
Available online at www.sciencedirect.com
Ann. I. H. Poincaré – AN 30 (2013) 367–384
www.elsevier.com/locate/anihpc

Well-posedness of the Hele–Shaw–Cahn–Hilliard system

Xiaoming Wang a, Zhifei Zhang b,∗

a Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, United States
b School of Mathematical Science, Peking University, Beijing 100871, China

Received 17 December 2010; received in revised form 12 February 2012; accepted 4 June 2012

Available online 16 June 2012

Abstract

We study the well-posedness of the Hele–Shaw–Cahn–Hilliard system modeling binary fluid flow in porous media with arbitrary
viscosity contrast but matched density between the components. For initial data in Hs , s > d

2 + 1, the existence and uniqueness of

solution in C([0, T ];Hs)∩L2(0, T ;Hs+2) that is global in time in the two dimensional case (d = 2) and local in time in the three
dimensional case (d = 3) are established. Several blow-up criterions in the three dimensional case are provided as well. One of the
tools that we utilized is the Littlewood–Paley theory in order to establish certain key commutator estimates.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The modeling and analysis of multi-phase fluid flow is a fascinating, challenging and important problem [18,4].
Well-known two phase fluid examples include the coupled atmosphere–ocean dynamical system with water and air
being the two phases, as well as the system describing displacement of oil by water in oil reservoir (usually porous
media) [5].

A common approach to two phase flows that are macroscopically immiscible is the sharp interface approach where
the two phases are separated by a sharp interface Γ (t). In the case of flow in porous media, the dynamics of the system
is then governed by the two phase Hele–Shaw (Darcy) system (Muskat problem) [20,17,25] together with two interface
boundary conditions: (1) continuity of the normal velocity; and (2) pressure jump proportional to the (mean) curvature.
The normal velocity of the interface is set to be the normal velocity of the fluids. The local in time well-posedness of
the sharp interface model with or without surface tension is known [2,3,13,11]. Global in time well-posedness with
surface tension [14,10] and 2D without surface tension [26] is also known under the assumption that the initial data is
a small perturbation of a flat interface or a sphere. Nevertheless, the sharp interface model encounters serious difficulty
with physically important topological changes of the interface (possibly undefined curvature), especially in terms of
pinchoff and reconnection that are important in applications [4,20].
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As an alternative approach, one could consider the so-called phase field models (or diffuse interface models) where
an order parameter c is introduced and a capillary stress tensor is used to model the interface between the two fluids
and the forces associated [4]. The sharp interface is then replaced by a thin transition layer and hence we avoid the
difficulty of discontinuity. In this paper, we will consider phase field approach to two phase fluid flow with matched
density in a Hele–Shaw cell or porous media. The dynamical equations are given by the following Hele–Shaw–Cahn–
Hilliard system [20,12]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇ · u = 0,

u = − 1

12η(c)

(
∇p − 1

M
μ∇c

)
,

ct + u · ∇c = 1

Pe
�μ,

c(0, x) = c0(x),

(1.1)

where u is the fluid velocity, c is the order parameter which is related to the concentration of the fluid and usually
takes values between −1 and 1, the chemical potential μ depends on the order parameter c and is given by

μ(c) = f ′
0(c) − C�c, (1.2)

and Pe is the diffusion Péclet number, C is the Cahn number, and M is a Mach number. Furthermore, η(c) is the
kinematic viscosity coefficient satisfying

η ∈ C∞(
R1), 0 < λ � η(c) �Λ < ∞, (1.3)

the Helmholtz free energy f0(c) is given by the classical double well potential

f0(c) = (
c2 − 1

)2
. (1.4)

In the above system (1.1), p is not the physical pressure but the combination of certain generalized Gibbs free energy
and the gravitational potential (see [20] for more details). This model can be also viewed as the Boussinesq approxi-
mation of a more general model with arbitrary viscosity and density contrast [20]. One may formally recover the sharp
interface model by taking appropriate limit within the Hele–Shaw–Cahn–Hilliard system (1.1) [20]. We will assume
that the fluid occupies the two or three dimensional torus Td , d = 2,3, for simplicity.

Besides applications in two phase flow in porous media and Hele–Shaw cell, certain simplified versions of this
HSCH model have been also used in tumor growth study [30]. Moreover, unconditionally stable schemes have been
developed [29] and the existence of certain type of weak solutions (without uniqueness) is also derived [15] for the
case with matched density and viscosity.

The goal of this manuscript is to study the well-posedness of the matched density Hele–Shaw–Cahn–Hilliard
system (1.1) with arbitrary viscosity contrast.

The Hele–Shaw–Cahn–Hilliard system can be formally viewed as an appropriate limit of the classical Navier–
Stokes–Cahn–Hilliard system [4,20,16] which is a popular phase field model for two phase flow although no rigorous
justification is known yet. There are a lot of works on the Navier–Stokes–Cahn–Hilliard system including local in
time well-posedness in 2 and 3 dimensional and global in time well-posedness in 2D under various assumptions [1,7].
In fact the global in time well-posedness of the 2D Navier–Stokes–Cahn–Hilliard system is recently resolved [1]
using a very different set of tools than employed here. Mathematically speaking, the difficulty associated with the
Hele–Shaw–Cahn–Hilliard is about the same as those associated with the Navier–Stokes–Cahn–Hilliard: we gain the
advantage of dropping the nonlinear advection term in the velocity equation but also lose the regularizing viscosity
term; and their scaling behaviors are very similar. We refer to [21–23,4] and references therein for more related works
on the Navier–Stokes–Cahn–Hilliard system.

The rest of the paper is organized as follows. We prove a key estimate on the “pressure” in the second section.
This estimate is nontrivial due to the variable coefficient introduced with the mismatched viscosity. New estimates
on certain commutator operators in fractional derivative spaces are needed and they are derived in Appendix A. In
Section 3 we present the local in time well-posedness based on certain modified Galerkin approximation of the HSCH
system and the “pressure” estimate from Section 2. In Section 4 we provide a Beale–Kato–Majda type blow-up
criterion and prove that the system is global in time well-posed in the two dimensional case. We provide a refined
blow-up criterion in the 3D case in Section 5.
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2. The estimate of the pressure

In this section, we present the estimate of the modified pressure p. Taking the divergence for the second equation
of (1.1), we find that

div

(
1

η(c)
∇p

)
= div

(
1

Mη(c)
μ(c)∇c

)
def= divF(c). (2.1)

This variable coefficient problem is dealt with utilizing commutator estimates that we derived in Appendix A. The
commutator estimates themselves are derived utilizing Littlewood–Paley decomposition.

Proposition 2.1. Let s � 0 and c ∈ Hs+2(Td), and p be a smooth solution of (2.1). Then the solution p satisfies

‖∇p‖Hs �F
(‖c‖L∞

)(
1 + ‖∇c‖L∞

)(
1 + ‖c‖H 2

)k‖c‖Hs+2 . (2.2)

Here k = [2s] + 1 and F is an increasing function on R+.

Proof. Thanks to (1.3) and (2.1), a straightforward energy estimate yields that

‖∇p‖L2 � C
∥∥μ(c)

∥∥
L2‖∇c‖L∞ � C

(
1 + ‖c‖2

L∞
)‖∇c‖L∞‖c‖H 2 . (2.3)

Taking the operator 〈D〉s to (2.1) to obtain

div

(
1

η(c)
∇〈D〉sp

)
= div〈D〉s

(
1

Mη(c)
μ(c)∇c

)
− div

(
〈D〉s

(
1

η(c)
∇p

)
−

(
1

η(c)
∇〈D〉sp

))
= div(A + B),

from which and from the energy estimate, we infer that

‖∇p‖Hs � C
(‖A‖L2 + ‖B‖L2

)
.

Due to the definition of μ(c), we have

1

η(c)
μ(c)∇c = 1

η(c)
f ′

0(c)∇c − C
1

η(c)
�c∇c = ∇g1(c) − �c∇g2(c),

for some g1, g2 with g1(0) = g2(0) = 0. We have by Lemma A.3 that∥∥〈D〉s∇g1(c)
∥∥

L2 �F
(‖c‖L∞

)‖c‖Hs+1,

and using Bony’s decomposition to write

�c∇g2(c) = T�c∇g2(c) + R̃
(
�c,∇g2(c)

)
= ∂iT∂ic∇g2(c) − T∂ic∂i∇g2(c) + R̃

(
�c,∇g2(c)

)
,

then from the proof of Lemma A.2, it is easy to see that∥∥〈D〉s�c∇g2(c)
∥∥

L2 �F
(‖c‖L∞

)‖∇c‖L∞‖c‖Hs+2 .

Thus we obtain

‖A‖L2 �F
(‖c‖L∞

)(
1 + ‖∇c‖L∞

)‖c‖Hs+2

and by Lemmas A.4–A.3 and (2.3), for s ∈ (0,1],
‖B‖L2 �F

(‖c‖L∞
)‖c‖Hs+2‖∇p‖L2 �F

(‖c‖L∞
)‖∇c‖L∞‖c‖H 2‖c‖Hs+2 .

Thus we obtain that for s ∈ (0,1],
‖∇p‖Hs �F

(‖c‖L∞
)(

1 + ‖∇c‖L∞
)(

1 + ‖c‖H 2

)‖c‖Hs+2 . (2.4)
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For general s, we will prove it by an induction argument. Let us assume that for s ∈ ( k−1
2 , k

2 ], we have

‖∇p‖Hs �F
(‖c‖L∞

)(
1 + ‖∇c‖L∞

)(
1 + ‖c‖H 2

)k‖c‖Hs+2 .

Note that (2.4) means that the cases of k = 1,2 hold. Now let us assume s ∈ ( k
2 , k+1

2 ]. We infer from Lemma A.4 and
Lemma A.3 that

‖B‖L2 �F
(‖c‖L∞

)(‖c‖Hs+2‖∇p‖L2 + ‖c‖H 2‖∇p‖
H

s− 1
2

)
.

Then from (2.3) and the induction assumption, it follows that

‖B‖L2 �F
(‖c‖L∞

)(
1 + ‖∇c‖L∞

)(
1 + ‖c‖H 2

)k+1‖c‖Hs+2 .

Thus for s ∈ ( k
2 , k+1

2 ], we have

‖∇p‖Hs �F
(‖c‖L∞

)(
1 + ‖∇c‖L∞

)(
1 + ‖c‖H 2

)k+1‖c‖Hs+2 .

This completes the proof of Lemma 2.1. �
Remark. Instead of relying on the estimates from the appendix which depend on the Littlewood–Paley theory, clas-
sical energy method might work as well if we are content with less sharp and less general results. For instance, if
∇c ∈ L∞(Td) and c ∈ Hk(Td) for k ∈ Z+, classical elliptic estimates may lead to

‖∇p‖Hk � C
∥∥F(c)

∥∥
Hk ,

where C depends on ‖∇c‖L∞ and ‖c‖Hk . And a straightforward product estimate gives∥∥F(c)
∥∥

Hk � C
(‖c‖L∞

)(‖c‖Hk+1 + ‖∇c‖L∞‖c‖Hk+2 + ‖�c‖L∞‖c‖Hk+1

)
.

This estimate is enough to obtain the local well-posedness of the system (1.1) and global well-posedness in the 2D
case in the space of

c ∈ C
([0, T ];H 2(Td

)) ∩ L2(0, T ;H 4(Td
))

, u ∈ C
([0, T ];L2(Td

)) ∩ L2(0, T ;H 2(Td
))

when combined with the L∞(H 2) ∩ L2(H 4) a priori estimates from (Theorem 4.1) for initial data in Hk , k > 2.
However, in order to obtain the sharp blow-up criterion which in particular implies the global existence of the 2D
system in general Sobolev spaces as specified in Theorem 3.1, we need to establish the refined pressure estimate (2.2).
Notice that (2.2) is established for general (Hilbert) Sobolev spaces, and only a linear factor of ‖∇c‖L∞ appears in
the estimate in contrast to pure energy estimates.

3. Local well-posedness

In this section we prove the local well-posedness of the Hele–Shaw–Cahn–Hilliard system. The procedure is mostly
standard except for the pressure estimate.

Theorem 3.1. Let c0(x) ∈ Hs(Td) for s > d
2 + 1. Then there exists T > 0 such that the system (1.1) has a unique

solution (c, u) in [0, T ] with

c ∈ C
([0, T ];Hs

(
Td

)) ∩ L2(0, T ;Hs+2(Td
))

, u ∈ C
([0, T ];Hs−2(Td

)) ∩ L2(0, T ;Hs
(
Td

));
and satisfying the following energy estimate

∥∥c(t)
∥∥2

Hs +
t∫

0

∥∥c(τ )
∥∥2

Hs+2 dτ � ‖c0‖Hs exp

( t∫
0

G(τ)dτ

)
, (3.1)

for t ∈ [0, T ], where

G(t) =F
(‖c‖L∞

)(
1 + ‖∇c‖L∞

)2(‖∇c‖L∞ + ‖c‖
d−2

2
H 3

)2(1 + ‖c‖H 2

)2([2s]+1)
.
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Proof. We will use the energy method to prove Theorem 3.1.
Step 1. Construction of an approximate solution sequence.
The construction of the approximate solutions is based on the Galerkin method. Let us define the operator Pn by

Pnf (x) =
∑
|k|�n

fke
2πik·x, fk =

∫
Td

f (x)e−2πik·x dx.

Then we consider the following approximate system of (1.1):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇ · un = 0,

un = − 1

12η(Pncn)

(
∇pn − 1

M
μ(Pncn)∇Pncn

)
,

∂t cn + Pn(un · ∇Pncn) = 1

Pe
�Pnμ(Pncn),

cn(0, x) = Pnc0(x).

(3.2)

It is easy to see that∥∥�Pnμ
(
Pnc

1
n

) − �Pnμ
(
Pnc

2
n

)∥∥
L2 � C

(
n,

∥∥c1
n

∥∥
L2 ,

∥∥c2
n

∥∥
L2

)∥∥c1
n − c2

n

∥∥
L2 .

Taking the divergence to the second equation in (3.2) gives

div

(
1

η(Pncn)
∇pn

)
= div

(
1

Mη(Pncn)
μ(Pncn)∇Pncn

)
.

Thanks to (1.3), straightforward energy estimate yields that

‖∇pn‖L2 � C
(
n,‖cn‖L2

)‖cn‖L2 ,

from which, we can further deduce by making the energy estimate for the elliptic equation satisfied by p1
n − p2

n that∥∥∇(
p1

n − p2
n

)∥∥
L2 � C

(
n,

∥∥c1
n

∥∥
L2,

∥∥c2
n

∥∥
L2

)∥∥c1
n − c2

n

∥∥
L2 ,

thus we infer from the second equation of (3.2) that∥∥u1
n − u2

n

∥∥
L2 � C

(
n,

∥∥c1
n

∥∥
L2 ,

∥∥c2
n

∥∥
L2

)∥∥c1
n − c2

n

∥∥
L2 .

Therefore, we have, since all norms are equivalent on a finite dimensional space,∥∥Pn

(
u1

n · ∇Pnc
1
n

) − Pn

(
u2

n · ∇Pnc
2
n

)∥∥
L2 � C

(
n,

∥∥c1
n

∥∥
L2 ,

∥∥c2
n

∥∥
L2

)(∥∥u1
n − u2

n

∥∥
L2 + ∥∥c1

n − c2
n

∥∥
L2

)
� C

(
n,

∥∥c1
n

∥∥
L2 ,

∥∥c2
n

∥∥
L2

)∥∥c1
n − c2

n

∥∥
L2 .

Thus, the Cauchy–Lipschitz theorem (classical ODE existence and uniqueness result under local Lipschitz conti-
nuity assumption) ensures that there exists Tn > 0 such that the approximate system (3.2) has a unique solution
cn ∈ C([0, Tn];L2(Td)). Note that P 2

n = Pn, Pncn is also a solution of (3.2). So the uniqueness implies that Pncn = cn.
Thus, the approximate system (3.2) reduces to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇ · un = 0,

un = − 1

12η(cn)

(
∇pn − 1

M
μ(cn)∇cn

)
,

∂t cn + Pn(un · ∇cn) = 1

Pe
�Pnμ(cn),

cn(0, x) = Pnc0(x).

(3.3)

In what follows, we denote by T ∗
n the maximal existence time of the solution cn. Due to Pncn = cn, the solution cn is

in fact smooth.
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Step 2. Energy estimates.
Although the HSCH model (1.1) has a natural energy (which is somewhat equivalent to H 1 estimate, see [20,29]

and Section 4 below), it is not sufficient for the strong solution. Therefore we have to derive estimates in Sobolev
spaces with higher derivatives.

For this purpose we take the Hs(Td) inner product of the third equation of (3.3) with cn and obtain

1

2

d

dt
‖cn‖2

Hs − 1

Pe

(
�Pnμ(cn), cn

)
Hs = −(un · ∇cn, cn)Hs . (3.4)

Due to (1.2), we see that

−(
�Pnμ(cn), cn

)
Hs = C‖�cn‖2

Hs − (
�f ′

0(cn), cn

)
Hs .

We deduce, thanks to Lemma A.3 that∣∣(�f ′
0(cn), cn

)
Hs

∣∣ � ∥∥f ′
0(cn)

∥∥
Hs ‖�cn‖Hs � C

(
1 + ‖cn‖2

L∞
)‖cn‖Hs ‖�cn‖Hs , (3.5)

and by Lemma A.2 with σ = 1,∣∣(un · ∇cn, cn)Hs

∣∣� ‖un · ∇cn‖Hs ‖cn‖Hs

� C
(‖un‖Hs ‖∇cn‖L∞ + ‖un‖

H
d
2 −1‖∇cn‖Hs+1

)‖cn‖Hs . (3.6)

Thanks to (3.3), we find that

‖un‖Hs � C

(∥∥∥∥ 1

η(cn)
∇p

∥∥∥∥
Hs

+
∥∥∥∥ 1

η(cn)
μ(cn)∇cn

∥∥∥∥
Hs

)
. (3.7)

By Proposition 2.1, the first term on the right hand side of (3.7) is bounded by

F
(‖cn‖L∞

)(
1 + ‖∇cn‖L∞

)(
1 + ‖cn‖H 2

)[2s]+1‖cn‖Hs+2,

and by Lemma A.2, Lemma A.3, the second term is bounded by

F
(‖cn‖L∞

)(
1 + ‖∇cn‖L∞

)‖cn‖Hs+2 .

Thus we obtain

‖un‖Hs �F
(‖cn‖L∞

)(
1 + ‖∇cn‖L∞

)(
1 + ‖cn‖H 2

)[2s]+1‖cn‖Hs+2,

and in particular,

‖un‖
H

d
2 −1 �F

(‖cn‖L∞
)(

1 + ‖∇cn‖L∞
)(

1 + ‖cn‖H 2

)d−1‖cn‖
H

d
2 +1 ,

from which and (3.6), we infer that∣∣(un · ∇cn, cn)Hs

∣∣�F
(‖cn‖L∞

)(
1 + ‖∇cn‖L∞

)
× (‖∇cn‖L∞ + ‖cn‖

d−2
2

H 3

)(
1 + ‖cn‖H 2

)[2s]+1‖cn‖Hs+2‖cn‖Hs . (3.8)

Here we used the following interpolation inequality:

‖cn‖
H

d
2 +1 � ‖cn‖2− d

2
H 2 ‖cn‖

d
2 −1

H 3 .

Plugging (3.5) and (3.8) into (3.4) yields that

1

2

d

dt
‖cn‖2

Hs + C
Pe

‖�cn‖2
Hs

�F
(‖cn‖L∞

)(
1 + ‖∇cn‖L∞

)(‖∇cn‖L∞ + ‖cn‖
d−2

2
H 3

)(
1 + ‖cn‖H 2

)[2s]+1‖cn‖Hs+2‖cn‖Hs ,

which along with Young’s inequality implies that
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d

dt
‖cn‖2

Hs + ‖cn‖2
Hs+2

�F
(‖cn‖L∞

)(
1 + ‖∇cn‖L∞

)2(‖∇cn‖L∞ + ‖cn‖
d−2

2
H 3

)2(1 + ‖cn‖H 2

)2([2s]+1)‖cn‖2
Hs .

Then Gronwall’s inequality applied gives

Es
n(t)

def= ∥∥cn(t)
∥∥2

Hs +
t∫

0

∥∥cn(τ )
∥∥2

Hs+2 dτ � ‖c0‖2
Hs exp

( t∫
0

Gn(τ) dτ

)
(3.9)

for t ∈ [0, T ∗
n ), where

Gn(t) =F
(‖cn‖L∞

)(
1 + ‖∇cn‖L∞

)2(‖∇cn‖L∞ + ‖cn‖
d−2

2
H 3

)2(
1 + ‖cn‖H 2

)2([2s]+1)
.

Step 3. Uniform estimates and existence of the solution.
Let us define

T̃ ∗
n

def= sup
{
t ∈ [

0, T ∗
n

)
: Es

n(τ ) � 2‖c0‖2
Hs for τ ∈ [0, t]}.

From (3.9) and Sobolev’s embedding, we find that

Es
n(t) � ‖c0‖2

Hs exp

(
A

(‖c0‖Hs

) t∫
0

(
1 + ∥∥c(τ )

∥∥d−2
H 3

)
dτ

)

� ‖c0‖2
Hs exp

(
A

(‖c0‖Hs

)(
t + t

1
2
))

, t ∈ [
0, T̃ ∗

n

)
.

Here A(·) is some increasing function. Take T to be small enough such that

exp
(
A

(‖c0‖Hs

)(
T + T

1
2
))

� 3

2
.

Now we will show that T̃ ∗
n � T . Otherwise, we have

Es
n(t) �

3

2
‖c0‖2

Hs for t ∈ [
0, T̃ ∗

n

]
,

which contradicts with the definition of T̃ ∗
n . Thus the approximate solution (cn, un) exists on [0, T ] and satisfies the

following uniform estimate

∥∥cn(t)
∥∥2

Hs +
t∫

0

∥∥cn(τ )
∥∥2

Hs+2 dτ � 2‖c0‖2
Hs (3.10)

for t ∈ [0, T ]. On the other hand, it is easy to verify from the third equation of (3.3) that ∂t cn is uniformly
bounded in L2(0, T ;Hs−2(Td)). Thus, Lions–Aubin’s compactness theorem (for example, see [27]) ensures that
there exist a subsequence (cnk

, unk
)k of (cn, un)n and a function c ∈ L∞(0, T ;Hs(Td)) ∩ L2(0, T ;Hs+2(Td)) and

u ∈ L∞(0, T ;Hs−2(Td)) ∩ L2(0, T ;Hs(Td)) such that

cnk
−→ c, in L2(0, T ;Hs′+2(Td

))
,

unk
−→ u, in L2(0, T ;Hs′(

Td
))

,

as k −→ +∞, for any s′ < s. Then passing to limit in (3.3), it is easy to see that (c, u) satisfies (1.1) in the weak sense
and (c, u) satisfies (3.1).

Step 4. Continuity in time of the solution.
Let us claim that there holds the following better estimate for cn (thus for c):

‖cn‖2
L̃∞(0,T ;Hs)

def=
∑

22js‖�jc‖2
L∞(0,T ;L2)

� C.
j�−1
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Indeed, we can deduce a frequency localized version of (3.4):

1

2

d

dt
‖�jcn‖2

L2 + C
Pe

‖��jcn‖2
L2 = −(

�j(un · ∇cn),�jcn

)
L2 + 1

Pe

(
�j�f ′

0(cn),�jcn

)
L2 ,

which implies that

sup
τ∈[0,t]

∥∥�jcn(τ )
∥∥2

L2 +
t∫

0

∥∥��jcn(τ )
∥∥2

L2 dτ

� C

t∫
0

∣∣(�j(un · ∇cn),�jcn

)
L2

∣∣dτ +
t∫

0

∣∣(�j�f ′
0(cn),�j cn

)
L2

∣∣dτ.

Multiplying 22js and taking summation on j on both sides, we get

‖cn‖2
L̃∞(0,t;Hs)

+
t∫

0

∥∥�cn(τ)
∥∥2

Hs dτ � C

t∫
0

‖un · ∇cn‖Hs ‖cn‖Hs + ∥∥f ′
0(cn)

∥∥
Hs ‖�cn‖Hs dτ.

The rest of the proof is completely similar to Step 2. We omit the details.
Now we show that the claim will imply c ∈ C([0, T ];Hs(Td)). In fact, for any ε > 0, take N big enough such that∑

j>N

22js‖�jc‖2
L∞(0,T ;L2)

� ε

4
.

For any t ∈ (0, T ) and δ such that t + δ ∈ [0, T ], we have

∥∥c(t + δ) − c(t)
∥∥2

Hs �
N∑

j=−1

22js
∥∥�jc(t + δ) − �jc(t)

∥∥2
L2 + ε

2

�
N∑

j=−1

22js |δ|‖∂t c‖2
L2(0,T ;L2)

+ ε

2

� 2N22N‖∂t c‖2
L2(0,T ;L2)

|δ| + ε

2
.

Thus for |δ| small enough, we have∥∥c(t + δ) − c(t)
∥∥2

Hs � ε.

That is, c(t) is continuous in Hs(Td) at the time t , thus so is u.
Step 5. Uniqueness of the solution
Assume that (c1, u1) and (c2, u2) are two solutions of (1.1) with the same initial data. We introduce the difference

of two solutions:

δc = c1 − c2, δu = u1 − u2.

Then (δc, δu) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t δc + u1 · ∇δc + δu · ∇c2 = 1

Pe
�

(
μ(c1) − μ(c2)

)
,

δu = η(c1) − η(c2)

12η(c1)η(c2)

(
∇p1 − 1

M
μ(c1)∇c1

)
− 1

12η(c2)

(
∇(p1 − p2) − 1

M

(
μ(c1)∇c1 − μ(c2)∇c2

))
,

δc(0) = 0.

Multiplying the first equation by δc , integrating, and then using the first equation of (1.1) yields that

1

2

d

dt
‖δc‖2

L2 + C
Pe

‖�δc‖2
L2 �

1

Pe

(
�

(
f ′

0(c1) − f ′
0(c2), δc

))
L2 − (δu · ∇c2, δc)L2

� C
(‖�δc‖L2 + ‖δu‖L2

)‖δc‖L2 .
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Note by (2.1) that

div

(
1

η(c1)
∇(p1 − p2)

)
= div

(
F(c1) − F(c2)

) − div

((
1

η(c1)
− 1

η(c2)

)
∇p2

)
,

so the energy estimate gives∥∥∇(p1 − p2)
∥∥

L2 � C

(∥∥F(c1) − F(c2)
∥∥

L2 +
∥∥∥∥(

1

η(c1)
− 1

η(c2)

)
∇p2

∥∥∥∥
L2

)
� C

(‖δc‖L2 + ‖�δc‖L2

)
.

Then we can deduce from the equation of δu, together with the Hölder inequality and the Sobolev type inequalities
that

‖δu‖L2 � C
(‖δc‖L2 + ∥∥∇(p1 − p2)

∥∥
L2 + ‖�δc‖L2

)
� C

(‖δc‖L2 + ‖�δc‖L2

)
.

Thus we obtain

d

dt
‖δc‖2

L2 � C‖δc‖2
L2 ,

∥∥δc(0)
∥∥ = 0,

which along with Gronwall’s inequality implies δc = 0, and the uniqueness follows. �
4. Blow-up criterion and global existence in 2D

In this section we prove a Beale–Kato–Majda type blow-up criterion [24] for the Hele–Shaw–Cahn–Hilliard sys-
tem. As an application, we obtain the global well-posedness in 2D.

Theorem 4.1. Let c0(x) ∈ Hs(Td) for s > d
2 + 1, and (c, u) be a solution of (1.1) stated in Theorem 3.1. Let T ∗ be

the maximal existence time of the solution. If T ∗ < +∞, then

T ∗∫
0

∥∥∇c(t)
∥∥4

L∞ dt = +∞. (4.1)

In particular, this implies T ∗ = +∞ for d = 2. That is, the system (1.1) is globally well-posed in 2D.

Proof. First of all, we derive the basic energy law of the system. Multiplying by μ on both sides of the third equation
of (1.1), we get by integration by parts that∫

Td

ctμdx +
∫
Td

u · ∇cμdx = − 1

Pe

∫
Td

|∇μ|2 dx.

Due to the definition of μ, we have∫
Td

ctμdx = d

dt

(∫
Td

f0(c) dx + C
2

∫
Td

|∇c|2 dx

)
,

and due to the first two equations in (1.1),∫
Td

u · ∇cμdx = 12M
∫
Td

η(c)|u|2 dx.

Thus we obtain the following classical energy equality [20]

d

dt

(∫
d

f0(c) dx + C
2

∫
d

|∇c|2 dx

)
+ 1

Pe

∫
d

|∇μ|2 dx + 12M
∫
d

η(c)|u|2 dx = 0.
T T T T
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That is,

E(t) + 1

Pe

t∫
0

∫
Td

∣∣∇μ(τ)
∣∣2

dx dτ + 12M

t∫
0

∫
Td

η(c)
∣∣u(τ)

∣∣2
dx dτ = E(0), (4.2)

where

E(t)
def=

∫
Td

f0
(
c(t, x)

)
dx + C

2

∫
Td

∣∣∇c(t, x)
∣∣2

dx.

From the energy equality (4.2), it follows that

∥∥c(t)
∥∥2

H 1 + 1

Pe

t∫
0

‖∇μ‖2
L2 dτ � E(0).

On the other hand, we have

‖∇�c‖L2 � C
(‖∇μ‖L2 + ‖∇c‖L2 + ‖c2∇c‖L2

)
,

and by Sobolev’s inequality, interpolation and Young’s inequality,∥∥c2∇c
∥∥

L2 � C‖c‖2
L6‖∇c‖L6 � C‖c‖2

H 1‖c‖H 2

� C‖c‖
5
2
H 1‖c‖

1
2
H 3 � C‖c‖5

H 1 + 1

2C̃
‖c‖H 3,

where C̃ is the constant from the preceding inequality. This implies that

‖c‖H 3 � C
(‖∇μ‖L2 + ‖c‖H 1 + ‖c‖5

H 1

)
.

Therefore we conclude that

‖c‖L∞(0,T ;H 1) + ‖c‖L2(0,T ;H 3) � C
(
T ,‖c0‖H 1

)
. (4.3)

Next, we derive an H 2 energy estimate of the solution. By taking the Laplacian of the third equation of (1.1),
multiplying them by �c, and then integrating we get

1

2

d

dt
‖�c‖2

L2 + C
Pe

∥∥�2c
∥∥2

L2 = −(
u · ∇c,�2c

)
L2 + 1

Pe

(
�f ′

0(c),�
2c

)
� ‖u‖L2‖∇c‖L∞

∥∥�2c
∥∥

L2 + 1

Pe

∥∥�f ′
0(c)

∥∥
L2

∥∥�2c
∥∥

L2 . (4.4)

It is easy to verify that

‖u‖L2 � C
(‖∇p‖L2 + ∥∥μ(c)∇c

∥∥
L2

)
� C

(‖∇c‖L∞‖�c‖L2 + (‖c‖L3 + ‖c‖3
L9

)‖∇c‖L6

)
� C

(‖∇c‖L∞ + ‖c‖L3 + ‖c‖3
L9

)‖c‖H 2,

and ∥∥�f ′
0(c)

∥∥
L2 � C

(
1 + ‖c‖2

L∞
)‖c‖H 2 .

Plugging them into (4.4) yields that

d

dt
‖�c‖2

L2 + ∥∥�2c
∥∥2

L2 � C
(
1 + ‖∇c‖4

L∞ + ‖c‖4
L∞ + ‖c‖4

L3 + ‖c‖12
L9

)‖c‖2
H 2,

which along with Gronwall’s inequality leads to



X. Wang, Z. Zhang / Ann. I. H. Poincaré – AN 30 (2013) 367–384 377
‖c‖H 2 � ‖c0‖H 2 exp

(
C

t∫
0

H(τ)dτ

)
, (4.5)

where H(t) = 1 + ‖∇c‖4
L∞ + ‖c‖4

L∞ + ‖c‖4
L3 + ‖c‖12

L9 .

Now we are in position to prove the blow-up criterion. We will prove it by way of contradiction argument. Assume
that T ∗ < +∞ and

T ∗∫
0

∥∥∇c(t)
∥∥4

L∞ dt < +∞,

which together with (4.3) and Sobolev’s inequality implies that

T ∗∫
0

H(τ)dτ < +∞,

for example,

T ∗∫
0

∥∥c(t)
∥∥12

L9 dt � C

T ∗∫
0

∥∥c(t)
∥∥11

H 1

∥∥c(t)
∥∥

H 3 dt < +∞.

Then we infer from (4.5) that

‖c‖L∞(0,T ∗;H 2) < +∞,

which implies that

T ∗∫
0

G(t) dt < +∞, G(t) being as in Theorem 3.1.

Then the energy inequality (3.1) ensures that

sup
t∈[0,T ∗]

∥∥c(t)
∥∥2

Hs +
T ∗∫
0

∥∥c(τ )
∥∥2

Hs+2 dτ < +∞,

which means that the solution can be continued after t = T ∗, and thus contradicts with the definition of T ∗.
As an application of blow-up criterion, we can deduce the global existence in 2D. Indeed, in two dimensional case,

we get by the Gagliardo–Nirenberg inequality and (4.3) that

T ∗∫
0

∥∥∇c(t)
∥∥4

L∞ dt � C

T ∗∫
0

∥∥c(t)
∥∥2

H 1

∥∥c(t)
∥∥2

H 3 dt < +∞,

which implies T ∗ = +∞ by the blow-up criterion. �
5. A refined blow-up criterion in 3D

We first turn to a simple model relating to the Hele–Shaw–Cahn–Hilliard system:{
u = −∇p + �c∇c, ∇ · u = 0,

ct + u · ∇c + �2c = 0.
(5.1)

For this system, we still have the energy equality:
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∥∥∇c(t)
∥∥2

L2 + 2

t∫
0

∥∥∇�c(τ)
∥∥2

L2 + ∥∥u(τ)
∥∥2

L2 dτ = ‖∇c0‖L2 .

Moreover, if c is a solution of (5.1), then cλ(t, x)
def= c(λ4t, λx) is also a solution. It is easy to see that

∥∥∇cλ(t, x)
∥∥

L2 = λ
d
2 −1

∥∥∇c
(
λ4t, x

)∥∥
L2 ,

∞∫
0

∥∥∇�cλ(τ)
∥∥2

L2 dτ = λ2−d

∞∫
0

∥∥∇�c(τ)
∥∥2

L2 dτ.

Thus, the energy is scaling invariant for d = 2. From this point of view, the 2D system is critical and the 3D system
is supercritical like the 3D Navier–Stokes equations. Due to the bi-Laplacian �2, there is no maximum principle for
this system, which is the main obstacle to obtain the global existence in 3D case. For the 2D critical QG equation

θt + (−�)
1
2 θ + u · ∇θ = 0, u = (−(−�)−

1
2 ∂x2θ, (−�)−

1
2 ∂x1θ

)
,

Caffarelli and Vasseur [8] proved the global regularity of weak solution. The key step of their proof is to prove
the Hölder continuity of the solution by using the DeGiorgi method. Note that the quasigeostrophic equation has a
maximum principle. For the 3D Hele–Shaw–Cahn–Hilliard system, we also show that the Hölder continuity of the
solution will control the blow-up of the solution.

Theorem 5.1. Let α ∈ (0,1) and c0(x) ∈ Hs(T3) for s � 3. Assume that (c, u) is the solution of (1.1) stated in
Theorem 3.1. Let T ∗ be the maximal existence time of the solution. If T ∗ < +∞, then

T ∗∫
0

∥∥c(t)
∥∥ 8

α

Cα dt = +∞.

Proof. We will prove it by contradiction argument. Assume that T ∗ < +∞ and

T ∗∫
0

∥∥c(t)
∥∥ 8

α

Cα dt < +∞. (5.2)

Taking �j to the third equation of (1.1) we obtain

∂t�j c + C
Pe

�2�jc = −�j(u · ∇c) + 1

Pe
��jf

′
0(c).

Making an L2(T3) energy estimate, we get by Lemma A.1 that for j � 0,

d

dt
‖�jc‖2

L2 + c24j‖�jc‖2
L2 � C

(∥∥�j(u · ∇c)
∥∥

L2 + ∥∥�f ′
0(c)

∥∥
L2

)‖�jc‖L2 .

Dividing the above inequality by ‖�jc‖L2 gives

d

dt
‖�jc‖L2 + c24j‖�jc‖L2 � C

(∥∥�j(u · ∇c)
∥∥

L2 + ∥∥�f ′
0(c)

∥∥
L2

)
,

which implies that

∥∥�jc(t)
∥∥

L2 � ‖�jc0‖L2 + C

t∫
0

e−c24j (t−τ)
(∥∥�j(u · ∇c)(τ )

∥∥
L2 + ∥∥�f ′

0

(
c(τ )

)∥∥
L2

)
dτ. (5.3)

We denote

‖c‖Bs
2,∞

def= sup 2js‖�jc‖L2 .

j�−1
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Using the definition of Sobolev space, it is easy to find that

‖c‖2
Hs−ε �

∑
j�−1

2−2εj‖c‖2
Bs

2,∞
� C‖c‖2

Bs
2,∞

, ∀ε > 0.

It follows from (5.3) that∥∥c(t)
∥∥

B3
2,∞

�
∥∥c(t)

∥∥
L2 + ‖c0‖H 3

+ C sup
j�0

23j

t∫
0

e−c24j (t−τ)
(∥∥�j(u · ∇c)(τ )

∥∥
L2 + ∥∥�f ′

0

(
c(τ )

)∥∥
L2

)
dτ. (5.4)

Now we claim that∥∥�j(u · ∇c)
∥∥

L2 � C2j (1−α)‖u‖L2‖c‖Cα , (5.5)

but we will show it later. Now we have

‖u‖L2 � C
∥∥μ(c)∇c

∥∥
L2 � C‖c‖H 3−α‖c‖Cα + C

(‖c‖L3 + ‖c‖2
L6‖c‖L∞

)‖∇c‖L6

� C
(
1 + ‖c‖H 1 + ‖c‖2

H 1

)‖c‖Cα‖c‖B3
2,∞

.

Here we used the product estimate

‖�c∇c‖L2 � C‖c‖H 3−α‖c‖Cα � C‖c‖B3
2,∞

‖c‖Cα ,

which can be proved as in Lemma A.2. And similarly we have∥∥�f ′
0(c)

∥∥
L2 � C

(
1 + ‖c‖2

Cα

)‖c‖H 2 .

Plugging the above estimates into (5.4) yields that∥∥c(t)
∥∥

B3
2,∞

�
∥∥c(t)

∥∥
L2 + ‖c0‖H 3

+ C sup
j�0

2j (4−α)

t∫
0

e−c24j (t−τ)
(
1 + ‖c‖H 1 + ‖c‖2

H 1

)(
1 + ‖c‖2

Cα

)‖c‖B3
2,∞

dτ,

which along with the Hölder inequality gives∥∥c(t)
∥∥

L∞(0,t;B3
2,∞)

�
∥∥c(t)

∥∥
L∞(0,t;L2)

+ ‖c0‖H 3

+ (
1 + ‖c‖L∞(0,t;H 1) + ‖c‖2

L∞(0,t;H 1)

)(
t

α
4 + ‖c‖2

L
8
α (0,t;Cα)

)‖c‖L∞(0,t;B3
2,∞).

The above argument is still valid on the interval [T ,T ∗) for T < T ∗. Thus we get by using (4.3) that∥∥c(t)
∥∥

L∞(T ,T ∗;B3
2,∞)

� ‖c0‖H 1 + ∥∥c0(T )
∥∥

H 3

+ C
(‖c0‖H 1

)((
T ∗ − T

) α
4 + ‖c‖2

L
8
α (T ,T ∗;Cα)

)‖c‖L∞(T ,T ∗;B3
2,∞).

Due to (5.2), we can choose T such that

C
(‖c0‖H 1

)((
T ∗ − T

) α
4 + ‖c‖2

L
8
α (T ,T ∗;Cα)

)
� 1

2
.

Then we obtain∥∥c(t)
∥∥

L∞(T ,T ∗;B3 )
� 2

(‖c0‖H 1 + ∥∥c0(T )
∥∥

H 3

)
,

2,∞
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which implies by ‖∇c‖L∞ � C‖c‖B3
2,∞

that

T ∗∫
0

∥∥∇c(t)
∥∥4

L∞ dt < +∞,

which is impossible by Theorem 4.1 if T ∗ < +∞.
It remains to prove (5.5). As in the proof of Lemma A.2, we have

�j(u · ∇c) = �j

∑
|j−k|�4

Sk−1u · ∇�kc + �j

∑
|j−k|�4

�ku · ∇Sk−1c + �j

∑
|k−k′|�1,k�j−3

�ku · ∇�k′c

= A1 + A2 + A3.

We get by Lemma A.1 that

‖A1‖L2 � C
∑

|j−k|�4

‖Sk−1u‖L2‖∇�kc‖L∞ � C2j (1−α)‖u‖L2‖c‖Cα ,

and for A2,

‖A2‖L2 � C
∑

|j−k|�4

‖�ku‖L2‖∇Sk−1c‖L∞

� C‖u‖L2

∑
|j−k|�4

∑
��k−2

2�‖��c‖L∞

� C‖u‖L2‖c‖Cα

∑
|j−k|�4

∑
��k−2

2�(1−α) � C2j (1−α)‖u‖L2‖c‖Cα ,

and due to ∇ · u = 0,

‖A3‖L2 �
∥∥∥∥�j

∑
|k−k′|�1,k�j−3

∇ · (�ku�k′c)

∥∥∥∥
L2

� C2j
∑

|k−k′|�1,k�j−3

2−k′α‖u‖L22k′α‖�k′c‖L∞

� C2j (1−α)‖u‖L2‖c‖Cα .

Then the inequality (5.5) follows from the estimates of A1,A2 and A3. The proof of Theorem 5.1 is completed. �
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Appendix A

Let us first recall some basic facts about the Littlewood–Paley theory. Let ϕ,χ be two functions in C∞(Td) such
that supp ϕ̂ ⊂ { 3

4 � |ξ | � 8
3 }, supp χ̂ ⊂ {|ξ |� 4

3 } and

χ̂ (ξ) +
∑

ϕ̂
(
2−j ξ

) = 1.
j�0
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Then the Littlewood–Paley operators are defined by

�jf = ϕj ∗ f =
∫
Td

ϕj (x − y)f (y) dy, ϕj (x) = 2jdϕ
(
2j x

)
, j � 0,

Sjf = χj ∗ f =
j−1∑

k=−1

�kf, �−1f = χ ∗ f.

Some classical spaces can be characterized in terms of �j . Let s ∈ R, then the Sobolev space Hs(Td) is defined by

Hs
(
Td

) def=
{
u ∈D′(Td

)
: ‖u‖2

Hs
def=

∑
j�−1

22js‖�ju‖2
L2 < ∞

}
.

We denote by (u, v)Hs the inner product in Hs(Td). And for s ∈ (0,1), the Hölder space Cs(Td) is defined by

Cs
(
Td

) def=
{
u ∈D′(Td

)
: ‖u‖Cs

def= sup
j�−1

2js‖�ju‖L∞
}
.

We refer to [28] for more details. Let us recall Bony’s decomposition from [6]:

fg = Tf g + Tgf + R(f,g), (A.1)

where

Tf g =
∑

j�−1

Sj−1f �jg, R(f,g) =
∑

|j−j ′|�1

�jf �j ′g.

We also denote R̃(f, g) = Tgf + R(f,g).

Lemma A.1. (See [9].) Let k ∈ N, 1 � p � q � ∞. Then there exists a positive constant C independent of j such that∥∥∂α�jf
∥∥

Lq + ∥∥∂αSjf
∥∥

Lq � C2j |α|+dj ( 1
p

− 1
q
)‖f ‖Lp,

‖�jf ‖Lp � C2−jk sup
|α|=k

∥∥∂α�jf
∥∥

Lp , j � 0.

Lemma A.2. Let s � 0. Then there holds

‖fg‖Hs � C
(‖f ‖L∞‖g‖Hs + ‖f ‖Hs ‖g‖L∞

)
. (A.2)

If 0 < σ � d
2 , then there holds

‖fg‖Hs � C
(‖f ‖Hs ‖g‖L∞ + ‖f ‖

H
d
2 −σ

‖g‖Hs+σ

)
. (A.3)

Proof. The inequality (A.2) is classical, see [19]. Here we only present the proof of (A.3). Using Bony’s decomposi-
tion (A.1) we write

�j(fg) = �j(Tf g) + �j(Tgf ) + �jR(f,g).

Taking into consideration the support of Fourier transform of the term Tf g, we have

�j(Tf g) =
∑

|j ′−j |�4

�j(Sj ′−1f �j ′g).

Due to 0 < σ � d
2 , this gives by Lemma A.1 that

‖Sjf ‖L∞ �

⎧⎨⎩C2j d
2 ‖f ‖L2 , if σ = d

2 ,

C
∑

k�j−1 2k d
2 ‖�kf ‖L2 � C2jσ ‖f ‖ d −σ

, if σ < d
2 ,
H 2
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which implies that∥∥�j(Tf g)
∥∥

L2 � C
∑

|j ′−j |�4

‖Sj ′−1f ‖L∞‖�j ′g‖L2

� C‖f ‖
H

d
2 −σ

∑
|j ′−j |�4

2j ′σ ‖�j ′g‖L2

� C2−jscj‖f ‖
H

d
2 −σ

‖g‖Hs+σ , (A.4)

here and hereafter {cj }j�−1 denotes a sequence satisfying ‖{cj }j�−1‖�2 � 1.
Similarly, we have∥∥�j(Tgf )

∥∥
L2 � C

∑
|j ′−j |�4

‖Sj ′−1g‖L∞‖�j ′f ‖L2

� C
∑

|j ′−j |�4

‖g‖L∞‖�j ′f ‖L2

� C2−jscj‖g‖L∞‖f ‖Hs . (A.5)

Noticing that, after taking into account the support of the Fourier transforms,

�jR(f,g) =
∑

j ′,j ′′�j−3;|j ′−j ′′|�1

�j(�j ′f �j ′′g),

it follows from Lemma A.1 that∥∥�jR(f,g)
∥∥

L2 � C
∑

j ′,j ′′�j−3;|j ′−j ′′|�1

2j d
2 ‖�j ′f ‖L2‖�j ′′g‖L2

� C2−js
∑

j ′,j ′′�j−3;|j ′−j ′′|�1

2(j−j ′)( d
2 +s)2j ′( d

2 −σ)‖�j ′f ‖L22j ′′(s+σ)‖�j ′′g‖L2

� C2−jscj‖f ‖
H

d
2 −σ

‖g‖Hs+σ . (A.6)

Thanks to the definition of Sobolev space, (A.3) follows from (A.4)–(A.6). �
Lemma A.3. (See [28].) Let s > 0. Assume that F(·) is a smooth function on R with F(0) = 0. Then we have∥∥F(f )

∥∥
Hs � C

(
1 + ‖f ‖L∞

)�s�+1‖f ‖Hs ,

where the constant C depends on supk��s�+2,|t |�‖f ‖L∞ ‖F (k)(t)‖L∞ .

Lemma A.4. Let s > 0. Then there holds∥∥〈D〉s(fg) − f 〈D〉sg∥∥
L2 � C

(‖f ‖Hs+2‖g‖L2 + ‖f ‖H 2‖g‖
H

s− 1
2

)
.

If s ∈ (0,1], then we have∥∥〈D〉s(fg) − f 〈D〉sg∥∥
L2 � C‖f ‖Hs+2‖g‖L2 .

Here the Fourier multiplier 〈D〉s is defined by

〈D〉sf (x) =
∑
k∈Zd

(
1 + |k|2) s

2 e2πik·xf̂ (k).

Proof. Using Bony’s decomposition (A.1) we write

〈D〉s(fg) = 〈D〉s(Tf g) + 〈D〉sTgf + 〈D〉sR(f,g),

f 〈D〉sg = Tf 〈D〉sg + T〈D〉sgf + R
(
f, 〈D〉sg)

.
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Thus we have

〈D〉s(fg) − f 〈D〉sg = 〈D〉s(Tf g) − Tf 〈D〉sg + π(f,g),

where

π(f,g) = 〈D〉sTgf + 〈D〉sR(f,g) − T〈D〉sgf − R
(
f, 〈D〉sg)

.

As in the proof of (A.3), we can deduce by Lemma A.1 that∥∥π(f,g)
∥∥

L2 � C‖f ‖Hs+2‖g‖L2 .

We illustrate the process by working out the estimate on the first term. Thanks to Lemma A.1, we have∥∥〈D〉sTgf
∥∥2

L2 =
∑

j�−1

∥∥�j 〈D〉sTgf
∥∥2

L2 � C
∑

j�−1

22js‖�jTgf ‖2
L2

� C
∑

|j−j ′|�4

22js‖Sj ′−1g�j ′f ‖2
L2

� C
∑

|j−j ′|�4

22js‖Sj ′−1g‖2
L∞‖�j ′f ‖2

L2

� C
∑

|j−j ′|�4

22j (s+ d
2 )‖g‖2

L2‖�j ′f ‖2
L2

� C‖g‖2
L2‖f ‖2

H
s+ d

2
� C‖g‖2

L2‖f ‖2
Hs+2 .

Let m(ξ1, ξ2) be the symbol of the paraproduct operator Tf g. Then 〈D〉s(Tf g) − Tf 〈D〉sg has the symbol

m(ξ1, ξ2)
(〈ξ1 + ξ2〉s − 〈ξ2〉s

)
,

which is supported in the region |ξ1 + ξ2| ∼ |ξ2|. By the fundamental theorem of calculus we have

m(ξ1, ξ2)
(〈ξ1 + ξ2〉s − 〈ξ2〉s

) =
1∫

0

ξ1 · m(ξ1, ξ2)∇hs(tξ1 + ξ2) dt, hs(ξ) = 〈ξ 〉s .

It is easy to verify that 〈ξ1〉θm(ξ1, ξ2)∇hs(tξ1 + ξ2)〈ξ2〉1−θ−s with θ ∈ [0,1] is a Coifman–Meyer paraproduct uni-
formly for t ∈ [0,1]. Then we have∥∥〈D〉s(Tf g) − Tf 〈D〉sg∥∥

L2 � C
∥∥〈D〉1−θf

∥∥
Lp

∥∥〈D〉s+θ−1g
∥∥

Lq

for θ ∈ [0,1], 1
p

+ 1
q

= 1
2 and 1 < q < ∞, see p. 106 in [31]. Taking θ = 1

2 , (p, q) = (∞,2) for d = 2, and θ = 0,
(p, q) = (6,3) for d = 3, we obtain∥∥〈D〉s(Tf g) − Tf 〈D〉sg∥∥

L2 � C‖f ‖H 2‖g‖
H

s− 1
2
.

In case of s ∈ (0,1], taking θ = 1 − s and (p, q) = (∞,2) we obtain∥∥〈D〉s(Tf g) − Tf 〈D〉sg∥∥
L2 � C‖f ‖Hs+2‖g‖L2 .

This completes the proof of Lemma A.4. �
References

[1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech.
Anal. 194 (2009) 463–506.

[2] D.M. Ambrose, Well-posedness of two-phase Hele–Shaw flow without surface tension, European J. Appl. Math. 15 (2004) 597–607.
[3] D.M. Ambrose, Well-posedness of two-phase Darcy flow in 3D, Quart. Appl. Math. 65 (2007) 189–203.
[4] D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech. 30 (1998) 139–165.
[5] J. Bear, Dynamics of Fluids in Porous Media, Dover, 1988.



384 X. Wang, Z. Zhang / Ann. I. H. Poincaré – AN 30 (2013) 367–384
[6] J.-M. Bony, Calcul symbolique et propagation des singularitiés pour les équations aux dérivées partielles non linéaires, Ann. Sci. Ec. Norm.
Super. 14 (1981) 209–246.

[7] F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal. 20 (2) (1999) 175–212.
[8] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. 171 (2010)

1913–1930.
[9] J.-Y. Chemin, Perfect Incompressible Fluids, Oxford University Press, New York, 1998.

[10] P. Constantin, M. Pugh, Global solutions for small data to the Hele–Shaw problem, Nonlinearity 6 (1993) 393–415.
[11] A. Cordoba, D. Cordoba, F. Gancedo, Interface evolution: the Hele–Shaw and Muskat problems, Ann. of Math. 173 (1) (2011) 477–542.
[12] W. E, P. Palffy-Muhoray, Phase separation in incompressible systems, Phys. Rev. E 55 (1997) R3844–R3846.
[13] J. Escher, G. Simonett, Classical solutions of multidimensional Hele–Shaw models, SIAM J. Math. Anal. 28 (1997) 1028–1047.
[14] J. Escher, G. Simonett, A center manifold analysis for the Mullins–Sekerka model, J. Differential Equations 143 (1998) 267–292.
[15] X. Feng, S. Wise, Approximation of the HSCH system, 2010, in preparation.
[16] P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977) 435–479.
[17] S.D. Howison, A note on the two-phase Hele–Shaw problem, J. Fluid Mech. 409 (2000) 243–249.
[18] D.D. Joseph, Y.Y. Renardy, Fundamentals of Two-Fluid Dynamics, Parts I and II, Springer-Verlag, New York, 1993.
[19] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math. 41 (1988) 891–907.
[20] H.-G. Lee, J.S. Lowengrub, J. Goodman, Modeling pinchoff and reconnection in a Hele–Shaw cell. I. The models and their calibration, Phys.

Fluids 14 (2002) 492–513.
[21] F. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math. 48 (1995) 501–537.
[22] F. Lin, C. Liu, Existence of solutions for the Ericksen–Leslie system, Arch. Ration. Mech. Anal. 154 (2000) 135–156.
[23] X. Xu, L. Zhao, C. Liu, Axisymmetric solutions to coupled Navier–Stokes/Allen–Cahn equations, SIAM J. Math. Anal. 41 (2010) 2246–2282.
[24] A. Majda, A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, UK, 2002.
[25] P.G. Saffman, G.I. Taylor, The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous fluid, Proc. R. Soc.

Lond. Ser. A 245 (1958) 312–329.
[26] M. Siegel, R. Caflisch, S. Howison, Global existence, singular solutions, and ill-posedness for the Muskat problem, Comm. Pure Appl.

Math. 57 (2004) 1374–1411.
[27] R. Temam, Navier–Stokes Equations, North-Holland, Amsterdam, 1977.
[28] H. Triebel, Theory of Function Spaces, Monogr. Math., Birkhäuser Verlag, Basel, Boston, 1983.
[29] S. Wise, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations, J. Sci.

Comput. 44 (2010) 38–68.
[30] S. Wise, J. Lowengrub, H. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth I model and numerical method,

J. Theoret. Biol. 253 (2008) 524–543.
[31] J.T. Workman, End-point estimates and multi-parameter paraproducts on higher dimensional tori, arXiv:0806.0197v1.


	Well-posedness of the Hele-Shaw-Cahn-Hilliard system
	1 Introduction
	2 The estimate of the pressure
	3 Local well-posedness
	4 Blow-up criterion and global existence in 2D
	5 A reﬁned blow-up criterion in 3D
	Acknowledgements
	References


