Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $\mathbf{R}^{2 n}$

Duanzhi Zhang ${ }^{1}$, Chungen Liu ${ }^{*, 2}$
School of Mathematics and LPMC, Nankai University, Tianjin 300071, People's Republic of China

Received 1 November 2011; accepted 26 March 2013
Available online 11 June 2013

Abstract

In this paper, we prove that there exist at least $\left[\frac{n+1}{2}\right]+1$ geometrically distinct brake orbits on every C^{2} compact convex symmetric hypersurface Σ in $\mathbf{R}^{2 n}$ for $n \geqslant 2$ satisfying the reversible condition $N \Sigma=\Sigma$ with $N=\operatorname{diag}\left(-I_{n}, I_{n}\right)$. As a consequence, we show that there exist at least $\left[\frac{n+1}{2}\right]+1$ geometrically distinct brake orbits in every bounded convex symmetric domain in \mathbf{R}^{n} with $n \geqslant 2$ which gives a positive answer to the Seifert conjecture of 1948 in the symmetric case for $n=3$. As an application, for $n=4$ and 5 , we prove that if there are exactly n geometrically distinct closed characteristics on Σ, then all of them are symmetric brake orbits after suitable time translation.

© 2013 Elsevier Masson SAS. All rights reserved.
MSC: 58E05; 70H05; 34C25
Keywords: Brake orbit; Maslov-type index; Seifert conjecture; Convex symmetric

1. Introduction

Let $V \in C^{2}\left(\mathbf{R}^{n}, \mathbf{R}\right)$ and $h>0$ be such that $\Omega \equiv\left\{q \in \mathbf{R}^{n} \mid V(q)<h\right\}$ is nonempty, bounded, open and connected. Consider the following fixed energy problem of the second order autonomous Hamiltonian system

$$
\begin{align*}
& \ddot{q}(t)+V^{\prime}(q(t))=0, \quad \text { for } q(t) \in \Omega, \tag{1.1}\\
& \frac{1}{2}|\dot{q}(t)|^{2}+V(q(t))=h, \quad \forall t \in \mathbf{R}, \tag{1.2}\\
& \dot{q}(0)=\dot{q}\left(\frac{\tau}{2}\right)=0, \tag{1.3}\\
& q\left(\frac{\tau}{2}+t\right)=q\left(\frac{\tau}{2}-t\right), \quad q(t+\tau)=q(t), \quad \forall t \in \mathbf{R} . \tag{1.4}
\end{align*}
$$

[^0]A solution (τ, q) of (1.1)-(1.4) is called a brake orbit in Ω. We call two brake orbits q_{1} and $q_{2}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ geometrically distinct if $q_{1}(\mathbf{R}) \neq q_{2}(\mathbf{R})$.

We denote by $\mathcal{O}(\Omega)$ and $\tilde{\mathcal{O}}(\Omega)$ the sets of all brake orbits and geometrically distinct brake orbits in Ω respectively.
Let $J_{k}=\left(\begin{array}{cc}0 & -I_{k} \\ I_{k} & 0\end{array}\right)$ and $N_{k}=\left(\begin{array}{cc}-I_{k} & 0 \\ 0 & I_{k}\end{array}\right)$ with I_{k} being the identity in \mathbf{R}^{k}. If $k=n$ we will omit the subscript k for convenience, i.e., $J_{n}=J$ and $N_{n}=N$.

The symplectic group $\operatorname{Sp}(2 k)$ for any $k \in \mathbf{N}$ is defined by

$$
\operatorname{Sp}(2 n)=\left\{M \in \mathcal{L}\left(\mathbf{R}^{2 k}\right) \mid M^{T} J_{k} M=J_{k}\right\}
$$

where M^{T} is the transpose of matrix M.
For any $\tau>0$, the symplectic path in $\operatorname{Sp}(2 k)$ starting from the identity $I_{2 k}$ is defined by

$$
\mathcal{P}_{\tau}(2 k)=\left\{\gamma \in C([0, \tau], \operatorname{Sp}(2 k)) \mid \gamma(0)=I_{2 k}\right\} .
$$

Suppose that $H \in C^{2}\left(\mathbf{R}^{2 n} \backslash\{0\}, \mathbf{R}\right) \cap C^{1}\left(\mathbf{R}^{2 n}, \mathbf{R}\right)$ satisfying

$$
\begin{equation*}
H(N x)=H(x), \quad \forall x \in \mathbf{R}^{2 n} \tag{1.5}
\end{equation*}
$$

We consider the following fixed energy problem

$$
\begin{align*}
& \dot{x}(t)=J H^{\prime}(x(t)) \tag{1.6}\\
& H(x(t))=h \tag{1.7}\\
& x(-t)=N x(t) \tag{1.8}\\
& x(\tau+t)=x(t), \quad \forall t \in \mathbf{R} \tag{1.9}
\end{align*}
$$

A solution (τ, x) of (1.6)-(1.9) is also called a brake orbit on $\Sigma:=\left\{y \in \mathbf{R}^{2 n} \mid H(y)=h\right\}$.

Remark 1.1. It is well known that via

$$
\begin{equation*}
H(p, q)=\frac{1}{2}|p|^{2}+V(q) \tag{1.10}
\end{equation*}
$$

$x=(p, q)$ and $p=\dot{q}$, the elements in $\mathcal{O}(\{V<h\})$ and the solutions of (1.6)-(1.9) are one-to-one correspondent.
In more general setting, let Σ be a C^{2} compact hypersurface in $\mathbf{R}^{2 n}$ bounding a compact set C with nonempty interior. Suppose Σ has non-vanishing Gaussian curvature and satisfies the reversible condition $N\left(\Sigma-x_{0}\right)=\Sigma-$ $x_{0}:=\left\{x-x_{0} \mid x \in \Sigma\right\}$ for some $x_{0} \in C$. Without loss of generality, we may assume $x_{0}=0$. We denote the set of all such hypersurfaces in $\mathbf{R}^{2 n}$ by $\mathcal{H}_{b}(2 n)$. For $x \in \Sigma$, let $N_{\Sigma}(x)$ be the unit outward normal vector at $x \in \Sigma$. Note that by the reversible condition there holds $N_{\Sigma}(N x)=N N_{\Sigma}(x)$. We consider the dynamics problem of finding $\tau>0$ and an absolutely continuous curve $x:[0, \tau] \rightarrow \mathbf{R}^{2 n}$ such that

$$
\begin{align*}
& \dot{x}(t)=J N_{\Sigma}(x(t)), \quad x(t) \in \Sigma, \tag{1.11}\\
& x(-t)=N x(t), \quad x(\tau+t)=x(t), \quad \text { for all } t \in \mathbf{R} \tag{1.12}
\end{align*}
$$

A solution (τ, x) of the problem (1.11)-(1.12) is a special closed characteristic on Σ, here we still call it a brake orbit on Σ.

We also call two brake orbits $\left(\tau_{1}, x_{1}\right)$ and $\left(\tau_{2}, x_{2}\right)$ geometrically distinct if $x_{1}(\mathbf{R}) \neq x_{2}(\mathbf{R})$, otherwise we say they are equivalent. Any two equivalent brake orbits are geometrically the same. We denote by $\mathcal{J}_{b}(\Sigma)$ the set of all brake orbits on Σ, by $[(\tau, x)]$ the equivalent class of $(\tau, x) \in \mathcal{J}_{b}(\Sigma)$ in this equivalent relation and by $\tilde{\mathcal{J}}_{b}(\Sigma)$ the set of $[(\tau, x)]$ for all $(\tau, x) \in \mathcal{J}_{b}(\Sigma)$. From now on, in the notation $[(\tau, x)]$ we always assume x has minimal period τ. We also denote by $\tilde{\mathcal{J}}(\Sigma)$ the set of all geometrically distinct closed characteristics on Σ.

Let (τ, x) be a solution of (1.6)-(1.9). We consider the boundary value problem of the linearized Hamiltonian system

$$
\begin{align*}
& \dot{y}(t)=J H^{\prime \prime}(x(t)) y(t) \tag{1.13}\\
& y(t+\tau)=y(t), \quad y(-t)=N y(t), \quad \forall t \in \mathbf{R} \tag{1.14}
\end{align*}
$$

Denote by $\gamma_{x}(t)$ the fundamental solution of the system (1.13), i.e., $\gamma_{x}(t)$ is the solution of the following problem

$$
\begin{align*}
& \dot{\gamma}_{x}(t)=J H^{\prime \prime}(x(t)) \gamma_{x}(t), \tag{1.15}\\
& \gamma_{x}(0)=I_{2 n} . \tag{1.16}
\end{align*}
$$

We call $\gamma_{x} \in C([0, \tau / 2], \mathrm{Sp}(2 n))$ the associated symplectic path of (τ, x).
Let $B_{1}^{n}(0)$ denote the open unit ball \mathbf{R}^{n} centered at the origin 0 . In [20] of 1948, H. Seifert proved $\tilde{\mathcal{O}}(\Omega) \neq \emptyset$ provided $V^{\prime} \neq 0$ on $\partial \Omega, V$ is analytic and Ω is homeomorphic to $B_{1}^{n}(0)$. Then he proposed his famous conjecture: $\# \tilde{O}(\Omega) \geqslant n$ under the same conditions.

After 1948, many studies have been carried out for the brake orbit problem. S. Bolotin proved first in [4] (also see [5]) of 1978 the existence of brake orbits in general setting. K. Hayashi in [10], H. Gluck and W. Ziller in [8], and V. Benci in [2] in 1983-1984 proved ${ }^{\#} \tilde{\mathcal{O}}(\Omega) \geqslant 1$ if V is $C^{1}, \bar{\Omega}=\{V \leqslant h\}$ is compact, and $V^{\prime}(q) \neq 0$ for all $q \in \partial \Omega$. In 1987, P.H. Rabinowitz in [19] proved that if H satisfies (1.5), $\Sigma \equiv H^{-1}(h)$ is star-shaped, and $x \cdot H^{\prime}(x) \neq 0$ for all $x \in \Sigma$, then ${ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma) \geqslant 1$. In 1987, V. Benci and F. Giannoni gave a different proof of the existence of one brake orbit in [3].

In 1989, A. Szulkin in [21] proved that ${ }^{\#} \tilde{\mathcal{J}}_{b}\left(H^{-1}(h)\right) \geqslant n$, if H satisfies conditions in [19] of Rabinowitz and the energy hypersurface $H^{-1}(h)$ is $\sqrt{2}$-pinched. E.W.C. van Groesen in [9] of 1985 and A. Ambrosetti, V. Benci, Y. Long in [1] of 1993 also proved ${ }^{\#} \tilde{O}(\Omega) \geqslant n$ under different pinching conditions.

Without pinching condition, in [17] Y. Long, C. Zhu and the first author of this paper proved the following result: For $n \geqslant 2$, suppose H satisfies
(H1) (smoothness) $H \in C^{2}\left(\mathbf{R}^{2 n} \backslash\{0\}, \mathbf{R}\right) \cap C^{1}\left(\mathbf{R}^{2 n}, \mathbf{R}\right)$,
(H2) (reversibility) $H(N y)=H(y)$ for all $y \in \mathbf{R}^{2 n}$,
(H3) (convexity) $H^{\prime \prime}(y)$ is positive definite for all $y \in \mathbf{R}^{2 n} \backslash\{0\}$,
(H4) (symmetry) $H(-y)=H(y)$ for all $y \in \mathbf{R}^{2 n}$.
Then for any given $h>\min \left\{H(y) \mid y \in \mathbf{R}^{2 n}\right\}$ and $\Sigma=H^{-1}(h)$, there holds

$$
{ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma) \geqslant 2 .
$$

As a consequence they also proved that: For $n \geqslant 2$, suppose $V(0)=0, V(q) \geqslant 0, V(-q)=V(q)$ and $V^{\prime \prime}(q)$ is positive definite for all $q \in \mathbf{R}^{n} \backslash\{0\}$. Then for $\Omega \equiv\left\{q \in \mathbf{R}^{n} \mid V(q)<h\right\}$ with $h>0$, there holds

$$
\# \tilde{\mathcal{O}}(\Omega) \geqslant 2
$$

Under the same condition of [17], in 2009 Liu and Zhang in [14] proved that ${ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma) \geqslant\left[\frac{n}{2}\right]+1$, also they proved \# $\tilde{\mathcal{O}}(\Omega) \geqslant\left[\frac{n}{2}\right]+1$ under the same condition of [17]. Moreover if all brake orbits on Σ are nondegenerate, Liu and Zhang in [14] proved that ${ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma) \geqslant n+\mathfrak{A}(\Sigma)$, where $2 \mathfrak{A}(\Sigma)$ is the number of geometrically distinct asymmetric brake orbits on Σ.

Definition 1.1. We denote

$$
\begin{aligned}
& \mathcal{H}_{b}^{c}(2 n)=\left\{\Sigma \in \mathcal{H}_{b}(2 n) \mid \Sigma \text { is strictly convex }\right\}, \\
& \mathcal{H}_{b}^{s, c}(2 n)=\left\{\Sigma \in \mathcal{H}_{b}^{c}(2 n) \mid-\Sigma=\Sigma\right\} .
\end{aligned}
$$

Definition 1.2. For $\Sigma \in \mathcal{H}_{b}^{s, c}(2 n)$, a brake orbit ($\left.\tau, x\right)$ on Σ is called symmetric if $x(\mathbf{R})=-x(\mathbf{R})$. Similarly, for a C^{2} convex symmetric bounded domain $\Omega \subset \mathbf{R}^{n}$, a brake orbit $(\tau, q) \in \mathcal{O}(\Omega)$ is called symmetric if $q(\mathbf{R})=-q(\mathbf{R})$.

Note that a brake orbit $(\tau, x) \in \mathcal{J}_{b}(\Sigma)$ with minimal period τ is symmetric if $x(t+\tau / 2)=-x(t)$ for $t \in \mathbf{R}$, a brake orbit $(\tau, q) \in \mathcal{O}(\Omega)$ with minimal period τ is symmetric if $q(t+\tau / 2)=-q(t)$ for $t \in \mathbf{R}$.

In this paper, we denote by $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$ and \mathbf{R} the sets of positive integers, integers, rational numbers and real numbers respectively. We denote by $\langle\cdot, \cdot\rangle$ the standard inner product in \mathbf{R}^{n} or $\mathbf{R}^{2 n}$, by (\cdot, \cdot) the inner product of corresponding Hilbert space. For any $a \in \mathbf{R}$, we denote $E(a)=\inf \{k \in \mathbf{Z} \mid k \geqslant a\}$ and $[a]=\sup \{k \in \mathbf{Z} \mid k \leqslant a\}$.

The following are the main results of this paper.

Theorem 1.1. For any $\Sigma \in \mathcal{H}_{b}^{s, c}(2 n)$ with $n \geqslant 2$, we have

$$
\# \tilde{\mathcal{J}}_{b}(\Sigma) \geqslant\left[\frac{n+1}{2}\right]+1
$$

Corollary 1.1. Suppose $V(0)=0, V(q) \geqslant 0, V(-q)=V(q)$ and $V^{\prime \prime}(q)$ is positive definite for all $q \in \mathbf{R}^{n} \backslash\{0\}$ with $n \geqslant 3$. Then for any given $h>0$ and $\Omega \equiv\left\{q \in \mathbf{R}^{n} \mid V(q)<h\right\}$, we have

$$
\# \tilde{\mathcal{O}}(\Omega) \geqslant\left[\frac{n+1}{2}\right]+1
$$

Remark 1.2. Note that for $n=3$, Corollary 1.1 yields $\# \tilde{\mathcal{O}}(\Omega) \geqslant 3$, which gives a positive answer to Seifert's conjecture in the convex symmetric case.

As a consequence of Theorem 1.1, we can prove
Theorem 1.2. For $n=4,5$ and any $\Sigma \in \mathcal{H}_{b}^{s, c}(2 n)$, suppose

$$
\# \tilde{\mathcal{J}}(\Sigma)=n
$$

Then all of them are symmetric brake orbits after suitable translation.
Example 1.1. A typical example of $\Sigma \in \mathcal{H}_{b}^{s, c}(2 n)$ is the ellipsoid $\mathcal{E}_{n}(r)$ defined as follows. Let $r=\left(r_{1}, \ldots, r_{n}\right)$ with $r_{j}>0$ for $1 \leqslant j \leqslant n$. Define

$$
\mathcal{E}_{n}(r)=\left\{x=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{2 n} \left\lvert\, \sum_{k=1}^{n} \frac{x_{k}^{2}+y_{k}^{2}}{r_{k}^{2}}=1\right.\right\} .
$$

If $r_{j} / r_{k} \notin \mathbf{Q}$ whenever $j \neq k$, from [7] one can see that there are precisely n geometrically distinct symmetric brake orbits on $\mathcal{E}_{n}(r)$ and all of them are nondegenerate.

2. Index theories of $\left(i_{L_{j}}, \nu_{L_{j}}\right)$ and $\left(i_{\omega}, v_{\omega}\right)$

Let $\mathcal{L}\left(\mathbf{R}^{2 n}\right)$ denote the set of $2 n \times 2 n$ real matrices and $\mathcal{L}_{s}\left(\mathbf{R}^{2 n}\right)$ denote its subset of symmetric ones. For any $F \in \mathcal{L}_{s}\left(\mathbf{R}^{2 n}\right)$, we denote by $m^{*}(F)$ the dimension of maximal positive definite subspace, negative definite subspace, and kernel of any F for $*=+,-, 0$ respectively.

In this section, we make some preparation for the proof of Theorem 3.1 below. We first briefly review the index function $\left(i_{\omega}, v_{\omega}\right)$ and $\left(i_{L_{j}}, v_{L_{j}}\right)$ for $j=0,1$, more details can be found in [11,12,14,16]. Following Theorem 2.3 of [23] we study the differences $i_{L_{0}}(\gamma)-i_{L_{1}}(\gamma)$ and $i_{L_{0}}(\gamma)+\nu_{L_{0}}(\gamma)-i_{L_{1}}(\gamma)-\nu_{L_{1}}(\gamma)$ for $\gamma \in \mathcal{P}_{\tau}(2 n)$ by computing $\operatorname{sgn} M_{\varepsilon}(\gamma(\tau))$. We obtain some basic lemmas which will be used frequently in the proof of the main theorem of this paper.

For any $\omega \in \mathbf{U}$, the following codimension 1 hypersurface in $\operatorname{Sp}(2 n)$ is defined by:

$$
\operatorname{Sp}(2 n)_{\omega}^{0}=\left\{M \in \operatorname{Sp}(2 n) \mid \operatorname{det}\left(M-\omega I_{2 n}\right)=0\right\} .
$$

For any two continuous paths ξ and $\eta:[0, \tau] \rightarrow \operatorname{Sp}(2 n)$ with $\xi(\tau)=\eta(0)$, their joint path is defined by

$$
\eta * \xi(t)= \begin{cases}\xi(2 t) & \text { if } 0 \leqslant t \leqslant \frac{\tau}{2}, \\ \eta(2 t-\tau) & \text { if } \frac{\tau}{2} \leqslant t \leqslant \tau .\end{cases}
$$

Given any two $\left(2 m_{k} \times 2 m_{k}\right)$-matrices of square block form $M_{k}=\left(\begin{array}{c}A_{k} B_{k} \\ C_{k} \\ D_{k}\end{array}\right)$ for $k=1,2$, as in [16], the \diamond-product of M_{1} and M_{2} is defined by the following $\left(2\left(m_{1}+m_{2}\right) \times 2\left(m_{1}+m_{2}\right)\right)$-matrix $M_{1} \diamond M_{2}$:

$$
M_{1} \diamond M_{2}=\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & 0 \\
0 & A_{2} & 0 & B_{2} \\
C_{1} & 0 & D_{1} & 0 \\
0 & C_{2} & 0 & D_{2}
\end{array}\right) .
$$

A special path ξ_{n} is defined by

$$
\xi_{n}(t)=\left(\begin{array}{cc}
2-\frac{t}{\tau} & 0 \\
0 & \left(2-\frac{t}{\tau}\right)^{-1}
\end{array}\right)^{\diamond n}, \quad \forall t \in[0, \tau]
$$

Definition 2.1. For any $\omega \in \mathbf{U}$ and $M \in \operatorname{Sp}(2 n)$, define

$$
v_{\omega}(M)=\operatorname{dim}_{\mathbf{C}} \operatorname{ker}\left(M-\omega I_{2 n}\right)
$$

For any $\gamma \in \mathcal{P}_{\tau}(2 n)$, define

$$
v_{\omega}(\gamma)=v_{\omega}(\gamma(\tau))
$$

If $\gamma(\tau) \notin \operatorname{Sp}(2 n)_{\omega}^{0}$, we define

$$
\begin{equation*}
i_{\omega}(\gamma)=\left[\operatorname{Sp}(2 n)_{\omega}^{0}: \gamma * \xi_{n}\right] \tag{2.1}
\end{equation*}
$$

where the right-hand side of (2.1) is the usual homotopy intersection number and the orientation of $\gamma * \xi_{n}$ is its positive time direction under homotopy with fixed endpoints. If $\gamma(\tau) \in \operatorname{Sp}(2 n)_{\omega}^{0}$, we let $\mathcal{F}(\gamma)$ be the set of all open neighborhoods of γ in $\mathcal{P}_{\tau}(2 n)$, and define

$$
i_{\omega}(\gamma)=\sup _{U \in \mathcal{F}(\gamma)} \inf \left\{i_{\omega}(\beta) \mid \beta(\tau) \in U \text { and } \beta(\tau) \notin \operatorname{Sp}(2 n)_{\omega}^{0}\right\}
$$

Then $\left(i_{\omega}(\gamma), v_{\omega}(\gamma)\right) \in \mathbf{Z} \times\{0,1, \ldots, 2 n\}$ is called the index function of γ at ω.
For any $M \in \operatorname{Sp}(2 n)$ we define

$$
\Omega(M)=\left\{P \in \operatorname{Sp}(2 n) \mid \sigma(P) \cap \mathbf{U}=\sigma(M) \cap \mathbf{U} \text { and } \nu_{\lambda}(P)=v_{\lambda}(M), \forall \lambda \in \sigma(M) \cap \mathbf{U}\right\}
$$

where we denote by $\sigma(P)$ the spectrum of P.
We denote by $\Omega^{0}(M)$ the path connected component of $\Omega(M)$ containing M, and call it the homotopy component of M in $\operatorname{Sp}(2 n)$.

Definition 2.2. For any $M_{1}, M_{2} \in \operatorname{Sp}(2 n)$, we call $M_{1} \approx M_{2}$ if $M_{1} \in \Omega^{0}\left(M_{2}\right)$.
Remark 2.1. It is easy to check that \approx is an equivalent relation. If $M_{1} \approx M_{2}$, we have $M_{1}^{k} \approx M_{2}^{k}$ for any $k \in \mathbf{N}$ and $M_{1} \diamond M_{3} \approx M_{2} \diamond M_{4}$ for $M_{3} \approx M_{4}$. Also we have $P M P^{-1} \approx M$ for any $P, M \in \operatorname{Sp}(2 n)$.

The following symplectic matrices were introduced as basic normal forms in [16]:

$$
\begin{aligned}
& D(\lambda)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right), \quad \lambda= \pm 2 \\
& N_{1}(\lambda, b)=\left(\begin{array}{cc}
\lambda & b \\
0 & \lambda
\end{array}\right), \quad \lambda= \pm 1, \quad b= \pm 1,0 \\
& R(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad \theta \in(0, \pi) \cup(\pi, 2 \pi), \\
& N_{2}(\omega, b)=\left(\begin{array}{cc}
R(\theta) & b \\
0 & R(\theta)
\end{array}\right), \quad \theta \in(0, \pi) \cup(\pi, 2 \pi),
\end{aligned}
$$

where $b=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right)$ with $b_{i} \in \mathbf{R}$ and $b_{2} \neq b_{3}$.
For any $M \in \operatorname{Sp}(2 n)$ and $\omega \in \mathbf{U}$, splitting number of M at ω is defined by

$$
S_{M}^{ \pm}(\omega)=\lim _{\epsilon \rightarrow 0^{+}} i_{\omega \exp (\pm \sqrt{-1} \epsilon)}(\gamma)-i_{\omega}(\gamma)
$$

for any path $\gamma \in \mathcal{P}_{\tau}(2 n)$ satisfying $\gamma(\tau)=M$.
Splitting numbers possesses the following properties.

Lemma 2.1. (Cf. [15], Lemma 9.1.5 and List 9.1.12 of [16].) Splitting numbers $S_{M}^{ \pm}(\omega)$ are well defined, i.e., they are independent of the choice of the path $\gamma \in \mathcal{P}_{\tau}(2 n)$ satisfying $\gamma(\tau)=M$. For $\omega \in \mathbf{U}$ and $M \in \operatorname{Sp}(2 n), S_{Q}^{ \pm}(\omega)=S_{M}^{ \pm}(\omega)$ if $Q \approx M$. Moreover we have
(1) $\left(S_{M}^{+}(\pm 1), S_{M}^{-}(\pm 1)\right)=(1,1)$ for $M= \pm N_{1}(1, b)$ with $b=1$ or 0 ;
(2) $\left(S_{M}^{+}(\pm 1), S_{M}^{-}(\pm 1)\right)=(0,0)$ for $M= \pm N_{1}(1, b)$ with $b=-1$;
(3) $\left(S_{M}^{+}\left(e^{\sqrt{-1} \theta}\right), S_{M}^{-}\left(e^{\sqrt{-1} \theta}\right)\right)=(0,1)$ for $M=R(\theta)$ with $\theta \in(0, \pi) \cup(\pi, 2 \pi)$;
(4) $\left(S_{M}^{+}(\omega), S_{M}^{-}(\omega)\right)=(0,0)$ for $\omega \in \mathbf{U} \backslash \mathbf{R}$ and $M=N_{2}(\omega, b)$ is trivial i.e., for sufficiently small $\alpha>0$, $M R((t-1) \alpha)^{\diamond n}$ possesses no eigenvalues on \mathbf{U} for $t \in[0,1)$;
(5) $\left(S_{M}^{+}(\omega), S_{M}^{-}(\omega)\right)=(1,1)$ for $\omega \in \mathbf{U} \backslash \mathbf{R}$ and $M=N_{2}(\omega, b)$ is non-trivial;
(6) $\left(S_{M}^{+}(\omega), S_{M}^{-}(\omega)\right)=(0,0)$ for any $\omega \in \mathbf{U}$ and $M \in \operatorname{Sp}(2 n)$ with $\sigma(M) \cap \mathbf{U}=\emptyset$;
(7) $S_{M_{1} \diamond M_{2}}^{ \pm}(\omega)=S_{M_{1}}^{ \pm}(\omega)+S_{M_{2}}^{ \pm}(\omega)$, for any $M_{j} \in \operatorname{Sp}\left(2 n_{j}\right)$ with $j=1,2$ and $\omega \in \mathbf{U}$.

Let

$$
F=\mathbf{R}^{2 n} \oplus \mathbf{R}^{2 n}
$$

possess the standard inner product. We define the symplectic structure of F by

$$
\{v, w\}=(\mathcal{J} v, w), \quad \forall v, w \in F, \text { where } \mathcal{J}=(-J) \oplus J=\left(\begin{array}{cc}
-J & 0 \\
0 & J
\end{array}\right) .
$$

We denote by $\operatorname{Lag}(F)$ the set of Lagrangian subspaces of F, and equip it with the topology as a subspace of the Grassmannian of all $2 n$-dimensional subspaces of F.

It is easy to check that, for any $M \in \operatorname{Sp}(2 n)$ its graph

$$
\operatorname{Gr}(M) \equiv\left\{\left.\binom{x}{M x} \right\rvert\, x \in \mathbf{R}^{2 n}\right\}
$$

is a Lagrangian subspace of F.
Let

$$
\begin{aligned}
& V_{1}=L_{0} \times L_{0}=\{0\} \times \mathbf{R}^{n} \times\{0\} \times \mathbf{R}^{n} \subset \mathbf{R}^{4 n}, \\
& V_{2}=L_{1} \times L_{1}=\mathbf{R}^{n} \times\{0\} \times \mathbf{R}^{n} \times\{0\} \subset \mathbf{R}^{4 n} .
\end{aligned}
$$

By Proposition 6.1 of [18] and Lemma 2.8 and Definition 2.5 of [17], we give the following definition.
Definition 2.3. For any continuous path $\gamma \in \mathcal{P}_{\tau}(2 n)$, we define the following Maslov-type indices:

$$
\begin{aligned}
& i_{L_{0}}(\gamma)=\mu_{F}^{C L M}\left(V_{1}, \operatorname{Gr}(\gamma),[0, \tau]\right)-n, \\
& i_{L_{1}}(\gamma)=\mu_{F}^{C L M}\left(V_{2}, \operatorname{Gr}(\gamma),[0, \tau]\right)-n, \\
& v_{L_{j}}(\gamma)=\operatorname{dim}\left(\gamma(\tau) L_{j} \cap L_{j}\right), \quad j=0,1,
\end{aligned}
$$

where we denote by $i_{F}^{C L M}(V, W,[a, b])$ the Maslov index for Lagrangian subspace path pair (V, W) in F on $[a, b]$ defined by Cappell, Lee, and Miller in [6]. For any $M \in \operatorname{Sp}(2 n)$ and $j=0$, 1 , we also denote $v_{L_{j}}(M)=\operatorname{dim}\left(M L_{j} \cap L_{j}\right)$.

Definition 2.4. For two paths $\gamma_{0}, \gamma_{1} \in \mathcal{P}_{\tau}(2 n)$ and $j=0,1$, we say that they are L_{j}-homotopic and denoted by $\gamma_{0} \sim_{L_{j}} \gamma_{1}$, if there is a continuous map $\delta:[0,1] \rightarrow \mathcal{P}(2 n)$ such that $\delta(0)=\gamma_{0}$ and $\delta(1)=\gamma_{1}$, and $\nu_{L_{j}}(\delta(s))$ is constant for $s \in[0,1]$.

Lemma 2.2. (See [11].)
(1) If $\gamma_{0} \sim_{L_{j}} \gamma_{1}$, there hold

$$
i_{L_{j}}\left(\gamma_{0}\right)=i_{L_{j}}\left(\gamma_{1}\right), \quad v_{L_{j}}\left(\gamma_{0}\right)=v_{L_{j}}\left(\gamma_{1}\right) .
$$

(2) If $\gamma=\gamma_{1} \diamond \gamma_{2} \in \mathcal{P}(2 n)$, and correspondingly $L_{j}=L_{j}^{\prime} \oplus L_{j}^{\prime \prime}$, then

$$
i_{L_{j}}(\gamma)=i_{L_{j}^{\prime}}\left(\gamma_{1}\right)+i_{L_{j}^{\prime \prime}}\left(\gamma_{2}\right), \quad v_{L_{j}}(\gamma)=v_{L_{j}^{\prime}}\left(\gamma_{1}\right)+v_{L_{j}^{\prime \prime}}\left(\gamma_{2}\right)
$$

(3) If $\gamma \in \mathcal{P}(2 n)$ is the fundamental solution of

$$
\dot{x}(t)=J B(t) x(t)
$$

with symmetric matrix function $B(t)=\left(\begin{array}{ll}b_{11}(t) & b_{12}(t) \\ b_{21}(t) & b_{22}(t)\end{array}\right)$ satisfying $b_{22}(t)>0$ for any $t \in R$, then there holds

$$
i_{L_{0}}(\gamma)=\sum_{0<s<1} v_{L_{0}}\left(\gamma_{s}\right), \quad \gamma_{s}(t)=\gamma(s t)
$$

(4) If $b_{11}(t)>0$ for any $t \in \mathbf{R}$, there holds

$$
i_{L_{1}}(\gamma)=\sum_{0<s<1} v_{L_{1}}\left(\gamma_{s}\right), \quad \gamma_{s}(t)=\gamma(s t)
$$

Definition 2.5. For any $\gamma \in \mathcal{P}_{\tau}$ and $k \in \mathbf{N} \equiv\{1,2, \ldots\}$, in this paper the k-time iteration γ^{k} of $\gamma \in \mathcal{P}_{\tau}(2 n)$ in brake orbit boundary sense is defined by $\left.\tilde{\gamma}\right|_{[0, k \tau]}$ with

$$
\tilde{\gamma}(t)= \begin{cases}\gamma(t-2 j \tau)\left(N \gamma(\tau)^{-1} N \gamma(\tau)\right)^{j}, & t \in[2 j \tau,(2 j+1) \tau], j=0,1,2, \ldots, \\ N \gamma(2 j \tau+2 \tau-t) N\left(N \gamma(\tau)^{-1} N \gamma(\tau)\right)^{j+1}, & t \in[(2 j+1) \tau,(2 j+2) \tau], j=0,1,2, \ldots\end{cases}
$$

By [17] or Corollary 5.1 of [14] $\lim _{k \rightarrow \infty} \frac{i_{L_{0}}\left(\gamma^{k}\right)}{k}$ exists, as usual we define the mean $i_{L_{0}}$ index of γ by $\hat{i}_{L_{0}}(\gamma)=$ $\lim _{k \rightarrow \infty} \frac{i_{L_{0}}\left(\gamma^{k}\right)}{k}$.

For any $P \in \operatorname{Sp}(2 n)$ and $\varepsilon \in \mathbf{R}$, we set

$$
M_{\varepsilon}(P)=P^{T}\left(\begin{array}{cc}
\sin 2 \varepsilon I_{n} & -\cos 2 \varepsilon I_{n} \\
-\cos 2 \varepsilon I_{n} & -\sin 2 \varepsilon I_{n}
\end{array}\right) P+\left(\begin{array}{cc}
\sin 2 \varepsilon I_{n} & \cos 2 \varepsilon I_{n} \\
\cos 2 \varepsilon I_{n} & -\sin 2 \varepsilon I_{n}
\end{array}\right)
$$

Then we have the following
Theorem 2.1. (See Theorem 2.3 of [23].) For $\gamma \in \mathcal{P}_{\tau}(2 k)$ with $\tau>0$, we have

$$
i_{L_{0}}(\gamma)-i_{L_{1}}(\gamma)=\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(\gamma(\tau))
$$

where $\operatorname{sgn} M_{\varepsilon}(\gamma(\tau))=m^{+}\left(M_{\varepsilon}(\gamma(\tau))\right)-m^{-}\left(M_{\varepsilon}(\gamma(\tau))\right)$ is the signature of the symmetric matrix $M_{\varepsilon}(\gamma(\tau))$ and $0<\varepsilon \ll 1$. We also have

$$
\left(i_{L_{0}}(\gamma)+v_{L_{0}}(\gamma)\right)-\left(i_{L_{1}}(\gamma)+v_{L_{1}}(\gamma)\right)=\frac{1}{2} \operatorname{sign} M_{\varepsilon}(\gamma(\tau))
$$

where $0<-\varepsilon \ll 1$.
Remark 2.2. (See Remark 2.1 of [23].) For any $n_{j} \times n_{j}$ symplectic matrix P_{j} with $j=1,2$ and $n_{j} \in \mathbf{N}$, we have

$$
\begin{aligned}
& M_{\varepsilon}\left(P_{1} \diamond P_{2}\right)=M_{\varepsilon}\left(P_{1}\right) \diamond M_{\varepsilon}\left(P_{2}\right) \\
& \operatorname{sgn} M_{\varepsilon}\left(P_{1} \diamond P_{2}\right)=\operatorname{sgn} M_{\varepsilon}\left(P_{1}\right)+\operatorname{sgn} M_{\varepsilon}\left(P_{2}\right)
\end{aligned}
$$

where $\varepsilon \in \mathbf{R}$.

In the following of this section we will give some lemmas which will be used frequently in the proof of our main theorem later.

Lemma 2.3. For $k \in \mathbf{N}$ and any symplectic matrix $P=\left(\begin{array}{cc}I_{k} & 0 \\ C & I_{k}\end{array}\right)$, there holds $P \approx I_{2}^{\diamond p} \diamond N_{1}(1,1)^{\diamond q} \diamond N_{1}(1,-1)^{\diamond r}$ with p, q, r satisfying

$$
m^{0}(C)=p, \quad m^{-}(C)=q, \quad m^{+}(C)=r
$$

Proof. It is clear that

$$
P \approx\left(\begin{array}{cc}
I_{k} & 0 \\
B & I_{k}
\end{array}\right)
$$

where $B=\operatorname{diag}\left(0,-I_{m^{-}(C)}, I_{m^{+}(C)}\right)$. Since $J_{1} N_{1}(1, \pm 1)\left(J_{1}\right)^{-1}=\left(\begin{array}{cc}1 & 0 \\ \mp & 1\end{array}\right)$, by Remark 2.1 we have $N_{1}(1, \pm 1) \approx$ $\left(\begin{array}{cc}1 & 0 \\ \mp & 1\end{array}\right)$. Then

$$
P \approx I_{2}^{\diamond m^{0}(C)} \diamond N_{1}(1,1)^{\diamond m^{-}(C)} \diamond N_{1}(1,-1)^{\diamond m^{+}(C)} .
$$

By Lemma 2.1 we have

$$
\begin{equation*}
S_{P}^{+}(1)=m^{0}(C)+m^{-}(C)=p+q \tag{2.2}
\end{equation*}
$$

By the definition of the relation \approx, we have

$$
\begin{equation*}
2 p+q+r=v_{1}(P)=2 m^{0}(C)+m^{+}(C)+m^{-}(C) \tag{2.3}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
p+q+r=m^{0}(C)+m^{+}(C)+m^{-}(C)=k \tag{2.4}
\end{equation*}
$$

By (2.2)-(2.4) we have

$$
m^{0}(C)=p, \quad m^{-}(C)=q, \quad m^{+}(C)=r
$$

The proof of Lemma 2.3 is complete.
Definition 2.6. We call two symplectic matrices M_{1} and M_{2} in $\operatorname{Sp}(2 k)$ special homotopic (or (L_{0}, L_{1})-homotopic) and denote by $M_{1} \sim M_{2}$, if there are $P_{j} \in \operatorname{Sp}(2 k)$ with $P_{j}=\operatorname{diag}\left(Q_{j},\left(Q_{j}^{T}\right)^{-1}\right)$, where Q_{j} is a $k \times k$ invertible real matrix, and $\operatorname{det}\left(Q_{j}\right)>0$ for $j=1,2$, such that

$$
M_{1}=P_{1} M_{2} P_{2}
$$

It is clear that \sim is an equivalent relation.
Lemma 2.4. For $M_{1}, M_{2} \in \operatorname{Sp}(2 k)$, if $M_{1} \sim M_{2}$, then

$$
\begin{align*}
& \operatorname{sgn} M_{\varepsilon}\left(M_{1}\right)=\operatorname{sgn} M_{\varepsilon}\left(M_{2}\right), \quad 0 \leqslant|\varepsilon| \ll 1, \tag{2.5}\\
& N_{k} M_{1}^{-1} N_{k} M_{1} \approx N_{k} M_{2}^{-1} N_{k} M_{2} . \tag{2.6}
\end{align*}
$$

Proof. By Definition 2.6, there are $P_{j} \in \operatorname{Sp}(2 k)$ with $P_{j}=\operatorname{diag}\left(Q_{j},\left(Q_{j}^{T}\right)^{-1}\right), Q_{j}$ being $k \times k$ invertible real matrix, and $\operatorname{det}\left(Q_{j}\right)>0$ such that

$$
M_{1}=P_{1} M_{2} P_{2}
$$

Since $\operatorname{det}\left(Q_{j}\right)>0$ for $j=1,2$, we can joint Q_{j} to I_{k} by invertible matrix path. Hence we can joint $P_{1} M_{2} P_{2}$ to M_{2} by symplectic path preserving the nullity $\nu_{L_{0}}$ and $\nu_{L_{1}}$. By Lemma 2.2 of [23], (2.5) holds. Since $P_{j} N_{k}=N_{k} P_{j}$ for $j=1,2$. Direct computation shows that

$$
\begin{equation*}
N_{k}\left(P_{1} M_{2} P_{2}\right)^{-1} N_{k}\left(P_{1} M_{2} P_{2}\right)=P_{2}^{-1} N_{k} M_{2}^{-1} N_{k} M_{2} P_{2} \tag{2.7}
\end{equation*}
$$

Thus (2.6) holds from Remark 2.1. The proof of Lemma 2.4 is complete.

Lemma 2.5. Let $P=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2 k)$, where A, B, C, D are all $k \times k$ matrices. Then
(i) $\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(P) \leqslant k-v_{L_{0}}(P)$, for $0<\varepsilon \ll 1$. If $B=0$, we have $\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(P) \leqslant 0$ for $0<\varepsilon \ll 1$.
(ii) Let $m^{+}\left(A^{T} C\right)=q$, we have

$$
\begin{equation*}
\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(P) \leqslant k-q, \quad 0 \leqslant|\varepsilon| \ll 1 \tag{2.8}
\end{equation*}
$$

(iii) $\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(P) \geqslant \operatorname{dim} \operatorname{ker} C-k$ for $0<\varepsilon \ll 1$. If $C=0$, then $\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(P) \geqslant 0$ for $0<\varepsilon \ll 1$.
(iv) If both B and C are invertible, we have

$$
\operatorname{sgn} M_{\varepsilon}(P)=\operatorname{sgn} M_{0}(P), \quad 0 \leqslant|\varepsilon| \ll 1
$$

Proof. Since P is symplectic, so is for P^{T}. From $P^{T} J_{k} P=J_{k}$ and $P J_{k} P^{T}=J_{k}$ we get $A^{T} C, B^{T} D, A B^{T}, C D^{T}$ are all symmetric matrices and

$$
\begin{equation*}
A D^{T}-B C^{T}=I_{k}, \quad A^{T} D-C^{T} B=I_{k} \tag{2.9}
\end{equation*}
$$

We denote $s=\sin 2 \varepsilon$ and $c=\cos 2 \varepsilon$. By definition of $M_{\varepsilon}(P)$, we have

$$
\begin{array}{rl}
M_{\varepsilon}(P) & =\left(\begin{array}{cc}
A^{T} & C^{T} \\
B^{T} & D^{T}
\end{array}\right)\left(\begin{array}{cc}
s I_{k} & -c I_{k} \\
-c I_{k} & -s I_{k}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)+\left(\begin{array}{cc}
s I_{k} & c I_{k} \\
c I_{k} & -s I_{k}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{T} & C^{T} \\
B^{T} & D^{T}
\end{array}\right)\left(\begin{array}{cc}
s I_{k} & -2 c I_{k} \\
0 & -s I_{k}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)+\left(\begin{array}{cc}
s I_{k} & 2 c I_{k} \\
0 & -s I_{k}
\end{array}\right) \\
& =\left(\begin{array}{cc}
s A^{T} A-2 c A^{T} C-s C^{T} C+s I_{k} & * B^{T} B-2 c B^{T} D-s D^{T} D-s I_{k}
\end{array}\right) \\
s B^{T} A-2 c B^{T} C-s D^{T} C & s B^{*} B A^{T} B-2 c C^{T} B-s C^{T} D \tag{2.10}\\
& =\left(\begin{array}{cc}
s A^{T} A-2 c A^{T} C-s C^{T} C+s I_{k} & s B^{T} B-2 c B^{T} D-s D^{T} D-s I_{k}
\end{array}\right),
\end{array}
$$

where in the second equality we have used that $P^{T} J_{k} P=J_{k}$, in the fourth equality we have used that $M_{\varepsilon}(P)$ is a symmetric matrix. So

$$
M_{0}(P)=-2\left(\begin{array}{cc}
A^{T} C & C^{T} B \\
B^{T} C & B^{T} D
\end{array}\right)=-2\left(\begin{array}{cc}
C^{T} & 0 \\
0 & B^{T}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
$$

where we have used $A^{T} C$ is symmetric. So if both B and C are invertible, $M_{0}(P)$ is invertible and symmetric, its signature is invariant under small perturbation, so (iv) holds.

If $\nu_{L_{0}}(P)=\operatorname{dim} \operatorname{ker} B>0$, since $B^{T} D=D^{T} B$, for any $x \in \operatorname{ker} B \subseteq \mathbf{R}^{k}, x \neq 0$, and $0<\varepsilon \ll 1$, we have

$$
\begin{align*}
M_{\varepsilon}(P)\binom{0}{x} \cdot\binom{0}{x} & =\left(s B^{T} B-2 c D^{T} B-s D^{T} D-s I_{k}\right) x \cdot x \\
& =-s\left(D^{T} D+I_{k}\right) x \cdot x \\
& <0 \tag{2.11}
\end{align*}
$$

So $M_{\varepsilon}(P)$ is negative definite on $(0 \oplus \operatorname{ker} B) \subseteq \mathbf{R}^{2 k}$. Hence $m^{-}\left(M_{\varepsilon}(p)\right) \geqslant \operatorname{dim} \operatorname{ker} B$ which yields that $\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(P) \leqslant$ $k-\operatorname{dim} \operatorname{ker} B=k-v_{L_{0}}(P)$, for $0<\varepsilon \ll 1$. Thus (i) holds. Similarly we can prove (iii).

If $m^{+}\left(A^{T} C\right)=q>0$, let $A^{T} C$ be positive definite on $E \subseteq \mathbf{R}^{k}$, then for $0 \leqslant|s| \ll 1$, similar to (2.11) we have $M_{\varepsilon}(P)$ is negative on $E \oplus 0 \subseteq \mathbf{R}^{2 k}$. Hence $m^{-}\left(M_{\varepsilon}(P)\right) \geqslant q$, which yields (2.8).

Lemma 2.6. (See [23].) For $\gamma \in \mathcal{P}_{\tau}(2), b>0$, and $0<\varepsilon \ll 1$ small enough we have
$\operatorname{sgn} M_{ \pm \varepsilon}(R(\theta))=0, \quad$ for $\theta \in \mathbf{R}$,
$\operatorname{sgn} M_{\varepsilon}(P)=0, \quad$ if $P= \pm\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right)$ or $\pm\left(\begin{array}{cc}1 & 0 \\ -b & 1\end{array}\right)$,

$$
\begin{aligned}
& \operatorname{sgn} M_{\varepsilon}(P)=2, \quad \text { if } P= \pm\left(\begin{array}{cc}
1 & -b \\
0 & 1
\end{array}\right) \\
& \operatorname{sgn} M_{\varepsilon}(P)=-2, \quad \text { if } P= \pm\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right) .
\end{aligned}
$$

3. Proofs of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1 and 1.2. The proof mainly depends on the method in [14] and the following

Theorem 3.1. For any odd number $n \geqslant 3, \tau>0$ and $\gamma \in \mathcal{P}_{\tau}(2 n)$, let $P=\gamma(\tau)$. If $i_{L_{0}} \geqslant 0, i_{L_{1}} \geqslant 0$, $i(\gamma) \geqslant n$, $\gamma^{2}(t)=\gamma(t-\tau) \gamma(\tau)$ for all $t \in[\tau, 2 \tau]$, and $P \sim\left(-I_{2}\right) \diamond Q$ with $Q \in \operatorname{Sp}(2 n-2)$, then

$$
\begin{equation*}
i_{L_{1}}(\gamma)+S_{P^{2}}^{+}(1)-v_{L_{0}}(\gamma)>\frac{1-n}{2} \tag{3.1}
\end{equation*}
$$

Proof. If the conclusion of Theorem 3.1 does not hold, then

$$
\begin{equation*}
i_{L_{1}}(\gamma)+S_{P^{2}}^{+}(1)-v_{L_{0}}(\gamma) \leqslant \frac{1-n}{2} . \tag{3.2}
\end{equation*}
$$

In the following we shall obtain a contradiction from (3.2). Hence (3.1) holds and Theorem 3.1 is proved.
Since $n \geqslant 3$ and n is odd, in the following of the proof of Theorem 3.1 we write $n=2 p+1$ for some $p \in \mathbf{N}$. We denote $Q=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where A, B, C, D are $(n-1) \times(n-1)$ matrices. Then since Q is a symplectic matrix we have

$$
\begin{align*}
& A^{T} C=C^{T} A, \quad B^{T} D=D^{T} B, \quad A B^{T}=B A^{T}, \quad C D^{T}=D C^{T} \tag{3.3}\\
& A D^{T}-B C^{T}=I_{n-1}, \quad A^{T} D-C^{T} B=I_{n-1} \tag{3.4}\\
& \operatorname{dim} \operatorname{ker} B=v_{L_{0}}(\gamma)-1, \quad \quad \text { dimker } C=v_{L_{1}}(\gamma)-1 \tag{3.5}
\end{align*}
$$

Since $\gamma^{2}(t)=\gamma(t-\tau) \gamma(\tau)$ for all $t \in[\tau, 2 \tau]$ we have γ^{2} is also the twice iteration of γ in the periodic boundary value case, so by the Bott-type formula (cf. Theorem 9.2.1 of [16]) and the proof of Lemma 4.1 of [17] we have

$$
\begin{align*}
& i\left(\gamma^{2}\right)+2 S_{P^{2}}^{+}(1)-v\left(\gamma^{2}\right) \\
& \quad=2 i(\gamma)+2 S_{P}^{+}(1)+\sum_{\theta \in(0, \pi)} S_{P}^{+}\left(e^{\sqrt{-1} \theta}\right)-\sum_{\theta \in(0, \pi)} S_{P}^{-}\left(e^{\sqrt{-1} \theta}\right)+\left(v(P)-S_{P}^{-}(1)\right)+\left(v_{-1}(P)-S_{P}^{-}(-1)\right) \\
& \quad \geqslant 2 n+2 S_{P}^{+}(1)-n \\
& \quad=n+2 S_{P}^{+}(1) \\
& \quad \geqslant n \tag{3.6}
\end{align*}
$$

where we have used the condition $i(\gamma) \geqslant n$ and $S_{P^{2}}^{+}(1)=S_{P}^{+}(1)+S_{P}^{+}(-1), \nu\left(\gamma^{2}\right)=\nu(\gamma)+v_{-1}(\gamma)$. By Proposition C of [17] and Proposition 6.1 of [14] we have

$$
\begin{equation*}
i_{L_{0}}(\gamma)+i_{L_{1}}(\gamma)=i\left(\gamma^{2}\right)-n, \quad v_{L_{0}}(\gamma)+v_{L_{1}}(\gamma)=v\left(\gamma^{2}\right) \tag{3.7}
\end{equation*}
$$

So by (3.6) and (3.7) we have

$$
\begin{align*}
& \left(i_{L_{1}}(\gamma)+S_{P^{2}}^{+}(1)-v_{L_{0}}(\gamma)\right)+\left(i_{L_{0}}(\gamma)+S_{P^{2}}^{+}(1)-v_{L_{1}}(\gamma)\right) \\
& \quad=i\left(\gamma^{2}\right)+2 S_{P^{2}}^{+}(1)-v\left(\gamma^{2}\right)-n \\
& \quad \geqslant n-n \\
& \quad=0 \tag{3.8}
\end{align*}
$$

By Theorem 2.1 and Lemma 2.6 we have

$$
\begin{align*}
& \left(i_{L_{1}}(\gamma)+S_{P^{2}}^{+}(1)-v_{L_{0}}(\gamma)\right)-\left(i_{L_{0}}(\gamma)+S_{P^{2}}^{+}(1)-v_{L_{1}}(\gamma)\right) \\
& \quad=i_{L_{1}}(\gamma)-i_{L_{0}}(\gamma)-v_{L_{0}}(\gamma)+v_{L_{1}}(\gamma) \\
& \quad=-\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(Q)-\frac{1}{2} \operatorname{sgn} M_{\varepsilon}\left(-I_{2}\right) \\
& \quad=-\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(Q) \\
& \geqslant 1-n . \tag{3.9}
\end{align*}
$$

So by (3.8) and (3.9) we have

$$
\begin{equation*}
i_{L_{1}}(\gamma)+S_{P^{2}}^{+}(1)-v_{L_{0}}(\gamma) \geqslant \frac{1-n}{2} \tag{3.10}
\end{equation*}
$$

By (3.2), the inequality of (3.10) must be equality. Then both (3.6) and (3.9) are equality. So we have

$$
\begin{align*}
& i\left(\gamma^{2}\right)+2 S_{P^{2}}^{+}(1)-v\left(\gamma^{2}\right)=n \tag{3.11}\\
& i_{L_{1}}(\gamma)+S_{P^{2}}^{+}(1)-v_{L_{0}}(\gamma)=\frac{1-n}{2} \tag{3.12}\\
& i_{L_{0}}(\gamma)+v_{L_{0}}(\gamma)-i_{L_{1}}(\gamma)-v_{L_{1}}(\gamma)=n-1 . \tag{3.13}
\end{align*}
$$

Thus by (3.6), (3.11), Theorem 1.8.10 of [16], and Lemma 2.1 we have

$$
P \approx\left(-I_{2}\right)^{\diamond p_{1}} \diamond N_{1}(1,-1)^{\diamond p_{2}} \diamond N_{1}(-1,1)^{\diamond p_{3}} \diamond R\left(\theta_{1}\right) \diamond R\left(\theta_{2}\right) \diamond \cdots \diamond R\left(\theta_{p_{4}}\right),
$$

where $p_{j} \geqslant 0$ for $j=1,2,3,4, p_{1}+p_{2}+p_{3}+p_{4}=n$ and $\theta_{j} \in(0, \pi)$ for $1 \leqslant j \leqslant p_{4}$. Otherwise by (3.6) and Lemma 2.1 we have $i\left(\gamma^{2}\right)+2 S_{P^{2}}^{+}(1)-v\left(\gamma^{2}\right)>n$ which contradicts to (3.11). So by Remark 2.1, we have

$$
\begin{equation*}
P^{2} \approx I_{2}^{\diamond p_{1}} \diamond N_{1}(1,-1)^{\diamond p_{2}} \diamond R\left(\theta_{1}\right) \diamond R\left(\theta_{2}\right) \diamond \cdots \diamond R\left(\theta_{p_{3}}\right) \tag{3.14}
\end{equation*}
$$

where $p_{i} \geqslant 0$ for $1 \leqslant i \leqslant 3, p_{1}+p_{2}+p_{3}=n$ and $\theta_{j} \in(0,2 \pi)$ for $1 \leqslant j \leqslant p_{3}$.
Note that, since $\gamma^{2}(t)=\gamma(t-\tau) \gamma(\tau)$, we have

$$
\begin{equation*}
\gamma^{2}(2 \tau)=\gamma(\tau)^{2}=P^{2} . \tag{3.15}
\end{equation*}
$$

By Definition 2.5 we have

$$
\begin{equation*}
\gamma^{2}(2 \tau)=N \gamma(\tau)^{-1} N \gamma(\tau)=N P^{-1} N P . \tag{3.16}
\end{equation*}
$$

So by (3.15) and (3.16) we have

$$
\begin{equation*}
P^{2}=N P^{-1} N P \tag{3.17}
\end{equation*}
$$

By (3.17), Lemma 2.4, and $P \sim\left(-I_{2}\right) \diamond Q$ we have

$$
\begin{align*}
P^{2} & =N P^{-1} N P \\
& \approx N\left(\left(-I_{2}\right) \diamond Q\right)^{-1} N\left(\left(-I_{2}\right) \diamond Q\right) \\
& =I_{2} \diamond\left(N_{n-1} Q^{-1} N_{n-1} Q\right) . \tag{3.18}
\end{align*}
$$

So by (3.14), we have

$$
\begin{equation*}
p_{1} \geqslant 1 \tag{3.19}
\end{equation*}
$$

Also by (3.18) and Lemma 2.5, we have

$$
\begin{equation*}
P^{2} \approx I_{2} \diamond\left(N_{n-1} Q^{\prime-1} N_{n-1} Q^{\prime}\right), \quad \forall Q^{\prime} \sim Q \text { where } Q^{\prime} \in \operatorname{Sp}(2 n-2) \tag{3.20}
\end{equation*}
$$

By (3.14) it is easy to check that

$$
\begin{equation*}
\operatorname{tr}\left(P^{2}\right)=2 n-2 p_{3}+2 \sum_{j=1}^{p_{3}} \cos \theta_{j} . \tag{3.21}
\end{equation*}
$$

By (3.11), (3.14) and Lemma 2.1 we have

$$
n=i\left(\gamma^{2}\right)+2 S_{P^{2}}^{+}(1)-v\left(\gamma^{2}\right)=i\left(\gamma^{2}\right)-p_{2} \geqslant i\left(\gamma^{2}\right)-n+1 .
$$

So

$$
\begin{equation*}
i\left(\gamma^{2}\right) \leqslant 2 n-1 \tag{3.22}
\end{equation*}
$$

By (3.7) we have

$$
\begin{equation*}
i\left(\gamma^{2}\right)=n+i_{L_{0}}(\gamma)+i_{L_{1}}(\gamma) \tag{3.23}
\end{equation*}
$$

Since $i_{L_{0}}(\gamma) \geqslant 0$ and $i_{L_{1}}(\gamma) \geqslant 0$, we have $n \leqslant i\left(\gamma^{2}\right) \leqslant 2 n-1$. So we can divide the index $i\left(\gamma^{2}\right)$ into the following three cases.

Case I. $i\left(\gamma^{2}\right)=n$.
In this case, by (3.7), $i_{L_{0}}(\gamma) \geqslant 0$, and $i_{L_{1}}(\gamma) \geqslant 0$, we have

$$
\begin{equation*}
i_{L_{0}}(\gamma)=0=i_{L_{1}}(\gamma) . \tag{3.24}
\end{equation*}
$$

So by (3.13) we have

$$
\begin{equation*}
v_{L_{0}}(\gamma)-v_{L_{1}}(\gamma)=n-1 . \tag{3.25}
\end{equation*}
$$

Since $\nu_{L_{1}}(\gamma) \geqslant 1$ and $\nu_{L_{0}}(\gamma) \leqslant n$, we have

$$
\begin{equation*}
\nu_{L_{0}}(\gamma)=n, \quad \nu_{L_{1}}(\gamma)=1 . \tag{3.26}
\end{equation*}
$$

By (3.7) we have

$$
\begin{equation*}
v\left(\gamma^{2}\right)=v\left(P^{2}\right)=n+1 \tag{3.27}
\end{equation*}
$$

By (3.12), (3.24) and (3.26) we have

$$
\begin{equation*}
S_{P^{2}}^{+}(1)=\frac{1-n}{2}+n=\frac{1+n}{2}=p+1 . \tag{3.28}
\end{equation*}
$$

So by (3.14), (3.27), (3.28), and Lemma 2.1 we have

$$
\begin{equation*}
P^{2} \approx I_{2}^{\diamond(p+1)} \diamond R\left(\theta_{1}\right) \diamond \cdots \diamond R\left(\theta_{p}\right), \tag{3.29}
\end{equation*}
$$

where $\theta_{j} \in(0,2 \pi)$. By (3.5) and (3.26) we have $B=0$. By (3.18), (3.3), and (3.4), we have

$$
\begin{aligned}
P^{2} & =N P^{-1} N P \approx I_{2} \diamond\left(N_{n-1} Q^{-1} N_{n-1} Q\right) \\
& =I_{2} \diamond\left(\begin{array}{cc}
D^{T} & 0 \\
C^{T} & A^{T}
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
C & D
\end{array}\right) \\
& =I_{2} \diamond\left(\begin{array}{cc}
D^{T} A & 0 \\
2 C^{T} A & A D^{T}
\end{array}\right) \\
& =I_{2} \diamond\left(\begin{array}{cc}
I_{2 p} & 0 \\
2 A^{T} C & I_{2 p}
\end{array}\right) .
\end{aligned}
$$

Hence $\sigma\left(P^{2}\right)=\{1\}$ which contradicts to (3.29) since $p \geqslant 1$.
Case II. $i\left(\gamma^{2}\right)=n+2 k$, where $1 \leqslant k \leqslant p$.
In this case by (3.7) we have

$$
i_{L_{0}}(\gamma)+i_{L_{1}}(\gamma)=2 k
$$

Since $i_{L_{0}}(\gamma) \geqslant 0$ and $i_{L_{1}}(\gamma) \geqslant 0$ we can write $i_{L_{0}}(\gamma)=k+r$ and $i_{L_{1}}(\gamma)=k-r$ for some integer $-k \leqslant r \leqslant k$. Then by (3.13) we have

$$
\begin{equation*}
n-1 \geqslant v_{L_{0}}(\gamma)-v_{L_{1}}(\gamma)=n-2 r-1 . \tag{3.30}
\end{equation*}
$$

Thus $r \geqslant 0$ and $0 \leqslant r \leqslant k$.
By Theorem 2.1 and (i) of Lemma 2.5 we have

$$
\begin{equation*}
2 r=i_{L_{0}}(\gamma)-i_{L_{1}}(\gamma)=\frac{1}{2} M_{\varepsilon}(P) \leqslant n-v_{L_{0}}(P) \tag{3.31}
\end{equation*}
$$

which yields that $v_{L_{0}}(\gamma) \leqslant n-2 r$. So by (3.30) and $\nu_{L_{1}}(\gamma) \geqslant 1$ we have

$$
\begin{equation*}
v_{L_{0}}(\gamma)=n-2 r, \quad v_{L_{1}}(\gamma)=1 \tag{3.32}
\end{equation*}
$$

Then by (3.12) we have

$$
\begin{equation*}
S_{P^{2}}^{+}(1)=(n-2 r)+\frac{1-n}{2}-(k-r)=\frac{1+n}{2}-k-r=p+1-k-r . \tag{3.33}
\end{equation*}
$$

Then by (3.14) and $v\left(P^{2}\right)=n-2 r+1$ and Lemma 2.1 we have

$$
\begin{equation*}
P^{2} \approx I_{2}^{\diamond(p+1-k-r)} \diamond N_{1}(1,-1)^{\diamond 2 k} \diamond R\left(\theta_{1}\right) \diamond \cdots \diamond R\left(\theta_{q}\right), \tag{3.34}
\end{equation*}
$$

where $q=n-(p+1-k-r)-2 k=p+r-k \geqslant 0$. Then we have the following three subcases (i)-(iii).
(i) $q=0$.

The only possibility is $k=p$ and $r=0$, in this case $P^{2} \approx I_{2} \diamond N_{1}(1,-1)^{\diamond 2 p}$ and $B=0$. By direct computation we have

$$
N_{1}(1,-1)^{\diamond 2 p} \approx N_{2 p} Q^{-1} N_{2 p} Q=\left(\begin{array}{cc}
I_{n-1} & 0 \tag{3.35}\\
2 A^{T} C & I_{n-1}
\end{array}\right) .
$$

Then by Lemma 2.3 we have

$$
m^{+}\left(A^{T} C\right)=2 p
$$

By (ii) of Lemma 2.5 we have

$$
\begin{equation*}
\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(Q) \leqslant 2 p-2 p=0, \quad 0<-\varepsilon \ll 1 . \tag{3.36}
\end{equation*}
$$

Thus by (3.36) and Theorem 2.1, for $0<-\varepsilon \ll 1$ we have

$$
\begin{aligned}
& \left(i_{L_{0}}(\gamma)+v_{L_{0}}(\gamma)\right)-\left(i_{L_{1}}(\gamma)+v_{L_{1}}(\gamma)\right) \\
& \quad=\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(P) \\
& \quad=\frac{1}{2} \operatorname{sgn} M_{\varepsilon}\left(I_{2}\right)+\frac{1}{2} M_{\varepsilon}(Q) \\
& \quad=0+\frac{1}{2} M_{\varepsilon}(Q) \\
& \quad \leqslant 0
\end{aligned}
$$

which contradicts (3.13).
(ii) $q>0$ and $r=0$.

In this case $\nu_{L_{0}}(\gamma)=n$ and $\nu_{L_{1}}(\gamma)=1$, also we have $B=0$. By the equality of (3.35) we have

$$
\operatorname{tr}\left(P^{2}\right)=2 n
$$

which contradicts to (3.21) with $p_{3}=q>0$.
(iii) $q>0$ and $r>0$.

In this case, by (3.33) we have $r<p$. (Otherwise, then $p=r=k$. From (3.19) there holds $S_{P^{2}}^{+}(1) \geqslant 1$, so from (3.33) we have $1 \leqslant S_{P^{2}}^{+}(1)=1-p \leqslant 0$ a contradiction.) Here it is easy to see rank $B=2 r$. Then there are two invertible $2 p \times 2 p$ matrices U and V with $\operatorname{det} U>0$ and $\operatorname{det} V>0$ such that

$$
U B V=\left(\begin{array}{cc}
I_{2 r} & 0 \\
0 & 0
\end{array}\right) .
$$

So there holds

$$
Q \sim \operatorname{diag}\left(U,\left(U^{T}\right)^{-1}\right) Q \operatorname{diag}\left(\left(V^{T}\right)^{-1}, V\right)=\left(\begin{array}{cccc}
A_{1} & B_{1} & I_{2 r} & 0 \tag{3.37}\\
C_{1} & D_{1} & 0 & 0 \\
A_{3} & B_{3} & A_{2} & B_{2} \\
C_{3} & D_{3} & C_{2} & D_{2}
\end{array}\right):=Q_{1},
$$

where for $j=1,2,3, A_{j}$ is a $2 r \times 2 r$ matrix, D_{j} is a $(2 p-2 r) \times(2 p-2 r)$ matrix for $j=1,2,3, B_{j}$ is a $2 r \times(2 p-2 r)$ matrix, and C_{j} is $(2 p-2 r) \times 2 r$ matrix. Since Q_{1} is still a symplectic matrix, we have $Q_{1}^{T} J_{2 p} Q_{1}=J_{2 p}$, then it is easy to check that

$$
\begin{equation*}
C_{1}=0, \quad B_{2}=0 \tag{3.38}
\end{equation*}
$$

So

$$
Q_{1}=\left(\begin{array}{cccc}
A_{1} & B_{1} & I_{2 r} & 0 \tag{3.39}\\
0 & D_{1} & 0 & 0 \\
A_{3} & B_{3} & A_{2} & 0 \\
C_{3} & D_{3} & C_{2} & D_{2}
\end{array}\right) .
$$

So for the case (iii) of Case II, we have the following Subcases 1-3.
Subcase 1. $A_{3}=0$.
In this case since Q_{1} is symplectic, by direct computation we have

$$
N_{2 p} Q_{1}^{-1} N_{2 p} Q_{1}=\left(\begin{array}{cccc}
I_{2 r} & * & * & * \\
* & I_{2 p-2 r} & * & * \\
* & * & I_{2 r} & * \\
* & * & * & I_{2 p-2 r}
\end{array}\right)
$$

Hence we have

$$
\operatorname{tr}\left(N_{2 p} Q_{1}^{-1} N_{2 p} Q_{1}\right)=4 p
$$

Since $Q_{1} \sim Q$, we have

$$
\begin{equation*}
P \sim\left(-I_{2}\right) \diamond Q_{1} . \tag{3.40}
\end{equation*}
$$

Then by the proof of Lemma 2.4 we have

$$
\begin{align*}
\operatorname{tr} P^{2} & =\operatorname{tr}\left(N P^{-1} N P\right) \\
& =\operatorname{tr} N\left(\left(-I_{2}\right) \diamond Q_{1}\right)^{-1} N\left(\left(-I_{2}\right) \diamond Q_{1}\right) \\
& =\operatorname{tr} I_{2} \diamond\left(N_{2 p} Q_{1}^{-1} N_{2 p} Q_{1}\right) \\
& =4 p+2=2 n . \tag{3.41}
\end{align*}
$$

By (3.21) and $p_{3}=q>0$ we have

$$
\begin{equation*}
\operatorname{tr}\left(P^{2}\right)<2 n . \tag{3.42}
\end{equation*}
$$

(3.41) and (3.42) yield a contradiction.

Subcase 2. A_{3} is invertible.
By Q_{1} is symplectic we have

$$
\left(\begin{array}{cc}
A_{1}^{T} & 0 \tag{3.43}\\
B_{1}^{T} & D_{1}^{T}
\end{array}\right)\left(\begin{array}{cc}
A_{2} & 0 \\
C_{2} & D_{2}
\end{array}\right)-\left(\begin{array}{cc}
A_{3}^{T} & C_{3}^{T} \\
B_{3}^{T} & D_{3}^{T}
\end{array}\right)\left(\begin{array}{cc}
I_{2 r} & 0 \\
0 & 0
\end{array}\right)=I_{2 p} .
$$

Hence

$$
\begin{equation*}
D_{1}^{T} D_{2}=I_{2 p-2 r} \tag{3.44}
\end{equation*}
$$

By direct computation we have

$$
\left(\begin{array}{cccc}
A_{1} & B_{1} & I_{2 r} & 0 \\
0 & D_{1} & 0 & 0 \\
A_{3} & B_{3} & A_{2} & 0 \\
C_{3} & D_{3} & C_{2} & D_{2}
\end{array}\right)\left(\begin{array}{cccc}
I_{2 r} & -A_{3}^{-1} B_{3} & 0 & 0 \\
0 & I_{2 p-2 r} & 0 & 0 \\
0 & 0 & I_{2 r} & 0 \\
0 & 0 & B_{3}^{T}\left(A_{3}^{T}\right)^{-1} & I_{2 p-2 r}
\end{array}\right)=\left(\begin{array}{cccc}
A_{1} & \tilde{B}_{1} & I_{2 r} & 0 \\
0 & D_{1} & 0 & 0 \\
A_{3} & 0 & A_{2} & 0 \\
C_{3} & \tilde{D}_{3} & \tilde{C}_{2} & D_{2}
\end{array}\right) .
$$

So by (3.44) we have

$$
\left(\begin{array}{cccc}
I_{2 r} & -\tilde{B}_{1} D_{2}^{T} & 0 & 0 \\
0 & I_{2 p-2 r} & 0 & 0 \\
0 & 0 & I_{2 r} & 0 \\
0 & 0 & D_{2} \tilde{B}_{1}^{T} & I_{2 p-2 r}
\end{array}\right)\left(\begin{array}{cccc}
A_{1} & \tilde{B}_{1} & I_{2 r} & 0 \\
0 & D_{1} & 0 & 0 \\
A_{3} & 0 & A_{2} & 0 \\
C_{3} & \tilde{D}_{3} & \tilde{C}_{2} & D_{2}
\end{array}\right)=\left(\begin{array}{cccc}
A_{1} & 0 & I_{2 r} & 0 \\
0 & D_{1} & 0 & 0 \\
A_{3} & 0 & A_{2} & 0 \\
\tilde{C}_{3} & \tilde{D}_{3} & \hat{C}_{2} & D_{2}
\end{array}\right):=Q_{2}
$$

Then we have

$$
\begin{equation*}
Q_{2} \sim Q_{1} \sim Q \tag{3.45}
\end{equation*}
$$

Since Q_{2} is a symplectic matrix, we have $Q_{2}^{T} J_{2 p} Q_{2}=J_{2 p}$, then it is easy to check that

$$
\begin{equation*}
\tilde{C}_{3}=0, \quad \hat{C}_{2}=0 \tag{3.46}
\end{equation*}
$$

Hence we have

$$
Q_{2}=\left(\begin{array}{cc}
A_{1} & I_{2 r} \tag{3.47}\\
A_{3} & A_{2}
\end{array}\right) \diamond\left(\begin{array}{cc}
D_{1} & 0 \\
\tilde{D}_{3} & D_{2}
\end{array}\right) .
$$

Since

$$
N_{2 p-2 r}\left(\begin{array}{cc}
D_{1} & 0 \tag{3.48}\\
\tilde{D}_{3} & D_{2}
\end{array}\right)^{-1} N_{2 p-2 r}\left(\begin{array}{cc}
D_{1} & 0 \\
\tilde{D}_{3} & D_{2}
\end{array}\right)=\left(\begin{array}{cc}
I_{2 p-2 r} & 0 \\
2 D_{1}^{T} \tilde{D}_{3} & I_{2 p-2 r}
\end{array}\right),
$$

by (3.45), (3.20), and Lemma 2.4, there is a symplectic matrix W such that

$$
P^{2} \approx I_{2} \diamond W \diamond\left(\begin{array}{cc}
I_{2 p-2 r} & 0 \tag{3.49}\\
2 D_{1}^{T} \tilde{D}_{3} & I_{2 p-2 r}
\end{array}\right) .
$$

Then by (3.14) and Lemma 2.3, $D_{1}^{T} \tilde{D}_{3}$ is semipositive and

$$
1+m^{0}\left(D_{1}^{T} \tilde{D}_{3}\right) \leqslant S_{P^{2}}^{+}(1)
$$

So by (3.33) we have

$$
\begin{equation*}
m^{0}\left(D_{1}^{T} \tilde{D}_{3}\right) \leqslant p+1-k-r-1=p-k-r=(2 p-2 r)-(p+k-r) \leqslant 2 p-2 r-1 . \tag{3.50}
\end{equation*}
$$

Since $D_{1}^{T} \tilde{D}_{3}$ is a semipositive $(2 p-2 r) \times(2 p-2 r)$ matrix, by (3.50) we have $m^{+}\left(D_{1}^{T} \tilde{D}_{3}\right)>0$. Then by Theorem 2.1,
(ii) of Lemma 2.5 and Lemma 2.6, for $0<-\varepsilon \ll 1$ we have

$$
\begin{align*}
& \left(i_{L_{0}}(\gamma)+v_{L_{0}}(\gamma)\right)-\left(i_{L_{1}}(\gamma)+v_{L_{1}}(\gamma)\right) \\
& \quad=\frac{1}{2}\left(M_{\varepsilon}\left(-I_{2}\right)+M_{\varepsilon}\left(\left(\begin{array}{cc}
A_{1} & I_{2 r} \\
A_{3} & A_{2}
\end{array}\right)\right)+M_{\varepsilon}\left(\left(\begin{array}{cc}
D_{1} & 0 \\
\tilde{D}_{3} & D_{2}
\end{array}\right)\right)\right) \\
& \quad \leqslant \frac{1}{2}(0+4 r+2(2 p-2 r-1)) \\
& \quad=2 p-1 \\
& \quad=n-2 \tag{3.51}
\end{align*}
$$

which contradicts to (3.13).
Subcase 3. $A_{3} \neq 0$ and A_{3} is not invertible.
In this case, suppose rank $A_{3}=\lambda$, then $0<\lambda<2 r$. There is an invertible $2 r \times 2 r$ matrix G with $\operatorname{det} G>0$ such that

$$
G A_{3} G^{-1}=\left(\begin{array}{cc}
\Lambda & 0 \tag{3.52}\\
0 & 0
\end{array}\right)
$$

where Λ is a $\lambda \times \lambda$ invertible matrix. Then we have

$$
\left.\left.\begin{array}{l}
\left(\begin{array}{cccc}
\left(G^{T}\right)^{-1} & 0 & 0 & 0 \\
0 & I_{2 p-2 r} & 0 & 0 \\
0 & 0 & G & 0 \\
0 & 0 & 0 & I_{2 p-2 r}
\end{array}\right)\left(\begin{array}{cccc}
A_{1} & B_{1} & I_{2 r} & 0 \\
0 & D_{1} & 0 & 0 \\
A_{3} & B_{3} & A_{2} & 0 \\
C_{3} & D_{3} & C_{2} & D_{2}
\end{array}\right)\left(\begin{array}{ccc}
(G)^{-1} & 0 & 0 \\
0 & I_{2 p-2 r} & 0 \\
0 & 0 & G^{T}
\end{array} 0^{0}\right. \\
0 \tag{3.53}\\
0
\end{array}\right) 0 \begin{array}{l}
I_{2 p-2 r}
\end{array}\right) .
$$

By (3.52) we can write Q_{3} as the following block form

$$
Q_{3}=\left(\begin{array}{cccccc}
U_{1} & U_{2} & F_{1} & I_{\lambda} & 0 & 0 \tag{3.54}\\
U_{3} & U_{4} & F_{2} & 0 & I_{2 r-\lambda} & 0 \\
0 & 0 & D_{1} & 0 & 0 & 0 \\
\Lambda & 0 & E_{1} & W_{1} & W_{2} & 0 \\
0 & 0 & E_{2} & W_{3} & W_{4} & 0 \\
G_{1} & G_{2} & D_{3} & K_{1} & K_{2} & D_{2}
\end{array}\right)
$$

Let $R_{1}=\left(\begin{array}{ccc}I_{\lambda} & 0 & 0 \\ 0 & I_{2 r-\lambda} & 0 \\ -G_{1} \Lambda^{-1} & 0 & I_{2 p-2 r}\end{array}\right)$ and $R_{2}=\left(\begin{array}{ccc}I_{\lambda} & 0 & -\Lambda^{-1} E_{1} \\ 0 & I_{2 r-\lambda} & 0 \\ 0 & 0 & I_{2 p-2 r}\end{array}\right)$. By (3.54) we have

$$
\operatorname{diag}\left(\left(R_{1}^{T}\right)^{-1}, R_{1}\right) Q_{3} \operatorname{diag}\left(R_{2},\left(R_{2}^{T}\right)^{-1}\right)=\left(\begin{array}{cccccc}
U_{1} & U_{2} & \tilde{F}_{1} & I_{\lambda} & 0 & 0 \\
U_{3} & U_{4} & \tilde{F}_{2} & 0 & I_{2 r-\lambda} & 0 \\
0 & 0 & D_{1} & 0 & 0 & 0 \\
\Lambda & 0 & 0 & W_{1} & W_{2} & 0 \\
0 & 0 & E_{2} & W_{3} & W_{4} & 0 \\
0 & G_{2} & \tilde{D}_{3} & \tilde{K}_{1} & \tilde{K}_{2} & D_{2}
\end{array}\right):=Q_{4}
$$

Since Q_{4} is a symplectic matrix we have

$$
Q_{4}^{T} J Q_{4}=J
$$

Then by (3.55) and direct computation we have $U_{2}=0, U_{3}=0, W_{2}=0, W_{3}=0, \tilde{F}_{1}=0, \tilde{K}_{1}=0$, and U_{1}, U_{4}, W_{1}, W_{4} are all symmetric matrices, and

$$
\begin{align*}
& U_{4} W_{4}=I_{2 r-\lambda}, \tag{3.55}\\
& D_{1} D_{2}^{T}=I_{2 p-2 r}, \tag{3.56}\\
& U_{4} \tilde{E}_{2}=G_{2}^{T} D_{1}, \tag{3.57}
\end{align*}
$$

So

$$
Q_{4}=\left(\begin{array}{cccccc}
U_{1} & 0 & 0 & I_{\lambda} & 0 & 0 \tag{3.58}\\
0 & U_{4} & \tilde{F}_{2} & 0 & I_{2 r-\lambda} & 0 \\
0 & 0 & D_{1} & 0 & 0 & 0 \\
\Lambda & 0 & 0 & W_{1} & 0 & 0 \\
0 & 0 & \tilde{E}_{2} & 0 & W_{4} & 0 \\
0 & G_{2} & \tilde{D}_{3} & 0 & K_{2} & D_{2}
\end{array}\right) .
$$

By (3.55)-(3.57), we have both \tilde{E}_{2} and G_{2} are zero or nonzero. By Definition 2.3 we have $Q_{4} \sim Q_{3} \sim Q$. Then by (3.32), $\left(\begin{array}{ccc}\Lambda & 0 & 0 \\ 0 & 0 & \tilde{E}_{2} \\ 0 & G_{2} & \tilde{D}_{3}\end{array}\right)$ is invertible. So both \tilde{E}_{2} and G_{2} are nonzero.

Since Q_{4} is symplectic, by (3.57) we have

$$
\left(\begin{array}{ccc}
U_{1} & 0 & 0 \tag{3.59}\\
0 & U_{4} & \tilde{F}_{2} \\
0 & 0 & D_{1}
\end{array}\right)^{T}\left(\begin{array}{ccc}
\Lambda & 0 & 0 \\
0 & 0 & \tilde{E}_{2} \\
0 & G_{2} & \tilde{D}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
U_{1} \Lambda & 0 & 0 \\
0 & 0 & U_{4} \tilde{E}_{2} \\
0 & \left(U_{4} \tilde{E}_{2}\right)^{T} & D_{1}^{T} \tilde{D}_{3}+\tilde{B}_{2}^{T} \tilde{E}_{2}
\end{array}\right)
$$

which is a symmetric matrix.
Denote $F=\left(\begin{array}{cc}0 & U_{4} \tilde{E}_{2} \\ \left(U_{4} \tilde{E}_{2}\right)^{T} & D_{1}^{T} \tilde{D}_{3}+\tilde{B}_{2}^{T} \tilde{E}_{2}\end{array}\right)$. Since $U_{4} \tilde{E}_{2}$ is nonzero, in the following we prove that $m^{+}(F) \geqslant 1$.
Note that here $U_{4} \tilde{E}_{2}$ is a $(2 r-\lambda) \times(2 p-2 r)$ matrix and $D_{1}^{T} \tilde{D}_{3}+\tilde{B}_{2}^{T} \tilde{E}_{2}$ is a $(2 p-2 r) \times(2 p-2 r)$ matrix. Denote $U_{4} \tilde{E}_{2}=\left(e_{i j}\right)$ and $D_{1}^{T} \tilde{D}_{3}+\tilde{B}_{2}^{T} \tilde{E}_{2}=\left(d_{i j}\right)$, where $e_{i j}$ and $d_{i j}$ are elements on the i-th row and j-th column of the corresponding matrix. Since $U_{4} \tilde{E}_{2}$ is nonzero, there exists an $e_{i j} \neq 0$ for some $1 \leqslant i \leqslant 2 r-\lambda$ and $1 \leqslant j \leqslant 2 p-2 r$. Let $x=\left(0, \ldots, 0, e_{i j}, 0, \ldots, 0\right)^{T} \in \mathbf{R}^{2 r-\lambda}$ whose i-th row is $e_{i j}$ and other rows are all zero, and $y=(0, \ldots, 0, \rho, 0, \ldots, 0)^{T} \in \mathbf{R}^{2 p-2 r}$ whose j-th row is ρ and other rows are all zero. Then we have

$$
F\binom{x}{y} \cdot\binom{x}{y}=2 \rho e_{i j}^{2}-\rho^{2} d_{j j}>0
$$

for $\rho>0$ small enough. Hence the dimension of positive definite space of F is at least 1 , thus $m^{+}(F) \geqslant 1$. Then

$$
m^{+}\left(\left(\begin{array}{ccc}
U_{1} \Lambda & 0 & 0 \tag{3.60}\\
0 & 0 & U_{4} \tilde{E}_{2} \\
0 & \left(U_{4} \tilde{E}_{2}\right)^{T} & D_{1}^{T} \tilde{D}_{3}+\tilde{B}_{2}^{T} \tilde{E}_{2}
\end{array}\right)\right)=m^{+}(\Lambda)+m^{+}(F) \geqslant 1 .
$$

Then by (3.59), (3.60) and (ii) of Lemma 2.5, we have

$$
\begin{equation*}
\frac{1}{2} \operatorname{sgn} M_{\varepsilon}\left(Q_{4}\right) \leqslant 2 p-1=n-2, \quad 0<-\varepsilon \ll 1 . \tag{3.61}
\end{equation*}
$$

Since $Q \sim Q_{4}$, by (3.61) and Lemma 2.4 we have

$$
\begin{equation*}
\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(Q) \leqslant 2 p-1, \quad 0<-\varepsilon \ll 1 . \tag{3.62}
\end{equation*}
$$

Then since $P \sim\left(-I_{2}\right) \diamond Q$, by Theorem 2.1, Remark 2.2 and Lemma 2.4 we have

$$
\begin{aligned}
& \left(i_{L_{0}}(\gamma)+v_{L_{0}}(\gamma)\right)-\left(i_{L_{1}}(\gamma)+v_{L_{1}}(\gamma)\right) \\
& \quad=\frac{1}{2} M_{\varepsilon}(P) \\
& \quad=\frac{1}{2} \operatorname{sgn} M_{\varepsilon}\left(\left(-I_{2}\right) \diamond Q\right) \\
& \quad=\frac{1}{2} \operatorname{sgn} M_{\varepsilon}\left(-I_{2}\right)+\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(Q)
\end{aligned}
$$

$$
\begin{align*}
& =0+\frac{1}{2} \operatorname{sgn} M_{\varepsilon}(Q) \\
& \leqslant n-2 \tag{3.63}
\end{align*}
$$

Thus (3.13) and (3.63) yields a contradiction. And in Case II we can always obtain a contradiction.
Case III. $i\left(\gamma^{2}\right)=n+2 k+1$, where $0 \leqslant k \leqslant p-1$.
In this case by (3.7) we have

$$
\begin{equation*}
i_{L_{0}}(\gamma)+i_{L_{1}}(\gamma)=2 k+1 \tag{3.64}
\end{equation*}
$$

Since $i_{L_{0}}(\gamma) \geqslant 0$ and $i_{L_{1}}(\gamma) \geqslant 0$ we can write $i_{L_{0}}(\gamma)=k+1+r$ and $i_{L_{1}}(\gamma)=k-r$ for some integer $-k \leqslant r \leqslant k$. Then by (3.13) we have

$$
\begin{equation*}
n-1 \geqslant v_{L_{0}}(\gamma)-v_{L_{1}}(\gamma)=n-2 r-2 \tag{3.65}
\end{equation*}
$$

Thus $r \geqslant 0$ and $0 \leqslant r \leqslant k$.
By Theorem 2.1 and (i) of Lemma 2.5 we have

$$
\begin{equation*}
2 r+1=i_{L_{0}}(\gamma)-i_{L_{1}}(\gamma)=\frac{1}{2} M_{\varepsilon}(P) \leqslant n-v_{L_{0}}(\gamma) \tag{3.66}
\end{equation*}
$$

which yields $\nu_{L_{0}}(\gamma) \leqslant n-2 r-1$. Then by (3.65) and $\nu_{L_{1}}(\gamma) \geqslant 1$ we have

$$
\begin{equation*}
v_{L_{0}}(\gamma)=n-2 r-1, \quad v_{L_{1}}(\gamma)=1 \tag{3.67}
\end{equation*}
$$

Then by (3.12) we have

$$
\begin{equation*}
S_{P^{2}}^{+}(1)=(n-2 r-1)+\frac{1-n}{2}-(k-r)=\frac{1+n}{2}-k-r-1=p-k-r \geqslant 1 \tag{3.68}
\end{equation*}
$$

Then by (3.14) and $\nu\left(P^{2}\right)=v_{L_{0}}(\gamma)+v_{L_{1}}(\gamma)=n-2 r$ and Lemma 2.1 we have

$$
P^{2} \approx I_{2}^{\diamond(p-k-r)} \diamond N_{1}(1,-1)^{\diamond(2 k+1)} \diamond R\left(\theta_{1}\right) \diamond \cdots \diamond R\left(\theta_{q}\right)
$$

where $q=n-(p-k-r)-(2 k+1)=p+r-k \geqslant p-k \geqslant 1$.
Since in this case rank $B=2 r+1 \leqslant n-2$, by the same argument of (iii) in Case II, we have

$$
Q \sim Q_{1}=\left(\begin{array}{cccc}
A_{1} & B_{1} & I_{2 r+1} & 0 \\
0 & D_{1} & 0 & 0 \\
A_{3} & B_{3} & A_{2} & 0 \\
C_{3} & D_{3} & C_{2} & D_{2}
\end{array}\right)
$$

Then by the same argument of Subcases $1,2,3$ of Case II, we can always obtain a contradiction in Case III. The proof of Theorem 3.1 is complete.

Now we are ready to give a proof of Theorem 1.1. For $\Sigma \in \mathcal{H}_{b}^{s, c}(2 n)$, let $j_{\Sigma}: \Sigma \rightarrow[0,+\infty)$ be the gauge function of Σ defined by

$$
j_{\Sigma}(0)=0, \quad \text { and } \quad j_{\Sigma}(x)=\inf \left\{\lambda>0 \left\lvert\, \frac{x}{\lambda} \in C\right.\right\}, \quad \forall x \in \mathbf{R}^{2 n} \backslash\{0\}
$$

where C is the domain enclosed by Σ.
Define

$$
\begin{equation*}
H_{\alpha}(x)=\left(j_{\Sigma}(x)\right)^{\alpha}, \quad \alpha>1, \quad H_{\Sigma}(x)=H_{2}(x), \quad \forall x \in \mathbf{R}^{2 n} \tag{3.69}
\end{equation*}
$$

Then $H_{\Sigma} \in C^{2}\left(\mathbf{R}^{2 n} \backslash\{0\}, \mathbf{R}\right) \cap C^{1,1}\left(\mathbf{R}^{2 n}, \mathbf{R}\right)$.

We consider the following fixed energy problem

$$
\begin{align*}
& \dot{x}(t)=J H_{\Sigma}^{\prime}(x(t)) \tag{3.70}\\
& H_{\Sigma}(x(t))=1 \tag{3.71}\\
& x(-t)=N x(t), \tag{3.72}\\
& x(\tau+t)=x(t), \quad \forall t \in \mathbf{R} . \tag{3.73}
\end{align*}
$$

Denote by $\mathcal{J}_{b}(\Sigma, 2)\left(\mathcal{J}_{b}(\Sigma, \alpha)\right.$ for $\alpha=2$ in (3.69)) the set of all solutions (τ, x) of problem (3.70)-(3.73) and by $\tilde{\mathcal{J}}_{b}(\Sigma, 2)$ the set of all geometrically distinct solutions of (3.70)-(3.73). By Remark 1.2 of [14] or discussion in [17], elements in $\mathcal{J}_{b}(\Sigma)$ and $\mathcal{J}_{b}(\Sigma, 2)$ are one-to-one correspondent. So we have ${ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma)={ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma, 2)$.

For readers' convenience in the following we list some known results which will be used in the proof of Theorem 1.1. In the following of this paper, we write $\left(i_{L_{0}}(\gamma, k), \nu_{L_{0}}(\gamma, k)\right)=\left(i_{L_{0}}\left(\gamma^{k}\right), \nu_{L_{0}}\left(\gamma^{k}\right)\right)$ for any symplectic path $\gamma \in \mathcal{P}_{\tau}(2 n)$ and $k \in \mathbf{N}$, where γ^{k} is defined by Definition 2.5. We have

Lemma 3.1. (See Theorem 1.5 of [14] and Theorem 4.3 of [18].) Let $\gamma_{j} \in \mathcal{P}_{\tau_{j}}(2 n)$ for $j=1, \ldots, q$. Let $M_{j}=$ $\gamma_{j}^{2}\left(2 \tau_{j}\right)=N \gamma_{j}\left(\tau_{j}\right)^{-1} N \gamma_{j}\left(\tau_{j}\right)$, for $j=1, \ldots, q$. Suppose

$$
\hat{i}_{L_{0}}\left(\gamma_{j}\right)>0, \quad j=1, \ldots, q
$$

Then there exist infinitely many $\left(R, m_{1}, m_{2}, \ldots, m_{q}\right) \in \mathbf{N}^{q+1}$ such that
(i) $\nu_{L_{0}}\left(\gamma_{j}, 2 m_{j} \pm 1\right)=v_{L_{0}}\left(\gamma_{j}\right)$,
(ii) $i_{L_{0}}\left(\gamma_{j}, 2 m_{j}-1\right)+v_{L_{0}}\left(\gamma_{j}, 2 m_{j}-1\right)=R-\left(i_{L_{1}}\left(\gamma_{j}\right)+n+S_{M_{j}}^{+}(1)-v_{L_{0}}\left(\gamma_{j}\right)\right)$,
(iii) $i_{L_{0}}\left(\gamma_{j}, 2 m_{j}+1\right)=R+i_{L_{0}}\left(\gamma_{j}\right)$.
and
(iv) $\nu\left(\gamma_{j}^{2}, 2 m_{j} \pm 1\right)=v\left(\gamma_{j}^{2}\right)$,
(v) $i\left(\gamma_{j}^{2}, 2 m_{j}-1\right)+v\left(\gamma_{j}^{2}, 2 m_{j}-1\right)=2 R-\left(i\left(\gamma_{j}^{2}\right)+2 S_{M_{j}}^{+}(1)-v\left(\gamma_{j}^{2}\right)\right)$,
(vi) $i\left(\gamma_{j}^{2}, 2 m_{j}+1\right)=2 R+i\left(\gamma_{j}^{2}\right)$,
where we have set $i\left(\gamma_{j}^{2}, n_{j}\right)=i\left(\gamma_{j}^{2 n_{j}},\left[0,2 n_{j} \tau_{j}\right]\right), \nu\left(\gamma_{j}^{2}, n_{j}\right)=\nu\left(\gamma_{j}^{2 n_{j}},\left[0,2 n_{j} \tau_{j}\right]\right)$ for $n_{j} \in \mathbf{N}$.
Lemma 3.2. (See Lemma 1.1 of [14].) Let $(\tau, x) \in \mathcal{J}_{b}(\Sigma, 2)$ be symmetric in the sense that $x\left(t+\frac{\tau}{2}\right)=-x(t)$ for all $t \in \mathbf{R}$ and γ be the associated symplectic path of (τ, x). Set $M=\gamma\left(\frac{\tau}{2}\right)$. Then there is a continuous symplectic path

$$
\Psi(s)=P(s) M P(s)^{-1}, \quad s \in[0,1],
$$

such that

$$
\begin{aligned}
& \Psi(0)=M, \quad \Psi(1)=\left(-I_{2}\right) \diamond \tilde{M}, \quad \tilde{M} \in S p(2 n-2), \\
& v_{1}(\Psi(s))=v_{1}(M), \quad v_{2}(\Psi(s))=v_{2}(M), \quad \forall s \in[0,1],
\end{aligned}
$$

where $P(s)=\left(\begin{array}{cc}\psi(s)^{-1} & 0 \\ 0 & \psi(s)^{T}\end{array}\right)$ and ψ is a continuous $n \times n$ matrix path with $\operatorname{det} \psi(s)>0$ for all $s \in[0,1]$.
For any $(\tau, x) \in \mathcal{J}_{b}(\Sigma, 2)$ and $m \in \mathbf{N}$, as in [14] we denote $i_{L_{j}}(x, m)=i_{L_{j}}\left(\gamma_{x}^{m},\left[0, \frac{m \tau}{2}\right]\right)$ and $\nu_{L_{j}}(x, m)=$ $\nu_{L_{j}}\left(\gamma_{x}^{m},\left[0, \frac{m \tau}{2}\right]\right)$ for $j=0,1$ respectively. Also we denote $i(x, m)=i\left(\gamma_{x}^{2 m},[0, m \tau]\right)$ and $\nu(x, m)=v\left(\gamma_{x}^{2 m},[0, m \tau]\right)$. If $m=1$, we denote $i(x)=i(x, 1)$ and $\nu(x)=v(x, 1)$. By Lemma 6.3 of [14] we have

Lemma 3.3. Suppose ${ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma)<+\infty$. Then there exist an integer $K \geqslant 0$ and an injection map $\phi: \mathbf{N}+K \mapsto$ $\mathcal{J}_{b}(\Sigma, 2) \times \mathbf{N}$ such that
(i) For any $k \in \mathbf{N}+K,[(\tau, x)] \in \mathcal{J}_{b}(\Sigma, 2)$ and $m \in \mathbf{N}$ satisfying $\phi(k)=([(\tau, x)]$, $m)$, there holds

$$
i_{L_{0}}(x, m) \leqslant k-1 \leqslant i_{L_{0}}(x, m)+v_{L_{0}}(x, m)-1,
$$

where x has minimal period τ.
(ii) For any $k_{j} \in \mathbf{N}+K$, $k_{1}<k_{2}$, $\left(\tau_{j}, x_{j}\right) \in \mathcal{J}_{b}(\Sigma, 2)$ satisfying $\phi\left(k_{j}\right)=\left(\left[\left(\tau_{j}, x_{j}\right)\right], m_{j}\right)$ with $j=1,2$ and $\left[\left(\tau_{1}, x_{1}\right)\right]=\left[\left(\tau_{2}, x_{2}\right)\right]$, there holds

$$
m_{1}<m_{2} .
$$

Lemma 3.4. (See Lemma 7.2 of [14].) Let $\gamma \in \mathcal{P}_{\tau}(2 n)$ be extended to $[0,+\infty)$ by $\gamma(\tau+t)=\gamma(t) \gamma(\tau)$ for all $t>0$. Suppose $\gamma(\tau)=M=P^{-1}\left(I_{2} \diamond \tilde{M}\right) P$ with $\tilde{M} \in \operatorname{Sp}(2 n-2)$ and $i(\gamma) \geqslant n$. Then we have

$$
i(\gamma, 2)+2 S_{M^{2}}^{+}(1)-v(\gamma, 2) \geqslant n+2 .
$$

Lemma 3.5. (See Lemma 7.3 of [14].) For any $(\tau, x) \in \mathcal{J}_{b}(\Sigma, 2)$ and $m \in \mathbf{N}$, we have

$$
\begin{aligned}
& i_{L_{0}}(x, m+1)-i_{L_{0}}(x, m) \geqslant 1, \\
& i_{L_{0}}(x, m+1)+v_{L_{0}}(x, m+1)-1 \geqslant i_{L_{0}}(x, m+1)>i_{L_{0}}(x, m)+v_{L_{0}}(x, m)-1 .
\end{aligned}
$$

Proof of Theorem 1.1. By Theorem 1.1 of [14] we have ${ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma) \geqslant\left[\frac{n}{2}\right]+1$ for $n \in \mathbf{N}$. So we only need to prove Theorem 1.1 for the case $n \geqslant 3$ and n is odd. The method of the proof is similar as that of [14].

It is suffices to consider the case ${ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma)<+\infty$. Since $-\Sigma=\Sigma$, for $(\tau, x) \in \mathcal{J}_{b}(\Sigma, 2)$ we have

$$
\begin{align*}
& H_{\Sigma}(x)=H_{\Sigma}(-x), \\
& H_{\Sigma}^{\prime}(x)=-H_{\Sigma}^{\prime}(-x), \\
& H_{\Sigma}^{\prime \prime}(x)=H_{\Sigma}^{\prime \prime}(-x) . \tag{3.74}
\end{align*}
$$

So $(\tau,-x) \in \mathcal{J}_{b}(\Sigma, 2)$. By (3.74) and the definition of γ_{x} we have that

$$
\gamma_{x}=\gamma-x .
$$

So we have

$$
\begin{align*}
& \left(i_{L_{0}}(x, m), v_{L_{0}}(x, m)\right)=\left(i_{L_{0}}(-x, m), v_{L_{0}}(-x, m)\right), \\
& \left(i_{L_{1}}(x, m), v_{L_{1}}(x, m)\right)=\left(i_{L_{1}}(-x, m), v_{L_{1}}(-x, m)\right), \quad \forall m \in \mathbf{N} . \tag{3.75}
\end{align*}
$$

So we can write

$$
\begin{equation*}
\tilde{\mathcal{J}}_{b}(\Sigma, 2)=\left\{\left[\left(\tau_{j}, x_{j}\right)\right] \mid j=1, \ldots, p\right\} \cup\left\{\left[\left(\tau_{k}, x_{k}\right)\right],\left[\left(\tau_{k},-x_{k}\right)\right] \mid k=p+1, \ldots, p+q\right\}, \tag{3.76}
\end{equation*}
$$

with $x_{j}(\mathbf{R})=-x_{j}(\mathbf{R})$ for $j=1, \ldots, p$ and $x_{k}(\mathbf{R}) \neq-x_{k}(\mathbf{R})$ for $k=p+1, \ldots, p+q$. Here we remind that $\left(\tau_{j}, x_{j}\right)$ has minimal period τ_{j} for $j=1, \ldots, p+q$ and $x_{j}\left(\frac{\tau_{j}}{2}+t\right)=-x_{j}(t), t \in \mathbf{R}$ for $j=1, \ldots, p$.

By Lemma 3.3 we have an integer $K \geqslant 0$ and an injection map $\phi: \mathbf{N}+K \rightarrow \mathcal{J}_{b}(\Sigma, 2) \times \mathbf{N}$. By (3.75), $\left(\tau_{k}, x_{k}\right)$ and ($\tau_{k},-x_{k}$) have the same ($i_{L_{0}}, v_{L_{0}}$)-indices. So by Lemma 3.3, without loss of generality, we can further require that

$$
\begin{equation*}
\operatorname{Im}(\phi) \subseteq\left\{\left[\left(\tau_{k}, x_{k}\right)\right] \mid k=1,2, \ldots, p+q\right\} \times \mathbf{N} . \tag{3.77}
\end{equation*}
$$

By the strict convexity of H_{Σ} and (6.19) of [14], we have

$$
\hat{i}_{L_{0}}\left(x_{k}\right)>0, \quad k=1,2, \ldots, p+q
$$

Applying Lemma 3.1 to the following associated symplectic paths

$$
\gamma_{1}, \ldots, \gamma_{p+q}, \gamma_{p+q+1}, \ldots, \gamma_{p+2 q}
$$

of $\left(\tau_{1}, x_{1}\right), \ldots,\left(\tau_{p+q}, x_{p+q}\right),\left(2 \tau_{p+1}, x_{p+1}^{2}\right), \ldots,\left(2 \tau_{p+q}, x_{p+q}^{2}\right)$ respectively, there exists a vector $\left(R, m_{1}, \ldots\right.$, $\left.m_{p+2 q}\right) \in \mathbf{N}^{p+2 q+1}$ such that $R>K+n$ and

$$
\begin{align*}
& i_{L_{0}}\left(x_{k}, 2 m_{k}+1\right)=R+i_{L_{0}}\left(x_{k}\right) \tag{3.78}\\
& i_{L_{0}}\left(x_{k}, 2 m_{k}-1\right)+v_{L_{0}}\left(x_{k}, 2 m_{k}-1\right)=R-\left(i_{L_{1}}\left(x_{k}\right)+n+S_{M_{k}}^{+}(1)-v_{L_{0}}\left(x_{k}\right)\right) \tag{3.79}
\end{align*}
$$

for $k=1, \ldots, p+q, M_{k}=\gamma_{k}^{2}\left(\tau_{k}\right)$, and

$$
\begin{align*}
& i_{L_{0}}\left(x_{k}, 4 m_{k}+2\right)=R+i_{L_{0}}\left(x_{k}, 2\right), \tag{3.80}\\
& i_{L_{0}}\left(x_{k}, 4 m_{k}-2\right)+v_{L_{0}}\left(x_{k}, 4 m_{k}-2\right)=R-\left(i_{L_{1}}\left(x_{k}, 2\right)+n+S_{M_{k}}^{+}(1)-v_{L_{0}}\left(x_{k}, 2\right)\right) \tag{3.81}
\end{align*}
$$

for $k=p+q+1, \ldots, p+2 q$ and $M_{k}=\gamma_{k}^{4}\left(2 \tau_{k}\right)=\gamma_{k}^{2}\left(\tau_{k}\right)^{2}$.
By Lemma 3.1, we also have

$$
\begin{align*}
& i\left(x_{k}, 2 m_{k}+1\right)=2 R+i\left(x_{k}\right), \tag{3.82}\\
& i\left(x_{k}, 2 m_{k}-1\right)+v\left(x_{k}, 2 m_{k}-1\right)=2 R-\left(i\left(x_{k}\right)+2 S_{M_{k}}^{+}(1)-v\left(x_{k}\right)\right), \tag{3.83}
\end{align*}
$$

for $k=1, \ldots, p+q, M_{k}=\gamma_{k}^{2}\left(\tau_{k}\right)$, and

$$
\begin{align*}
& i\left(x_{k}, 4 m_{k}+2\right)=2 R+i\left(x_{k}, 2\right), \tag{3.84}\\
& i\left(x_{k}, 4 m_{k}-2\right)+v\left(x_{k}, 4 m_{k}-2\right)=2 R-\left(i\left(x_{k}, 2\right)+2 S_{M_{k}}^{+}(1)-v\left(x_{k}, 2\right)\right), \tag{3.85}
\end{align*}
$$

for $k=p+q+1, \ldots, p+2 q$ and $M_{k}=\gamma_{k}^{4}\left(2 \tau_{k}\right)=\gamma_{k}^{2}\left(\tau_{k}\right)^{2}$.
From (3.77), we can set

$$
\phi(R-(s-1))=\left(\left[\left(\tau_{k(s)}, x_{k(s)}\right)\right], m(s)\right), \quad \forall s \in S:=\left\{1,2, \ldots,\left[\frac{n+1}{2}\right]+1\right\},
$$

where $k(s) \in\{1,2, \ldots, p+q\}$ and $m(s) \in \mathbf{N}$.
We continue our proof to study the symmetric and asymmetric orbits separately. Let

$$
S_{1}=\{s \in S \mid k(s) \leqslant p\}, \quad S_{2}=S \backslash S_{1} .
$$

We shall prove that ${ }^{\#} S_{1} \leqslant p$ and ${ }^{\#} S_{2} \leqslant 2 q$, together with the definitions of S_{1} and S_{2}, these yield Theorem 1.1.
Claim 1. ${ }^{\#} S_{1} \leqslant p$.
Proof. By the definition of $S_{1},\left(\left[\left(\tau_{k(s)}, x_{k(s)}\right)\right], m(s)\right)$ is symmetric when $k(s) \leqslant p$. We further prove that $m(s)=$ $2 m_{k(s)}$ for $s \in S_{1}$.

In fact, by the definition of ϕ and Lemma 3.3, for all $s=1,2, \ldots,\left[\frac{n+1}{2}\right]+1$ we have

$$
\begin{align*}
i_{L_{0}}\left(x_{k(s)}, m(s)\right) & \leqslant(R-(s-1))-1=R-s \\
& \leqslant i_{L_{0}}\left(x_{k(s)}, m(s)\right)+v_{L_{0}}\left(x_{k(s)}, m(s)\right)-1 . \tag{3.86}
\end{align*}
$$

By the strict convexity of H_{Σ} and Lemma 2.2, we have $i_{L_{0}}\left(x_{k(s)}\right) \geqslant 0$, so there holds

$$
\begin{equation*}
i_{L_{0}}\left(x_{k(s)}, m(s)\right) \leqslant R-s<R \leqslant R+i_{L_{0}}\left(x_{k(s)}\right)=i_{L_{0}}\left(x_{k(s)}, 2 m_{k(s)}+1\right), \tag{3.87}
\end{equation*}
$$

for every $s=1,2, \ldots,\left[\frac{n+1}{2}\right]+1$, where we have used (3.78) in the last equality. Note that the proofs of (3.86) and (3.87) do not depend on the condition $s \in S_{1}$.

By Lemma 3.2, $\gamma_{x_{k}}$ satisfies conditions of Theorem 3.1 with $\tau=\frac{\tau_{k}}{2}$. Note that by definition $i_{L_{1}}\left(x_{k}\right)=i_{L_{1}}\left(\gamma_{x_{k}}\right)$ and $\nu_{L_{0}}\left(x_{k}\right)=\nu_{L_{0}}\left(\gamma_{x_{k}}\right)$. So by Theorem 3.1 we have

$$
\begin{equation*}
i_{L_{1}}\left(x_{k}\right)+S_{M_{k}}^{+}(1)-v_{L_{0}}\left(x_{k}\right)>\frac{1-n}{2}, \quad \forall k=1, \ldots, p \tag{3.88}
\end{equation*}
$$

Also for $1 \leqslant s \leqslant\left[\frac{n+1}{2}\right]+1$, we have

$$
\begin{equation*}
-\frac{n+3}{2}=-\left(\left[\frac{n+1}{2}\right]+1\right) \leqslant-s . \tag{3.89}
\end{equation*}
$$

Hence by (3.86), (3.88) and (3.89), if $k(s) \leqslant p$ we have

$$
\begin{align*}
& i_{L_{0}}\left(x_{k(s)}, 2 m_{k(s)}-1\right)+v_{L_{0}}\left(x_{k(s)}, 2 m_{k(s)}-1\right)-1 \\
& \quad=R-\left(i_{L_{1}}\left(x_{k(s)}\right)+n+S_{M_{k(s)}}^{+}(1)-v_{L_{0}}\left(x_{k(s)}\right)\right)-1 \\
& \quad<R-\frac{1-n}{2}-1-n=R-\frac{n+3}{2} \leqslant R-s \\
& \quad \leqslant i_{L_{0}}\left(x_{k(s)}, m(s)\right)+v_{L_{0}}\left(x_{k(s)}, m(s)\right)-1 . \tag{3.90}
\end{align*}
$$

Thus by (3.87) and (3.90) and Lemma 3.5 of [14] we have

$$
\begin{equation*}
2 m_{k(s)}-1<m(s)<2 m_{k(s)}+1 . \tag{3.91}
\end{equation*}
$$

Hence

$$
\begin{equation*}
m(s)=2 m_{k(s)} . \tag{3.92}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\phi(R-s+1)=\left(\left[\left(\tau_{k(s)}, x_{k(s)}\right)\right], 2 m_{k(s)}\right), \quad \forall s \in S_{1} . \tag{3.93}
\end{equation*}
$$

Then by the injectivity of ϕ, it induces another injection map

$$
\begin{equation*}
\phi_{1}: S_{1} \rightarrow\{1, \ldots, p\}, \quad s \mapsto k(s) \tag{3.94}
\end{equation*}
$$

Therefore ${ }^{\#} S_{1} \leqslant p$. Claim 1 is proved.
Claim 2. ${ }^{\#} S_{2} \leqslant 2 q$.
Proof. By the formulas (3.82)-(3.85), and (59) of [13] (also Claim 4 on p. 352 of [16]), we have

$$
\begin{equation*}
m_{k}=2 m_{k+q} \quad \text { for } k=p+1, p+2, \ldots, p+q . \tag{3.95}
\end{equation*}
$$

We set $\mathcal{A}_{k}=i_{L_{1}}\left(x_{k}, 2\right)+S_{M_{k}}^{+}(1)-v_{L_{0}}\left(x_{k}, 2\right)$ and $\mathcal{B}_{k}=i_{L_{0}}\left(x_{k}, 2\right)+S_{M_{k}}^{+}(1)-v_{L_{1}}\left(x_{k}, 2\right), p+1 \leqslant k \leqslant p+q$, where $M_{k}=\gamma_{k}\left(2 \tau_{k}\right)=\gamma\left(\tau_{k}\right)^{2}$. By (3.7), we have

$$
\begin{equation*}
\mathcal{A}_{k}+\mathcal{B}_{k}=i\left(x_{k}, 2\right)+2 S_{M_{k}}^{+}(1)-v\left(x_{k}, 2\right)-n, \quad p+1 \leqslant k \leqslant p+q . \tag{3.96}
\end{equation*}
$$

By similar discussion of the proof of Lemma 3.2, for any $p+1 \leqslant k \leqslant p+q$ there exist $P_{k} \in \operatorname{Sp}(2 n)$ and $\tilde{M}_{k} \in$ $\operatorname{Sp}(2 n-2)$ such that

$$
\gamma\left(\tau_{k}\right)=P_{k}^{-1}\left(I_{2} \diamond \tilde{M}_{k}\right) P_{k} .
$$

Hence by Lemma 3.4 and (3.96), we have

$$
\begin{equation*}
\mathcal{A}_{k}+\mathcal{B}_{k} \geqslant n+2-n=2 . \tag{3.97}
\end{equation*}
$$

By Theorem 2.1, there holds

$$
\begin{equation*}
\left|\mathcal{A}_{k}-\mathcal{B}_{k}\right|=\left|\left(i_{L_{0}}\left(x_{k}, 2\right)+v_{L_{0}}\left(x_{k}, 2\right)\right)-\left(i_{L_{1}}\left(x_{k}, 2\right)+v_{L_{1}}\left(x_{k}, 2\right)\right)\right| \leqslant n . \tag{3.98}
\end{equation*}
$$

So by (3.97) and (3.98) we have

$$
\begin{equation*}
\mathcal{A}_{k} \geqslant \frac{1}{2}\left(\left(\mathcal{A}_{k}+\mathcal{B}_{k}\right)-\left|\mathcal{A}_{k}-\mathcal{B}_{k}\right|\right) \geqslant \frac{2-n}{2}, \quad p+1 \leqslant k \leqslant p+q . \tag{3.99}
\end{equation*}
$$

By (3.81), (3.86), (3.89), (3.95) and (3.99), for $p+1 \leqslant k(s) \leqslant p+q$ we have

$$
\begin{align*}
& i_{L_{0}}\left(x_{k(s)}, 2 m_{k(s)}-2\right)+v_{L_{0}}\left(x_{k(s)}, 2 m_{k(s)}-2\right)-1 \\
& \quad=i_{L_{0}}\left(x_{k(s)}, 4 m_{k(s)+q}-2\right)+v_{L_{0}}\left(x_{k(s)}, 4 m_{k(s)+q}-2\right)-1 \\
& \quad=R-\left(i_{L_{1}}\left(x_{k(s)}, 2\right)+n+S_{M_{k(s)}}^{+}(1)-v_{L_{0}}\left(x_{k(s)}, 2\right)\right)-1 \\
& \quad=R-\mathcal{A}_{k(s)}-1-n \\
& \quad \leqslant R-\frac{2-n}{2}-1-n \\
& \quad=R-\left(2+\frac{n}{2}\right) \\
& \quad<R-\frac{n+3}{2} \\
& \quad \leqslant R-s \\
& \quad \leqslant i_{L_{0}}\left(x_{k(s)}, m(s)\right)+v_{L_{0}}\left(x_{k(s)}, m(s)\right)-1 . \tag{3.100}
\end{align*}
$$

Thus by (3.87), (3.100) and Lemma 3.5, we have

$$
2 m_{k(s)}-2<m(s)<2 m_{k(s)}+1, \quad p<k(s) \leqslant p+q .
$$

So

$$
m(s) \in\left\{2 m_{k(s)}-1,2 m_{k(s)}\right\}, \quad \text { for } p<k(s) \leqslant p+q .
$$

Especially this yields that for any s_{0} and $s \in S_{2}$, if $k(s)=k\left(s_{0}\right)$, then

$$
m(s) \in\left\{2 m_{k(s)}-1,2 m_{k(s)}\right\}=\left\{2 m_{k\left(s_{0}\right)}-1,2 m_{k\left(s_{0}\right)}\right\} .
$$

Thus by the injectivity of the map ϕ from Lemma 3.3, we have

$$
\#\left\{s \in S_{2} \mid k(s)=k\left(s_{0}\right)\right\} \leqslant 2
$$

which yields Claim 2.
By Claim 1 and Claim 2, we have

$$
{ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma)={ }^{\#} \tilde{\mathcal{J}}_{b}(\Sigma, 2)=p+2 q \geqslant{ }^{\#} S_{1}+{ }^{\#} S_{2}=\left[\frac{n+1}{2}\right]+1 .
$$

The proof of Theorem 1.1 is complete.
Proof of Theorem 1.2. By [13], there are at least n closed characteristics on every C^{2} compact convex central symmetric hypersurface Σ of $\mathbf{R}^{2 n}$. Hence by Example 1.1 the assumption of Theorem 1.2 is reasonable. Here we prove the case $n=5$, the proof of the case $n=4$ is the same.

We call a closed characteristic x on Σ a dual brake orbit on Σ if $x(-t)=-N x(t)$. Then by the similar proof of Lemma 3.1 of [22], a closed characteristic x on Σ can became a dual brake orbit after suitable time translation if and only if $x(\mathbf{R})=-N x(\mathbf{R})$. So by Lemma 3.1 of [22] again, if a closed characteristic x on Σ can both became brake orbits and dual brake orbits after suitable translation, then $x(\mathbf{R})=N x(\mathbf{R})=-N x(\mathbf{R})$. Thus $x(\mathbf{R})=-x(\mathbf{R})$.

Since we also have $-N \Sigma=\Sigma,(-N)^{2}=I_{2 n}$ and $(-N) J=-J(-N)$, dually by the same proof of Theorem 1.1, there are at least $[(n+1) / 2]+1=4$ geometrically distinct dual brake orbits on Σ.

If there are exactly 5 closed characteristics on Σ. By Theorem 1.1, four closed characteristics of them must be brake orbits after suitable time translation, then the fifth, say y, must be brake orbits after suitable time translation, otherwise $N y(-\cdot)$ will be the sixth geometrically distinct closed characteristic on Σ which yields a contradiction. Hence all closed characteristics on Σ must be brake orbits on Σ. By the same argument we can prove that all closed characteristics on Σ must be dual brake orbits on Σ. Then by the argument in the second paragraph of the proof of this theorem, all these five closed characteristics on Σ must be symmetric. Hence all of them must be symmetric brake orbits after suitable time translation. Thus we have proved the case $n=5$ of Theorem 1.2 and the proof of Theorem 1.2 is complete.

References

[1] A. Ambrosetti, V. Benci, Y. Long, A note on the existence of multiple brake orbits, Nonlinear Anal. 21 (1993) 643-649.
[2] V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 401-412.
[3] V. Benci, F. Giannoni, A new proof of the existence of a brake orbit, in: Advanced Topics in the Theory of Dynamical Systems, in: Notes Rep. Math. Sci. Eng., vol. 6, 1989, pp. 37-49.
[4] S. Bolotin, Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1978) $72-77$ (in Russian).
[5] S. Bolotin, V.V. Kozlov, Librations with many degrees of freedom, J. Appl. Math. Mech. 42 (1978) 245-250 (in Russian).
[6] S.E. Cappell, R. Lee, E.Y. Miller, On the Maslov-type index, Comm. Pure Appl. Math. 47 (1994) 121-186.
[7] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990.
[8] H. Gluck, W. Ziller, Existence of periodic solutions of conservative systems, in: Seminar on Minimal Submanifolds, Princeton University Press, 1983, pp. 65-98.
[9] E.W.C. van Groesen, Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988) 1-12.
[10] K. Hayashi, Periodic solution of classical Hamiltonian systems, Tokyo J. Math. 6 (1983) 473-486.
[11] C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud. 7 (1) (2007) 131-161.
[12] C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math. 232 (1) (2007) 233-255.
[13] C. Liu, Y. Long, C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbf{R}^{2 n}$, Math. Ann. 323 (2) (2002) 201-215.
[14] C. Liu, D. Zhang, Iteration theory of L-index and multiplicity of brake orbits, arXiv:0908.0021v1 [math.SG].
[15] Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math. 187 (1999) 113-149.
[16] Y. Long, Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel, 2002.
[17] Y. Long, D. Zhang, C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math. 203 (2006) 568-635.
[18] Y. Long, C. Zhu, Closed characteristics on compact convex hypersurfaces in $\mathbf{R}^{2 n}$, Ann. of Math. 155 (2002) 317-368.
[19] P.H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian systems, Nonlinear Anal. 11 (1987) 599-611.
[20] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z. 51 (1948) 197-216.
[21] A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann. 283 (1989) 241-255.
[22] D. Zhang, Brake type closed characteristics on reversible compact convex hypersurfaces in $\mathbf{R}^{2 n}$, Nonlinear Anal. 74 (2011) 3149-3158.
[23] D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. Syst. (2013), in press, arXiv:1110.6915v1 [math.SG].

[^0]: * Corresponding author.

 E-mail addresses: zhangdz@nankai.edu.cn (D. Zhang), liucg@nankai.edu.cn (C. Liu).
 1 Partially supported by the NSF of China (10801078, 11171314, 11271200) and Nankai University.
 2 Partially supported by the NSF of China (11071127, 10621101), 973 Program of MOST (2011CB808002) and SRFDP.

