Renormalization for piecewise smooth homeomorphisms on the circle

Kleyber Cunha ${ }^{\mathrm{a}, \text {, }, 1}$, Daniel Smania ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, CEP 40170-110, Salvador, BA, Brazil
${ }^{\text {b }}$ Departamento de Matemática, ICMC/USP-Campus de São Carlos, Caixa Postal 668, CEP 13560-970, São Carlos, SP, Brazil

Received 9 December 2011; received in revised form 12 September 2012; accepted 26 September 2012
Available online 3 October 2012

Abstract

In this work we study the renormalization operator acting on piecewise smooth homeomorphisms on the circle, that turns out to be essentially the study of Rauzy-Veech renormalizations of generalized interval exchange maps with genus one. In particular we show that renormalizations of such maps with zero mean nonlinearity and satisfying certain smoothness and combinatorial assumptions converge to the set of piecewise affine interval exchange maps. Crown Copyright © 2012 Published by Elsevier Masson SAS. All rights reserved.

MSC: 37E10; 37E05; 37E20; 37C05; 37B10
Keywords: Renormalization; Interval exchange transformations; Rauzy-Veech induction; Universality; Homeomorphism on the circle; Convergence

1. Introduction and results

One of the most studied classes of dynamical systems are orientation-preserving diffeomorphisms of the circle. It may be classified according to their rotation number $\rho(f)$ which, roughly speaking, measures the average rate of rotation of orbits around the circle. When $\rho(f) \in \mathbb{Q}$ then f has a periodic point and all other orbits will converge to some periodic orbit both in the future and in the past. If $\rho(f)$ is irrational then f has not periodic point and its dynamics depends on the smoothness of f. Denjoy result ensures that if f is C^{2} then it is conjugate to the rigid rotation of angle $\rho(f)$. In this context, it is a natural question to ask under what conditions the conjugacy is smooth. Several authors, Herman [4], Yoccoz [17], Khanin and Sină̆ [7,14], Katznelson and Ornstein [6], have shown that if f is C^{3} or C^{2+v} and $\rho(f)$ satisfies certain Diophantine condition then the conjugacy will be at least C^{1}.

A natural generalization of diffeomorphisms of the circle are diffeomorphisms with breaks, i.e., f has jumps in the first derivative on finitely many points. In this setting Khanin and Vul [9] show that for diffeomorphisms with one

[^0]break the renormalization operator converges to a two-dimensional space of the fractional linear transformation. Our first main result generalizes results of Khanin and Vul [9] for finitely many break points. A key combinatorial method in our proof is to consider a piecewise smooth homeomorphism on the circle as a generalized interval exchange transformation.

Let I be an interval and let \mathcal{A} be a finite set (the alphabet) with $d \geqslant 2$ elements and $\mathcal{P}=\left\{I_{\alpha}: \alpha \in \mathcal{A}\right\}$ be an \mathcal{A}-indexed partition of I into subintervals. ${ }^{3}$ We say that the triple $(f, \mathcal{A}, \mathcal{P})$, where $f: I \rightarrow I$ is a bijection, is a generalized interval exchange transformation with d intervals (g.i.e.m. with d intervals, for short), if $\left.f\right|_{I_{\alpha}}$ is an orientation-preserving homeomorphism for each $\alpha \in \mathcal{A}$. Most of the time we will abuse the notation saying that f is a g.i.e.m. with d intervals. The order of the subintervals in the domain and image constitute the combinatorial data for f, which will be defined explicitly in the next section.

When $\left.f\right|_{I_{\alpha}}$ is a translation we say which f is a standard i.e.m. Standard i.e.m. arise naturally as Poincaré return maps of measured foliations and geodesic flows on translation surfaces. But they are also interesting examples of simple dynamical systems with very rich dynamics and have been extensively studied for their own sake. When $d=2$, by identifying the endpoints of I, standard i.e.m. correspond to rotations of the circle and generalized i.e.m. correspond to circle homeomorphisms.

In another article, Khanin and Sinaĭ [7] show a new proof of M. Herman's theorem. From the viewpoint of the renormalization group approach they show the convergence of the renormalizations of a circle diffeomorphism to the linear fixed point of the renormalization operator for diffeomorphisms of the circle. We use a similar approach to study generalized interval exchange maps of genus one.

1.1. Renormalization: Rauzy-Veech induction

To describe the combinatorial assumptions of our results, we need to introduce the Rauzy-Veech scheme. This is a renormalization scheme. Renormalization group techniques are a very powerful tool in one-dimensional dynamics. For example see Khanin and Vul [9] for circle homeomorphisms and de Melo and van Strien [3] for unimodal maps.

Following the algorithm of Rauzy [12] and Veech [15], for every i.e.m. f without connections, we define the Rauzy-Veech induction by considering the first return maps f_{n} of f on a decreasing sequence of intervals I^{n}, with the same left endpoint as I. The map f_{n} is again generalized i.e.m. with the same alphabet \mathcal{A} but the combinatorial data may be different.

Given two intervals J and U, we will write $J<U$ if their interiors are disjoint and $x<y$ for every $x \in J$ and $y \in U$. This defines a partial order in the set of all intervals. Denote the length of an interval J by $|J|$.

Let $f: I^{0} \rightarrow I^{0}$ be a g.i.e.m. with alphabet \mathcal{A} and $\pi_{j}: \mathcal{A} \rightarrow\{1, \ldots, d\}$, with $j=0,1$, be bijections such that

$$
I_{\alpha}<I_{\beta}
$$

iff $\pi_{0}(\alpha)<\pi_{0}(\beta)$ and

$$
f\left(I_{\alpha}\right)<f\left(I_{\beta}\right)
$$

iff $\pi_{1}(\alpha)<\pi_{1}(\beta)$.
The pair $\pi=\pi(f)=\left(\pi_{0}, \pi_{1}\right)$ is called the combinatorial data associated to the g.i.e.m. f. We call

$$
\begin{equation*}
p=\pi_{1} \circ \pi_{0}^{-1}:\{1, \ldots, d\} \rightarrow\{1, \ldots, d\} \tag{1}
\end{equation*}
$$

the monodromy invariant of the pair $\pi=\left(\pi_{0}, \pi_{1}\right)$. When appropriate we will use the notation $p=(p(1) p(2) \ldots p(d))$ for the data combinatorial of f. We also assume that the pair $\pi=\left(\pi_{0}, \pi_{1}\right)$ is irreducible, i.e., for all $j \in\{1, \ldots, d-1\}$ we have $\pi_{1} \circ \pi_{0}^{-1}(\{1, \ldots, j\}) \neq\{1, \ldots, j\}$.

For each $\varepsilon \in\{0,1\}$, define $\alpha(\varepsilon)=\pi_{\varepsilon}^{-1}(d)$. If $\left|I_{\alpha(0)}\right| \neq\left|f\left(I_{\alpha(1)}\right)\right|$ we say that f is Rauzy-Veech renormalizable (or simply renormalizable, from now on). If $\left|I_{\alpha(0)}\right|>\left|f\left(I_{\alpha(1)}\right)\right|$ we say that the letter $\alpha(0)$ is the winner and the letter $\alpha(1)$ is the loser. We say that f is type 0 renormalizable and we can define a map $\hat{R}(f)$ as the first return map of f to the interval

$$
I^{1}=I \backslash f\left(I_{\alpha(1)}\right) .
$$

[^1]Otherwise $\left|I_{\alpha(0)}\right|<\left|f\left(I_{\alpha(1)}\right)\right|$, the letter $\alpha(1)$ is the winner and the letter $\alpha(0)$ is the loser, we say that f is type 1 renormalizable and we can define a map $\hat{R}(f)$ as the first return map of f to the interval

$$
I^{1}=I \backslash I_{\alpha(0)}
$$

We want to see $R(f)$ as a g.i.e.m. To this end we need to associate to this map an \mathcal{A}-indexed partition of its domain. We do this in the following way. The subintervals of the \mathcal{A}-partition \mathcal{P}^{1} of I^{1} are denoted by I_{α}^{1}. If f has type $0, I_{\alpha}^{1}=I_{\alpha}$. If $\alpha \neq \alpha(0), I_{\alpha(0)}^{1}=I_{\alpha(0)} \backslash f\left(I_{\alpha(1)}\right)$ and when f has type $1, I_{\alpha}^{1}=I_{\alpha}$ if $\alpha \neq \alpha(1), \alpha(0), I_{\alpha(1)}^{1}=$ $f^{-1}\left(f\left(I_{\alpha(1)}\right) \backslash I_{\alpha(0)}\right)$ and $I_{\alpha(0)}^{1}=I_{\alpha(1)} \backslash I_{\alpha(1)}^{1}$. It is easy to see that in both cases (type 0 and 1) we have

$$
R(f)(x)= \begin{cases}f^{2}(x), & \text { if } x \in I_{\alpha(1-\varepsilon)}^{1} \\ f(x), & \text { otherwise }\end{cases}
$$

and $\left(R(f), \mathcal{A}, \mathcal{P}^{1}\right)$ is a g.i.e.m., called the Rauzy-Veech renormalization (or simply renormalization, for short) of f. If f is renormalizable with type $\varepsilon \in\{0,1\}$ then the combinatorial data $\pi^{1}=\left(\pi_{0}^{1}, \pi_{1}^{1}\right)$ of $R(f)$ is given by

$$
\pi_{\varepsilon}^{1}:=\pi_{\varepsilon}
$$

and

$$
\pi_{1-\varepsilon}^{1}(\alpha)= \begin{cases}\pi_{1-\varepsilon}(\alpha), & \text { if } \pi_{1-\varepsilon}(\alpha) \leqslant \pi_{1-\varepsilon}(\alpha(\varepsilon)) \\ \pi_{1-\varepsilon}(\alpha)+1, & \text { if } \pi_{1-\varepsilon}(\alpha(\varepsilon))<\pi_{1-\varepsilon}(\alpha)<d \\ \pi_{1-\varepsilon}(\alpha(\varepsilon))+1, & \text { if } \pi_{1-\varepsilon}(\alpha)=d\end{cases}
$$

Since π^{1} depends only on π and the type ε, we denote $r_{\varepsilon}(\pi)=\pi^{1}$.
A g.i.e.m. is infinitely renormalizable if $R^{n}(f)$ is well defined, for every $n \in \mathbb{N}$. For every interval of the form $J=[a, b)$ we denote $\partial J=\{a\}$. We say that a g.i.e.m. f has no connection if

$$
f^{m}\left(\partial I_{\alpha}\right) \neq \partial I_{\beta} \quad \text { for all } m \geqslant 1, \alpha, \beta \in \mathcal{A} \text { with } \pi_{0}(\beta) \neq 1
$$

This property is invariant under iteration of R. Keane [5] show that no connection condition is a necessary condition for f to be infinitely renormalizable.

Let ε_{n} be the type of the n-th renormalization, $\alpha_{n}\left(\varepsilon_{n}\right)$ be the winner and $\alpha_{n}\left(1-\varepsilon_{n}\right)$ be the loser of the n-th renormalization.

We say that infinitely renormalizable g.i.e.m. f has k-bounded combinatorics if for each n and $\beta, \gamma \in \mathcal{A}$ there exist $n_{1}, p \geqslant 0$, with $\left|n-n_{1}\right|<k$ and $\left|n-n_{1}-p\right|<k$, such that $\alpha_{n_{1}}\left(\varepsilon_{n_{1}}\right)=\beta, \alpha_{n_{1}+p}\left(1-\varepsilon_{n_{1}+p}\right)=\gamma$ and

$$
\alpha_{n_{1}+i}\left(1-\varepsilon_{n_{1}+p}\right)=\alpha_{n_{1}+i+1}\left(\varepsilon_{n_{1}+i}\right)
$$

for every $0 \leqslant i<p$.
We say that a g.i.e.m. $f: I \rightarrow I$ has genus one by Veech [16] (or belongs to the rotation class by Nogueira and Rudolph [11]) if f has at most two discontinuities. Note that every g.i.e.m. with either two or three intervals has genus one. If f is renormalizable and has genus one, it is easy to see that $R(f)$ has genus one.

Given two infinitely renormalizable g.i.e.m. f and g, defined with the same alphabet \mathcal{A}, we say that f and g have the same combinatorics if $\pi(f)=\pi(g)$ and the n-th renormalization of f and g have the same type, for every $n \in \mathbb{N}$. It follows that $\pi^{n}(f)=\pi^{n}(g)$ for every n, where $\pi^{n}(f)$ is the combinatorial data of the n-th renormalization of f.

Definition 1.1. Let $\mathcal{B}_{k}^{2+v}, k \in \mathbb{N}$ and $v>0$, be the set of g.i.e.m. $f: I \rightarrow I$ such that
(i) for each $\alpha \in \mathcal{A}$ we can extend f to $\overline{I_{\alpha}}$ as an orientation-preserving diffeomorphism of class $C^{2+\nu}$;
(ii) the g.i.e.m. f has k-bounded combinatorics;
(iii) the map f has genus one and has no connection.

Let H be a non-degenerate interval, let $g: H \rightarrow \mathbb{R}$ be a diffeomorphism and let $J \subset H$ be an interval. We define the $Z o o m$ of g in H, denoted by $\mathcal{Z}_{H}(g)$, the transformation $\mathcal{Z}_{H}(g)=A_{1} \circ g \circ A_{2}$, where A_{1} and A_{2} are
orientation-preserving affine maps, which send $[0,1]$ into H and $g(H)$ into $[0,1]$ respectively. Consider the set $C^{2}([0,1], \mathbb{R})$ of all C^{2} functions $g:[0,1] \rightarrow \mathbb{R}$ with the usual norm

$$
d_{C^{2}}(f, g):=\sum_{i=0}^{2} \sup _{x \in[0,1]}\left|D^{(i)} f(x)-D^{(i)} g(x)\right|,
$$

where $D^{(i)} f$ and $D^{(i)} g$ denote the i-th derivative of f and g respectively.
Denote by \mathcal{M} the set of Möbius transformations $M:[0,1] \rightarrow[0,1]$ such that $M(0)=0$ and $M(1)=1$. Note that \mathcal{M} is a one-dimensional real Lie group. Indeed any element $M \in \mathcal{M}$ has the form

$$
\begin{equation*}
M=M_{N}(x)=\frac{x e^{\frac{-N}{2}}}{1+x\left(e^{\frac{-N}{2}}-1\right)} \tag{2}
\end{equation*}
$$

for some $N \in \mathbb{R}$ and $M_{N_{1}} \circ M_{N_{2}}=M_{N_{1}+N_{2}}$. Moreover M_{N} is the unique Möbius transformation M which sends $[0,1]$ onto $[0,1], M(0)=0, M(1)=1$, and

$$
\int_{0}^{1} \frac{D^{2} M(x)}{D M(x)} d x=N
$$

1.2. Main results

Theorem 1. Let $f \in \mathcal{B}_{k}^{2+\nu}$. Then there are $C=C(f)>0$ and $0<\lambda=\lambda(k)<1$ such that

$$
\mathrm{d}_{C^{2}}\left(\mathcal{Z}_{I_{\alpha}^{n}}\left(R^{n}(f)\right), M_{N_{\alpha}^{n}}\right) \leqslant C \lambda^{n}
$$

for all $\alpha \in \mathcal{A}$. Here

$$
N_{\alpha}^{n}=\int_{I_{\alpha}^{n}} \frac{D^{2} R^{n}(f)(x)}{D R^{n}(f)(x)} d x .
$$

In particular

$$
\mathrm{d}_{C^{2}}\left(\mathcal{Z}_{I_{\alpha}^{n}}\left(R^{n}(f)\right), \mathcal{M}\right) \leqslant C \lambda^{n} .
$$

We can say more about the mean nonlinearities N_{α}^{n}. Denote by $q_{\alpha}^{n} \in \mathbb{N}$ the first return time of the interval I_{α}^{n} to the interval I^{n}, i.e., $\left.\hat{R}^{n}(f)\right|_{I_{\alpha}^{n}}=f^{q_{\alpha}^{n}}$, for some $q_{\alpha}^{n} \in \mathbb{N}$.

Theorem 2. Let $f \in \mathcal{B}_{k}^{2+\nu}$. Then there are $C=C(f)>0$ and $0<\lambda=\lambda(k)<1$ such that

$$
\begin{equation*}
\left|N_{\alpha}^{n}-\frac{\sum_{i=1}^{q_{\alpha}^{n}}\left|f^{i}\left(I_{\alpha}^{n}\right)\right|}{|I|} \int \frac{D^{2} f(x)}{D f(x)} d x\right| \leqslant C \lambda^{\sqrt{n}} . \tag{3}
\end{equation*}
$$

In particular if

$$
\int_{[0,1]} \frac{D^{2} f(x)}{D f(x)} d x=0
$$

then $\left|N_{\alpha}^{n}\right|<C \lambda \sqrt{n}$.
The rate of convergence obtained in (3) is enough for our purposes. In the case of circle diffeomorphisms Khanin and Teplinsky [8] obtained an exponential rate using a different approach.

Our third result is an almost direct consequence of Theorems 1 and 2.

Theorem 3. Let $f \in \mathcal{B}_{k}^{2+v}$ such that

$$
\int_{[0,1]} \frac{D^{2} f(x)}{D f(x)} d x=0 .
$$

Then there are $C=C(k)>0$ and $0<\lambda=\lambda(k)<1$ such that

$$
\left|\mathcal{Z}_{I_{\alpha}^{n}}\left(R^{n}(f)\right)-\mathrm{Id}\right|_{C^{2}} \leqslant C \cdot \lambda^{\sqrt{n}} \quad \text { for all } \alpha \in \mathcal{A} .
$$

The structure of this paper is as follows. In Section 2 we describe general results on compositions of diffeomorphisms of class $C^{2+\nu}$. In Section 3 we study renormalization of generalized interval exchange maps of genus one and prove Theorem 1. In Section 4 we codify the dynamics of f using a specially crafted symbolic dynamics to obtain finer geometric properties of the partitions associated with renormalizations of f and we finally prove Theorems 2 and 3.

This is the first of a series of two papers based on the Ph.D. Thesis of the first author Cunha [1]. In the second work [2] we continue our study of the renormalization operator for generalized interval exchange transformations of genus one and its consequences, particularly the rigidity (universality) phenomena in the setting of piecewise smooth homeomorphisms on the circle.

2. Comparing compositions of $\boldsymbol{C}^{\mathbf{2 + v}}$ maps with Möbius maps

In this section, we show some results about composition of $C^{2+\nu}$-diffeomorphisms, comparing these compositions with Möbius maps. Let $f:[a, b] \rightarrow[f(a), f(b)]$ be a C^{2} orientation-preserving diffeomorphism. Define the nonlinearity function $n_{f}:[a, b] \rightarrow \mathbb{R}$ by

$$
n_{f}(x)=\frac{D^{2} f(x)}{D f(x)}=D(\ln D f(x)) .
$$

Notice that

$$
n_{f \circ g}(x)=n_{f}(g(x)) D g(x)+n_{f}(x),
$$

consequently if f_{i} are C^{2}-diffeomorphisms such that $f=f_{n} \circ \cdots \circ f_{1}$ is defined in $[a, b]$ we have

$$
\begin{equation*}
\int_{[a, b]} \frac{D^{2} f(x)}{D f(x)} d x=\sum_{i=1}^{n} \int_{f^{i-1}[a, b]} \frac{D^{2} f_{i}(x)}{D f_{i}(x)} d x . \tag{4}
\end{equation*}
$$

If $[a, b]=[0,1]$ we define

$$
N_{f}=\int_{[0,1]} \frac{D^{2} f(x)}{D f(x)} d x
$$

The nonlinearity n_{f} defines f up to its domain and image. Indeed, given a continuous function $n:[0,1] \rightarrow \mathbb{R}$ there is unique C^{2}-diffeomorphism $f:[0,1] \rightarrow[0,1]$ such that $f(0)=0, f(1)=1$ and $n_{f}=n$. Indeed, see Martens [10]

$$
\begin{equation*}
f(x)=\frac{\int_{0}^{x} \exp \left(\int_{0}^{z} n(y) d y\right) d z}{\int_{0}^{1} \exp \left(\int_{0}^{z} n(y) d y\right) d z} \tag{5}
\end{equation*}
$$

Let $f:[0,1] \rightarrow[f(0), f(1)]$ be a C^{2} orientation-preserving diffeomorphism. If $[a, b] \subset[0,1]$, let $\tilde{f}=\mathcal{Z}_{[a, b]}(f)$ be the Zoom of f in $[a, b]$. Then

$$
\begin{equation*}
n_{\mathcal{Z}(f)}(x)=(b-a) \cdot n_{f}(a+x(b-a)) . \tag{6}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
\left|n_{f}(x)-n_{f}(y)\right| \leqslant C_{0} \cdot|x-y|^{\nu} \tag{7}
\end{equation*}
$$

for $x, y \in[0,1]$ and

$$
\left|n_{f}\right|_{C^{0}[0,1]}:=\sup _{x \in[0,1]}\left\{\left|n_{f}(x)\right|\right\} \leqslant C_{1} .
$$

Then by (7) and (6) we have that

$$
\begin{equation*}
\left|n_{\mathcal{Z}(f)}(x)-n_{\mathcal{Z}(f)}(y)\right| \leqslant C_{0} \cdot \delta^{1+v} \quad \text { and } \quad\left|n_{\mathcal{Z}(f)}\right|_{C^{0}[0,1]} \leqslant C_{1} \cdot \delta \tag{8}
\end{equation*}
$$

with $x, y \in[0,1]$ and $\delta=b-a$. Note that

$$
\begin{equation*}
N_{Z(f)}=\int_{0}^{1}(b-a) \cdot n_{f}(a+x(b-a)) d x=\int_{[a, b]} \frac{D^{2} f(x)}{D f(x)} d x . \tag{9}
\end{equation*}
$$

Proposition 2.1. Let $f:[0,1] \rightarrow[f(0), f(1)]$ be an orientation-preserving diffeomorphism of class $C^{2+v},[a, b] \subset$ $[0,1]$ and define $\tilde{f}=Z_{[a, b]} f$. Then

$$
\mathrm{d}_{C^{2}}\left(\tilde{f}, M_{N_{\tilde{f}}}\right)=\mathrm{O}\left(\delta^{1+v}\right)
$$

where $\delta=b-a$.
Before we prove Proposition 2.1 we prove the following lemma:
Lemma 2.2. Let $N \in \mathbb{R}$. Let $f_{N}:[0,1] \mapsto[0,1]$ be a diffeomorphism such that $n_{f}(x)=N$ for all $x \in[0,1], f(0)=0$, $f(1)=1$. Then

$$
\mathrm{d}_{C^{2}}\left(f_{N}, M_{N}\right)=\mathrm{O}\left(N^{2}\right)
$$

Proof. By (5) we have

$$
f_{N}(x)=\frac{\int_{0}^{x} e^{N z} d z}{\int_{0}^{1} e^{N z} d z}=\frac{e^{N x}-1}{e^{N}-1}
$$

Therefore,

$$
\begin{aligned}
\left|f_{N}(x)-M_{N}(x)\right| & =\left|\frac{e^{N x}-1}{e^{N}-1}-\frac{x e^{\frac{-N}{2}}}{1+x\left(e^{\frac{-N}{2}}-1\right)}\right| \\
= & \left|\frac{N x+\frac{N^{2} x^{2}}{2}+\mathrm{O}\left(N^{3}\right)}{N+\frac{N^{2}}{2}+\mathrm{O}\left(N^{3}\right)}-\frac{x\left(1-\frac{N}{2}+\mathrm{O}\left(N^{2}\right)\right)}{1+x\left(-\frac{N}{2}+\mathrm{O}\left(N^{2}\right)\right)}\right| \\
= & \left|x\left(1+\frac{N x}{2}-\frac{N}{2}\right)+\mathrm{O}\left(N^{2}\right)-x\left(1+\frac{N x}{2}-\frac{N}{2}\right)+\mathrm{O}\left(N^{2}\right)\right| \\
= & \mathrm{O}\left(N^{2}\right), \\
\left|D f_{N}(x)-D M_{N}(x)\right| & =\left|\frac{N e^{N x}}{e^{N}-1}-\frac{e^{\frac{-N}{2}}}{\left[1+x\left(e^{\frac{-N}{2}}-1\right)\right]^{2}}\right| \\
& =\left|\frac{\left(1+N x+\mathrm{O}\left(N^{2}\right)\right)}{\left(1+\frac{N}{2}+\mathrm{O}\left(N^{2}\right)\right)}-e^{-\frac{N}{2}}\left(1+\frac{N x}{2}+\mathrm{O}\left(N^{2}\right)\right)^{2}\right| \\
& =\left|(1+N x)\left(1-\frac{N}{2}\right)+\mathrm{O}\left(N^{2}\right)-e^{-\frac{N}{2}}\left(1+N x+\mathrm{O}\left(N^{2}\right)\right)\right| \\
& =\left|1-\frac{N}{2}+N x+\mathrm{O}\left(N^{2}\right)-1-\frac{N}{2}+N x+\mathrm{O}\left(N^{2}\right)\right| \\
& =\mathrm{O}\left(N^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
\left|D^{2} f_{N}(x)-D^{2} M_{N}(x)\right| & =\left|\frac{N^{2} e^{N x}}{e^{N}-1}-\frac{-2 e^{\frac{-N}{2}}\left(e^{-\frac{N}{2}}-1\right)}{\left[1+x\left(e^{\frac{-N}{2}}-1\right)\right]^{3}}\right| \\
& =\left|N+\mathrm{O}\left(N^{2}\right)-\left(N+\mathrm{O}\left(N^{2}\right)\right)\left(1+\frac{N x}{2}+\mathrm{O}\left(N^{2}\right)\right)^{3}\right| \\
& =\mathrm{O}\left(N^{2}\right) .
\end{aligned}
$$

Proof of Proposition 2.1. By Eq. (8) we have

$$
\left|N_{\tilde{f}}\right| \leqslant\left|n_{f}\right|_{C^{0}[0,1]} \delta .
$$

To simplify the notation, denote $\tilde{N}=N_{\tilde{f}}$. First note that

$$
\mathrm{d}_{C^{2}}\left(\tilde{f}, M_{\tilde{N}}\right) \leqslant \mathrm{d}_{C^{2}}\left(\tilde{f}, f_{\tilde{N}}\right)+\mathrm{d}_{C^{2}}\left(f_{\tilde{N}}, M_{\tilde{N}}\right)
$$

In view of Lemma 2.2, we only need to estimate the first term of the right-hand side. For this note that $\tilde{N}=$ $\int_{0}^{1} n_{\tilde{f}}(s) d s=n_{\tilde{f}}(\theta)$ for some $\theta \in[0,1]$. If

$$
\left|n_{f}(x)-n_{f}(y)\right| \leqslant C_{0}|x-y|^{\nu},
$$

then by Eq. (8) we have $\left|n_{\tilde{f}}(x)-\tilde{N}\right|=\left|n_{\tilde{f}}(x)-n_{\tilde{f}}(\theta)\right| \leqslant C_{0} \cdot \delta^{1+\nu}$, so $n_{\tilde{f}}(x)=\tilde{N}+\mathrm{O}\left(\delta^{1+\nu}\right)$. Then by (5) we obtain

$$
\begin{align*}
& \tilde{f}(x)=x\left(1-\frac{\tilde{N}}{2}+\frac{\tilde{N}}{2} x+\mathrm{O}\left(\delta^{1+v}\right)\right) \tag{10}\\
& D \tilde{f}(x)=1+\tilde{N} x-\frac{\tilde{N}}{2}+\mathrm{O}\left(\delta^{1+v}\right) \tag{11}\\
& D^{2} \tilde{f}(x)=\tilde{N}+\mathrm{O}\left(\delta^{1+v}\right) \tag{12}
\end{align*}
$$

Using the estimates for $f_{\tilde{N}}, D f_{\tilde{N}}$ and $D^{2} f_{\tilde{N}}$ similar to those in the proof of Lemma 2.2, the proof is complete.
From now on let $f_{i}:[0,1] \rightarrow[0,1], i \in \mathbb{N}$, be orientation-preserving diffeomorphisms of class $C^{2+\nu}$, with $f_{i}(0)=0, f_{i}(1)=1$, and such that there exist $C_{0}, C_{1}>0$ satisfying

$$
\begin{equation*}
\left|n_{f_{i}}(x)-n_{f_{i}}(y)\right| \leqslant C_{0} \cdot|x-y|^{v} \tag{13}
\end{equation*}
$$

and

$$
\left|n_{f_{i}}\right|_{C^{0}[0,1]} \leqslant C_{1}
$$

for every $i \in \mathbb{N}$. Let $\left[a_{i}, b_{i}\right] \subset[0,1], \delta_{i}=b_{i}-a_{i}$, and $\tilde{f}_{i}=\mathcal{Z}_{\left[a_{i}, b_{i}\right]}\left(f_{i}\right), M_{i}=M_{N_{\tilde{f}_{i}}}$,

$$
\tilde{f}_{1}^{n}=\tilde{f}_{n} \circ \tilde{f}_{n-1} \circ \cdots \circ \tilde{f}_{1} \quad \text { and } \quad M_{1}^{n}=M_{n} \circ M_{n-1} \circ \cdots \circ M_{1} .
$$

The following proposition is the main result of this section. It compares the compositions of $\tilde{f_{i}}$'s and M_{i} 's.
Proposition 2.3. (See also [9].) Let f_{i} be as above. Then for every $C_{2}>0$ there exists $C_{3}>0$ with the following property. If $\sum_{i=1}^{n} \delta_{i} \leqslant C_{2}$, then

$$
\left|\tilde{f}_{1}^{n}-M_{1}^{n}\right|_{C^{2}} \leqslant C_{3} \cdot\left(\max _{1 \leqslant j \leqslant n} \delta_{j}\right)^{v} .
$$

The proof of Theorem 1 in Khanin and Vul [9] is the main motivation to Proposition 2.3. Since Proposition 2.3 is not stated explicitly in the paper cited above in its full generality, we include the full argument for the sake of completeness. Before we prove this proposition, we need some lemmas.

Lemma 2.4. There is $C_{4}=C_{4}\left(C_{1}, C_{2}\right)>0$ such that

$$
e^{-C_{4}} \leqslant D \tilde{f}_{1}^{n}(x) \leqslant e^{C_{4}}
$$

for all $x \in[0,1]$ and for all $n \geqslant 0$.

Proof.

$$
\begin{aligned}
\ln \frac{D \tilde{f}_{1}^{n}(x)}{D \tilde{f}_{1}^{n}(y)} & =\ln \frac{D \tilde{f}_{n}\left(\tilde{f}_{1}^{n-1}(x)\right) \cdot D \tilde{f}_{n-1}\left(\tilde{f}_{1}^{n-2}(x)\right) \cdots D \tilde{f}_{1}(x)}{D \tilde{f}_{n}\left(\tilde{f}_{1}^{n-1}(y)\right) \cdot D \tilde{f}_{n-1}\left(\tilde{f}_{1}^{n-2}(y)\right) \cdots D \tilde{f}_{1}(y)} \\
& =\sum_{j=1}^{n} \ln D \tilde{f}_{j}\left(\tilde{f}_{1}^{j-1}(x)\right)-\ln D \tilde{f}_{j}\left(\tilde{f}_{1}^{j-1}(y)\right) \\
& =\sum_{j=1}^{n} \int_{\tilde{f}_{1}^{j-1}(y)}^{\tilde{f}_{1}^{j-1}(x)} \frac{D^{2} \tilde{f}_{j}(s)}{D \tilde{f}_{j}(s)} d s \\
& =\sum_{j=1}^{n} \frac{D^{2} \tilde{f}_{j}\left(z_{j-1}\right)}{D \tilde{f}_{j}\left(z_{j-1}\right)}\left|\tilde{f}_{1}^{j-1}(x)-\tilde{f}_{1}^{j-1}(y)\right|,
\end{aligned}
$$

for some $z_{j-1} \in\left[\tilde{f}_{1}^{j-1}(y), \tilde{f}_{1}^{j-1}(x)\right]$.
Therefore by (8) we have

$$
\left|\ln \frac{D \tilde{f}_{1}^{n}(x)}{D \tilde{f}_{1}^{n}(y)}\right| \leqslant \sum_{j=1}^{n}\left|\frac{D^{2} \tilde{f}_{j}\left(z_{j-1}\right)}{D \tilde{f}_{j}\left(z_{j-1}\right)}\right| \leqslant C_{1} \cdot \sum_{j=1}^{n} \delta_{j} \leqslant C_{1} C_{2}=C_{4} .
$$

Taking $y \in[0,1]$ such that $D \tilde{f}_{1}^{n}(y)=1$ we have the result.
Lemma 2.5. There is $C_{5}=C_{5}\left(C_{1}, C_{2}\right)>0$ such that

$$
\left|D^{2} \tilde{f}_{1}^{n}(x)\right| \leqslant C_{5}
$$

for all $x \in[0,1]$ and for all $n \geqslant 0$.
Proof. Note that

$$
\begin{aligned}
\left|D^{2} \tilde{f}_{1}^{n}(x)\right| & =\left|\frac{D^{2} \tilde{f}_{1}^{n}(x)}{D \tilde{f}_{1}^{n}(x)}\right| \cdot\left|D \tilde{f}_{1}^{n}(x)\right| \\
& =\left|\sum_{j=1}^{n} \frac{D^{2} \tilde{f}_{j}\left(\tilde{f}_{1}^{j-1}(x)\right)}{D \tilde{f}_{j}\left(\tilde{f}_{1}^{j-1}(x)\right)} \cdot D \tilde{f}_{1}^{j-1}(x)\right| \cdot\left|D \tilde{f}_{1}^{n}(x)\right| \\
& \leqslant e^{2 C_{4}} \sum_{j=1}^{n}\left|\frac{D^{2} \tilde{f}_{j}\left(\tilde{f}_{1}^{j-1}(x)\right)}{D \tilde{f}_{j}\left(\tilde{f}_{1}^{j-1}(x)\right)}\right| \\
& \leqslant e^{2 C_{4}} \cdot C_{1} \cdot \sum_{j=1}^{n} \delta_{j} \leqslant e^{2 C_{4}} \cdot C_{1} C_{2}=C_{5}
\end{aligned}
$$

Lemma 2.6. There are $C_{6}=C_{6}\left(C_{1}, C_{2}\right), C_{7}=\left(C_{1}, C_{2}\right)>0$ such that

$$
e^{-C_{6}} \leqslant\left|D M_{1}^{n}(x)\right| \leqslant e^{C_{6}}, \quad\left|D^{2} M_{1}^{n}(x)\right| \leqslant C_{7}, \quad\left|D^{3} M_{1}^{n}(x)\right| \leqslant C_{8}
$$

for all $x \in[0,1]$ and for all $n \geqslant 0$.

Proof. Since \mathcal{M} is a commutative Lie group, we have $M_{1}^{n}=M_{N}$, where $N=\sum_{i=1}^{n} N_{\tilde{f}_{i}}$. By Eq. (8) we have $\left|N_{\tilde{f}_{i}}\right|<$ $C_{1} \delta_{i}$, so

$$
|N| \leqslant C_{1} \cdot C_{2}
$$

One can easily use Eq. (2) to obtain estimates for $D^{i} M_{1}^{n}, i=1,2,3$.
Proof of Proposition 2.3. We write

$$
\tilde{f}_{1}^{n}-M_{1}^{n}=\sum_{i=1}^{n} M_{i+1}^{n} \circ \tilde{f}_{1}^{i}-M_{i}^{n} \circ \tilde{f}_{1}^{i-1},
$$

where $M_{n+1}^{n}=f_{1}^{0}=\mathrm{Id}$. Then

$$
\begin{aligned}
\left|\tilde{f}_{1}^{n}(x)-M_{1}^{n}(x)\right| & \leqslant \sum_{i=1}^{n}\left|M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}\right)(x)-M_{i+1}^{n}\left(M_{i} \circ \tilde{f}_{1}^{i-1}\right)(x)\right| \\
& \leqslant e^{C_{6}} \cdot \sum_{i=1}^{n}\left|\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)-M_{i} \circ \tilde{f}_{1}^{i-1}(x)\right| \\
& \leqslant e^{C_{6}} \cdot C \cdot \sum_{i=1}^{n} \delta_{i}^{1+v} \\
& \leqslant e^{C_{6}} \cdot C \cdot\left(\max _{1 \leqslant i \leqslant n} \delta_{i}\right)^{v} \sum_{i} \delta_{i} \\
& \leqslant e^{C_{6}} \cdot C \cdot C_{2} \cdot\left(\max _{1 \leqslant i \leqslant n} \delta_{i}\right)^{v},
\end{aligned}
$$

where $C>0$ is the constant given by Proposition 2.1;

$$
\begin{aligned}
\left|D \tilde{f}_{1}^{n}(x)-D M_{1}^{n}(x)\right|= & \mid \sum_{i=1}^{n}\left[D M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D \tilde{f}_{i}\left(\tilde{f}_{1}^{i-1}(x)\right)\right. \\
& \left.-D M_{i+1}^{n}\left(M_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right)\right] D \tilde{f}_{1}^{i-1}(x) \mid \\
\leqslant & e^{C_{4}} \cdot \sum_{i=1}^{n} \mid D M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D \tilde{f}_{i}\left(\tilde{f}_{1}^{i-1}(x)\right) \\
& -D M_{i+1}^{n}\left(M_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right) \mid .
\end{aligned}
$$

Now, add and subtract the term $D M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right)$ in the above expression to obtain

$$
\begin{aligned}
\left|D \tilde{f}_{1}^{n}(x)-D M_{1}^{n}(x)\right| \leqslant & e^{C_{4}} \cdot e^{C_{6}} \cdot \sum_{i=1}^{n}\left|D \tilde{f}_{i}\left(\tilde{f}_{1}^{i-1}(x)\right)-D M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right)\right| \\
& +e^{C_{4}} \cdot e^{C_{6}} \cdot \sum_{i=1}^{n}\left|D M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)\right)-D M_{i+1}^{n}\left(M_{i} \circ \tilde{f}_{1}^{i-1}(x)\right)\right| \\
& \leqslant e^{C_{4}} \cdot e^{C_{6}} \cdot C \cdot \sum_{i=1}^{n} \delta_{i}^{1+v}+e^{C_{4}} \cdot e^{C_{6}} \cdot C_{7} \cdot C \cdot \sum_{i=1}^{n} \delta_{i}^{1+v} \\
& \leqslant e^{C_{4}} \cdot e^{C_{6}} \cdot\left(1+C_{7}\right) \cdot C \cdot C_{2} \cdot\left(\max _{1 \leqslant i \leqslant n} \delta_{i}\right)^{v} .
\end{aligned}
$$

Now note that

$$
D^{2} \tilde{f}_{1}^{n}(x)-D^{2} M_{1}^{n}(x)=(\mathrm{I})+(\mathrm{II})+(\mathrm{III}),
$$

where

$$
\begin{aligned}
(\mathrm{I})= & \sum_{i=1}^{n} D^{2} M_{i+1}^{n}\left(\tilde{f_{i}} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot\left(D \tilde{f}_{i}\left(\tilde{f}_{1}^{i-1}(x)\right)\right)^{2} \cdot\left(D \tilde{f}_{1}^{i-1}(x)\right)^{2} \\
& -\sum_{i=1}^{n} D^{2} M_{i+1}^{n}\left(M_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot\left(D M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right)\right)^{2} \cdot\left(D \tilde{f}_{1}^{i-1}(x)\right)^{2}, \\
(\mathrm{II})= & \sum_{i=1}^{n} D M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D^{2} \tilde{f}_{i}\left(\tilde{f}_{1}^{i-1}(x)\right) \cdot\left(D \tilde{f}_{1}^{i-1}(x)\right)^{2} \\
& -\sum_{i=1}^{n} D M_{i+1}^{n}\left(M_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D^{2} M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right) \cdot\left(D \tilde{f}_{1}^{i-1}(x)\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
(\mathrm{III})= & \sum_{i=1}^{n} D M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D \tilde{f}_{i}\left(\tilde{f}_{1}^{i-1}(x)\right) \cdot D^{2} \tilde{f}_{1}^{i-1}(x) \\
& -\sum_{i=1}^{n} D M_{i+1}^{n}\left(M_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right) \cdot D^{2} \tilde{f}_{1}^{i-1}(x) .
\end{aligned}
$$

In (I) we first add and subtract the term

$$
\sum_{i=1}^{n} D^{2} M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot\left(D M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right)\right)^{2} \cdot\left(D \tilde{f}_{1}^{i-1}(x)\right)^{2}
$$

and then we use Lemmas 2.4 and 2.6 with estimates for the first derivative of \tilde{f}_{1}^{n} and M_{1}^{n}, to obtain

$$
\begin{equation*}
|(\mathrm{I})| \leqslant 2 \cdot \max \left\{C_{9}, C_{10}\right\} \cdot\left(\max _{1 \leqslant i \leqslant n} \delta_{i}\right)^{v}, \tag{14}
\end{equation*}
$$

where $C_{9}=C_{2} \cdot C_{7} \cdot C \cdot e^{2 C_{4}}\left(e^{C_{4}}+e^{C_{6}}\right)$ and $C_{10}=C \cdot C_{2} \cdot C_{8} \cdot e^{2 C_{4}} \cdot e^{C_{6}}$.
In (II), we first add and subtract the term

$$
\sum_{i=1}^{n} D M_{i+1}^{n}\left(M_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D^{2} \tilde{f}_{i}\left(\tilde{f}_{1}^{i-1}(x)\right) \cdot\left(D \tilde{f}_{1}^{i-1}(x)\right)^{2}
$$

and then we use Lemmas 2.4 and 2.6 with estimates for the first derivative of \tilde{f}_{1}^{n} and M_{1}^{n}, to obtain

$$
\begin{equation*}
|(\mathrm{II})| \leqslant 2 \cdot \max \left\{C_{11}, C_{12}\right\} \cdot\left(\max _{1 \leqslant i \leqslant n} \delta_{i}\right)^{v}, \tag{15}
\end{equation*}
$$

where $C_{11}=C \cdot C_{2} \cdot C_{5} \cdot C_{7} \cdot e^{2 C_{4}}$ and $C_{12}=C \cdot C_{2} \cdot e^{2 C_{4}+C_{6}}$.
Finally we add and subtract the expression

$$
\sum_{i=1}^{n} D M_{i+1}^{n}\left(\tilde{f}_{i} \circ \tilde{f}_{1}^{i-1}(x)\right) \cdot D M_{i}\left(\tilde{f}_{1}^{i-1}(x)\right) \cdot D^{2} \tilde{f}_{1}^{i-1}(x)
$$

in (III) and use again Lemmas 2.4 and 2.6, obtaining

$$
\begin{equation*}
|(\mathrm{III})| \leqslant 2 \cdot \max \left\{C_{13}, C_{14}\right\} \cdot\left(\max _{1 \leqslant i \leqslant n} \delta_{i}\right)^{v}, \tag{16}
\end{equation*}
$$

where $C_{13}=C \cdot C_{2} \cdot C_{5} \cdot e^{C_{6}}$ and $C_{14}=C \cdot C_{2} \cdot C_{5} \cdot C_{7} \cdot e^{C_{6}}$.
Taking $C_{3}=6 \cdot \max \left\{C_{9}, C_{10}, C_{11}, C_{12}, C_{13}, C_{14}\right\}$ we get the result.

3. Renormalization for genus one g.i.e.m.

Let $f \in \mathcal{B}_{k}^{2+v}$ be a g.i.e.m. with d intervals. If f has only one discontinuity then if we identify the endpoints of its domain I we obtain a piecewise smooth homeomorphism of the circle with irrational rotation. So we can apply the Denjoy Theorem for these maps, proving the nonexistence of wandering intervals. That is a main difference between genus on g.i.e.m. and those with higher genus (even piecewise affine g.i.e.m. with higher genus can have wandering intervals). In this section we will study this relation between genus one g.i.e.m. and piecewise homeomorphisms of the circle in more detail. The combinatorial analysis next somehow extends the results of Nogueira and Rudolph [11].

For the sake of simplify the notation, assume that f has only one discontinuity. Note that f can be seen as a g.i.e.m. in $f \in \mathcal{B}_{k}^{0+1}$ with two intervals. Indeed, if $I_{\alpha}=\left(c_{\alpha}, d_{\alpha}\right)$, where d_{α} is the unique point of discontinuity of f, define

$$
\begin{aligned}
J_{A} & :=\overline{\bigcup_{\pi_{0}(\beta) \leqslant \pi_{0}(\alpha)} I_{\beta}}, \\
J_{B} & :=\overline{\bigcup_{\pi_{0}(\beta)>\pi_{0}(\alpha)} I_{\beta}} .
\end{aligned}
$$

Then $\left(f,\{A, B\},\left\{J_{A}, J_{B}\right\}\right)$ is a g.i.e.m. with two intervals. We can either renormalize as a g.i.e.m. with d intervals, denoted by

$$
R_{d}(f), R_{d}^{2}(f), R_{d}^{3}(f), \ldots
$$

or as a g.i.e.m. with two intervals, denoted

$$
R_{2}(f), R_{2}^{2}(f), R_{2}^{3}(f), \ldots
$$

We call R_{d}^{i} the i-th d-renormalization of f and R_{2}^{i} the i-th 2-renormalization of f. If we see f as a homeomorphism of the circle then we can do the usual renormalization of the circle. This sequence of renormalizations, denoted $R_{\text {rot }}^{i}(f)$ turns out to be just an acceleration of the Rauzy-Veech induction consisting in the subsequence of 2-renormalizations $R_{2}^{n_{i}}(f)$ defined in the following way: $n_{0}=0$ and n_{i+1} is the first $n>n_{i}$ whose type is distinct from the type of the n_{i}-th 2-renormalization.

The relation between the d and 2-renormalizations is given by the following proposition.
Proposition 3.1. Let f be a genus one g.i.e.m. with d intervals in \mathcal{B}_{k} with only one discontinuity, where $\pi_{1}\left(\alpha_{0}\right)=1$ and $\pi_{0}\left(\alpha_{1}\right)=1$. One of the two cases occurs
(A) We have

$$
\overline{\bigcup_{\pi_{1}(\beta) \geqslant \pi_{1}\left(\alpha_{1}\right)} f\left(I_{\beta}\right)} \subset \overline{\bigcup_{\pi_{0}(\beta) \geqslant \pi_{0}\left(\alpha_{0}\right)} I_{\beta}}
$$

Then f is 2-renormalizable of type 0 and $R_{2}(f)=R_{d}^{n}(f)$, where n is the first d-renormalization where the letter α_{*} wins from letter α_{0}. Here α_{*} is such that $f\left(c_{\alpha_{0}}\right) \in I_{\alpha_{*}}$.
(B) We have

$$
\overline{\bigcup_{\pi_{0}(\beta) \geqslant \pi_{0}\left(\alpha_{0}\right)} I_{\beta} \subset \bigcup_{\pi_{1}(\beta) \geqslant \pi_{1}\left(\alpha_{1}\right)} f\left(I_{\beta}\right)}
$$

Then f is 2-renormalizable of type 1 and $R_{2}(f)=R_{d}^{n}(f)$, where n is the first d-renormalization where the letter α_{1} wins from letter α_{*}. Here α_{*} is such that $c_{\alpha_{*}} \in f\left(I_{\alpha_{1}}\right)$.

Proof. We are going to prove the claim (A). The proof of the claim (B) is similar. It is easy to see that when the letter α_{*} wins from the letter α_{0} for the first time, it wins with type 0 . Using the notation defined in Eq. (1) the Rauzy-Veech algorithm is given by

$$
\begin{equation*}
(p(1), p(2), \ldots, p(s), \ldots, p(d)) \xrightarrow{0}(p(2), \ldots, p(1), p(s), \ldots, p(d)) \tag{17}
\end{equation*}
$$

where s is such that $p(s)=1$, and

$$
\begin{equation*}
(p(1), \ldots, p(r), \ldots, p(d)) \xrightarrow{1}(p(1), \ldots, p(r), p(d), \ldots) \tag{18}
\end{equation*}
$$

where r is such that $p(r)=d$.
As by assumption f has only one discontinuity we have that $p=(k \ldots d 1 \ldots k-1)$, where $\pi_{1}\left(\alpha_{1}\right)=k$.
We assert that iterating the algorithm N times, with $N=s+r \leqslant n-1$, where n is such that the letter α_{*} wins from the letter α_{0} for the first time, we obtain that

$$
\begin{equation*}
p^{N}=(k+s, \ldots, d, k-r, \ldots, k+s-1,1, \ldots, k-r-1), \tag{19}
\end{equation*}
$$

where $0 \leqslant s \leqslant d-k$ and $0 \leqslant r \leqslant k-1$ are such that

$$
s=\#\left\{\varepsilon_{m}=0: 0 \leqslant m \leqslant N\right\} \quad \text { and } \quad r=\#\left\{\varepsilon_{m}=1: 0 \leqslant m \leqslant N\right\} .
$$

For $N=1$ the assertion is true because $s=0$ and $r=1$ or $s=1$ and $r=0$. Assume that the formula (19) holds for $N-1$. Then by formulas (17) and (18) the assertion holds for N.

We know that $\varepsilon_{n}=0$ and that $p^{n-1}(1)=d$. So

$$
p=p^{0}=(k \ldots d 1 \ldots k-1) \xrightarrow{\varepsilon_{0}} \ldots \xrightarrow{\varepsilon_{n-1}} p^{n-1}=(d j \ldots d-11 \ldots j-1) .
$$

Then $p^{n}=(j \ldots d-1 d 1 \ldots j-1)$ which completes the proof.
Corollary 3.2. Let f be a genus one g.i.e.m. with d intervals in \mathcal{B}_{k} with only one discontinuity. Then there exists a sequence $m_{i}<m_{i+1}$ such that $m_{i+1}-m_{i}<d$ and

$$
R_{2}^{i}(f)=R_{d}^{m_{i}}(f)
$$

The next result gives us a relationship between $R_{\mathrm{rot}}(f), R_{2}(f)$ and $R(f)$.
Proposition 3.3. Let f be a g.i.e.m. such that $\gamma(f)$ is k-bounded. Then for all $i \geqslant 0$

$$
R_{\mathrm{rot}}^{i}(f)=R_{2}^{k_{i}}(f)=R_{d}^{n_{k_{i}}}(f)
$$

Proof. The first equality follows by definition of R_{rot} and R_{2}. The second equality follows by Proposition 3.1.

3.1. Bounded geometry for maps in \mathcal{B}_{k}^{2+v}

A classical result on the circle homeomorphisms of class P (absolutely continuous homeomorphisms on the circle with bounded variation derivative) is the following lemma, whose demonstration can be found in Herman [4].

Lemma 3.4. Let f be a g.i.e.m. with genus. Let n_{0} be the first n such that $R_{d}^{n_{0}} f$ has only one discontinuity and define n_{i} such that $R_{d}^{n_{i}} f=R_{\mathrm{rot}}^{i}\left(R_{d}^{n_{0}} f\right)$. Then for all $i \geqslant 0$ and $\alpha \in \mathcal{A}$,

$$
\exp (-V) \leqslant D R_{d}^{n_{i}} f(x) \leqslant \exp (V) \quad \text { for all } x \in I_{\alpha}^{n_{i}}
$$

where $V=\operatorname{Var}(\log D f)$.
Lemma 3.5. Let $f \in \mathcal{B}_{k}^{2+\mu}$. There is $C_{16}>0$ such that

$$
\exp \left(-C_{16} V\right) \leqslant D R_{d}^{n} f(x) \leqslant \exp \left(C_{16} V\right) \quad \text { for all } x \in I^{n}, n \in \mathbb{N}
$$

Proof. Because f has k-bounded combinatorics, there exists C with the following property: Let $i \geqslant 0$ be such that $n_{k_{i}} \leqslant n<n_{k_{i+1}}$. Then for every $\alpha \in \mathcal{A}$ there exists $a \leqslant C$ such that $\left(R_{d}^{n} f\right)(x)=\left(R_{d}^{n k_{i}} f\right)^{a}(x)$, for $x \in I_{\alpha}^{n}$. Now the lemma follows from Lemma 3.4.

Lemma 3.6 (Non-collapsing domains). Let $f \in \mathcal{B}_{k}^{2+\mu}$. There is $C_{17}>1$ such that

$$
\frac{1}{C_{17}} \leqslant \frac{\left|I_{\alpha}^{n}\right|}{\left|I_{\beta}^{n}\right|} \leqslant C_{17}, \quad \text { for all } \alpha, \beta \in \mathcal{A} \text { and } n \geqslant 0
$$

Proof. Note that by Lemma 3.5 we have that for all $\alpha \in \mathcal{A}$

$$
\begin{equation*}
\exp \left(-C_{16} V\right) \leqslant \frac{\left|R^{n}(f)\left(I_{\alpha}^{n}\right)\right|}{\left|I_{\alpha}^{n}\right|} \leqslant \exp \left(C_{16} V\right) \tag{20}
\end{equation*}
$$

We claim that if the letter α_{\star} is the winner in the n-level then

$$
\left|I_{\alpha_{\star}}^{n}\right|,\left|R^{n}(f)\left(I_{\alpha_{\star}}^{n}\right)\right| \leqslant \frac{k+1-\exp \left(-\left(2^{k}+1\right) C_{16} V\right)}{k+1}\left|I^{n}\right|
$$

Indeed, otherwise by (20)

$$
\left|I_{\alpha}^{n}\right|,\left|R^{n}(f)\left(I_{\alpha}^{n}\right)\right|<\frac{\exp \left(-\left(2^{k}+1\right) C_{16} V\right)\left|I^{n}\right|}{k+1}<\frac{\min \left\{\left|I_{\alpha_{\star}}^{n}\right|,\left|R^{n}(f)\left(I_{\alpha_{\star}}^{n}\right)\right|\right\}}{\exp \left(2^{k} C_{16} V\right) k}
$$

for every $\alpha \neq \alpha_{\star}$. As a consequence the letter α_{\star} will be the winner for at least k consecutive times, which contradicts $f \in \mathcal{B}_{k}$. So there exists $\delta \in(0,1)$ such that

$$
\begin{equation*}
\frac{\left|I^{n+1}\right|}{\left|I^{n}\right|} \geqslant 1-\delta \tag{21}
\end{equation*}
$$

for every n. Note that by (20) we have

$$
\left|I_{\alpha}^{n+1}\right| \leqslant \exp \left(C_{16} V\right)\left|I_{\alpha}^{n}\right|,
$$

for every n and α. Moreover if α_{\star} is the winner and β_{\star} is the loser at the n-th level we have

$$
\left|I_{\beta_{\star}}^{n+1}\right| \leqslant \exp \left(2 C_{16} V\right)\left|I_{\alpha_{\star}}^{n}\right| .
$$

So fix $\alpha, \beta \in \mathcal{A}$. Since β loses transitively from α after at most k renormalizations, we obtain

$$
\begin{equation*}
\left|I_{\beta}^{n+k}\right| \leqslant \exp \left(2 k C_{16} V\right)\left|I_{\alpha}^{n}\right|, \tag{22}
\end{equation*}
$$

for every n, α and β. We claim that

$$
\left|I_{\alpha}^{n}\right| \geqslant \frac{(1-\delta)^{k} \exp \left(-2 k C_{16} V\right)}{d}\left|I^{n}\right|
$$

Indeed, otherwise by (22)

$$
\left|I^{n+k}\right|=\sum_{\beta}\left|I_{\beta}^{n}\right| \leqslant(1-\delta)^{k}\left|I^{n}\right|
$$

which contradicts (21).
Lemma 3.7 (Non-collapsing images). Let $f \in \mathcal{B}_{k}^{2+\mu}$. There is a constant $C_{18}>1$ such that

$$
\frac{1}{C_{18}} \leqslant \frac{\left|R^{n}(f)\left(I_{\alpha}^{n}\right)\right|}{\left|R^{n}(f)\left(I_{\beta}^{n}\right)\right|} \leqslant C_{18}, \quad \text { for all } \alpha, \beta \in \mathcal{A} \text { and } n \geqslant 0
$$

Proof. Follows directly from Lemmas 3.5 and 3.6.
Proposition 3.8. Let $f \in \mathcal{B}_{k}^{2+\mu}$ and let $\alpha, \beta \in \mathcal{A}$ be the winner and loser letters of $R^{n}(f)$, respectively. Then there is $0<\lambda_{1}<\lambda_{2}<1$, such that

$$
\begin{equation*}
\lambda_{1}<\frac{\left|\left(R^{n} f\right)^{1-\varepsilon}\left(I_{\beta}^{n}\right)\right|}{\left|\left(R^{n} f\right)^{\varepsilon}\left(I_{\alpha}^{n}\right)\right|}<\lambda_{2}, \tag{23}
\end{equation*}
$$

where $\varepsilon \in\{0,1\}$ is the type of $R^{n}(f)$.

Proof. If the quotient in (23) is too close to 0 then $\left(R^{n} f\right)^{1-\varepsilon}\left(I_{\beta}^{n}\right)$ is very small compared to I^{n}, which contradicts either Lemma 3.6 or Lemma 3.7. If the quotient in (23) is too close to 1 then $\left|\left(R^{n+1} f\right)^{\varepsilon}\left(I_{\alpha}^{n+1}\right)\right|=\left|\left(R^{n} f\right)^{\varepsilon}\left(I_{\alpha}^{n}\right)\right|-$ $\left|\left(R^{n} f\right)^{1-\varepsilon}\left(I_{\beta}^{n}\right)\right|$ is very small compared to I^{n+1}, what again contradicts either Lemma 3.6 or Lemma 3.7.

By definition of renormalization operator we know that

$$
[0,1)=\bigvee_{\alpha \in \mathcal{A}} \bigvee_{i=0}^{q_{n}^{\alpha}-1} f^{i}\left(I_{\alpha}^{n}\right)
$$

where \bigvee means disjoint union. Thus the elements $f^{i}\left(I_{\alpha}^{n}\right)$ for all $\alpha \in \mathcal{A}$ and for all $0 \leqslant i \leqslant q_{n}^{\alpha}-1$ form a partition which we denote by \mathcal{P}^{n}. The norm of \mathcal{P}^{n} is defined by

$$
\left|\mathcal{P}^{n}\right|=\max _{\substack{\alpha \in \mathcal{A} \\ 0 \leqslant i \leqslant q_{n}^{\alpha}-1}}\left\{\left|f^{i}\left(I_{\alpha}^{n}\right)\right|\right\} .
$$

The next result says that $\left|\mathcal{P}^{n}\right|$ tends to zero exponentially fast.
Proposition 3.9. Let $f \in \mathcal{B}_{k}^{2+\nu}$. Then for n sufficiently large there is $\lambda=\lambda\left(\lambda_{1}, \lambda_{2}\right)$ with $0<\lambda<1$ such that

$$
\left|\mathcal{P}^{n+k}\right| \leqslant \lambda \cdot\left|\mathcal{P}^{n}\right| .
$$

Proof. Let $f^{i_{n+k}}\left(I_{\alpha}^{n+k}\right) \in \mathcal{P}^{n+k}$. There are $\alpha_{j} \in \mathcal{A}$ and $0 \leqslant i_{j} \leqslant q_{j}^{\alpha_{j}}-1$ for $n \leqslant j \leqslant n+k$ such that

$$
f^{i_{n}}\left(I_{\alpha_{n}}^{n}\right) \supset \cdots \supset f^{i_{j}}\left(I_{\alpha_{j}}^{j}\right) \supset f^{i_{j+1}}\left(I_{\alpha_{j+1}}^{j+1}\right) \cdots \supset f^{i_{n+k}}\left(I_{\alpha_{n+k}}^{n+k}\right) .
$$

We claim that there exists j_{0} such that $\alpha_{j_{0}}$ is the winner in the j_{0}-th level. Indeed if $\alpha=\alpha_{n}=\cdots=\alpha_{n+k}$, let j_{0} be a level between levels n and $n+k$ such that α wins. Such level exists because $f \in \mathcal{B}_{k}$. Otherwise there exists j_{0} such that $\alpha_{j_{0}+1} \neq \alpha_{j_{0}}$. This is only possible if $\alpha_{j_{0}}$ is the winner and $\alpha_{j_{0}+1}$ the loser in the j_{0}-th level. By Proposition 3.8 and Lemma 3.5 we have

$$
\frac{\left|f^{i_{n+k}}\left(I_{\alpha_{n+k}}^{n+k}\right)\right|}{\left|f^{i_{n}}\left(I_{\alpha_{n}}^{n}\right)\right|} \leqslant \frac{\left|f^{i_{j_{0}+1}}\left(I_{\alpha_{j_{0}+1}}^{j_{0}+1}\right)\right|}{\left|f^{i_{0}}\left(I_{\alpha_{j_{0}}}^{j_{0}}\right)\right|} \leqslant \lambda<1
$$

for some λ that depends only on $V=\operatorname{Var}(\log D f), \lambda_{1}$ and λ_{2}.
Proof of Theorem 1. Note that

$$
Z_{I_{\alpha}^{n}}\left(R^{n}(f)\right)=Z_{f_{\alpha}^{n-1}\left(I_{\alpha}^{n}\right)}(f) \circ \cdots \circ Z_{f\left(I_{\alpha}^{n}\right)}(f) \circ Z_{I_{\alpha}^{n}}(f)
$$

The intervals $f^{i}\left(I_{\alpha}^{n}\right), i=0, \ldots, q_{\alpha}^{n}-1$, belong to the partition \mathcal{P}^{n}. In particular

$$
\sum_{i=0}^{q_{\alpha}^{n}-1}\left|f^{i}\left(I_{\alpha}^{n}\right)\right| \leqslant 1
$$

and by Proposition 3.9

$$
\sup _{0 \leqslant i<q_{\alpha}^{n}}\left|f^{i}\left(I_{\alpha}^{n}\right)\right| \leqslant\left|\mathcal{P}^{n}\right| \leqslant \lambda^{n / k-1}
$$

So we can apply Proposition 2.3 to obtain that

$$
\left|Z_{I_{\alpha}^{n}}\left(R^{n}(f)\right)-M_{1}^{n}\right|_{C^{2}} \leqslant C_{3} \cdot \lambda^{\mu(n / k-1)} .
$$

Recall that $M_{a} \circ M_{b}=M_{a+b}$. So

$$
M_{1}^{n}=M_{N},
$$

where (see (9) and (4))

$$
N=\sum_{i=0}^{q_{\alpha}^{n}-1} N_{Z_{f^{i}\left(I_{\alpha}^{n}\right)}(f)}=\sum_{i=0}^{q_{\alpha}^{n}-1} \int_{f^{i}\left(I_{\alpha}^{n}\right)} \frac{D^{2} f(x)}{D f(x)} d x=\int_{I_{\alpha}^{n}} \frac{D^{2} R^{n}(f)(x)}{D R^{n}(f)(x)} d x \quad \forall \alpha \in \mathcal{A} .
$$

4. Symbolic representation

To prove Theorems 2 and 3 we need a finer understanding of the geometry of the partitions generated by the sequence of renormalizations. To this end we will introduce a certain symbolic representation for the dynamics, that is somehow a generalization of the symbolic representation introduced by Sină̆ and Khanin [14]. Consider the set of letters

$$
\mathcal{L}=\{(\alpha, \varepsilon, n) \text { s.t. } \alpha \in \mathcal{A}, \varepsilon \in\{0,1\}, n \in \mathbb{N}\} .
$$

Define $\pi_{3}(\alpha, \varepsilon, n)=n, \pi_{2}(\alpha, \varepsilon, n)=\varepsilon$. We will use the notation a_{i} for $a_{i} \in \mathcal{L}$ such that $\pi_{n}\left(a_{i}\right)=i$.
In this section we construct a symbolic representation for the dynamics of a g.i.e.m. $f \in \mathcal{B}_{k}$. For each n we consider the partition of $[0,1]$ given by

$$
\tilde{\mathcal{P}}^{n}=\left\{f^{i}\left(I_{\alpha}^{n}\right) \text { s.t. } \alpha \in \mathcal{A} \text { and } 1 \leqslant i \leqslant q_{n}^{\alpha}\right\} .
$$

Let

$$
\Lambda=[0,1] \backslash \bigcup_{n} \bigcup_{J \in \tilde{\mathcal{P}}^{n}} \partial J .
$$

We will define a function

$$
s: \Lambda \rightarrow \mathcal{L}^{\mathbb{N}}
$$

in the following way. We have $s(x)=\left(a_{i}\right)_{i \in \mathbb{N}}, a_{i} \in \mathcal{L}$. If $i=0$ then $x \in f\left(I_{\beta}^{0}\right)$ for some β and we define $a_{0}=(\beta, 0,0)$. If $i>0$, let

$$
k_{i-1}(x):=\min \left\{k \geqslant 0 \text { s.t. } f^{k}(x) \in I^{i-1}\right\} .
$$

Then either $f^{k_{i-1}}(x) \in I^{i}$, so $f^{k_{i-1}}(x) \in f_{i}\left(I_{\beta}^{i}\right)$ for some β and we define $a_{i}=(\beta, 0, i)$, or $f^{k_{i-1}}(x) \in I^{i-1} \backslash I^{i}$, so $f_{i-1}\left(f^{k_{i-1}}(x)\right) \in f_{i}\left(I_{\beta}^{i}\right)$ for some β and we define $a_{i}=(\beta, 1, i)$. Note that in any case $f^{k_{i}(x)}(x) \in I_{\beta}^{i}$ and $\pi_{2}\left(a_{i}\right)=0$ if and only if $k_{i}(x)=k_{i-1}(x)$.

4.1. Admissible cylinders and their properties

Given a finite subset $S=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\} \subset \mathbb{N}$, with $\# S=k$ and a finite sequence $a_{n_{1}}, \ldots, a_{n_{k}} \in \mathcal{L}$, with $\pi_{3}\left(a_{n_{i}}\right)=$ n_{i} we can consider the word

$$
\omega=a_{n_{k}} a_{n_{k-1}} \ldots a_{n_{1}}
$$

For each word we can define the cylinder

$$
[\omega]=\left[a_{n_{k}} a_{n_{k-1}} \ldots a_{n_{1}}\right]=\overline{\left\{x \in \Lambda \text { s.t. } s_{n_{i}}(x)=a_{n_{i}}, 1 \leqslant i \leqslant k\right\}} .
$$

If this cylinder is not empty we will say that the word ω is admissible. Indeed we can give a definition of admissible words just in terms of the combinatorial data of the g.i.e.m. f.

We claim that the set whose elements are the closures of intervals in $\tilde{\mathcal{P}}^{n}$ is exactly the set of admissible cylinders of the form $\left[a_{n} a_{n-1} \ldots a_{0}\right]$. Indeed when $n=0$ we have $\tilde{\mathcal{P}}^{0}=\left\{f\left(I_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$. Then

$$
\overline{f\left(I_{\alpha}\right)}=[(\alpha, 0,0)] .
$$

Suppose by induction that we have verified that the set of all elements $\overline{f^{i}\left(I_{\alpha}^{n}\right)}, 1 \leqslant i \leqslant q_{\alpha}^{n}$, is the set of admissible cylinders of the form $\left[a_{n} a_{n-1} \ldots a_{0}\right]$. Recall that $\alpha^{n}(\varepsilon), \alpha^{n}(1-\varepsilon) \in \mathcal{A}$ are the winner and loser, respectively, if f_{n} has type ε. There are three cases:

- If $\alpha \neq \alpha^{n}(1-\varepsilon)$ then $I_{\alpha}^{n+1} \subset I_{\alpha}^{n}$ and $q_{n+1}^{\alpha}=q_{n}^{\alpha}$. So

$$
\overline{f^{i}\left(I_{\alpha}^{n+1}\right)}=\left[a_{n+1} a_{n} \ldots a_{0}\right]
$$

for every $1 \leqslant i \leqslant q_{n+1}^{\alpha}=q_{n}^{\alpha}$, where $a_{n+1}=(\alpha, 0, n+1)$ and $\overline{f^{i}\left(I_{\alpha}^{n}\right)}=\left[a_{n} \ldots a_{0}\right]$.

- If $\alpha=\alpha^{n}(1-\varepsilon)$ and $1 \leqslant i \leqslant q_{n}^{\alpha^{n}(\varepsilon)}$ we have

$$
\overline{f^{i+(1-\varepsilon) q_{n}^{\alpha^{n}(1-\varepsilon)}}\left(I_{\alpha^{n}(1-\varepsilon)}^{n+1}\right)}=\left[a_{n+1} a_{n} \ldots a_{0}\right]
$$

where $a_{n+1}=\left(\alpha^{n}(1-\varepsilon), \varepsilon, n+1\right)$ and $\overline{f^{i}\left(I_{\alpha^{n}(\varepsilon)}^{n}\right)}=\left[a_{n} \ldots a_{0}\right]$.

- If $\alpha=\alpha^{n}(1-\varepsilon)$ and $1 \leqslant j \leqslant q_{n}^{\alpha^{n}(1-\varepsilon)}$ we have

$$
\overline{f^{j+\varepsilon q_{n}^{\alpha^{n}(\varepsilon)}}\left(I_{\alpha^{n}(1-\varepsilon)}^{n+1}\right)}=\left[a_{n+1} a_{n} \ldots a_{0}\right],
$$

where $a_{n+1}=\left(\alpha^{n}(1-\varepsilon), 1-\varepsilon, n+1\right)$ and $\overline{f^{j}\left(I_{\alpha^{n}(1-\varepsilon)}^{n}\right.}=\left[a_{n} \ldots a_{0}\right]$.
As a consequence, for any admissible word of the form $a_{n} \ldots a_{0}$, with $a_{n}=(\alpha, \chi, n)$ we have that the first entry times $k_{1}, k_{2}, \ldots, k_{n}$ are constant functions in $\left[a_{n} \ldots a_{0}\right]$ and $f^{k_{n}}\left[a_{n} \ldots a_{0}\right]=f_{n}\left(I_{\alpha}^{n}\right)$.

Denote by $\ell\left(a_{n} \ldots a_{0}\right)$ the Lebesgue measure of the cylinder $\left[a_{n} \ldots a_{0}\right]$. The proof of Theorem 2 will be based on the ergodic properties of the sequence of random variables $a_{n}=\left(\alpha_{n}, \chi_{n}, n\right), \alpha_{n} \in \mathcal{A}$ and $\chi_{n} \in\{0,1\}$ with respect to the Lebesgue measure.

If the word $a_{n-1} \ldots a_{0}$ is admissible we can consider the conditional probabilities

$$
\ell\left(a_{n} \mid a_{n-1} \ldots a_{0}\right)=\frac{\ell\left(a_{n} \ldots a_{0}\right)}{\ell\left(a_{n-1} \ldots a_{0}\right)} .
$$

Lemma 4.1. Let

$$
\begin{aligned}
& \omega_{1}=a_{0}^{\prime} \ldots a_{n-1}^{\prime} a_{n} \ldots a_{n+k}, \\
& \tilde{\omega}_{1}=a_{0}^{\prime \prime} \ldots a_{n-1}^{\prime \prime} a_{n} \ldots a_{n+k}
\end{aligned}
$$

be admissible words. Denote $\omega_{2}=a_{0}^{\prime} \ldots a_{n-1}^{\prime}$ and $\tilde{\omega}_{2}=a_{0}^{\prime \prime} \ldots a_{n-1}^{\prime \prime}$. Then:
A. Indeed $\pi_{1}\left(a_{n-1}^{\prime}\right)=\pi_{1}\left(a_{n-1}^{\prime \prime}\right)=: \beta$ and there exist $1 \leqslant i, j \leqslant q_{\beta}^{n-1}$ such that $\left[\omega_{2}\right]=\overline{f^{i}\left(I_{\beta}^{n-1}\right)}$ and $\left[\tilde{\omega}_{2}\right]=$ $\overline{f^{j}\left(I_{\beta}^{n-1}\right)}$.
B. In particular $r=j-i$ is the unique $r \in \mathbb{Z}$ such that f^{r} is a diffeomorphism on $\left[\omega_{2}\right]$ and $f^{r}\left(\left[\omega_{2}\right]\right)=\left[\tilde{\omega}_{2}\right]$.
C. The integer r is also the unique integer such that f^{r} is a diffeomorphism on $\left[\omega_{1}\right]$ and $f^{r}\left(\left[\omega_{1}\right]\right)=\left[\tilde{\omega}_{1}\right]$.

Proof. The uniqueness of r follows from the fact that f does not have periodic points. Indeed if $f^{r_{1}}$ and $f^{r_{2}}, r_{1}<r_{2}$, are diffeomorphisms on $\left[\omega_{i}\right]$ and $f^{r}\left(\left[\omega_{i}\right]\right)=\left[\tilde{\omega}_{i}\right]$ for some $i \in\{1,2\}$ then the points in $\partial\left[\omega_{i}\right]$ are fixed points of $f^{r_{2}-r_{1}}$, which is a contradiction. It remains to show the existence of r. We will prove this by induction on k. Suppose $k=0$. Denote $a_{n}=(\alpha, \chi, n)$. Let ε be the type of f_{n-1}. By the previous discussion about the partitions $\tilde{\mathcal{P}}^{n}$, there are three cases.
Case (i). If $\alpha \neq \alpha^{n-1}(1-\varepsilon)$ then $\chi=0$ and

$$
\begin{aligned}
& {\left[a_{n} a_{n-1}^{\prime} \ldots a_{0}^{\prime}\right]=\overline{f^{i}\left(I_{\alpha}^{n}\right)}} \\
& {\left[a_{n} a_{n-1}^{\prime \prime} \ldots a_{0}^{\prime \prime}\right]=\overline{f^{j}\left(I_{\alpha}^{n}\right)}}
\end{aligned}
$$

for some $1 \leqslant i, j \leqslant q_{n}^{\alpha}=q_{n-1}^{\alpha}$, with $\overline{f^{i}\left(I_{\alpha}^{n-1}\right)}=\left[a_{n-1}^{\prime} \ldots a_{0}^{\prime}\right]$ and $\overline{f^{j}\left(I_{\alpha}^{n-1}\right)}=\left[a_{n-1}^{\prime \prime} \ldots a_{0}^{\prime \prime}\right]$. In particular $\alpha=$ $\pi_{1}\left(a_{n-1}^{\prime}\right)=\pi_{1}\left(a_{n-1}^{\prime \prime}\right)$. So take $r=i-j$.
Case (ii). If $\alpha=\alpha^{n-1}(1-\varepsilon)$ and $\chi=\varepsilon$ then

$$
\begin{aligned}
& \overline{f^{i+(1-\varepsilon) q_{n-1}^{\alpha}}\left(I_{\alpha}^{n}\right)}=\left[a_{n} a_{n-1}^{\prime} \ldots a_{0}^{\prime}\right], \\
& \overline{f^{j+(1-\varepsilon) q_{n-1}^{\alpha}}\left(I_{\alpha}^{n}\right)}=\left[a_{n} a_{n-1}^{\prime \prime} \ldots a_{0}^{\prime \prime}\right],
\end{aligned}
$$

for some $1 \leqslant i, j \leqslant q_{n-1}^{\alpha^{n-1}(\varepsilon)}$ with $\left[a_{n-1}^{\prime} \ldots a_{0}^{\prime}\right]=\overline{f^{i}\left(I_{\alpha^{n-1}(\varepsilon)}^{n-1}\right)}$ and $\left[a_{n-1}^{\prime \prime} \ldots a_{0}^{\prime \prime}\right]=\overline{f^{j}\left(I_{\alpha^{n-1}(\varepsilon)}^{n-1}\right)}$. In particular $\alpha^{n-1}(\varepsilon)=\pi_{1}\left(a_{n-1}^{\prime}\right)=\pi_{1}\left(a_{n-1}^{\prime \prime}\right)$. So take $r=i-j$.

Case (iii). If $\alpha=\alpha^{n-1}(1-\varepsilon)$ and $\chi=1-\varepsilon$ then

$$
\begin{aligned}
& \overline{f^{i+\varepsilon q_{n-1}^{\alpha^{n-1}(\varepsilon)}}\left(I_{\alpha}^{n}\right)}=\left[a_{n} a_{n-1}^{\prime} \ldots a_{0}^{\prime}\right], \\
& \overline{f^{j+\varepsilon q_{n-1}^{\alpha^{n-1}(\varepsilon)}}\left(I_{\alpha}^{n}\right)}=\left[a_{n} a_{n-1}^{\prime \prime} \ldots a_{0}^{\prime \prime}\right],
\end{aligned}
$$

for some $1 \leqslant i, j \leqslant q_{n-1}^{\alpha}$ with $\left[a_{n-1}^{\prime} \ldots a_{0}^{\prime}\right]=\overline{f^{i}\left(I_{\alpha}^{n-1}\right)}$ and $\left[a_{n-1}^{\prime \prime} \ldots a_{0}^{\prime \prime}\right]=\overline{f^{j}\left(I_{\alpha}^{n-1}\right)}$. Again we have $\alpha=\pi_{1}\left(a_{n-1}^{\prime}\right)=$ $\pi_{1}\left(a_{n-1}^{\prime \prime}\right)$. Take $r=i-j$.

This completes the proof for $k=0$. Suppose by induction we have proved the statement for $k-1 \geqslant 0$. By the case $k=0$ there exists a unique r such that $f^{r}\left[a_{0}^{\prime} \ldots a_{n-1}^{\prime} a_{n} \ldots a_{n+k-1}\right]=\left[a_{0}^{\prime \prime} \ldots a_{n-1}^{\prime \prime} a_{n} \ldots a_{n+k-1}\right]$ in a diffeomorphic way, and moreover r is the unique r such that $f^{r}\left[a_{0}^{\prime} \ldots a_{n-1}^{\prime} a_{n} \ldots a_{n+k}\right]=\left[a_{0}^{\prime \prime} \ldots a_{n-1}^{\prime \prime} a_{n} \ldots a_{n+k}\right]$. By induction assumption there exists a unique r^{\prime} such that $f^{r}\left[a_{0}^{\prime} \ldots a_{n-1}^{\prime}\right]=\left[a_{0}^{\prime \prime} \ldots a_{n-1}^{\prime \prime}\right]$ and moreover r^{\prime} is the unique integer such that

$$
f^{r}\left[a_{0}^{\prime} \ldots a_{n-1}^{\prime} a_{n} \ldots a_{n+k-1}\right]=\left[a_{0}^{\prime \prime} \ldots a_{n-1}^{\prime \prime} a_{n} \ldots a_{n+k-1}\right] .
$$

So $r=r^{\prime}$. This completes the proof.
Lemma 4.2. There are constants $C_{19}>0$ and $0<\lambda_{3}=\lambda_{3}(\lambda)<1$ such that

$$
e^{-C_{19} \lambda_{3}^{s}} \leqslant \frac{\ell\left(a_{n} \mid a_{n-1} \ldots a_{n-s} a_{n-s-1}^{\prime \prime} \ldots a_{0}^{\prime \prime}\right)}{\ell\left(a_{n} \mid a_{n-1} \ldots a_{n-s} a_{n-s-1}^{\prime} \ldots a_{0}^{\prime}\right)} \leqslant e^{C_{19} \lambda_{3}^{s}},
$$

provided both words are admissible.
Proof. Let

$$
f^{i_{3}}\left(I_{\alpha}^{n-s}\right) \subset f^{i_{2}}\left(I_{\beta}^{n}\right) \subset f^{i_{1}}\left(I_{\gamma}^{n+1}\right),
$$

with $1 \leqslant i_{3} \leqslant q_{\alpha}^{n-s}$, be the intervals corresponding to words

$$
\left(a_{0}^{\prime}, \ldots, a_{n-s-1}^{\prime}, a_{n-s}, \ldots, a_{n}\right),\left(a_{0}^{\prime}, \ldots, a_{n-s-1}^{\prime}, a_{n-s}, \ldots, a_{n-1}\right),\left(a_{0}^{\prime}, \ldots, a_{n-s-1}^{\prime}\right),
$$

respectively. By Lemma 4.1 there is $j \in \mathbb{Z}$ with $1 \leqslant i_{3}+j \leqslant q_{n-s}^{\pi_{1}\left(a_{n-s}\right)}$, such that

$$
f^{i_{3}+j}\left(I_{\alpha}^{n-s}\right) \subset f^{i_{2}+j}\left(I_{\beta}^{n}\right) \subset f^{i_{1}+j}\left(I_{\gamma}^{n+1}\right)
$$

are the intervals corresponding to words

$$
\left(a_{0}^{\prime \prime}, \ldots, a_{n-s-1}^{\prime \prime}, a_{n-s}, \ldots, a_{n}\right),\left(a_{0}^{\prime \prime}, \ldots, a_{n-s-1}^{\prime \prime}, a_{n-s}, \ldots, a_{n-1}\right) \quad \text { and } \quad\left(a_{0}^{\prime \prime}, \ldots, a_{n-s-1}^{\prime \prime}\right),
$$

respectively. Denote

$$
\rho_{k}:=\frac{\left|f^{i_{2}}\left(I_{\beta}^{n+1}\right)\right| \cdot\left|f^{i_{1}+k}\left(I_{\gamma}^{n}\right)\right|}{\left|f^{i_{1}}\left(I_{\gamma}^{n}\right)\right| \cdot\left|f^{i_{2}+k}\left(I_{\beta}^{n+1}\right)\right|}, \quad 0 \leqslant k \leqslant j .
$$

We have

$$
\begin{aligned}
\rho_{k+1} & :=\frac{\int_{f_{1}+k}\left(I_{\gamma}^{n}\right)}{} D f(s) d s \\
\int_{f^{i_{2}+k}\left(I_{\beta}^{n+1}\right)} D f(s) d s & \cdot \frac{\left|f^{i_{2}}\left(I_{\beta}^{n+1}\right)\right|}{\left|f^{i_{1}}\left(I_{\gamma}^{n}\right)\right|} \\
& =\frac{D f\left(s_{i_{1}+k}\right)\left|f^{i_{1}+k}\left(I_{\gamma}^{n}\right)\right|}{D f\left(s_{i_{2}+k}\right)\left|f^{i_{2}+k}\left(I_{\beta}^{n+1}\right)\right|} \cdot \frac{\left|f^{i_{2}}\left(I_{\beta}^{n+1}\right)\right|}{\left|f^{i_{1}}\left(I_{\gamma}^{n}\right)\right|} \\
& =\frac{D f\left(s_{i_{1}+k}\right)}{D f\left(s_{i_{2}+k}\right)} \cdot \rho_{k},
\end{aligned}
$$

where $s_{i_{1}+k} \in f^{i_{1}+k}\left(I_{\gamma}^{n}\right)$ and $s_{i_{2}+k} \in f^{i_{2}+k}\left(I_{\beta}^{n+1}\right)$. Furthermore,

$$
\begin{equation*}
\exp \left\{-C_{1} \cdot\left|f^{i_{1}+k}\left(I_{\gamma}^{n}\right)\right|\right\} \leqslant \frac{D f\left(s_{i_{1}+k}\right)}{D f\left(s_{i_{2}+k}\right)} \leqslant \exp \left\{C_{1} \cdot\left|f^{i_{1}+k}\left(I_{\gamma}^{n}\right)\right|\right\} \tag{24}
\end{equation*}
$$

Then by (24) we have

$$
\exp \left\{-C_{1} \sum_{t=0}^{j-1}\left|f^{i_{1}+t}\left(I_{\gamma}^{n}\right)\right|\right\} \leqslant \rho_{j} \leqslant \exp \left\{C_{1} \sum_{t=0}^{j-1}\left|f^{i_{1}+t}\left(I_{\gamma}^{n}\right)\right|\right\} .
$$

However by Proposition 3.9,

$$
\sum_{t=0}^{j-1}\left|f^{i_{1}+t}\left(I_{\gamma}^{n}\right)\right|=\sum_{t=0}^{j-1}\left|f^{i_{3}+t}\left(I_{\alpha}^{n-s}\right)\right| \cdot \frac{\left|f^{i_{1}+t}\left(I_{\gamma}^{n}\right)\right|}{\left|f^{i_{3}+t}\left(I_{\alpha}^{n-s}\right)\right|} \leqslant C_{20} \cdot \lambda_{3}^{s}
$$

where $C_{20}=C_{20}\left(C_{17}, C_{18}, \lambda\right)>0$. Taking $C_{19}=C_{1} \cdot C_{20}$ we obtain the result.
Lemma 4.3. There exists $C_{21}=C_{21}\left(C_{19}, \lambda\right)>0$ such that for all n, m,

$$
e^{-C_{21}} \leqslant \frac{\ell\left(a_{n+m}, \ldots, a_{n} \mid a_{n-1}^{\prime}, \ldots, a_{0}^{\prime}\right)}{\ell\left(a_{n+m}, \ldots, a_{n} \mid a_{n-1}^{\prime \prime}, \ldots, a_{0}^{\prime \prime}\right)} \leqslant e^{C_{21}}
$$

provided both words ($a_{0}^{\prime}, \ldots, a_{n-1}^{\prime}, a_{n}, \ldots, a_{n+m}$) and ($a_{0}^{\prime \prime}, \ldots, a_{n-1}^{\prime \prime}, a_{n}, \ldots, a_{n+m}$) are admissible.
Proof. The proof follows easily from Lemma 4.2 and the equations

$$
\begin{aligned}
& \ell\left(a_{n+m}, \ldots, a_{n} \mid a_{n-1}^{\prime}, \ldots, a_{0}^{\prime}\right)=\prod_{i=0}^{m} \ell\left(a_{n+i} \mid a_{n+i-1}, \ldots, a_{n-1}^{\prime}, \ldots, a_{0}^{\prime}\right), \\
& \ell\left(a_{n+m}, \ldots, a_{n} \mid a_{n-1}^{\prime \prime}, \ldots, a_{0}^{\prime \prime}\right)=\prod_{i=0}^{m} \ell\left(a_{n+i} \mid a_{n+i-1}, \ldots, a_{n-1}^{\prime \prime}, \ldots, a_{0}^{\prime \prime}\right) .
\end{aligned}
$$

Lemma 4.4. Let $a_{k} \ldots a_{n}, k \leqslant n$, and $a_{n}^{\prime} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}$ be two admissible words, such that $a_{n}=(\alpha, \chi, n), a_{n}^{\prime}=$ (α, χ^{\prime}, n). Then

$$
a_{k} \ldots a_{n} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}
$$

is admissible.
Proof. Since $a_{k} \ldots a_{n}$ is admissible then there exist $a_{0}, a_{1}, \ldots, a_{k-1}$ such that $a_{0} \ldots a_{k-1} a_{k} \ldots a_{n}$ is admissible. If $a_{n}^{\prime} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}$ is admissible then there exists an admissible word with the form $a_{0}^{\prime} \ldots a_{n}^{\prime} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}$. Note that the functions $k_{1}(x)=k_{1}^{\prime}, k_{2}(x)=k_{2}^{\prime}, \ldots, k_{n+m}(x)=k_{n+m}^{\prime}$ are constant in $\left[a_{0}^{\prime} \ldots a_{n}^{\prime} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}\right]$ and

$$
f^{k_{n}^{\prime}}\left[a_{0}^{\prime} \ldots a_{n}^{\prime} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}\right] \subset f_{n}\left(I_{\alpha}^{n}\right)
$$

The functions $k_{1}(x)=k_{1}, k_{2}(x)=k_{2}, \ldots, k_{n}(x)=k_{n}$ are constant in $\left[a_{0} \ldots a_{n}\right]$ and

$$
f^{k_{n}}\left[a_{0} \ldots a_{n}\right]=f_{n}\left(I_{\alpha}^{n}\right)
$$

In particular every x in the nonempty set

$$
J=f^{-k_{n}} f^{k_{n}^{\prime}}\left[a_{0}^{\prime} \ldots a_{n}^{\prime} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}\right] \cap \Lambda \subset\left[a_{0} \ldots a_{n}\right]
$$

belongs to the cylinder $\left[a_{0} \ldots a_{n} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}\right]$. Indeed, since $x \in\left[a_{0} \ldots a_{n}\right]$ we have $s_{i}(x)=a_{i}, k_{i}(x)=k_{i}$, for $0 \leqslant i \leqslant n$. Note that $f^{k_{n}}(x)=f^{k_{n}^{\prime}}(y)$, for some $y \in\left[a_{0}^{\prime} \ldots a_{n}^{\prime} a_{n+1}^{\prime} \ldots a_{n+m}^{\prime}\right] \cap \Lambda$. Then

$$
k_{i}(x)=k_{i}(y)-k_{n}^{\prime}+k_{n}=k_{i}^{\prime}-k_{n}^{\prime}+k_{n}
$$

for $n \leqslant i \leqslant n+m$, since

$$
f^{k_{i}^{\prime}-k_{n}^{\prime}+k_{n}}(x)=f^{k_{i}^{\prime}}(y) \in I^{i},
$$

and moreover if $k_{n} \leqslant j<k_{i}^{\prime}-k_{n}^{\prime}+k_{n}$ then

$$
f^{j}(x)=f^{j-k_{n}+k_{n}^{\prime}}(y) \notin I^{i},
$$

since $0 \leqslant j-k_{n}+k_{n}^{\prime}<k_{i}^{\prime}=k_{i}(y)$ and if $j<k_{n}$ then

$$
f^{j}(x) \notin I^{i},
$$

because $j<k_{n} \leqslant k_{i}(x)$. This implies that $s_{i}(x)=a_{i}^{\prime}$ for $n<i \leqslant n+m$.
Lemma 4.5. Let $\alpha, \beta \in \mathcal{A}$. For each n there is an admissible word $a_{n} \ldots a_{n+k}$ with $\pi_{1}\left(a_{n}\right)=\beta, \pi_{1}\left(a_{n+k}\right)=\alpha$.
Proof. Firstly we claim that if $\alpha \in \mathcal{A}$ does not lose in the n-th level then there is an admissible word $b_{n} b_{n+1}$ such that $\pi_{1}\left(b_{n}\right)=\pi_{1}\left(b_{n+1}\right)=\alpha$. Indeed in this case $f_{n+1}\left(I_{\alpha}^{n+1}\right) \subset f_{n}\left(I_{\alpha}^{n}\right)$. This implies that the word $(\alpha, 0, n)(\alpha, 0, n+1)$ is admissible.

Second, if α loses and $\beta \in \mathcal{A}$ wins in the n-th level then there are an admissible word $b_{n} b_{n+1}$ such that $\beta=\pi_{1}\left(b_{n}\right)$ and $\alpha=\pi_{1}\left(b_{n+1}\right)$ and an admissible word $b_{n}^{\prime} b_{n+1}^{\prime}$ such that $\alpha=\pi_{1}\left(b_{n}^{\prime}\right)=\pi_{1}\left(b_{n+1}^{\prime}\right)$. Indeed if f_{n} has type 1 then we have that $I_{\alpha}^{n} \subset f_{n}\left(I_{\beta}^{n}\right), I_{\alpha}^{n}$ is not inside I^{n+1} and enters I^{n+1} after one iteration of f_{n}, landing in $f_{n}\left(I_{\alpha}^{n}\right)=f_{n+1}\left(I_{\alpha}^{n+1}\right)$, so the word $(\beta, 0, n)(\alpha, 1, n+1)$ is admissible. Note also that $f_{n}\left(I_{\alpha}^{n}\right)=f_{n+1}\left(I_{\alpha}^{n+1}\right)$ so $(\alpha, 0, n)(\alpha, 0, n+1)$ is admissible. If f_{n} has type 0 then we have that $f_{n+1}\left(I_{\alpha}^{n+1}\right) \subset f_{n}\left(I_{\beta}^{n}\right)$, so the word $(\beta, 0, n)(\alpha, 0, n+1)$ is admissible. Furthermore $f_{n}\left(I_{\alpha}^{n}\right)$ is not inside I^{n+1} and it enters I^{n+1} after one iteration of f_{n}, landing in $f_{n+1}\left(I_{\alpha}^{n+1}\right)$, so the word $(\alpha, 0, n)(\alpha, 1, n+1)$ is admissible.

In particular, using Lemma 4.4 it follows that for every $m \geqslant 0, p>0$ and $\alpha \in \mathcal{A}$ there exists a word $\omega=$ $a_{m} a_{m+1} \ldots a_{m+p}$ such that $\pi_{1}\left(a_{i}\right)=\alpha$ for every $m \leqslant i \leqslant m+p$.

Now suppose that β wins from α in the $(m-1)$-th renormalization. Then as we saw above $(\beta, 0, m-1)\left(\alpha, \epsilon_{m-1}, m\right)$ and ω are admissible. By Lemma 4.4 there exists a word $(\beta, 0, m-1) a_{m}^{\prime} a_{m+1} \ldots a_{m+p}$ such that $\pi_{1}\left(a_{m+p}\right)=\alpha$.

Finally, since $f \in \mathcal{B}_{k}$, given $\alpha, \beta \in \mathcal{A}$, there exists a sequence of letters α_{i}, and levels $n_{i}, i \leqslant s, n \leqslant n_{i}<n_{i+1} \leqslant$ $n+k$ for every $i<s$, such that $\alpha_{0}=\beta, \alpha_{s}=\alpha$ and α_{i} wins from α_{i+1} in the n_{i}-th level. So there are admissible words $a_{n_{i}}^{i} \ldots a_{n_{i+1}}^{i}$ such that $\pi_{1}\left(a_{n_{i}}^{i}\right)=\alpha_{i}$ and $\pi_{1}\left(a_{n_{i+1}}^{i}\right)=\alpha_{i+1}$. By Lemma 4.4 there is an admissible word $a_{n_{0}} \ldots a_{n_{s}}$ such that $\pi_{1}\left(a_{n_{0}}\right)=\beta$ and $\pi_{1}\left(a_{n_{s}}\right)=\alpha$.

Since we already proved that there exist admissible words $b_{n} \ldots b_{n_{0}}$ and $c_{n_{s}} \ldots c_{n+k}$ such that $\pi_{1}\left(b_{n_{0}}\right)=\alpha$, $\pi_{1}\left(b_{n_{s}}\right)=\alpha, \pi_{1}\left(c_{n_{s}}\right)=\beta, \pi_{1}\left(c_{n+k}\right)=\beta$, by Lemma 4.4 again there exists a word of type

$$
b_{n}^{\prime} \ldots b_{n_{0}} a_{n_{0}+1} \ldots a_{n_{s}-1} c_{n_{s}} \ldots c_{n+k}^{\prime}
$$

with $\pi_{1}\left(b_{n}^{\prime}\right)=\alpha$ and $\pi_{1}\left(c_{n+k}^{\prime}\right)=\beta$.
The proof of the following lemma is simple:
Lemma 4.6. There exists $C_{22}>0$ such that for all n, m, and all admissible words $a_{0}^{\prime} \ldots a_{n-k}^{\prime}, a_{0}^{\prime \prime} \ldots a_{n-k}^{\prime \prime}, a_{n} \ldots a_{n+m}$

$$
e^{-C_{22}} \leqslant \frac{\ell\left(a_{n+m} \ldots a_{n} \mid a_{n-k}^{\prime} \ldots a_{0}^{\prime}\right)}{\ell\left(a_{n+m} \ldots a_{n} \mid a_{n-k}^{\prime \prime} \ldots a_{0}^{\prime \prime}\right)} \leqslant e^{C_{22}} .
$$

Proposition 4.7. There are $C_{23}>0$ and $0<\lambda_{4}<1$ such that

$$
\left|\ell\left(a_{n} \mid a_{n-r} \ldots a_{0}\right)-\ell\left(a_{n}\right)\right| \leqslant C_{23} \cdot \lambda_{4}^{\sqrt{r}}
$$

where $r=\left[\frac{n}{2}\right]$.
Proof. Indeed Proposition 4.7 is a Markov ergodic theorem and it can be proved by the methods of the theory of Markov chains, as in Khanin and Sinaĭ [7] (see also Sinaĭ [13]). Thus, we shall describe only the main steps. Fix an integer $m, m \sim \sqrt{\frac{n}{2}}$, and introduce a new probability measure on the words of the form

$$
\tilde{a}=\left(a_{n} a_{n-1} \ldots a_{n-m+k} a_{n-m} \ldots a_{n-2 m+k} a_{n-2 m} \ldots a_{n-3 m+k} \ldots a_{n-(i-1) m} \ldots a_{n-i m+k} a_{n-i m} \ldots a_{0}\right)
$$

by the formula

$$
\begin{aligned}
\ell^{\prime}(\tilde{a})= & \ell\left(a_{0} \ldots a_{n-i m}\right) \ell\left(a_{n-(i-1) m} \ldots a_{n-i m+3} \mid a_{n-i m} \ldots a_{0}\right) \\
& \times \prod_{s=0}^{i-2} \ell\left(a_{n-s m} \ldots a_{n-(s+1) m+k} \mid a_{n-(s+1) m} \ldots a_{n-(s+2) m+k}\right)
\end{aligned}
$$

Here $i \sim \sqrt{\frac{n}{2}}$. It follows easily from Lemma 4.2 that

$$
\begin{equation*}
\exp \left(-C_{19} \cdot \lambda_{3}^{m} \cdot i\right) \leqslant \frac{\ell^{\prime}(\tilde{a})}{\ell(\tilde{a})} \leqslant \exp \left(C_{19} \cdot \lambda_{3}^{m} \cdot i\right) \tag{25}
\end{equation*}
$$

Lemma 4.6 shows that the Markov transition operator corresponding to ℓ^{\prime} for the transition to m steps is a contraction for the appropriate Cayley-Hilbert metric, and this contraction is uniformly smaller than 1 on each step. Then the usual Ergodic Theorem for Markov chains shows that the conditional probabilities $\ell^{\prime}\left(a_{n} \mid a_{n-i m} \ldots a_{0}\right)$ asymptotically do not depend on $a_{n-i m} \ldots a_{0}$. Due to (25) the same holds for $\ell\left(a_{n} \mid a_{n-i m} \ldots a_{0}\right)$. This gives the desired result.

Denote by $\ell(\alpha, \star, n)$ the Lebesgue measure of the union $[(\alpha, 0, n)] \cup[(\alpha, 1, n)]$. Note that

$$
\ell(\alpha, \star, n)=\frac{\sum_{i=1}^{q_{\alpha}^{n}}\left|f^{i}\left(I_{\alpha}^{n}\right)\right|}{|I|}
$$

Proof of Theorem 2. For simplify the notation we use f_{n} to denote $R^{n}(f)$. Let $r=\left[\frac{n}{2}\right]$. We rewrite $\int_{I_{\alpha}^{n}} \frac{D^{2} f_{n}(s)}{D f_{n}(s)} d s$ in the following way. By the mean value theorem for integrals

$$
\begin{aligned}
\int_{I_{\alpha}^{n}} \frac{D^{2} f_{n}(s)}{D f_{n}(s)} d s & =\sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \sum_{f^{i}\left(I_{\alpha}^{n}\right) \subset f^{j}\left(I_{\beta}^{r}\right)} \int_{f^{i}\left(I_{\alpha}^{n}\right)} \frac{D^{2} f(s)}{D f(s)} d s \\
& =\sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \sum_{f^{i}\left(I_{\alpha}^{n}\right) \subset f^{j}\left(I_{\beta}^{r}\right)} \frac{D^{2} f\left(x_{j}^{\alpha}\right)}{D f\left(x_{j}^{\alpha}\right)} \cdot\left|f^{i}\left(I_{\alpha}^{n}\right)\right|,
\end{aligned}
$$

where $x_{i}^{\alpha} \in f^{i}\left(I_{\alpha}^{n}\right)$. In a similar way we can choose $y_{j}^{\beta} \in f^{j}\left(I_{\beta}^{r}\right)$ such that

$$
\int_{I} \frac{D^{2} f(s)}{D f(s)} d s=\sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \frac{D^{2} f\left(y_{j}^{\beta}\right)}{D f\left(y_{j}^{\beta}\right)} \cdot\left|f^{j}\left(I_{\beta}^{r}\right)\right|
$$

So

$$
\begin{aligned}
\int_{I_{\alpha}^{n}} \frac{D^{2} f_{n}(s)}{D f_{n}(s)} d s= & \sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \sum_{f^{i}\left(I_{\alpha}^{n}\right) \subset f^{j}\left(I_{\beta}^{r}\right)}\left(\frac{D^{2} f\left(x_{j}\right)}{D f\left(x_{j}\right)}-\frac{D^{2} f\left(y_{j}^{\beta}\right)}{D f\left(y_{j}^{\beta}\right)}\right) \cdot\left|f^{i}\left(I_{\alpha}^{n}\right)\right| \\
& +\sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \sum_{f^{i}\left(I_{\alpha}^{n}\right) \subset f^{j}\left(I_{\beta}^{r}\right)} \frac{D^{2} f\left(y_{j}^{\beta}\right)}{D f\left(y_{j}^{\beta}\right)} \cdot\left|f^{i}\left(I_{\alpha}^{n}\right)\right| .
\end{aligned}
$$

Due to the smooth properties of f the first term is at most $C_{24} \cdot \lambda_{6}^{\frac{n}{2} \nu}$, where $C_{24}=C_{24}(\lambda, k)>0$ and $0<\lambda_{6}=$ $\lambda_{6}(\lambda, k)<1$. We will now analyze the second term:

$$
\sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \sum_{f^{i}\left(I_{\alpha}^{n}\right) \subset f^{j}\left(I_{\beta}^{r}\right)} \frac{D^{2} f\left(y_{j}^{\beta}\right)}{D f\left(y_{j}^{\beta}\right)} \cdot\left|f^{i}\left(I_{\alpha}^{n}\right)\right|
$$

$$
\begin{aligned}
= & \sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \frac{D^{2} f\left(y_{j}^{\beta}\right)}{D f\left(y_{j}^{\beta}\right)} \cdot\left|f^{j}\left(I_{\beta}^{r}\right)\right| \frac{\sum_{f^{i}\left(I_{\alpha}^{n}\right) \subset f^{j}\left(I_{\beta}^{r}\right)}\left|f^{i}\left(I_{\alpha}^{n}\right)\right|}{\left|f^{j}\left(I_{\beta}^{r}\right)\right|} \\
= & \sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \frac{D^{2} f\left(y_{j}^{\beta}\right)}{D f\left(y_{j}^{\beta}\right)} \cdot\left|f^{j}\left(I_{\beta}^{r}\right)\right| \cdot\left[\ell\left((\alpha, \star, n) \mid\left[f^{j}\left(I_{\beta}^{r}\right)\right]\right)-\ell((\alpha, \star, n))\right] \\
& +\ell((\alpha, \star, n)) \cdot \sum_{\beta \in \mathcal{A}} \sum_{j=1}^{q_{r}^{\beta}} \frac{D^{2} f\left(y_{j}^{\beta}\right)}{D f\left(y_{j}^{\beta}\right)} \cdot\left|f^{j}\left(I_{\beta}^{r}\right)\right| \\
= & (\mathrm{IV})+(\mathrm{V}) .
\end{aligned}
$$

By Proposition 4.7 we have that (IV) $=\mathrm{O}\left(\lambda_{4}^{\sqrt{\frac{\pi}{2}}}\right)$. Now observe that (V) is a Riemann sum for the integral $\int_{I} \frac{D^{2} f(s)}{D f(s)} d s$. By Proposition 3.9 and v-Hölder continuity of $\frac{D^{2} f}{D f}$ we have

$$
(\mathrm{V})=\ell((\alpha, \star, n)) \cdot \int_{I} \frac{D^{2} f(s)}{D f(s)} d s+O\left(\lambda^{n / k}\right) .
$$

This finishes the proof.
Before proving Theorem 3 we need the following lemma whose proof is left to the reader.
Lemma 4.8. Let $a, b \in \mathbb{R}$. Then for every $C>0$ there is $C_{25}>0$ such that if $|a|,|b| \leqslant C$ then

$$
\left|M_{a}-M_{b}\right|_{C^{2}} \leqslant C_{25} \cdot|a-b|,
$$

where M_{a} and M_{b} are defined in (2).
Proof of Theorem 3. By assumption $\int_{I} \frac{D^{2} f(s)}{D f(s)} d s=0$, so by Theorem 2 we have

$$
\left|\int_{I_{\alpha}^{n}} \frac{D^{2} f_{n}(s)}{D f_{n}(s)} d s\right| \leqslant C_{26} \cdot \lambda_{4}^{\sqrt{\frac{\pi}{2}}} .
$$

Therefore by Lemma 4.8

$$
\begin{align*}
\left|M_{\int_{I_{\alpha}^{n}} \frac{D^{2} f_{n}(s)}{D f_{n}(s)} d s}-\mathrm{Id}\right|_{C^{2}} & \leqslant C_{25} \cdot\left|\int_{I_{\alpha}^{n}} \frac{D^{2} f_{n}(s)}{D f_{n}(s)} d s-0\right| \\
& \leqslant C_{25} \cdot C_{26} \cdot \lambda_{4}^{\sqrt{\frac{\pi}{2}}} . \tag{26}
\end{align*}
$$

Theorem 1 together with (26) gives us that

$$
\left|\mathcal{Z}_{I_{\alpha}^{n}}\left(R^{n}(f)\right)-\mathrm{Id}\right|_{C^{2}} \leqslant C_{27} \cdot \lambda_{4}^{\sqrt{\frac{\pi}{2}}} .
$$

References

[1] K. Cunha, Transformações de intercâmbio de intervalos generalizadas de genus 1, Ph.D. Thesis, ICMC-USP, Brazil, 2010.
[2] K. Cunha, D. Smania, Rigidity for piecewise smooth homeomorphisms on the circle, preprint, 2012, http://lanl.arxiv.org/abs/1201.1401.
[3] Welington de Melo, Sebastian van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) (Results in Mathematics and Related Areas (3)), vol. 25, Springer-Verlag, Berlin, 1993.
[4] M.R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979) 5-233.
[5] M. Keane, Interval exchange transformations, Math. Z. 141 (1975) 25-31.
[6] Y. Katznelson, D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems 9 (4) (1989) 643-680.
[7] K.M. Khanin, Ya.G. Sinaĭ, A new proof of M. Herman's theorem, Comm. Math. Phys. 112 (1) (1987) 89-101.
[8] K. Khanin, A. Teplinsky, Herman's theory revisited, Invent. Math. 178 (2) (2009) 333-344.
[9] K.M. Khanin, E.B. Vul, Circle homeomorphisms with weak discontinuities, in: Dynamical Systems and Statistical Mechanics, Moscow, 1991, in: Adv. Soviet Math., vol. 3, Amer. Math. Soc., Providence, RI, 1991, pp. 57-98, translated from the Russian by V. Nazaĭkinskiĭ.
[10] M. Martens, The periodic points of renormalization, Ann. of Math. (2) 147 (3) (1998) 543-584.
[11] A. Nogueira, D. Rudolph, Topological weak-mixing of interval exchange maps, Ergodic Theory Dynam. Systems 17 (5) (1997) $1183-1209$.
[12] G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith. 34 (4) (1979) 315-328.
[13] Ya.G. Sinaĭ, Topics in Ergodic Theory, Princeton Math. Ser., vol. 44, Princeton University Press, Princeton, NJ, 1994.
[14] Ya.G. Sinaĭ, K.M. Khanin, Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Uspekhi Mat. Nauk 44 (1(265)) (1989) 57-82, 247.
[15] W.A. Veech, Interval exchange transformations, J. Anal. Math. 33 (1978) 222-272.
[16] W.A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1) (1982) $201-242$.
[17] J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup. (4) 17 (3) (1984) 333-359.

[^0]: * Corresponding author.

 E-mail addresses: kleyber@ufba.br (K. Cunha), smania@icmc.usp.br (D. Smania).
 URLs: http://www.sd.mat.ufba.br/~kleyber/ (K. Cunha), http://www.icmc.usp.br/~smania/ (D. Smania).
 1 K.C. was partially supported by FAPESP 07/01045-7.
 2 D.S. was partially supported by FAPESP 2008/02841-4 and 2010/08654-1, CNPq 310964/2006-7 and 303669/2009-8.

[^1]: 3 All the subintervals will be bounded, close on the left and open on the right.

