|p−2∇ρ · ∇v + p

2
|γ |p−2|v|p−2ρ∇ρp−2|∇v|2.

Then, taking into account that v = u
ργ , we have

I (u) =
∫
Ω

|∇u|p dvg − |γ |p
∫
Ω

|u|p
ρp

|∇ρ|p dvg

�
∫
Ω

p|γ |p−2γ |v|p−2v|∇ρ|p−2(∇ρ · ∇v)dvg +
∫
Ω

p

2
|γ |p−2|v|p−2ρ|∇ρ|p−2|∇v|2 dvg

=: I1(v) + I2(v). (4.46)

Re-arranging the expression in I1(v) and integrating by parts we obtain

I1(v) =
(

p − 1

p

)p−1 ∫
Ω

∇(|v|p) · |∇ρ|p−2∇ρ dvg

=
(

p − 1

p

)p−1 ∫
Ω

|v|p(−�pρ)dvg � 0, (4.47)

where we have used the hypothesis −�pρ � 0. On the other hand we can rewrite I2(v) as

I2(v) = 2

p
|γ |p−2

∫
Ω

ρ|∇ρ|p−2
∣∣∇|v|p/2

∣∣2
dvg. (4.48)

Thus, we conclude that for every u ∈ D1,p(Ω)

I (u) � 2

p
|γ |p−2

∫
Ω

ρ|∇ρ|p−2
∣∣∇|v|p/2

∣∣2
dvg > 0,

and this inequality implies the nonexistence of minimizers in D1,p(Ω). �
We end this section by showing a further result that arises from the fact that the best constant, in some cases, is not

achieved. Indeed, if the best constant involved in an inequality is not achieved, it is natural to ask if a reminder term
can be added. The next result shows that in the inequality (2.5) one can add a reminder term.

Theorem 4.2. Let p = 2 and let ρ be as in Theorem 2.1. We define

Λ1 := inf
u∈C1

0 (Ω)

∫
Ω

ρ|∇u|2 dvg∫
Ω

ρ|u|2 dvg

.

Assume that Λ1 > 0. Then∫
Ω

|∇u|2 dvg �
1

4

∫
Ω

|u|2
ρ2

|∇ρ|2 dvg + Λ1

∫
Ω

u2 dvg, u ∈ C1
0(Ω). (4.49)

Proof. We shall give a sketch of the proof since it is similar to the proof of Theorem 4.1. By using the same notation
of the proof of Theorem 4.1, from (4.46) and (4.47), we deduce that

I (u) �
∫
Ω

ρ|∇v|2 dvg � Λ1

∫
Ω

ρ|v|2 dvg = Λ1

∫
Ω

u2 dvg,

where we have used the fact that −�ρ � 0, the definition of Λ1 and v = u/ρ1/2. This concludes the proof. �
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An example of manifold where Theorem 4.2 applies is the following. Let ρ be a nonnegative superharmonic
function on R

N and let Ω ⊂ R
N be a bounded open set. Then ρ belongs to the Muckenhoupt class A1 and this

implies that Λ1 > 0 (indeed it suffices to combine Theorems 3.59 and 15.21 of [33]). In particular, with the choice
ρ := |x|2−N , N > 2 and Ω ⊂R

N a bounded open set, (4.49) reads as∫
Ω

|∇u|2 dx � (N − 2)2

4

∫
Ω

|u|2
|x|2 dx + Λ1

∫
Ω

u2 dx, u ∈ C1
0(Ω),

which is the celebrated inequality proved in [11]. See also [19,27] for related results in Euclidean and subelliptic
setting for p > 1 and for further references.

5. First order interpolation inequalities

In this section we shall study some inequalities of Hardy–Sobolev type. As already said above, interpolation in-
equalities as well as the knowledge of an estimate of the best constant have an important role in several areas of
mathematical science. Thus we shall address some efforts to keep track of explicit values of the involved constants.

We shall assume that the Sobolev inequality

S(p)

(∫
Ω

|u|p∗
dvg

)1/p∗

�
(∫

Ω

|∇u|p dvg

)1/p

, u ∈ C∞
0 (Ω), (S)

holds for some p∗ > 0, and the Hardy inequality

H(α,p)

∫
Ω

ρα |u|p
ρp

|∇ρ|p dvg �
∫
Ω

ρα|∇u|p dvg, u ∈ C∞
0 (Ω), (Hα)

holds for an exponent α ∈ R.
In some cases, the validity of (S) implies that (Hα) holds as well. Indeed, let N > 2 and let M be an N -dimensional

complete and connected Riemannian manifold with infinite volume, if (S) holds with p = 2 and p∗ = 2N/(N − 2)

then M is hyperbolic (see [15]). In this case, from Theorem 2.6 we have that a Hardy inequality holds. Therefore,
there exists a nonnegative nonconstant superharmonic function ρ ad hence (Hα) holds with p = 2 and α < 1 (see
Theorem 3.1 and Remark 3.2).

In order to state our main result of this section, we need the following preliminary theorem:

Theorem 5.1. Assume that (S) holds on Ω . Let θ ∈ R and ρ � 0 be a function such that (Hα) holds with α = pθ .
Then there exists C2 > 0 such that

C2

(∫
Ω

ρp∗θ |u|p∗
dvg

)1/p∗

�
(∫

Ω

ρpθ |∇u|p dvg

)1/p

, u ∈ C∞
0 (Ω). (5.50)

Moreover

C2 = S(p)
H(pθ,p)1/p

|θ | + H(pθ,p)1/p
.

In particular, if ρ ∈ L1
loc(Ω) is a nonnegative function satisfying the hypotheses of Theorem 3.1 with α = pθ and

(S) holds, then we obtain (5.50) with

C2 = S(p)
|p − 1 − pθ |

p|θ | + |p − 1 − pθ | .

Proof. The case θ = 0 corresponds to the Sobolev inequality. Let θ �= 0. Let u ∈ C∞
0 (Ω) and define v as v := ρθu.

By computation we have
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|∇v|p = ∣∣∇(
ρθu

)∣∣p = ∣∣ρθ∇u + θρθ−1u∇ρ
∣∣p

�
(
ρθ |∇u| + |θ |ρθ−1|u||∇ρ|)p

=
(

ρθ |∇u| + |θ |
H 1/p

H 1/pρθ−1|u||∇ρ|
)p

(5.51)

where, for sake of brevity, H = H(pθ,p) and S = S(p). By using the inequality(
a + 1 − ε

ε
b

)p

� ε1−pap + 1 − ε

εp
bp (0 < ε < 1, a, b > 0)

with ε := H 1/p

H 1/p+|θ | , a := ρθ |∇u| and b := H 1/pρθ−1|u||∇ρ|, we have

|∇v|p � ε1−pρpθ |∇u|p + 1 − ε

εp
Hρpθ−p|u|p|∇ρ|p. (5.52)

Then, by (S) and using (Hα) with α = pθ , we obtain(∫
Ω

ρp∗θ |u|p∗
dvg

)p/p∗

=
(∫

Ω

|v|p∗
dvg

)p/p∗

� S−p

∫
Ω

|∇v|p

� S−p

[
ε1−p

∫
Ω

ρpθ |∇u|p dvg + 1 − ε

εp
H

∫
Ω

ρpθ |u|p
ρp

|∇ρ|p dvg

]

� S−p

[
ε1−p + 1 − ε

εp

]∫
Ω

ρpθ |∇u|p dvg = (Sε)−p

∫
Ω

ρpθ |∇u|p dvg, (5.53)

which concludes the proof. �
Theorem 5.2. Assume that (S) holds on Ω with p∗ > p. Let θ ∈R and ρ � 0 be a function such that (Hα) holds with
α = pθ . Let r > 0, 0 � a � 1, γ , ε, σ and δ be real numbers satisfying the following relations

1

p
� 1

r
� 1 − a

p
+ a

p∗ , (5.54)

γ + p∗(r − p)

r(p∗ − p)
= (1 − θ)a + δ(1 − a) (5.55)

and

ε = θa + σ(1 − a). (5.56)

Then there exists C3 > 0 such that

C3

(∫
Ω

|u|r
ργ r

|∇ρ|(γ+ε)r dvg

)1/r

�
(∫

Ω

ρθp|∇u|p dvg

)a/p(∫
Ω

|u|p |∇ρ|(δ+σ)p

ρδp
dvg

)(1−a)/p

,

u ∈ C∞
0 (Ω), (5.57)

that is

C3

∣∣∣∣u |∇ρ|γ+ε

ργ

∣∣∣∣
Lr

�
∣∣ρθ |∇u|∣∣a

Lp

∣∣∣∣u |∇ρ|δ+σ

ρδ

∣∣∣∣
1−a

Lp

, (5.58)

provided |∇ρ|pσ

ρpδ ∈ L1
loc(Ω).

Moreover

C3 = C

p∗(r−p)

r(p∗−p)
H(pθ,p)

a
p

− p∗(r−p)

pr(p∗−p) .
2
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In particular, if ρ ∈ L1
loc(Ω) is a nonnegative function satisfying the hypotheses of Theorem 3.1 with α = pθ and

(S) holds, then we obtain (5.57) with

C3 = C

p∗(r−p)

r(p∗−p)

2

( |p − 1 − pθ |
p

)a− p∗(r−p)

r(p∗−p)

.

Proof. From condition (5.54) it follows that p∗ � r � p. We shall distinguish tree cases.
Case: r = p∗. From (5.54) necessarily we have a = 1 and hence from (5.55) and (5.56) ε = θ = −γ . The inequality

to prove is actually the thesis of Theorem 5.1.
Case: r = p. If a = 0 there is nothing to prove. If a = 1, then the thesis is the inequality (Hα). Let 0 < a < 1. By

using (5.55) and (5.56) we have∫
Ω

|u|r
ργ r

|∇ρ|(γ+ε)r dvg =
∫
Ω

|u|ap
ρ(1−θ)ap

|∇ρ|ap |u|(1−a)p

ρ(1−a)δp
|∇ρ|(δ+σ)p dvg.

Now the claim follows applying Hölder’s inequality with exponent 1/a and then Hardy inequality (Hα).
Case: p∗ > r > p. Let q ∈ R be a parameter that we shall fix later. Using Hölder’s inequality with exponent s > 1

we obtain∫
Ω

|u|r
ργ r

|∇ρ|(γ+ε)r dvg =
∫
Ω

|u|r−qρp∗θ/s |u|q
ργ r+p∗θ/s

|∇ρ|(γ+ε)r dvg

�
(∫

Ω

|u|(r−q)sρp∗θ dvg

)1/s(∫
Ω

|u|qs′

ρ(γ r+p∗θ/s)s′ |∇ρ|(γ+ε)rs′
dvg

)1/s′

. (5.59)

Now we apply Hölder’s inequality with exponent t > 1 to the second term of (5.59) and obtain∫
Ω

|u|qs′

ρ(γ r+p∗θ/s)s′ |∇ρ|(γ+ε)rs′
dvg

=
∫
Ω

|u|qs′/t

ρqs′/t
|∇ρ|qs′/tρpθ/t |u|qs′/t ′ |∇ρ|(γ+ε)rs′−qs′/t

ρ(γ r+p∗θ/s)s′−qs′/t+pθ/t
dvg

�
(∫

Ω

|u|qs′

ρqs′ |∇ρ|qs′
ρpθ dvg

)1/t(∫
Ω

|u|qs′ |∇ρ|(γ+ε)rs′t ′−qs′t ′/t

ρ(γ r+p∗θ/s)s′t ′−qs′t ′/t+pθt ′/t
dvg

)1/t ′

. (5.60)

Now, requiring that the following conditions are satisfied

qs′ = p, (r − q)s = p∗, (5.61)

we get

s = p∗ − p

r − p
> 1, (5.62)

since (5.54) holds. Using (5.61), by (5.59) and (5.60) we have∫
Ω

|u|r
ργ r

|∇ρ|(γ+ε)r dvg

�
(∫

Ω

|u|p∗
ρp∗θ dvg

)1/s(∫
Ω

|u|p
ρp

|∇ρ|pρpθ dvg

)1/s′t(∫
Ω

|u|p|∇ρ|(γ+ε)rs′t ′−pt ′/t

ρ(γ r+p∗θ/s)s′t ′−pt ′/t+pθt ′/t
dvg

)1/s′t ′

� C
−p∗/s
2 H(pθ,p)−1/s′t

(∫
ρpθ |∇u|p dvg

)p∗/ps+1/s′t(∫ |u|p|∇ρ|(γ+ε)rs′t ′−pt ′/t

ρ(γ r+p∗θ/s)s′t ′−pt ′/t+pθt ′/t
dvg

)1/s′t ′

, (5.63)
Ω Ω
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where, in the last inequality, we have used (5.50) and (Hα) with α = pθ . To conclude we have to choose t > 1 such
that

(γ + ε)rs′t ′ − pt ′/t = p(δ + σ),
(
γ r + p∗θ/s

)
s′t ′ − pt ′/t + pθt ′/t = pδ, (5.64)

and

p∗/ps + 1/s′t = ar/p, 1/s′t ′ = (1 − a)r/p. (5.65)

First of all, note that in (5.60) we can make the choice t = sp
s′(asr−p∗) > 1, since (5.54) holds. Using the expressions

of t and s, equalities (5.65) follow by simple computations. Moreover, from (5.65) we obtain that s′t ′ = p
r(1−a)

and
t ′
t

= asr−p∗
sr(1−a)

. Using this two expressions and the conditions (5.55) and (5.56) we get also (5.64). This concludes the
proof. �
Remark 5.3. The condition (5.56) takes into account the presence of the |∇ρ| in the weights appearing in (5.57) and
it is also a necessary condition. Indeed, to see the necessity of (5.56) we argue as follows. Assume that Theorem 5.2
were true. If (S) and (Hα) hold with a function ρ, then those inequalities still hold with the function λρ for every
λ > 0, and hence the conclusion of Theorem 5.2 holds replacing ρ with λρ. By homogeneous consideration one
derives the necessity of (5.56).

Remark 5.4. Since the condition (5.56) is a requirement on the parameters ε and σ , if |∇ρ| = 1, these parameters do
not appear in the inequality (5.57). Therefore, condition (5.56) is always fulfilled (i.e. choosing ε = aθ and σ = 0).
The next corollary deals with a generalization of this case.

Corollary 5.5. Assume that (S) holds on Ω with p∗ > p. Let θ ∈ R and ρ � 0 be a function such that (Hα) holds with
α = pθ and ρ = dβ with β ∈R and |∇d| = 1. Let r > 0, 0 � a � 1 and γ , δ be real numbers satisfying (5.54) and

γ + p∗(r − p)

r(p∗ − p)
= (1 − βθ)a + δ(1 − a). (5.66)

Then there exists C′
3 > 0 such that

C′
3

(∫
Ω

|u|r
dγ r

dvg

)1/r

�
(∫

Ω

dβθp|∇u|p dvg

)a/p(∫
Ω

|u|p
dδp

dvg

)(1−a)/p

, u ∈ C∞
0 (Ω), (5.67)

that is

C′
3

∣∣∣∣ u

ργ

∣∣∣∣
Lr

�
∣∣ρβθ |∇u|∣∣a

Lp

∣∣∣∣ u

ρδ

∣∣∣∣
1−a

Lp

, (5.68)

provided 1
ρpδ ∈ L1

loc(Ω). In particular, C′
3 = C3β

γ+βθa−(1−a)δ .

Remark 5.6. Notice that, if in the previous corollary we take p∗ = pN
N−p

, condition (5.66) becomes

1

r
− γ

N
= 1

p
+ a

N
(βθ − 1) − δ

N
(1 − a), (5.69)

and (5.67) is a particular case on manifold of a result obtained by Caffarelli, Kohn and Nirenberg in [13] in Euclidean
setting.

6. Some applications

In what follows we apply the results proved in the above sections to concrete cases, obtaining Hardy inequalities
which in some cases are new. For sake of brevity we shall limit ourselves to show some applications of Theorems 2.1
and 3.1 by specializing the function ρ. With the same technique it is possible to obtain applications of the other theo-
rems presented in the previous sections (Caccioppoli inequality, uncertain principle, Gagliardo–Nirenberg inequality,
first order interpolation inequalities, and so on). We leave the details to the interested reader.
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6.1. Hardy inequality involving the distance from the boundary

In order to prove a Hardy inequality involving the distance from the boundary, we need the following result, which
is an immediate consequence of Theorems 2.1 and 3.1.

Theorem 6.1. Let M be a compact Riemannian manifold with boundary of class C∞, let ϕ1 be the first eigenfunction
related to the first eigenvalue of the p-Laplacian,4 and α < p − 1. If ϕ1 > 0, then the following inequality holds on M(

p − 1 − α

p

)p ∫
M

ϕα
1

|u|p
ϕ

p

1

|∇ϕ1|p dvg �
∫
M

ϕα
1 |∇u|p dvg, u ∈ C∞

0 (M). (6.71)

In particular we have(
p − 1

p

)p ∫
M

|u|p
ϕ

p

1

|∇ϕ1|p dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M). (6.72)

The main theorem of this section is the following:

Theorem 6.2. Let M be a compact Riemannian manifold with boundary of class C∞, let ϕ1 be the first eigenfunction
related to the first eigenvalue of the p-Laplacian. Assume that ϕ1 ∈ C1(M), ϕ1 > 0 on M and |∇ϕ1| �= 0 on ∂M .

Denoted by d(x) := dist(x, ∂M), there exists a constant c > 0 such that

c

∫
M

|u|p
dp

dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M). (6.73)

The proof of the above theorem relies on the following result, which is worth of mention:

Theorem 6.3. Let M be a compact Riemannian manifold with boundary of class C∞, let ϕ1 > 0 be the first eigen-
function related to the first eigenvalue λ1 of the p-Laplacian, and 0 < s < p − 1. Then the following inequality holds

λ1
(p − 1 − s)(p−1)

pp

∫
M

ϕs
1|u|p dvg �

∫
M

ϕs
1|∇u|p dvg, u ∈ C∞

0 (M). (6.74)

Proof. Set φ := ϕ
s/(p−1)

1 . By computation we have

−�pφ = |∇φ|p
φ

(p − 1 − s)

(
p − 1

s

)
+ λ1

(
s

p − 1

)p−1

φp−1.

Choosing h := −|∇φ|p−2∇φ and Ah := −�pφ, an application of Lemma 2.10 yields

λ1

(
s

p − 1

)p−1 ∫
M

φp−1|u|p dvg �
∫
M

(−�pφ)|u|p dvg � pp

∫
M

|∇φ|p(p−1)

(−�pφ)p−1
|∇u|p dvg

� pp

(
s

p − 1

)p−1( 1

p − 1 − s

)p−1 ∫
M

φp−1|∇u|p dvg.

This last chain of inequalities concludes the proof. �
4 This means that (λ1, ϕ1) is a solution of the problem{

−�pϕ = λ|ϕ|p−2ϕ on M,

ϕ = 0 on ∂M,
(6.70)

and λ1 := min{λ: (λ,ϕ) solves (6.70)}.
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Proof of Theorem 6.2. For a fixed number γ > 0, we denote by Ωγ and Ωγ respectively the sets Ωγ := {x:
d(x) < γ } and Ωγ := {x: d(x)� γ }.

Let ϕ1 be such that ‖ϕ1‖∞ � 1. By continuity argument, we have that there exist ε, b > 0 such that∣∣∇ϕ1(x)
∣∣ � b > 0, for x ∈ Ωε.

Since ϕ1 is a Lipschitz continuous function, we obtain that there exists L > 0 such that

ϕ1(x) � Ld(x), x ∈ M.

We set

lε := min
Ωε

ϕ1.

From (6.72) and (6.74) we get respectively∫
M

|∇u|p dvg �
(

p − 1

p

)p ∫
Ωε

|u|p
ϕ

p

1

|∇ϕ1|p dvg �
(

p − 1

p

)p
bp

Lp

∫
Ωε

|u|p
dp

dvg,

∫
M

|∇u|p dvg � λ1
(p − 1 − s)(p−1)

pp

∫
Ωε

ϕs
1|u|p dvg � λ1

(p − 1 − s)(p−1)

pp
lsεε

p

∫
Ωε

|u|p
dp

dvg.

Choosing 2c := min{(p−1
p

)p bp

Lp , λ1
(p−1−s)(p−1)

pp lsεε
p} and summing up the above estimates we obtain the claim. �

6.2. Hardy inequality for p-hyperbolic manifold

In this section we establish Hardy inequalities involving the Green function of the operator −�p . The case p = 2
is already proved in [40].

Examples of p-hyperbolic manifolds are the following. The Euclidean space R
N is p-hyperbolic for N > p. If

M is a Cartan–Hadamard manifold (see Section 6.3) whose sectional curvature KM is uniformly negative, that is
KM � −a2 < 0, then M is p-hyperbolic for any p > 1 (see [34] and [36]).

We have the following.

Theorem 6.4. Let (M,g) be a p-hyperbolic manifold, let Gx be the Green function for �p with pole at x, and α ∈ R.
Then the following inequality holds( |p − 1 − α|

p

)p ∫
M\{x}

Gα
x

|∇Gx |p
G

p
x

|u|p dvg �
∫

M\{x}
Gα

x |∇u|p dvg, u ∈ C∞
0

(
M \ {x}). (6.75)

In particular, we have(
p − 1

p

)p ∫
M\{x}

|∇Gx |p
G

p
x

|u|p dvg �
∫

M\{x}
|∇u|p dvg, u ∈ C∞

0

(
M \ {x}), (6.76)

and, if p < N ,(
p − 1

p

)p ∫
M

|∇Gx |p
G

p
x

|u|p dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M). (6.77)

Proof. We know that Gx ∈ W
1,p

loc (M) is a nonnegative function on M . Moreover the hypotheses of Theorem 3.1 are
fulfilled; in fact

i) −�pGx = 0 in M \ {x},
ii) |∇Gx |p

p−α ,Gα
x ∈ L1

loc(M \ {x}).

Gx
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Then, by Theorem 3.1, inequality (6.75) holds. In particular, taking α = 0, we obtain the inequality (6.76). Moreover,
if p < N , we are in the position to apply Corollary 2.3, because {x} is a set of zero p-capacity (see Theorem 2.27
in [33]), and then we can use Proposition A.1; this proves that also (6.77) holds. �
6.3. Hardy inequality on Cartan–Hadamard manifold

In what follows (M,g) will denote a Cartan–Hadamard manifold, that is, a connected, simply connected, complete
Riemannian manifold of dimension N � 2, of nonpositive sectional curvature (see [16,34,40] for further details).
Examples of Cartan–Hadamard manifolds are the Euclidean space R

N with the usual metric (which has constant
sectional curvature equal to zero), and the standard N -dimensional hyperbolic space HN (which has constant sectional
curvature equal to −1).

Let o ∈ M be a fixed point and denote by r the distance function from o. We have the following.

Theorem 6.5. Let (M,g) be a Cartan–Hadamard manifold and α ∈ R.
If (N − p)(p − 1 − α) > 0, we have(

(N − p)(p − 1 − α)

p(p − 1)

)p ∫
M\{o}

r
α

p−N
p−1

|u|p
rp

dvg �
∫

M\{o}
r
α

p−N
p−1 |∇u|p dvg, u ∈ C∞

0

(
M \ {o}). (6.78)

If 1 < p < N , we have(
N − p

p

)p ∫
M

|u|p
rp

dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M). (6.79)

If 1 < p � N , setting Ω := r−1([0,1[), we have(
p − 1

p

)p ∫
Ω

|u|p
|r ln r|p dvg �

∫
Ω

|∇u|p dvg, u ∈ C∞
0 (Ω). (6.80)

Let 1 < p � N . If p − 1 > α we set Ω := r−1(]0,1[), else if p − 1 < α we set Ω := r−1(]1,+∞[). We have( |p − 1 − α|
p

)p ∫
Ω

|ln r|α |u|p
|r ln r|p dvg �

∫
Ω

|ln r|α|∇u|p dvg, u ∈ C∞
0 (Ω). (6.81)

Proof. In M \ {o} we define ρ = rβ with β ∈ R that will be chosen later. The function ρ ∈ W
1,p

loc (M \ {o}) is nonneg-
ative on M \ {o}.

The function r satisfies the relations

|∇r| = 1, �r � N − 1

r
(6.82)

(see [16]).
By computation we obtain

�pρ = div
(|∇ρ|p−2∇ρ

)
= div

(|β|p−2r(β−1)(p−2)βrβ−1∇r
)

= |β|p−2β div
(
r(β−1)(p−1)∇r

)
= |β|p−2β

[
(β − 1)(p − 1)r(β−1)(p−1)−1 + r(β−1)(p−1)�r

]
= |β|p−2βr(β−1)(p−1)−1[(β − 1)(p − 1) + r�r

]
,

and hence

−(p − 1 − α)�pρ = −(p − 1 − α)|β|p−2βr(β−1)(p−1)−1[(β − 1)(p − 1) + r�r
]
. (6.83)
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Next choosing β = p−N
p−1 , using (6.82), we have that (β − 1)(p − 1) + r�r � 0, and then −(p − 1 − α)�pρ � 0.

That is the hypothesis i) of Theorem 3.1 is fulfilled. Since |∇ρ|p
ρp−α = |β|p 1

rp−α ∈ L1
loc(M \ {o}) and ρα = rβα ∈ L1

loc(M \
{o}), we are in a position to apply Theorem 3.1, obtaining the inequality (6.78).

In particular, taking α = 0 and using Corollary 2.3 we get (6.79). Indeed, since p � N , {o} is a set of zero
p-capacity (see Theorem 2.27 in [33]), and then we can use Proposition A.1.

Next we prove (6.81). To this end, by choosing ρ := (α − p + 1) ln r , we have that ρ > 0 in Ω (according to the
different cases α >(<)p − 1). By computation we have

−(p − 1 − α)�pρ = (α − p + 1)div
(|∇ρ|p−2∇ρ

)
= (α − p + 1)p div

(
r1−p∇r

)
= (α − p + 1)p

(
1 − p

rp
+ r�r

rp

)

� (α − p + 1)p
(

N − p

rp

)
� 0.

The claim follows applying Theorem 3.1.
We conclude the proof by proving (6.80). Choosing α = 0 in (6.81), we have that inequality (6.80) holds for every

u ∈ C∞
0 (Ω \ {o}). However in this case {o} is a set of zero p-capacity and, applying Corollary 2.3, we complete the

proof. �
Inequality (6.79) is present in [16] for p = 2. In [38] the authors prove (6.78) for p = 2 and for a special case of

manifold M , namely, when M is the unit ball modeling the standard hyperbolic space H
N . For this case the authors

prove that the constant in (6.78) is sharp and they show that a remainder term can be added.

6.4. Hardy inequalities involving the distance from the soul of a manifold

Let (M,g) be a complete noncompact Riemannian manifold, of dimension N � 2, with nonnegative sectional cur-
vatures. A result due to Cheeger and Gromoll asserts that there exists a compact embedded totally convex submanifold
S with empty boundary, whose normal bundle is diffeomorphic to M (see [17]). The submanifold S, called “soul”
of M , is not necessarily unique but every two souls of M are isometric. “Totally convex” means that any geodesic arc
in M connecting two points in S (which may coincide) lies entirely in S. In particular, S is connected, totally geodesic
in M , and has nonnegative sectional curvature. Moreover 0 � dimS < dimM .

Denote by r : M \S → R the distance function to S. We have that r is smooth on M \S and |∇r| = 1 on M \S. Now
we suppose that radial sectional curvature Kr , that is sectional curvature of two-planes containing the direction ∇r ,
satisfies

0 � Kr �
cN(1 − cN)

r2
, (6.84)

where cN = N−2
N

; then we have

�r � cN(N − s − 1)

r
, (6.85)

where s = dimS (see [26]). We have the following:

Theorem 6.6. Let (M,g) be a Riemannian manifold with nonnegative curvature. Suppose that (6.84) is fulfilled.
Let G := cN(N − s − 1) − p + 1. If G · (p − 1 − α) > 0, we have(

G · (p − 1 − α)

p(p − 1)

)p ∫
r
−α G

p−1
|u|p
rp

dvg �
∫

r
−α G

p−1 |∇u|p dvg, u ∈ C∞
0 (M \ S). (6.86)
M\S M\S
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Moreover, if G > 0, we have(
G

p

)p ∫
M

|u|p
rp

dvg �
∫
M

|∇u|p dvg, u ∈ C∞
0 (M). (6.87)

Proof. Let ρ = rβ in M \ S with β = − G
p−1 . Arguing as in the proof of Theorem 6.5, using (6.83) and (6.85), we

obtain −(p − 1 −α)�pρ � 0. Since ρ ∈ W
1,p

loc (M \S), |∇ρ|p
ρp−α = |β|p 1

rp−α ∈ L1
loc(M \S) and ρα = rβα ∈ L1

loc(M \S),
the hypotheses of Theorem 3.1 are fulfilled, and (6.86) follows.

In particular, if α = 0, (6.86) becomes(
G

p

)p ∫
M\S

|u|p
rp

dvg �
∫

M\S
|∇u|p dvg, u ∈ C∞

0 (M \ S).

Now, the hypothesis G > 0 implies that N − p > s. In fact, by the fact that G = cN(N − s − 1) − p + 1 = N−2
N

(N −
s − 1) − p + 1 > 0, by simple computations we get

(N − 2)(N − s − 1) − N(p + 1) = (N − 2)(N − s) − Np

= N(N − s) − 2(N − s) − Np

= N(N − s − p) − 2(N − s) > 0,

which implies N − s − p > 2N−s
N

> 0. Then S is a set of zero p-capacity (see Theorem 2.27 in [33]), and we can use
Proposition A.1 and Corollary 2.3 to obtain inequality (6.87). �
6.5. Hardy–Poincaré inequality for the hyperbolic plane

Let C+ = {z = x + iy: Im z = y > 0} be the upper half-plane equipped with the Poincaré metric ds2 = dx2+dy2

y2 .
This space is a Riemannian manifold modeling the two-dimensional hyperbolic space. In this case, the gradient ∇H ,
the divergence divH , the Laplacian �H and the volume dvg related to the metric are respectively the following

∇H u = y∇Eu,

divH = y2 divE,

�H u = y2�Eu,

dvg = dx dy

y2
, (6.88)

where we have denoted with ∇E , divE , �E the related operator in the Euclidean setting, and dx dy is the Lebesgue
measure in R

2.
By using Theorem 3.1 with p = 2, we deduce a Hardy inequality on the upper half-plane.

Theorem 6.7. Let α ∈ R. For every u ∈ C∞
0 (C+) we have

(1 − α)2

4

∫
C+

yα|u|2 dx dy

y2
�

∫
C+

yα|∇H u|2 dx dy

y2
, u ∈ C∞

0 (C+).

Proof. We consider the function ρ(z) = y, where z = x + iy. Clearly, ρ belongs to W
1,2
loc (C+), and ρα = yα belongs

to L1
loc(C+). Moreover, from (6.88), we have that

|∇H ρ|2
ρ2−α

= y2|∇Eρ|2
y2−α

= yα ∈ L1
loc(C+),

and
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�H ρ = y2�Eρ = 0.

Therefore, the hypotheses of Theorem 3.1 are satisfied and this concludes the proof. �
6.6. The Euclidean case

In this last section we show that our main results, Theorems 2.1 and 3.1, yield some well known sharp Hardy
inequalities in the Euclidean space.

Since R
N is p-hyperbolic for N > p and it is a Cartan–Hadamard manifold, Theorems 6.4 and 6.5 hold also on

R
N with Gx = |x| p−N

p−1 and r = |x| respectively. However, the function |x| p−N
p−1 is p-harmonic in R

N \ {0} also for
p > N . Therefore we have the following:

Theorem 6.8. Let p �= N . For any u ∈ C∞
0 (RN \ {0}) we have( |N − p| · |p − 1 − α|

p(p − 1)

)p ∫
RN\{0}

|x|α p−n
p−1

|u|p
|x|p dx �

∫
RN\{0}

|x|α p−n
p−1 |∇u|p dx.

In the half-space R
N+ there holds the following:

Theorem 6.9. Let α ∈R, let N � 2, let RN+ = {(x1, . . . , xN) ∈ R
N : x1 > 0}, and let ρ(x) := d(x, ∂RN+) be the distance

from the boundary of RN+ . Then we have( |p − 1 − α|
p

)p ∫
R

N+

ρα |u|p
ρp

dx �
∫
R

N+

ρα|∇u|p dx, u ∈ C∞
0

(
R

N+
)
. (6.89)

Proof. The distance ρ(x) = x1 ∈ W
1,p

loc (RN+) is nonnegative on R
N+ and it is easy to verify that the hypotheses of

Theorem 3.1 are satisfied. Therefore the thesis follows. �
From Theorem 6.9, we can deduce, as a particular case, a well known Hardy inequality for the upper half-plane

C+ = {z = x + iy: Im z = y > 0} (see for instance [32] and references therein).

Corollary 6.10. Let α ∈R. Then, for every u ∈ C∞
0 (C+), we have the following:( |p − 1 − α|

p

)p ∫
C+

|u|p dA(z)

(Im z)p−α
� 2p/2

∫
C+

(Im z)α
(∣∣∂u(z)

∣∣2 + ∣∣∂u(z)
∣∣2)p/2

dA(z), (6.90)

where dA(z) := dx dy
π

, and ∂ , ∂ are the Wirtinger operators, that is

∂ := 1

2

(
∂

∂x
− i

∂

∂y

)
, ∂ := 1

2

(
∂

∂x
+ i

∂

∂y

)
. (6.91)

Actually a more general theorem for convex domains holds.

Theorem 6.11. Let D be a proper convex open subset of RN , let d := dist(·, ∂D) be the distance from ∂D and let
α < p − 1. Then we have(

p − 1 − α

p

)p ∫
D

dα |u|p
dp

dx �
∫
D

dα|∇u|p dx, u ∈ C∞
0 (D),

and, in particular,(
p − 1

p

)p ∫
D

|u|p
dp

dx �
∫
D

|∇u|p dx, u ∈ C∞
0 (D).
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Proof. The thesis will follow by applying Theorems 2.1 and 3.1. To this end it suffices to prove that the function
d(x) := dist(x, ∂D) is p-superharmonic. Indeed, D = ⋂

Π , and d(x) = infΠ dist(x, ∂Π) where the intersection and
the infimum are taken over all the half-spaces Π containing D. Since dist(x, ∂Π) is continuous and p-harmonic, we
have that d is p-superharmonic (see [33]). This concludes the proof. �
Appendix A

Let us recall that p-capacity of a compact set K is defined as

capp(K,M) = inf

{∫
M

|∇u|p dvg: u ∈ C∞
0 (M), 0 � u� 1, u = 1 in a neighborhood of K

}
. (A.1)

Proposition A.1. Let M be a p-hyperbolic manifold of dimension N . Let K ⊂ M be a compact set of zero p-capacity.
Then

D1,p(M) ⊂ D1,p(M \ K),

that is every function u ∈ D1,p(M) can be approximated by function C∞
0 (M \ K) in the norm | · |D1,p .

Proof. Let ϕ ∈ C∞
0 (M). In order to prove the claim it is sufficient to prove that ϕ ∈ D1,p(M \ K). Since

capp(K,M) = 0, there exists a sequence (uj )j�1 such that, for any j � 1, uj ∈ C∞
0 (M), 0 � uj � 1, uj = 1

in a neighborhood of K and uj → 0 in D1,p(M). For every j � 1 the function ϕj := (1 − uj )ϕ belongs to
C∞

0 (M \ K) ⊂ D1,p(M \ K). We shall prove that ϕj → ϕ in D1,p(M \ K), that is∫
M\K

|∇ϕj − ∇ϕ|p dvg → 0 (as j → +∞). (A.2)

In fact, we have( ∫
M\K

|∇ϕj − ∇ϕ|p dvg

)1/p

=
( ∫

M\K

∣∣∇ϕ(1 − uj ) − ϕ∇uj − ∇ϕ
∣∣p dvg

)1/p

�
( ∫

M\K
|∇ϕ|p|uj |p dvg

)1/p

+
( ∫

M\K
|ϕ|p|∇uj |p dvg

)1/p

. (A.3)

The second term in (A.3) converges to 0 for j → +∞. Indeed, since uj → 0 in D1,p(M), we obtain∫
M\K

|ϕ|p|∇uj |p dvg �
∫
M

|ϕ|p|∇uj |p dvg

� |ϕ|p∞
∫
M

|∇uj |p dvg → 0 (as j → +∞).

It remains to prove that the first term in (A.3) converges to 0 as well. Let D be the support of ϕ; then we get∫
M\K

|∇ϕ|p|uj |p dvg �
∫
M

|∇ϕ|p|uj |p dvg =
∫
D

|∇ϕ|p|uj |p dvg

� |∇ϕ|p∞
∫
D

|uj |p dvg � |∇ϕ|p∞C

∫
M

|∇uj |p dvg → 0 (as j → +∞),

where, in the last inequality, we have used a characterization of the p-hyperbolic manifold (see Theorem 3
in [49]). �
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