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Abstract

We study a finite Larmor radius model used to describe the ions distribution function in the core of a tokamak plasma, that
consists in a gyro-kinetic transport equation coupled with an electro-neutrality equation. Since the last equation does not provide
enough regularity on the electric potential, we introduce a simple linear collision operator adapted to the finite Larmor radius
approximation. We next study the two-dimensional dynamics in the direction perpendicular to the magnetic field. Thanks to the
smoothing effects of the collision and the gyro-average operators, we prove the global existence of solutions, as well as short time
uniqueness and stability.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

On étudie un modèle à rayon de Larmor fini décrivant la fonction de distribution des ions dans un plasma de coeur de tokamak.
Il consiste en une équation de transport gyrocinétique couplée à une équation de quasi-neutralité. L’équation de quasi-neutralité
donnant peu de régularité au potentiel électrique, on introduit un opérateur de collisions linéaire adapté. On étudie alors la dyna-
mique du système dans la direction perpendiculaire au champ magnétique. L’effet régularisant des opérateurs de collisions et de
gyro-moyenne permet de démontrer l’existence globale de solutions ainsi que leur unicité et stabilité locales en temps.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The model studied in this paper describes the density of ions in the core of a tokamak plasma. In such a highly
magnetized plasma, the charged particles have a very fast motion of gyration around the magnetic lines, called the
Larmor gyration. A good approximation is then to consider that the particles are uniformly distributed on gyro-circles,
parametrized by their gyro-centers and Larmor radii rL, that are proportional to the speed of rotation u. In what follows
we will forget the physical constant of proportionality and take rL = u. The models obtained in that new variables are
kinetic in the direction parallel to the magnetic field lines, and fluid (precisely a superposition of fluid models) in the
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perpendicular direction. For a rigorous derivation of such models and a more complete discussion on their validity,
we refer to [5] and our previous work [6], in which the derivation is performed from a Vlasov equation in the limit of
a large magnetic field.

Such gyro-kinetic models are usually closed by an electro-neutrality equation. The derivation of the electro-
neutrality equation from the Euler–Poisson system has been performed in [3]. Existence of weak entropy solutions
to the Euler–Poisson system has been proven in [4]. The electro-neutrality equation provides few regularity to the
electric field, so that the well-posedness of gyro-kinetic models is unknown, at least to our knowledge. In this article,
we add a ‘gyro-averaged’ collision operator to the model and study the dynamics in the directions perpendicular to
the field only.

Let us now describe the model precisely. The ion distribution function f (t, x,u) in gyro-coordinates depends on
the time t , the gyro-center position x ∈ T

2 and the velocity of the fast Larmor rotation u ∈ R
+. The electric potential

Φ depends only on (t, x). They satisfy the following system of equation on Ω = T
2 × R

+,

∂f

∂t
+ (

J 0
u ∇xΦ

)⊥ · ∇xf = βu∂uf + 2βf + ν

(
�xf + 1

u
∂u(u∂uf )

)
, (1.1)

(Φ − Φ ∗x HT )(t, x) = T
(
ρ(t, x) − 1

)
, (1.2)

ρ(t, x) =
∫ (

J 0
u f (t, x,u)2πudu

)
, (1.3)

f (0, x, v) = fi(x, v), (x,u) ∈ Ω, (1.4)

where β and ν are two positive constants, ρ is the density in physical space, T is the ion temperature,

J 0
u h(xg) = 1

2π

2π∫
0

h
(
xg + ueiϕc

)
dϕc, (1.5)

is the well-known zeroth order Bessel operator [12] and

HT (x) = e− |x|2
4T

2π
3
2
√

T |x|
. (1.6)

We also used the notation b⊥ = (−b2, b1), for any vector b = (b1, b2) of R
2.

This model without the Fokker–Planck operator (ν = β = 0) has been studied in a previous work [6] – to which
we refer for an heuristic derivation of the electro-neutrality equation (1.2) – and is used by physicists for simulations,
for instance in the Gysela code [7]. Here we just mention that (1.2) is obtained in a close to equilibrium setting,
with an adiabatic hypothesis on the distribution of the electrons ne = n0 exp(− eΦ

Te
) ≈ n0(1 + eΦ

Te
), and a hypothesis

of adiabatic response of the ions on the gyro-circles which gives rise to the Φ ∗ HT term. As usual with the quasi-
neutrality equation, there are no good a priori estimates on the regularity of E = −∇Φ .

Remark that although Eq. (1.1) is derived from a Vlasov model (a rigorous derivation of a more general 3D model
is performed for fixed field E in Section 2), it is of ‘fluid’ nature. In fact there is no transport in the velocity variable u,
and the position of the gyro-center is transported by the electric drift (J 0

u E)⊥. Therefore the equation is similar to
the 2D Navier–Stokes equation written in vorticity. More precisely, we have a family of fluid models depending on a
parameter u, which are coupled thanks to diffusion in the u variable, and by the closure used for E described below.

Moreover, we prove in the following that thanks to the gyro-average operator J 0
u , the equation has almost the same

regularity as the two-dimensional Navier–Stokes equation in vorticity. In fact, for a fixed u > 0, the force field J 0
u ∇xΦ

belongs naturally to H 1 if f ∈ L2 with some weight, but unfortunately for small values of u the H 1 bound explodes.
That is why we obtain results a little poorer as those known for the two-dimensional Navier–Stokes equation (which
are global existence, uniqueness and stability) and prove only global existence, short time stability and uniqueness
and, in the case β = 0 the global stability and uniqueness for small initial data.

To state our results properly, we will need the following definitions and notations:

• In the sequel, the letter C will represent a numerical constant, that may change from line to line. Unless it is
mentioned, such constants are independent of anything.
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• L2
u(Ω) = L2(Ω,udx du) is the space of square integrable functions with respect to the measure udx du.

• We shall use various norms on T
2 or on Ω . To avoid confusion, we will use the following convention. All the

norms performed on the whole Ω will have their weights with respect to u as additional index. For instance
‖ · ‖2πu, ‖ · ‖H 1

2πu(1+u2)

. All the norms without any index are norms on T
2 (in x) only, and thus usually depends

on u.
• For any weight function k : R+ 	→ R

+, the norm ‖ · ‖2,k is defined for any function f on Ω by

‖f ‖2,k =
( ∫ ∥∥f (·, u)

∥∥
2k(u)du

) 1
2

.

• The most useful weights will be m(u) = 2πu(1 + u2) and m̃(u) = 1 + u2.
• We change a little the duality used to define distributions in the following definition.

Definition 1.1. Using distributions with the weight u means that duality is performed as

〈f,g〉u =
∫

fg dxg dv‖ udu or 〈f,g〉u =
∫

fg dxg udu

in the 3D or 2D cases.

This definition may seem a little artificial because the simple definition of derivative with respect to u is not valid.
Instead,

〈∂uf,g〉u = −〈f, ∂ug〉u −
〈
f

u
,g

〉
u

.

However, this weight respects the underlying physics (u is in fact the 1D norm of a 2D velocity variable) and has
many advantages. For instance the operator (1/u)∂u(u∂u) is self-adjoint with this weight.

Our precise results are the following. First we prove global existence under the hypothesis ‖fi‖2,m < +∞.

Theorem 1.1. Let fi satisfy ‖fi‖2,m < +∞. Then there exists at least a weak solution f ∈ L∞(R+,L2
u(Ω)) ∩

L2(R+,H 1
u (Ω)) to (1.1)–(1.2) with initial condition fi , which also satisfies all the a priori estimates of Lemmas 3.8,

3.9, 3.10 if the hypotheses on the initial data are satisfied.

Then we prove short time uniqueness and stability under the additional hypothesis ‖∇xf ‖2,m < +∞. In the case
β = 0 it also implies global uniqueness and stability for small initial data.

Theorem 1.2. Let fi satisfy

‖fi‖2,m + ‖∇xf ‖2,m < +∞.

Then the positive (or infinite) time τ � defined in Lemma 3.10 is such that the weak solution to (1.1)–(1.4), defined in
Theorem 1.1, is unique on [0, τ �].

Moreover, this solution is stable on [0, τ �] in the following sense. Assume that (f n)n∈N is a family of solutions
given by Theorem 1.1 with initial conditions f n

i satisfying

lim
n→+∞

∥∥f n
i − fi

∥∥
2,m

= 0, and sup
n∈N

∥∥f n
i

∥∥
L2

m(L4)
< +∞.

Then

lim
n→+∞ sup

t∈[0,τ∗]
∥∥f n(t) − f (t)

∥∥
2,m

= 0.

Remark 1.1. The above theorems will remain globally true if a sufficiently regular source term s is added in the
right-hand side of (1.1). The regularity required is:



532 M. Hauray, A. Nouri / Ann. I. H. Poincaré – AN 28 (2011) 529–550
• Existence result:
∫ T

0 ‖s‖2
2,m < +∞, for any T > 0.

• Uniqueness result:
∫ T

0 ‖∇xs‖2
2,m < +∞, for any T > 0.

The only difference is that it is no longer true that τ ∗ = +∞ for small initial conditions in the case β = 0. All the
other conclusions are valid, and only require a simple adaptation of the following proof. That case with a source term
is physically important since in tokamak plasmas, particles are injected in the core of the plasma.

This local result has some more consequence when relating it to the a priori bounds of Lemma 3.8, satisfied by any
solution in the sense of Theorem 1.1, that imply that ‖∇xf ‖2,m is almost surely finite for any weak solution. Both
theorems for instance imply that any solution is stable on a dense subset in time, and may explode only on a small
subset (in some sense).

In the next section the diffusive operator of (1.1) is rigorously derived from a linear Vlasov–Fokker–Planck equa-
tion in the limit of a large magnetic field. In the third section, some useful lemmas are established, proving regularizing
properties of the gyro-average operator, global preservation of some weighted norm of f , the short time preservation
of the m-moment of ∇xf by the system (1.1)–(1.2), and controlling the electric potential by the physical density. This
allows to prove the global existence (Theorem 1.1) of solutions to the Cauchy problem in the fourth section and their
short time uniqueness and stability (Theorem 1.2) in the fifth section. Finally some useful properties of the zeroth
order Bessel function J 0 together with a version of the Sobolev embeddings on T

2 are proven in Appendix A.

2. Derivation of the gyro-Fokker–Planck operator

In this section, we rigorously justify the form of the Fokker–Planck operator appearing in the right-hand side
of (1.1). The usual collision operator for plasmas is the non-linear Landau operator originally introduced by Lan-
dau [9]. Because of its complexity, simplified collision operators have been introduced. An important physical
literature exists on the subject, also in the gyro-kinetic case (see [2] and the references therein). In this paper we
choose the simplest possible operator, namely a linear Fokker–Planck operator. The reasons of this choice are:

– Its simplicity, that will allow to focus on the other difficulties of the model.
– The fact that physicists studying gyro-kinetic models for the core of the plasma mainly assume that the dynamics

stays close to equilibrium, in which case a linear approximation of the collision operator is relevant.
– The aim of the paper is not a precise description of collisions. In fact, even if they exist in tokamaks, being

needed to produce energy, their effect is small compared to the turbulent transport. However, we are interested by
their regularizing effect, since the electro-neutrality equation (1.2) does not provide enough regularity to get a well-
posed problem. This is a major difference to the Poisson equation setting.

We start from a simple model for a 3D plasma, i.e. a linear Vlasov–Fokker–Planck equation with an external
electric field, an external uniform magnetic field and linear collision and drift terms, and obtain in the limit of large
magnetic field a 3D (in position) equation analog to (1.1). In particular, we show that a usual linear Fokker–Planck
term on the speed variables turns into an equation with diffusion terms both in space and Larmor radius variables in
the limit.

Precisely, for any small parameter ε > 0 we study the distribution fε(t, x, v) of ions submitted to an exterior
electric field E(t, x) (independent of ε) and a uniform magnetic field Bε = (1/ε,0,0). We also model collisions (with
similar particles and the others species) by a simple linear Fokker–Planck operator. To avoid any problem with possible
boundary collisions, which are really hard to take into account in gyro-kinetic theory, we assume that (x, v) ∈ T

3 ×R
3,

where T
3 is the 3D torus. When the scale length of all the parameters are well chosen (in particular the length scale

in the direction perpendicular to the magnetic field should be chosen of order ε times the length scale in the parallel
direction, we refer to our previous work [6] for more details on the scaling), the Vlasov equation that fε satisfies
is

∂fε + v‖∂x‖fε + E · ∇vfε + 1(
v⊥ · ∇x⊥fε + v⊥ · ∇v⊥fε

) = divv(βvfε) + ν�vfε, (2.7)

∂t ε
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where β , ν are two positive parameters, the subscript ‖ (resp. ⊥) denotes the projection on the direction parallel
(resp. on the plane perpendicular) to B , and the superscript ⊥ denotes the projection on the plane perpendicular to B

composed with the rotation of angle π/2. In others words if v = (v1, v2, v3),

v⊥ = (v1, v2,0), v‖ = (0,0, v3), v⊥ = (−v2, v1,0).

The next results require the additional notation,

J̃ 0
u g(xg,u, v‖) = 1

2π

2π∫
0

g
(
xg + ueiϕc , uei(ϕc− π

2 ) + v‖e‖
)
dϕc, (2.8)

with the convention eiϕ = (cosϕ, sinϕ,0). This defines a gyro-average performed in phase space, that will be used as
an initial layer to adapt the initial condition to the fast Larmor gyration.

Theorem 2.3. Let E ∈ L∞
t (L2) and fε be a family of solutions to Eq. (2.7) with initial condition fi ∈ L2 satisfying

supt�T ‖fε(t)‖2 � ‖fi‖2 for any T > 0. Then the family f̄ε defined by

f̄ε(t, xg, v) = f
(
t, xg + v⊥, v

)
admits a subsequence that converges in the sense of distributions towards a function f̄ depending only on (t, xg, u =
|v|, v‖) and solution to

∂t f̄ + v‖∂x‖ f̄ + J 0
u E‖∂v‖ f̄ + (

J 0
u E

)⊥ · ∇xg f̄

= β(v‖∂v‖ f̄ + u∂uf̄ + 3f̄ ) + ν

(
�xg⊥ f̄ + 1

u
∂u(u∂uf̄ )

)
, (2.9)

in the sense of distributions with the weight u, with the initial condition J̃ 0
u (fi).

Remark 2.2. The reason for the change of variables is that the 1/ε-term in Eq. (2.7) induces a very fast rotation in the
perpendicular direction both in the x and v variables,

v(t) = v0eit/ε, x(t) = x0 + v0⊥ + v0ei(t/ε−π/2).

But in the gyro-coordinates this fast rotation is simply described by a rotation in v,

v(t) = v0eit/ε, xg(t) = x0
g.

Remark 2.3. The final diffusion appears in all dimensions except the xg‖ one. It does not mean that there is no
regularization in that direction. Indeed, the models have diffusion in v‖, which after some time provides regularity in
the xg‖ direction. This mechanism is well known for the Fokker–Planck equation (see for instance [1]). However, we
are not able to prove this phenomenon in the non-linear setting because the electric field of the model lacks regularity.
This is the reason why we will only study the 2D model.

Proof of Theorem 2.3. We proved in a previous work [6] that, provided f 0 ∈ L2 and E ∈ L1
loc(R,L2), a subsequence

of fε solutions of (2.7) without the collision term converges towards a solution of (2.9) without the collision term. In
order to simplify the presentation, we will neglect the electric field and the parallel translation terms. To obtain the
result in full generality, the only thing to do is to add the argument given in our previous work to the one given below.
For the same reason, we shall also not treat the problem of initial conditions.

So consider the above Vlasov–Fokker–Planck equation without electric force field nor parallel translation,

∂tf + 1

ε

(
v⊥ · ∇x⊥f + v⊥ · ∇v⊥f

) = divv(βvf ) + ν�vf. (2.10)

The first step is to use the change of variables (x, v) → (xg = x + v⊥, v). Since
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∇vf = ∇vf̄ − ∇⊥
xg

f̄ ,

�vf = �vf̄ + �xg⊥ f̄ − 2∇v · ∇⊥
xg

f̄ ,

∇v · (vf ) = v · ∇vf̄ + 3f̄ − v · ∇⊥
xg

f̄ ,

Eq. (2.10) becomes

∂t f̄ε + 1

ε
v⊥ · ∇vf̄ε = −β

(
v · ∇vf̄ε + 3f̄ε − v · ∇⊥

xg
f̄ε

) + ν(�vf̄ε + �xg f̄ε − 2∇v · ∇xg f̄ε). (2.11)

By hypothesis f̄ε is bounded in L∞
loc(R,L2

x;v). Therefore, at least a subsequence of (f̄ε) converges weakly to some

f̄ ∈ L∞
loc(R,L2). Passing to the limit in (2.10), it holds that

v⊥ · ∇vf̄ = 0,

since all the other terms are bounded. For v = (ueiϕ, v‖) where ϕ is the gyro-phase, the previous equality means that
f̄ is independent of the gyro-phase (in the sense of distribution and thus as an L2 function).

Eq. (2.10) tested against a smooth function g independent of the gyro-phase writes∫
f̄ε

(
∂tg − β

(
v · ∇vg − v · ∇⊥

xg
g
) − ν

(
�vg + �xg⊥g − 2∇⊥

xg
· ∇vg

))
dxg dv = 0. (2.12)

We may also pass to the limit when ε tends to zero in this equation and obtain that the same equality holds for f̄ε

replaced by f̄ , considered as a function defined on T
3 × R

3.
For the change of variable v = (ueiϕ, v‖),

∇vg = (
eiϕ∂ug + ieiϕ∂ϕg, ∂v‖

)
.

Hence, for any function g independent of the gyro-phase ϕ, it holds that

�vgg = ∂2
v‖g + 1

u
∂u(u∂ug),(∇⊥

xg
· ∇vg

)
g = ∇⊥

xg
· (eiϕ∂ug

) = eiϕ · ∇⊥
xg

∂ug,

v · ∇vg = v‖∂v‖g + u∂ug.

The other terms appearing in (2.12) remain unchanged. Then,∫
f̄

(
∂tg − β

(
v‖∂v‖g + u∂ug − ueiϕ · ∇⊥

xg
g
)

− ν

(
∂2
v‖g + 1

u
∂u(u∂ug) + �xg⊥g − 2eiϕ · ∇⊥

xg
∂ug

))
dxg dv‖ 2πududϕ = 0. (2.13)

Since f̄ is independent of ϕ, performing the integration in ϕ first makes the term containing ϕ vanish. So the function
f̄ of the five variables (xg,u, v‖) satisfies∫

f̄

(
∂tg − β(v‖∂v‖g + u∂ug) − ν

(
∂2
v‖g + 1

u
∂u(u∂ug) + �xg⊥g

))
dxg dv‖ udu = 0. (2.14)

It exactly means that f̄ satisfies the equation

∂t f̄ = β(v‖∂v‖ f̄ + u∂uf̄ + 3f̄ ) + ν

(
∂2
v‖ f̄ + �xg⊥ f̄ + 1

u
∂u(u∂uf̄ )

)
, (2.15)

in the sense of distributions with weight u. It is Eq. (2.9) without parallel transport nor electric field. �
If we look at solutions of this equation invariant by translation in the direction of B , we exactly get the 2D-model

announced in the introduction. Formally, if f̄ is a solution of (2.9), then

f (t, x⊥, u) =
∫

f̄ (t, x⊥, x‖, u, v‖) dv‖ dx‖

is a solution of (1.1). Such an assumption on f is reinforced by experiments and numerical simulations, where it is
observed that the distribution of ions is quite homogeneous in x‖.
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3. Some useful lemmas

We prove here some a priori estimates useful for the proof of our theorems. In order to simplify the proof of some
of the following lemmas, we sometimes use the following formulation of (1.1) with the genuine two-dimensional
velocity variable. Denote by f̃ (t, x, �u) = f (t, x, |�u|), �u ∈ R

2. It is solution (in the sense of distribution with usual
duality) of the following equation with 2D in space and velocity variables,

∂t f̃ − ∇⊥
x

(
J 0

|�u|Φ
) · ∇xf̃ = ν(�xf̃ + ��uf̃ ) + β(2f̃ + �u · ∇�uf̃ ). (3.16)

Heuristically, a radial in �u solution of Eq. (3.16) is a solution of (1.1). For instance we can state a precise lemma in
the case where Φ is fixed and smooth.

Lemma 3.4. For a fixed smooth potential Φ , f is the unique solution of (1.1) with initial condition fi if and only if f̃

is the unique solution of (3.16) with initial condition f̃i .

Proof. The proof relies on the uniqueness of the solution to (3.16) (see [8]) and the conservation of the radial sym-
metry of the solution. �
3.1. Regularizing properties of the gyro-average operator

In this section, some regularizing property of the gyro-average operator are proven. They are based on the fact that

Ĵ 0 ∼ k− 1
2 for large k (the precise bound is proved in Appendix A), which implies that J 0 maps Hs onto Hs+ 1

2 . It
is important since the formula (1.2) giving the gyro-averaged potential in terms of the distribution f involves two
gyro-averages, and thus a gain of one derivative for the gyro-averaged potential w.r.t. f . However, the regularizing
properties of J 0

u are bad for small u, which raises difficulties.
The first lemma of this section gives the regularity of the gyro-averaged potential in term of the potential Φ .

The second one gives the regularity of the density ρ in terms of the distribution f . We will need the two following
definitions before stating them.

Definition 3.2. Let f be a measurable function defined on Ω . Denote by

‖f ‖L2
m(Hs) =

( ∫ ∥∥f (·, u)
∥∥2

Hs m(u)du

) 1
2

the norm with the weight m(u) = 2πu(1 + u2).
For any U > 0, let F be a measurable function defined on ΩU = T

2 × [0,U ]. Denote by

‖F‖H 1
U

=
( ∫

T2

U∫
0

(|f |2 + |∇xf |2 + |∂uf |2)2πudu

) 1
2

.

The lemmas stating the regularity of Φ and ρ are the following.

Lemma 3.5. For any s ∈ R, u > 0 and Φ with 0-mean, it holds that

(i)
∥∥J 0

u Φ
∥∥

Hs � ‖Φ‖Hs ,

(ii)
∥∥J 0

u Φ
∥∥

H
s+ 1

2
� 1√

u
‖Φ‖Hs ,

(iii)
∥∥∂uJ

0
u Φ

∥∥
Hs � 1√

u
‖Φ‖

H
s+ 1

2
.

As a consequence, for any U > 0,

(iv)
∥∥J 0

u Φ
∥∥

H 1
U

� 2
√

πU‖Φ‖
H

1
2
.
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Lemma 3.6. For any s > 0, if
∫

f 2πudx du = 1 and ρ is defined by (1.3), then

‖ρ − 1‖
H

s+ 1
2

� 2
1
4 π‖f ‖L2

m(Hs). (3.17)

Proof of Lemma 3.5. Before starting the estimates, we recall that the Fourier transform of the operator J 0 is

Ĵ 0(k) = 1

2π

2π∫
0

ei|k|θ dθ,

a radial function of k, for which we proved some bound in Appendix A.
Now, denote by Φ̂(k) the k-th Fourier coefficient of Φ . Then∥∥J 0

u Φ
∥∥2

Hs =
∑
k∈Z2

∣∣J 0(|k|u)∣∣2∣∣Φ̂(k)
∣∣2 �

∑
k∈Z2

∣∣Φ̂(k)
∣∣2 = ‖Φ‖2

Hs ,

using the bound ‖Ĵ 0‖∞ � 1 proved in Lemma A.12. For the second inequality, use (ii) of Lemma A.12 in

∥∥J 0
u Φ

∥∥2

H
s+ 1

2
=

∑
k �=0

∣∣Ĵ 0
u Φ(k)

∣∣2(1 + |k|2)s+ 1
2

=
∑
k �=0

∣∣Φ̂(k)
∣∣2∣∣J 0(|k|u)∣∣2(1 + |k|2)s+ 1

2

�
∑
k �=0

∣∣Φ̂(k)
∣∣2(1 + |k|2)s

√
1 + |k|2
2|k|2u2

� 1

u
‖Φ‖2

Hs .

For the third estimate of Lemma 3.5, remark that(
∂uĴ

0
u Φ

)
(k) = ∂u

(
Ĵ 0(uk)Φ̂(k)

) = |k|Φ̂(k)Ĵ 0 ′(uk)

and use the bound (iii) of Lemma A.12 to get

∣∣(∂uĴ
0
u Φ

)
(k)

∣∣ �
√ |k|

u

∣∣Φ̂(k)
∣∣.

From this, we obtain

∥∥∂u

(
J 0

u Φ
)∥∥

Hs � 1√
u

‖Φ‖
H

s+ 1
2
.

The point (iv) uses the previous inequalities. First remark that the norm ‖ ‖H 1
U

is also equal to

‖F‖H 1
U

=
( U∫

0

(∥∥∂uF (·, u)
∥∥2

L2 + ∥∥F(·, u)
∥∥2

H 1

)
2πudu

) 1
2

.

Using this formulation and (ii)–(iii) leads to

∥∥J 0
u Φ

∥∥2
H 1

U
=

U∫
0

(∥∥∂uJ
0Φ

∥∥2
L2 + ∥∥J 0Φ

∥∥2
H 1

)
2πudu � 2π‖Φ‖2

H
1
2

U∫
0

1 + 1

u
udu � 4πU‖Φ‖2

H
1
2
,

which gives the desired result and ends the proof of Lemma 3.5. �
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Proof of Lemma 3.6. Denote by ρ̂(k) the k-th Fourier term of ρ with respect to the space variable, i.e.

ρ̂(k) = 2π

∫
Ĵ 0(uk)f̂ (k, u)udu.

By Lemma A.12,

∣∣ρ̂(k)
∣∣ � 2π

∫ |f̂ |(k,u)u

(1 + u2|k|2)1/4
du.

It follows from the inequality below

∀k ∈ Z
∗, 1 + |k|2

1 + u2|k|2 = 1

u2

1 + 1
|k|2

1 + 1
u2|k|2

� 2

u2
, (3.18)

that for k �= 0,

(
1 + |k|2) 2s+1

4
∣∣ρ̂(k)

∣∣ � 2
5
4 π

∞∫
0

|f̂ |(k,u)
(
1 + |k|2) s

2
√

udu

� 2
5
4 π

( ∞∫
0

|f̂ |2(k,u)
(
1 + |k|2)s

u
(
1 + u2)du

)1/2( ∞∫
0

du

(1 + u2)

)1/2

= 2
1
4 π

( ∞∫
0

|f̂ |2(k,u)
(
1 + |k|2)s2πu

(
1 + u2)du

)1/2

.

Hence, since ρ̂(0) = ∫
T2 ρ(x)dx = 1 by mass conservation,

‖ρ − 1‖
H

s+ 1
2

� 2
1
4 π

√√√√√∑
k �=0

( ∞∫
0

∣∣f̂ (k, u)
∣∣2(1 + |k|2) s

2 2πu
(
1 + u2

)
du

)

� 2
1
4 π

( ∞∫
0

∥∥f (u)
∥∥2

Hs 2πu
(
1 + u2)du

)1/2

,

and Lemma 3.6 is proved. �
3.2. Control of the potential by the density

Denote by LT the operator that maps any function Φ on T
2 with zero mean to 1

T
(Φ − Φ ∗x HT ) and by Hs

0 (Td)

the space of Hs functions with zero mean. This section is devoted to a proof of the boundedness of L−1
T from Hs

0 (Td)

onto Hs
0 (Td). Recall that in a Fourier setting (see the Appendix of [6] for more details), the operator HT = I − T LT

is the multiplication by

ĤT (k) = 2

T

+∞∫
0

J 0(ku)2e−u2/T udu.

The precise results are stated in the following lemma.

Lemma 3.7. The Fourier multipliers ĤT (k) satisfy,

∣∣1 − Ĥ (k)
∣∣ � |k|2T (

1 − e
− 1

|k|2T
)
, k ∈ Z

2 \ {
(0,0)

}
.

4
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As a consequence, the operator L−1
T maps any Hs

0 , s ∈ R, into itself with norm

∥∥L−1
T

∥∥
Hs

0
� cT := 4

1 − e− 1
T

. (3.19)

Remark 3.4. Lemma 3.7 shows that ‖L−1
T ‖ is bounded for small T , and of order T for large T , the physical case of

interest. The boundedness of the spatial domain is essential. When defined on the whole space R
2 rather than on the

torus, the operator L−1
T is not bounded. Its norm explodes in the low frequency range.

Proof of Lemma 3.7. Two bounds on J 0(l) are used, namely one of the bounds of Lemma A.12 for l � 1 and the
following bound given by the Taylor expansion of J 0 near 0 for l � 1,

0 �
(
J 0(l)

)2 � 1 − l2

4
, if 0 � l � 1.

Consequently,

∣∣ĤT (k)
∣∣ � 2

T

1
|k|∫

0

(
1 − (|k|u)2

4

)
e−u2/T udu +

√
2

|k|T
∞∫

1
|k|

e− u2
T du

� 2

w∫
0

(
1 − x2

4w2

)
e−x2

x dx + √
2w

∞∫
w

e−x2
dx

� 1 − 3

4
e−w2 − 1

4w2

(
1 − e−w2) + √

2w

∞∫
w

e−x2
dx,

where w = (|k|√T )−1. Now, using the bounds 2− 1
2 < 3

4 and

w

∞∫
w

e−x2
dx �

∞∫
w

xe−x2
dx = e−w2

2
,

it holds that

1 − ∣∣ĤT (k)
∣∣ � 1

4w2

(
1 − e−w2)

.

This is the first claim of Lemma 3.7. The function of w in the right-hand side of the previous inequality on |Ĥ (k)| is
decreasing and goes from 1

4 at 0 to 0 at +∞. Consequently its minimal value is obtained for large w i.e. for small |k|,
namely |k| = 1. Precisely,

1 − sup
k �=0

∣∣ĤT (k)
∣∣ � T

4

(
1 − e− 1

T
)
.

Since the Fourier representation of L−1
T is the multiplication by T (1 − Ĥ (k))−1 we obtain that in any Hs

0 , s ∈ R,

∥∥L−1
T

∥∥
Hs

0
= sup

k �=0

T

|1 − Ĥ (k)| � 4

1 − e− 1
T

,

which is the desired result. �
3.3. Propagation of L2

m and L2
m(L4) norms of f

The two following lemmas will be useful in the sequel.
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Lemma 3.8. Assume that ‖fi‖2
2,u < +∞. Then, any solution of (1.1) and (1.4), for regular potential φ, satisfies

∥∥f (t)
∥∥2

2,u
+ ν

t∫
0

e2β(t−s)
∥∥∇x,uf (s)

∥∥2
2,u

ds � e2βt‖fi‖2
2,u.

Assume moreover that ‖fi‖2,m < +∞. Then any solution f satisfies

∥∥f (t)
∥∥2

2,m
+ ν

t∫
0

∥∥∇x,�uf̃ (s)
∥∥2

2,m̃
ds � ‖fi‖2

2,m + (2ν + β)
e2βt − 1

β
‖fi‖2

2,2πu, (3.20)

with the convention that e2βt−1
β

= 2t if β = 0.

Lemma 3.9. Assume ‖fi‖L2
m(L4) < +∞ and f is a solution of (1.1) with initial condition fi with a regular potential φ.

Then f satisfies∥∥f (t)
∥∥

L2
m(L4)

� e(β+2ν)t‖fi‖L2
m(L4). (3.21)

Remark 3.5. A more careful analysis will show that

∥∥f (t)
∥∥2

L2
m(L4)

� ‖fi‖2
L2

m(L4)
+ (2ν + β)

e2βt − 1

β
‖fi‖2

L2
2πu(L4)

,

but the simple estimate of Lemma 3.9 will be sufficient.

Proof of Lemma 3.8. Multiply Eq. (3.16) written in 4D by f̃ . Using the notations

u = |�u|, g(t, u) = 1

2

∥∥f̃ (t, ·, �u)
∥∥2

2, (3.22)

and integrating in the x variable leads to

∂tg − ν��ug = −∥∥∇x,�uf̃ (t, ·, u)
∥∥2

2 + β(4g + �u · ∇�ug). (3.23)

Multiplying the previous equation by k(�u), where k is a smooth function on R
2 with compact support and integrat-

ing it in the velocity variable �u leads to

∂t

( ∫
g(t, u)k(�u)d �u

)
+

∫ ∥∥∇x,�uf̃ (t, ·, u)
∥∥2

2k(�u)d �u

=
∫ (

ν��uk(�u) + 4βk(u) − β div
(
k(�u)�u))

g(t, u) d �u.

By approximation, this is still true for functions k with unbounded supports. For k(�u) = 1,

∂t

(
e−2βt

∫
g(t, u) d �u

)
+ νe−2βt

∫ ∥∥∇x,�uf̃ (s, u)
∥∥2

2 d �u � 0.

Coming back to the 1D original quantities, it means that

∥∥f (t)
∥∥2

2,u
+ ν

t∫
0

e2β(t−s)
∥∥∇x,uf (s)

∥∥2
2,u

ds � e2βt‖fi‖2
2,u. (3.24)

For k(�u) = m̃(u), then �k = 4 and

4m̃(u) − div
(
m̃(u)�u) = 2m̃(u) − m̃′(u)u = 2.

Therefore,∫
g(t, u)m̃(u) d �u + ν

∫ ∥∥∇x,�uf̃ (t, ·, u)
∥∥2

2m̃(u) d �u �
∫

g(0, u)m̃(u) d �u + 2(2ν + β)

t∫ ∫
g(s,u) d �uds.
0
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In other words,

∥∥f (t)
∥∥2

2,m
+ ν

t∫
0

∥∥∇x,�uf̃ (s)
∥∥2

2,m̃
ds � ‖fi‖2

2,m + 2(2ν + β)

t∫
0

∥∥f (s)
∥∥2

2,u
ds.

Using the bound of Eq. (3.24), we get

∥∥f (t)
∥∥2

2,m
+ ν

t∫
0

∥∥∇x,�uf̃ (s)
∥∥2

2,m̃
ds � ‖fi‖2

2,m + (2ν + β)
e2βt − 1

β
‖fi‖2

2,u. �

Proof of Lemma 3.9. In order to simplify the presentation, we will first perform the calculations without justifying
every integration by parts and division. But once we obtain an a priori result, we will explain the small adaptations
needed to make it rigorous. First, we denote by

α(t, �u) =
∫ ∣∣f̃ (t, x, �u)

∣∣4
dx = ∥∥f (t, u)

∥∥4
4, γ (t, �u) =

∫
|f̃ |2|∇�uf̃ |2 dx.

Multiplying Eq. (1.1) by 3 sign(f )|f |3 and integrating with respect to x leads to

∂tα = −12ν

∫
f 2

∣∣(∇x,∇�u)f
∣∣2

dx + ν��uα + 8βα + β �u · ∇�uα. (3.25)

Hence, dividing by 2
√

α,

∂t

√
α = ∂tα

2
√

α
� −6ν

γ√
α

+ ν��uα
2
√

α
+ 4β

√
α + β

�u · ∇�uα
2
√

α
.

Now, we multiply by m̃(u) and integrate with respect to �u, so that

∂t

( ∫ √
α m̃(u)d �u

)
� −6ν

∫
γ√
α

m̃(u)d �u + ν

2

∫
��uα√

α
m̃(u)d �u + 4β

∫ √
α m̃(u)d �u

+ β

∫ �u · ∇�uα
2
√

α
m̃(u)d �u.

With the help of some integrations by parts, we get that∫ �u · ∇�uα
2
√

α
m̃(u)d �u = −2

∫ √
α
(
m̃(u) + u2)d �u,

∫
��uα√

α
m̃(u)d �u = −2

∫ �u · ∇�uα√
α

d �u +
∫ |∇�uα|2

2α
3
2

m̃(u) d �u = 8
∫ √

α d �u +
∫ |∇�uα|2

2α
3
2

m̃(u) d �u.

Thanks to that, the previous inequality simplifies in

∂t

( ∫ √
αm̃(u)d �u

)
� −6ν

∫
γ√
α

m̃(u)d �u + ν

4

∫ |∇�uα|2
α

3
2

m̃(u) d �u + 2(β + 2ν)

∫ √
α d �u.

Next we can estimate |∇�uα| in terms of γ . In fact by Hölder’s inequality

∇�uα = ∇�u
( ∫

f 4 dx

)
= 4

∫
f 3∇�uf dx,

|∇�uα|2 � 16

( ∫
f 4 dx

)( ∫
f 2|∇�uf |2 dx

)
= 16αγ.

Therefore the second term in the right-hand side of the previous inequality is controlled up to a constant by the first
one. We precisely get

∂t

( ∫ √
αm̃(u)d �u

)
� −2ν

∫
γ√
α

m̃(u)d �u + 2(β + 2ν)

∫ √
α d �u. (3.26)

From this we conclude easily.
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In the previous calculation, we have not justified all the integrations by parts. To make the argument rigorous,
a possibility is to choose a smooth function ξ1 from R

+ into [0,1] such that ξ1(u) = 1 if u ∈ [0,1] and ξ1(u) = 0 if
u ∈ [2,+∞), and define for all U > 0, ξU (u) = ξ( u

U
). Remark that |Uξ ′

U |∞ � |ξ ′|∞ and |U2ξ ′′
U |∞ � |ξ ′′|∞. Then,

we perform the previous calculation with the weight m̃U = m̃ξU and obtain a similar inequality as (3.26),

∂t

( ∫ √
αm̃U (u)d �u

)
� −2ν

∫
γ√
α

m̃U (u)d �u +
[

2(β + 2ν) + C

U2

]∫ √
α d �u. (3.27)

Hence ‖f (t)‖L2
m̃U

(L4) � e
(β+2ν+ C

U2 )t‖fi‖L2
m̃U

(L4), which gives the desired result letting U going to infinity.

The other point not rigorously justified is the division by
√

α that may be zero. However, since we have a diffusion
equation, it may be proved that for t > 0, α > 0 everywhere. Either we can use a family of smooth approximations
of

√·. Or we can say that α + ε satisfies (3.25) with an additional term that has the right sign, so that it will sat-
isfy (3.27). We will obtain the desired inequality letting first ε go to zero then U go to infinity. It is well justified
since the maximum principle applies there so that any solution with a non-negative initial condition remains non-
negative. �
3.4. Short time estimate of the m-moment of ∇xf

The following lemma is central in the proof of the stability and uniqueness of the solution for short time.

Lemma 3.10. Assume that f is a solution of the system (1.1)–(1.4) satisfying ‖∇xfi‖2,m < +∞ initially. Then there
exists a constant C∗ and a time τ ∗ depending on (T , ν,‖∇xfi‖2,m,‖fi‖2,u), such that

sup
t∈[0,τ∗]

∥∥∇xf (t, ·)∥∥2
2,m

+ ν

2

τ∗∫
0

∥∥(∇x, ∂u)∇xf
∥∥2

2,m
dt � C∗.

Moreover, if β = 0 and

‖∇xfi‖2,m‖fi‖2,u � Cν2

c2
T

,

then τ ∗ = +∞.

We also mention that the result is true if the definition of Φ in (1.2) is replaced by another definition which still
satisfies the bound given in Lemmas 3.6 and 3.5. Precise bounds from below of τ ∗ are given at the end of the proof.

Proof of Lemma 3.10. We take the x-gradient of Eq. (3.16), written in 2D in �u (with u = |�u|), and obtain

∂t∇xf̃ − ∇⊥
x

(
J 0

u Φ
)∇2

x,x f̃ = β
(
2∇xf̃ + �u · ∇�u(∇xf̃ )

) + ν�x,�u(∇xf̃ ) − ∇x

(∇⊥
x

(
J 0

u Φ
)∇xf̃ .

If we now multiply by t∇xf̃ on the left and integrate in x, the function h defined by h(t, u) = 1
2

∫ |∇xf̃ |2 dx satisfies,

∂th(u) = β
(
4h(u) + �u · ∇�uh(u)

) + ν��uh(u) − ν‖∇x,�u∇xf̃ ‖2
2 −

t∫
∇xf̃ ∇x

(∇⊥
x J 0

u Φ
)∇xf̃ dx. (3.28)

We may also multiply this equation by m̃(u) = (1 + u2) and integrate it in �u. Hence

1

2
∂t‖∇xf̃ ‖2

2,m̃ + ν‖∇x,�u∇xf̃ ‖2
2,m̃

= (4ν + 2β)‖∇xf̃ ‖2
2,u0 −

∫ ∫
t∇xf̃

(∇x

(∇⊥
x J 0

u Φ
))∇xf̃ m̃(u) dx d �u. (3.29)
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To go on, we need to understand a little better the matrix M(t, x,u) = ∇x(∇⊥
x J 0

u Φ). First remember that Φ =
L−1

T (ρ − 1), and then remark that from their definitions, J 0 and L−1 commute with derivation in x. Therefore M =
J 0

u L−1(∇x(∇⊥
x ρ)). Using bounds of Lemmas 3.6 and 3.7 we obtain that

∥∥M(t,u)
∥∥

2 = ∥∥J 0
u L−1(∇x

(∇⊥
x ρ

))∥∥
2 � CcT√

u
‖∇ρ‖

H
1
2

� CcT√
u

‖∇f̃ ‖L2
m̃
, u > 0.

So we may bound the last term of the right-hand side of (3.29) by∫ ∫
t∇xf̃

(∇x

(∇⊥
x J 0

u Φ
))∇xf̃ m̃(u) dx d �u �

∫ ∥∥M(t,u)
∥∥

2‖∇xf̃ ‖2
4m̃(u) d �u.

We now use the Sobolev inequality ‖u‖2
4 � C‖u‖2‖∇u‖2 (valid for u with zero mean, as it is not so common on the

torus, we add the proof in Appendix A), and get∫ ∫
t∇xf̃

(∇x

(∇⊥
x J 0

u Φ
))∇xf̃ m̃(u) dx d �u � CcT ‖∇xf̃ ‖2,m̃

∫
‖∇xf̃ ‖2

∥∥∇2
x,x f̃

∥∥
2

m̃(u)√
u

d �u

� CcT ‖∇xf̃ ‖2,m̃

∥∥∇2
x,x f̃

∥∥
2,m̃

‖∇xf̃ ‖2, m̃
u
. (3.30)

In order to get a bound on ‖∇xf̃ ‖2, m̃
u

, we choose a smooth function φ : R → [0,1] such that φ = 1 on [0,1], φ = 0

on [2,+∞) and ‖φ′‖∞ � 2. Then, we use

‖∇xf̃ ‖2, m̃
u

= ‖∇xf̃ ‖2,u + ‖∇xf̃ ‖2,
φ
u

+ ‖∇xf̃ ‖2,
1−φ

u
.

First remark that ‖∇xf̃ ‖2
2,u � ‖∇xf̃ ‖2,u0‖∇xf̃ ‖2,m̃, that ‖∇xf̃ ‖2,

1−φ
u

� ‖∇xf̃ ‖2,u0 by definition of φ and

‖∇xf̃ ‖2
2,

φ
u

= 2
∫

h(u)
φ(u)

u
d �u = 2

∫
h(u)φ(u)div�u

( �u
|u|

)
d �u

= −
∫

∇�u
(|∇xf̃ |2) · �u

|u|φ(u)dx d �u − 2
∫

h(u)φ′(u) d �u
� 2‖∇xf̃ ‖2,u0

(‖∇xf̃ ‖2,u0 + ∥∥∇2
x,�uf̃

∥∥
2,u0

)
.

With the help of the Poincaré inequality ‖∇xf̃ ‖2 � ‖∇2
x,x f̃ ‖2 we finally get

‖∇xf̃ ‖2
2, m̃

u

� C‖∇xf ‖2,u0

(‖∇xf̃ ‖2,m̃ + ‖∇�u∇xf̃ ‖2,m̃

)
� C‖∇xf̃ ‖2,u0 ‖∇x,�u∇xf̃ ‖2,m̃. (3.31)

Therefore, using that into (3.30) we obtain

1

2
∂t‖∇xf̃ ‖2

2,m̃ + ν‖∇x,�u∇xf̃ ‖2
2,m̃

� (4ν + 2β)‖∇xf̃ ‖2
2,u0 + CcT ‖∇xf̃ ‖

1
2
2,u0‖∇xf̃ ‖2,m̃‖∇x,�u∇xf̃ ‖

3
2
2,m̃

. (3.32)

Now, we need to eliminate the term involving ‖∇x,�u∇xf̃ ‖2,m̃ in the right-hand side, with the help of the ‖∇x,�u∇xf̃ ‖2,m̃

of the left-hand side. We will use the Young inequality xy � 3
4x

4
3 + y4

4 . Taking into account the constants ν, cT we
get

1

2
∂t‖∇xf̃ ‖2

2,m̃ + ν

2
‖∇x,�u∇xf̃ ‖2

2,m̃ � (4ν + 2β)‖∇xf̃ ‖2
2,u0 + Cc4

T

ν3
‖∇xf̃ ‖2

2,u0‖∇xf̃ ‖4
2,m̃.

With the notations h = ‖∇xf̃ ‖2
2,m̃

, a(t) = (4ν + 2β)‖∇xf̃ ‖2
2,u0 and γ = Cc4

T

ν3(4ν+2β)
it gives

1
∂th � a(t)

(
1 + γ h2).
2
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This implies that

arctan
(
γ

1
2 h(t)

)
� γ

1
2

t∫
0

a(s) ds + arctan
(
γ

1
2 h(0)

)
,

or equivalently

h(t) �
h(0) + γ − 1

2 tan(γ
1
2
∫ t

0 a(s) ds)

1 − γ
1
2 h(0) tan(γ

1
2
∫ t

0 a(s) ds)
.

Thus the existence time τ ∗ satisfies

γ
1
2 h(0) tan

(
γ

1
2

τ∗∫
0

a(s) ds

)
� 1.

Using the definition of γ , the a priori estimates of Lemma 3.8 and the inequality tanx � x we obtain the sufficient
condition

e2βτ∗‖∇xf̃i‖2
2,m̃‖fi‖2

2,u � Cν4

c4
T

, (3.33)

or again for β > 0

τ ∗ � − 1

β
ln

(
Cc2

T

ν2
‖∇xfi‖2,m‖fi‖2,u0

)
.

In the case β = 0, (3.33) does not depend on τ . In that case, if

‖∇xfi‖2,m‖fi‖2,u � Cν2

c2
T

,

then τ ∗ = ∞.
The case of physical interest is when ν and β are small and cT large. In that case, we see that for very small ∇fi ,

the existence time is quite long. �
4. Existence of solutions

In this section, we prove the existence Theorem 1.1. The proof will use the following notation and a preliminary
lemma.

A priori estimates of the Lemma 3.8 on the solution (f,Φ) to (1.1)–(1.2) on [0, T ] lead to the definition of the set
K of functions f such that∥∥f (t)

∥∥
2,m

�
√

M, a.a. t ∈ 0, T ,

where

M = ‖fi‖2
2,m + (2ν + β)

e2βt − 1

β
‖fi‖2

2,2πu.

For each n > 0, we also introduce an approximation of the potential Φn defined for any f ∈ L2
m by

Φn(t, x) :=
∑

|k|�n; k �=0

eik·x 1

1 − Ĥ (k)

( ∫
2πJ 0

wf̂n(t, k,w)w dw − 1

)
. (4.34)

Lemma 4.11. For any n ∈ N
∗ and any T > 0, there is a unique fn in K ∩ L2(0, T ;H 1

u (Ω)) solution to (1.1) with the
potential Φ replaced by Φn = Φn(fn) and initial condition fi . This solution satisfies all the a priori estimates of the
previous section.
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Proof. Let S be the map defined on K by S(f ) = g, where g is the solution in K ∩ L2(0, T ;H 1
u (Ω)) to (1.1) with

the potential Φn(f ) and initial condition fi . The existence and uniqueness of S(F ) follows from [10, Theorem 4.1,
p. 257], since ∇Φn is bounded in L∞(0, T ;H 3(T2)) by cnM for some constant cn. Then S maps K into K . Moreover,
S is a contraction in L∞(0, T ;L2

u(Ω)) for T small enough. Indeed, let g1 = S(f1) (resp. g2 = S(f2)). By estimates
very similar to the one performed in Lemma 3.6 it holds that∥∥(

Φn(f1) − Φn(f2)
)
(t, ·)∥∥

L∞(T2)
� c̄n

∥∥(f1 − f2)(t, ·)
∥∥

2,m
, t � 0,

for some constant c̄n. Subtracting the equation satisfied by g2 from the equation satisfied by g1 and integrating over
Ω leads to

e2(2ν+β)t

2

d

dt

(
e−2(2ν+β)t‖g1 − g2‖2

2,m

)
� −ν

∥∥(∇x, ∂u)(g1 − g2)
∥∥2

2,m
−

∫
g2∇⊥(

J 0
u

(
Φn(f2) − Φn(f1)

)) · ∇(g1 − g2)m(u)dx du

� −ν
∥∥(∇x, ∂u)(g1 − g2)

∥∥2
2,m

+ c̄n

∥∥(f1 − f2)
∥∥

2,m

∥∥∇x(g1 − g2)
∥∥

2,m
‖g2‖2,m

� c̄n
2

4ν2

∥∥(f1 − f2)
∥∥2

2,m
‖g2‖2

2,m � c̄n
2M

4ν2

∥∥(f1 − f2)
∥∥2

2,m
.

And so,

‖g1 − g2‖L∞(0,T ;L2
m) � cT e2(ν+β)T ‖f1 − f2‖L∞(0,T ;L2

m).

Hence there is a unique fixed point of the map S on [0, T1] for T1 small enough. The bounds used for defining T1
being independent of T1, a unique solution of the problem can be determined globally in time by iteration. The fact
that this unique solution satisfies the a priori estimates of the next section is clear since these estimates only depend
on the bound satisfied by Φ and not on its precise form. �
Proof of Theorem 1.1. For any T ,U > 0, the sequence (fn) is compact in L2

loc,u([0, T ] × Ω) (recall that ΩU =
T

2 × [0,U ]). Indeed, it is bounded in L∞(0, T ;L2
u(ΩU)) ∩ L2(0, T ;H 1

u (ΩU)). It follows from the interpolation

theory that (fn) is bounded in L
10
3

u ([0, T ] × ΩU). Together with the boundedness of (∇xΦn(fn)) in L2
u([0, T ] × ΩU)

(Lemma (3.5), this implies that (
∂fn

∂t
) is bounded in W

−1, 5
4

u ([0, T ]×ΩU). By the Aubin lemma [10], it holds that (fn)

is compact in L2
u([0, T ] × ΩU), so converges up to a subsequence to some function f in L2

u([0, T ] × ΩU).
It remains to pass to the limit when n → +∞ in the weak formulation satisfied by fn. A weak form of (1.1)–(1.4)

is that for every smooth test function α with compact support in [0, T [ × Ω ,

∫
fi(x,u)α(0, x,u)udx du +

t∫
0

∫
fn

(
∂α

∂t
+ ∇⊥

x

(
J 0

u Φn(fn)
) · ∇xα

)
udx duds

=
t∫

0

∫ (
uν∇xfn · ∇xα + ∂ufn∂uα + βu2fn∂uα

)
dx duds. (4.35)

The passage to the limit in (4.35) when n → +∞ can be performed if

lim
n→∞

t∫
0

∫
ufn∇⊥

x

(
J 0

u

(
Φn(fn)

)) · ∇xα dx duds =
t∫

0

∫
uf ∇⊥

x

(
J 0

u

(
Φ(f )

)) · ∇xα dx duds.

This holds since (fn) (resp. (∇x(J
0
u (Φn)(fn)))) strongly (resp. weakly) converges to f (resp. ∇x(J

0
u (Φ(f )))) in

L2
u([0, T ] × ΩU) for any U > 0. And since the fn satisfy all the a priori bounds, the limit f also satisfies them. �
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5. Short time uniqueness and stability of the solution

In this section we prove the short time uniqueness and stability Theorem 1.2.

Proof of Theorem 1.2. Denote by f1 (resp. f2) a solution to (1.1) for the field Φ1 (resp. Φ2), by δf = f1 − f2 and
by δΦ = J 0

u (Φ1 − Φ2). Multiplying the equation satisfied by (1 + u2)δf by δf and integrating w.r.t. (x,u) with the
weight u leads to

1

2

d

dt
‖δf ‖2

2,m � −ν
∥∥(∇x, ∂u)δf

∥∥2
2,m

+ (4ν + 2β)‖δf ‖2
2,u +

∫
δf ∇⊥

x (δΦ) · ∇xf2 m(u)dx du

� −ν
∥∥(∇x, ∂u)δf

∥∥2
2,m

+ (4ν + 2β)‖δf ‖2
2,u + ∥∥δf ∇x(δΦ)

∥∥
2,um

‖∇xf2‖2, m
u
.

To estimate ‖δf ∇(δΦ)‖2,um, apply the inequality

ab � ea − b + b lnb, a, b > 0,

to (a, b) = (( ∇xδΦ

6‖∇2
x δΦ‖2

)2, (
δf

‖δf ‖2
)2) for every non-negative u and apply the Trüdinger inequality (see [11])

∫
T2

e
(

∇x δΦ

6‖∇2
xψ‖2

)2

dz � 2. (5.36)

Therefore, using ‖∇2
xδΦ‖2 � CcT√

u
‖∇δf ‖2,m (Lemmas 3.6, 3.5 and 3.7) and the Jensen inequality,

∥∥δf ∇x(δΦ)
∥∥2

2 = C
∥∥∇2δΦ

∥∥2
2‖δf ‖2

2

∫ (
δf

‖δf ‖2

)2( |∇xδΦ|
6‖∇2δΦ‖2

)2

dx

� C
∥∥∇2δΦ

∥∥2
2‖δf ‖2

2

(
1 +

∫
(δf )2

‖δf ‖2
ln

(
(δf )2

‖δf ‖2
2

)
dx

)

�
Cc2

T

u
‖∇xδf ‖2

2,m‖δf ‖2
2

(
1 + ln

(‖δf ‖4

‖δf ‖4
2

))
.

Integrating in u with the weight um, it holds using again Jensen inequality that

∥∥δf ∇(δΦ)
∥∥2

2,um
� 2Cc2

T ‖∇xδf ‖2
2,m‖δf ‖2

2,m

∫ ‖δf ‖2
2

‖δf ‖2
2,m

(
1 + ln

(‖δf ‖2
4

‖δf ‖2
2

))
m(u)du

� Cc2
T ‖∇xδf ‖2

2,m‖δf ‖2
2,m

(
1 + ln

(‖δf ‖2
L2

m(L4)

‖δf ‖2
2,m

))
.

Consequently,

1

2

d

dt
‖δf ‖2

2,m � CcT ‖∇xδf ‖2,m‖δf ‖2,m

√√√√1 + ln

(‖δf ‖2
L2

m(L4)

‖δf ‖2
2,m

)
‖∇f2‖2, m

u

− ν
∥∥(∇x, ∂u)δf

∥∥2
2,m

+ (4ν + 2β)‖δf ‖2
2,m,

�
Cc2

T

4ν
‖δf ‖2

2,m ln

(2e‖δf ‖2
L2

m(L4)

‖δf ‖2,m

)
‖∇f2‖2

2, m
u

+ (4ν + 2β)‖δf ‖2
2,m

and finally using the inequality ‖f (t)‖L2
m(L4) � e(β+2ν)t‖fi‖L2

m(L4) from Lemma 3.9,

1

2

d

dt
‖δf ‖2

2,m �
Cc2

T

4ν
‖δf ‖2

2,m ln

(
r2e2(β+2ν)t

‖δf ‖2

)
‖∇f2‖2

2, m
u

+ (4ν + 2β)‖δf ‖2
2,m,
2,m
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where

r = e
1
2
(‖f1,i‖L2

m(L4) + ‖f2,i‖L2
m(L4)

)
.

Defining s(t) = 1
r2 ‖δf ‖2

2,me−2(β+2ν)t , we get

ṡ(t) �
Cc2

T

4ν
‖∇f2‖2

2, m
u
s(t) ln

1

s(t)
.

It follows from the Osgood lemma that

s(t) � s(0)e
−H(t)

, (5.37)

with H(t) = Cc2
T

4ν

∫ t

0 ‖∇f2(s)‖2
2, m

u
ds. We will show below that H is well defined on [0, τ ∗], the interval of time

defined in Lemma 3.10. Then∥∥δf (t)
∥∥

2,m
� e(β+2ν)t r1−e−H(t)∥∥δf (0)

∥∥e−H(t)

2,m
,

which implies the short time uniqueness and stability. Remark that the previous calculation does not use ∇xf1 and
this is why we do not need an assumption on this quantity in the stability result.

It remains to prove that H is bounded on [0, τ ∗]. In fact, using the inequality (3.31) proved during the proof of
Lemma 3.10, but rewritten in the 2D + 1D setting, we get

‖∇f2‖2
2, m

u
� C‖∇xf ‖2,2πu‖∇x,�u∇xf ‖2,m.

If we integrate that inequality with respect to time, we obtain

τ∗∫
0

∥∥∇f (t)
∥∥2

2, m
u

dt � 2

τ∗∫
0

∥∥∇x,�u∇xf (t)
∥∥

2,2πu

∥∥∇xf (t)
∥∥

2,m

� sup
t�τ∗

∥∥∇xf (t)
∥∥

2,m

√
τ ∗

( τ∗∫
0

∥∥∇2
x,�uf (t)

∥∥
2,m

dt

) 1
2

� C∗
√

τ ∗
ν

. �
Appendix A

A.1. Bounds on the Fourier transform of the Bessel operator of zeroth order

In the following, we use the notation J 0 = J 0
1 for the zeroth order Bessel operator and its symbol in Fourier. Indeed,

in the Fourier space, J 0
1 that appears in the definition of the gyro-average of the electric field, is the multiplication

by J 0. Some properties of the function J 0 are given in [12]. In this appendix, some bounds on J 0 and its first derivative
in Fourier space are proven.

Lemma A.12. J 0 satisfies the following estimates for all k ∈ R
2,

(i)
∣∣Ĵ 0(k)

∣∣ � min

(
1,

1

21/4
√|k|

)
,

(ii)
∣∣Ĵ 0(k)

∣∣ �
(
1 + |k|2)− 1

4 ,

(iii)
∣∣(Ĵ 0)′

(k)
∣∣ � min

(
1,

√
2

π |k|
)

,

(iv)
∣∣(Ĵ 0

)′
(k)

∣∣ �
(
1 + |k|2)− 1

4 .
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Proof. First inequality: The bound |J 0(k)| � 1 is clear from the definition of J 0,

Ĵ 0(k) = 1

2π

2π∫
0

ei|k| cos θ dθ = 1

π

π∫
0

cos
(|k| cos θ

)
dθ. (A.1)

As J 0 is also a radial function of k, we will consider from now and till the end of this appendix that k is a non-negative
real number, and that J 0 is defined on non-negative real numbers.

With these notations, the bound by (
√

2k)− 1
2 is obtained as follows. J 0 is solution of the ordinary differential

equation

k2(J 0)′′ + k
(
J 0)′ + k2J 0 = 0, J 0(0) = 1,

(
J 0)′

(0) = 0. (A.2)

The new unknown u = √
kJ 0 is solution to

u′′ +
(

1 + 1

4k2

)
u = 0. (A.3)

There are no exact initial conditions for u. However,

u(k) =
k→0+

√
k
[
1 + O

(
k2)], u′(k) =

k→0+
1

2
√

k

[
1 + O

(
k2)].

The second equation (A.3) admits the k-dependent energy,

H(k) = H
(
k,u,u′) = u′2

2
+ u2

2

(
1 + 1

4k2

)
,

that satisfies

H(k) − H(k0) = −
k∫

k0

u2(l)

4l3
dl.

It follows from the behavior of u near 0 that

H(k) =
k→0+

1

4k
+ O(k).

Moreover the series expansion of J 0 near k = 0,

J 0(k) =
∞∑

j=0

(−1)j
k2j

22j (j !)2

and its alternating character if k � 2 imply that u2(k) � k − k3

2 (valid for k �
√

2). Using, the inequality and the
behavior of H near 0, we get for 0 < k0 � k �

√
2 that

H(k) � 1

4k0
+ O(k0) −

k∫
k0

(
1

4l2
− 1

8

)
dl,

H(k) � 1

4k
+ k

8
, (A.4)

since the first line is satisfied for any k0 > 0. Therefore,

u2(k) � k
k2 + 2

4k2 + 1
, k �

√
2.

A simple calculation shows that the function appearing in the right-hand side is increasing in k, so that

u2(k) � 1√ , k ∈ [0,
√

2].

2
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For k �
√

2, simply remark that H is decreasing and that from (A.4)

u2(k) � 2H(k) � 2H(
√

2) � 1√
2
.

In any case, u2(k) � 2− 1
2 , which gives the desired inequality.

Second inequality: It is a consequence of the first, for k � 1. For k � 1, it may be obtained from a comparison of
the power series expansions of J 0 and (1 + k)−1/4 around the origin. We get

J 0(k) � 1 − k2

4
+ k4

64
� 1 − k2

4
+ 5k4

32
− 15k6

128
�

(
1 + k2)−1/4

.

Third inequality: Taking the derivative of J 0 in the definition (A.1),

(
J 0)′

(k) = i

2π

2π∫
0

cos θeik cos θ dθ = − 1

π

π∫
0

cos θ sin(k cos θ) dθ,

from which it is clear that |(J 0)′(k)| � 1 for all k. Next we transform the previous integral in

(
J 0)′

(k) = − 2

π

1∫
0

α sin(kα)√
1 − α2

dα

=
j−1∑
i=0

(−1)j

hi+1∫
hi

| sin(kα)|√
1 − α2

α dα :=
j−1∑
i=0

(−1)j sj ,

where (hi)1�i�j are the points where sin(kθ) vanishes and 1,

h0 = 0 < h1 = π

k
< h2 = 2π

k
< · · · < hj−1 = (j − 1)π

k
< hj = 1.

The previous sum has alternating signs, the larger terms occurring for large i. Its terms are with increasing absolute
values, except for the last one which is incomplete and may be smaller than the next to last term. However,

−s1 � s0 − s1 �
j∑

i=0

(−1)j sj � s0 − s1 + s2 � s0,

so that

∣∣(J 0)′
(k)

∣∣ � max(s0, s1) � 2

π

1∫
1−π/k

α dα√
1 − α2

� 1

π

√
2π

k
− π2

k2
�

√
2

πk
, k � π.

This ends the proof of the third inequality.

The proof of (iv) is similar to the proof of (ii), since
√

2
π

< 2− 1
4 . �

A.2. A Sobolev inequality on the torus

On the whole space of dimension two R
2, the Sobolev inequality ‖u‖2

4 � ‖u‖2‖∇u‖2 holds. On a smooth bounded
domain Ω , we are more familiar with the inequality ‖u‖4 � C‖u‖H 1(Ω). However, the more precise version ‖u‖2

4 �
‖u‖2‖u‖H 1(Ω) can still be obtained using extension operator. As we need this precise version in our article, we give a
short proof of it on the torus.
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Lemma A.13. Let u be a function on T
2 such that ‖u‖2 + ‖∇u‖2 < +∞. Then

‖u‖4
4 � ‖u‖2

2

(
‖u‖2 +

∥∥∥∥∂u

∂x

∥∥∥∥
2

)(
‖u‖2 +

∥∥∥∥∂u

∂y

∥∥∥∥
2

)

and if u is of average zero, we can combine this inequality with a Poincaré inequality to obtain

‖u‖2
4 � 3‖u‖2‖∇u‖2.

Proof. We can see u as a periodic function on R
2. For y ∈ [0,1] and −1 � x′ � x < x′ + 1 � 1, we have

u(x, y)2 = u
(
x′, y

)2 + 2

x∫
x′

u(t, y)
∂u

∂x
(t, y) dt,

u(x, y)2 = u
(
x′ + 1, y

)2 − 2

x′+1∫
x

u(t, y)
∂u

∂x
(t, y) dt,

u(x, y)2 � u
(
x′, y

)2 +
1∫

0

∣∣u(t, y)
∣∣∣∣∣∣∂u

∂x
(t, y)

∣∣∣∣dt.

The last line is obtained from the mean of the two first. As it is true for all x′, we may average the last inequality on
all x′ ∈ [0,1] and obtain

u(x, y)2 �
1∫

0

∣∣u(t, y)
∣∣(∣∣u(t, y)

∣∣ +
∣∣∣∣∂u

∂x
(t, y)

∣∣∣∣
)

dt := F(y),

where F is defined by the right-hand side and depends only of y. Remark that

1∫
0

F(y)dy � ‖u‖2
2 + ‖u‖2

∥∥∥∥∂u

∂x

∥∥∥∥
2
.

Very similarly, we obtain

u(x, y)2 �
1∫

0

∣∣u(x, t)
∣∣(∣∣u(x, t)

∣∣ +
∣∣∣∣∂u

∂y
(x, t)

∣∣∣∣
)

dt := G(x),

and

1∫
0

G(x)dx � ‖u‖2
2 + ‖u‖2

∥∥∥∥∂u

∂x

∥∥∥∥
2
.

Eventually, we write∫
T2

u4(x, y) dx dy �
∫
T2

G(x)F (y)dx dy =
∫

G(x)dx

∫
F(y)dy,

and obtain the desired inequality thanks to the bound on the L1 norm of F and G. The Poincaré inequality may be
proved in a very similar way. �
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