Multiple homoclinic solutions for singular differential equations ${ }^{\boldsymbol{*}}$

Changrong Zhu ${ }^{\text {a,b, }, *}$, Guangping Luo ${ }^{\text {a }}$, Kunquan Lan ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Physics, Chongqing University, Chongqing 400044, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Ryerson University, Toronto, Ontario, Canada M5B 2K3

Received 19 April 2008; received in revised form 23 December 2009; accepted 23 December 2009
Available online 7 January 2010

Abstract

The homoclinic bifurcations of ordinary differential equation under singular perturbations are considered. We use exponential dichotomy, Fredholm alternative and scales of Banach spaces to obtain various bifurcation manifolds with finite codimension in an appropriate infinite-dimensional space. When the perturbative term is taken from these bifurcation manifolds, the perturbed system has various coexistence of homoclinic solutions which are linearly independent.

© 2010 Elsevier Masson SAS. All rights reserved.
Keywords: Degenerate homoclinic solution; Lyapunov-Schmidt reduction; Singular perturbations; Codimension

1. Introduction

The homoclinic bifurcations are important topics in dynamical systems since it is related to variously complicated dynamical behaviors, such as chaos. In recent decades, many authors studied this problem [1-16]. In 1980, S.N. Chow, J.K. Hale and J. Mallet-Parret [7] introduced Lyapunov-Schmidt reduction to investigate the persistence of homoclinic orbit for Duffing's equation under damping and excitation in \mathbb{R}^{2}. Under the assumptions that the unperturbed system had an orbit which homoclinic to a hyperbolic equilibrium, and the dimension of the intersection of the stable and unstable manifolds of the equilibrium was one, K.J. Palmer [14] extended this method to \mathbb{R}^{n}.

In 1984, J.K. Hale [12] suggested that this method could be extended to more general case where the perturbative terms were multiple parameters and the dimension of the intersection of the stable and unstable manifolds was greater than one. For regular perturbations, J. Knobloch, U. Schalk and A. Vanderbauwhede [13,15,16] investigated the case where the dimension of the intersection was two. Later, J. Gruendler, F. Battelli and C. Lazzari [1,9,10] gave the general theory for the case where the intersection of the dimension was arbitrary. F. Battelli and C. Lazzari [1] studied the persistence of degenerate heteroclinic orbit for ordinary differential equations with nonautonomous perturbations. J. Gruendler $[9,10]$ considered the persistence of homoclinic solutions under autonomous and nonautonomous perturbations. For arbitrary dimension of intersection, the homoclinic bifurcations were also investigated in [18].

[^0]Meantime, the homoclinic bifurcations under singular perturbations were rising a lot of interest [2-4,8,11]. In [11], J. Gruendler considered the following singular system

$$
\epsilon \dot{x}=f_{0}(x)+\epsilon f_{1}(x, \epsilon, t)
$$

where $x \in \mathbb{R}^{n}, \epsilon \in \mathbb{R}$ and f_{1} is periodic in t. In [3], F. Battelli and K.J. Palmer also investigated this system in \mathbb{R}^{2} but with the coefficient of ϵ^{2} for f_{1}. The general theory for the arbitrary dimension of the intersection was developed in [11]. By using Lyapunov-Schmidt reduction, he obtained a bifurcation function $H: \mathbb{R}^{d-1} \times \mathbb{R}^{1} \times \mathbb{R}^{1} \rightarrow \mathbb{R}^{d}$, where d was the dimension of the intersection of the stable and unstable manifolds. The zeros of $H(\beta, \epsilon, \alpha)=0$ were one-to-one correspondence to the existence of transversal homoclinic solutions for the perturbed system. He gave some applicable conditions on the bifurcation function.

Motivated by these works, we will consider the system

$$
\begin{equation*}
\epsilon \dot{x}(t)=f(x(t))+g(x(t), \epsilon, t) \tag{1.1}
\end{equation*}
$$

where $\epsilon \in \mathbb{R}, x \in \mathbb{R}^{n}$ and $\|g\|_{C^{3}}$ is small. Let $t \leftrightarrow t / \epsilon$, Eq. (1.1) is equivalent to

$$
\begin{equation*}
\dot{x}(t)=f(x(t))+g(x(t), \epsilon, \epsilon t) . \tag{1.2}
\end{equation*}
$$

Different from the regular perturbations, there are some difficulties when one considers the problem in a usual Banach space. Let X and Y be certain Banach spaces. If we convert (1.2) into integral equation $F(x, g, \epsilon)=0$ where $F: X \times$ $C^{3} \times \mathbb{R} \rightarrow Y$. There is a difficulty to solve $F(x, g, \epsilon)=0$ since the map $F(x, g, \epsilon)$ is not differentiable in ϵ. Different choices of Banach spaces also lead to the similar problem. In [3,11], they dealt with this difficulty by using a scale of Banach spaces. This idea was introduced by A. Vanderbauwhede and S.A. Van Gils in [17].

In the present paper, we consider Eq. (1.1) and its equivalent form (1.2). Let X and Y be Banach spaces and $\Omega \in X$ be an open set. Let $C^{k}(\Omega, Y)$ denote all functions $f: \Omega \rightarrow Y$ with continuous derivatives up to order k. The space $C^{k}(\Omega, Y)$ is Banach space with norm $\|f\|_{C^{k}}=\sup _{x \in \Omega} \sum_{i=0}^{k}\left|D^{i} f(x)\right|$. We make some assumptions.
(H1) f and g are C^{3} in all their variables.
(H2) $f(0)=0$ and the eigenvalues of $D f(0)$ lie off the imaginary axis.
(H3) The unperturbed system

$$
\begin{equation*}
\dot{x}(t)=f(x(t)) \tag{1.3}
\end{equation*}
$$

has a homoclinic orbit $\gamma(t)$. That is, there is differentiable function $\gamma(t)$ such that $\dot{\gamma}(t)=f(\gamma(t))$ and $\lim _{t \rightarrow \pm \infty} \gamma(t)=0$.
(H4) $g(0, \epsilon, t)=0$ and $\|g\|_{C^{3}}$ is small.
In this paper, both scalar ϵ and function g are treated as parameters. We will investigate various choices of $g \in C^{3}\left(\mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}^{n}\right)$ and give conditions on g to obtain the various situations of linearly independent multiple homoclinic solutions for system (1.2). These conditions determine some bifurcation submanifolds, containing zero, with finite codimension in $C^{3}\left(\mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}^{n}\right)$. When g is chosen from different submanifold, the system (1.2) has different number linearly independent homoclinic solutions.

2. Preliminary and main results

If $h: X_{1} \times \cdots \times X_{m} \rightarrow Y$ where X_{1}, \ldots, X_{m}, Y are Banach spaces, let $D_{i} h$ denote the first partial derivative with respect to the i-th variable, $D_{i j} h$ denote the second partial derivative with respect to the i-th and j-th variables. If there is only one variable, we often omit the subscript. From (H2), we know that $x=0$ is hyperbolic equilibrium of (1.3). Let W^{s} and W^{u} be the stable and unstable manifolds of the origin. From (H3) we see that Eq. (1.3) has a homoclinic orbit $\gamma(t)$. It is clear that $\gamma \in W^{s} \cap W^{u}$. Let $d=T_{\gamma(0)} W^{s} \cap T_{\gamma(0)} W^{u}$.

For $c \in \mathbb{C}$, let $\operatorname{Re}(c)$ denote the real part of c. Since the eigenvalue of $D f(0)$ lies off the imaginary axis, we can choose a constant $\alpha>0$ such that $\left|\operatorname{Re}\left(\lambda_{i}\right)\right|>3 \alpha$ where λ_{i} is the eigenvalue of $D f(0), i=1, \ldots, n$.

The linearly variational equation of (1.3) along $\gamma(t)$ is

$$
\begin{equation*}
\dot{u}(t)=D f(\gamma(t)) u(t) . \tag{2.1}
\end{equation*}
$$

The following lemma is Theorem 2 in [10] with some changes of notations.

Lemma 2.1. There are fundamental matrix solution, U, for (2.1), constants $K>0$ and projections $P_{s s}, P_{s u}, P_{u s}$ and $P_{u u}$ such that $P_{s s}+P_{s u}+P_{u s}+P_{u u}=I$ and the following hold:
(a) $\left|U(t)\left(P_{s s}+P_{s u}\right) U^{-1}(s)\right| \leqslant K e^{2 \alpha(t-s)}$, for $t \leqslant s \leqslant 0$,
(b) $\left|U(t)\left(P_{u u}+P_{u s}\right) U^{-1}(s)\right| \leqslant K e^{2 \alpha(s-t)}$, for $s \leqslant t \leqslant 0$,
(c) $\left|U(t)\left(P_{s s}+P_{u s}\right) U^{-1}(s)\right| \leqslant K e^{2 \alpha(s-t)}$, for $0 \leqslant s \leqslant t$,
(d) $\left|U(t)\left(P_{u u}+P_{s u}\right) U^{-1}(s)\right| \leqslant K e^{2 \alpha(t-s)}$, for $0 \leqslant t \leqslant s$.

Furthermore, $\operatorname{Rank}\left(P_{s s}\right)=\operatorname{Rank}\left(P_{u u}\right)=d$.
Let $u_{0} \in \mathbb{R}^{n}$. We consider the solution of (2.1) with initial condition $u(0)=u_{0}$. It is that $u\left(t, u_{0}\right)=U(t) U^{-1}(0) u_{0}$ with $u\left(0, u_{0}\right)=u_{0}$. From Lemma 2.1, we have the following observations:

$$
\left\{\begin{array}{lll}
\text { For } u_{0} \in P_{s s} \mathbb{R}^{n}, & \left|u\left(t, u_{0}\right)\right| e^{2 \alpha|t|} \rightarrow 0, & \text { as } t \rightarrow \pm \infty, \tag{2.2}\\
\text { For } u_{0} \in P_{s u} \mathbb{R}^{n}, & \left|u\left(t, u_{0}\right)\right| e^{-2 \alpha t} \rightarrow 0(\infty), & \text { as } t \rightarrow-\infty(\infty), \\
\text { For } u_{0} \in P_{u s} \mathbb{R}^{n}, & \left|u\left(t, u_{0}\right)\right| e^{2 \alpha t} \rightarrow \infty(0), & \text { as } t \rightarrow-\infty(\infty), \\
\text { For } u_{0} \in P_{u u} \mathbb{R}^{n}, & \left|u\left(t, u_{0}\right)\right| e^{-2 \alpha|t|} \rightarrow \infty, & \text { as } t \rightarrow \pm \infty
\end{array}\right.
$$

Renumbering if necessary, we can assume that

$$
P_{u u}=\left(\begin{array}{ccc}
I_{d} & 0 & 0 \\
0 & 0_{d} & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{s s}=\left(\begin{array}{ccc}
0_{d} & 0 & 0 \\
0 & I_{d} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where I_{d} and 0_{d} are $d \times d$ identity and zero matrix respectively.
Let u_{j} denote the j-th column of the fundamental solution U defined in Lemma 2.1. From the observations (2.2), we have

$$
\begin{aligned}
\lim _{t \rightarrow \pm \infty}\left|u_{i}(t)\right| e^{-2 \alpha|t|}=\infty, & i=1, \ldots, d \\
\lim _{t \rightarrow \pm \infty}\left|u_{d+i}(t)\right| e^{2 \alpha|t|}=0, & i=1, \ldots, d
\end{aligned}
$$

For any $i, i=1, \ldots, n$, we define u_{i}^{\perp} by $\left\langle u_{i}^{\perp}, u_{j}\right\rangle=\delta_{i j}, j=1, \ldots, n$, where $\delta_{i j}$ is the Kronecker delta. The vector functions u_{i}^{\perp} can be obtained as following. Let U^{\perp} be matrix with u_{i}^{\perp} in the i-th column. We can get that $U^{\perp}{ }^{T} U=I$ where T denote the transpose. Through differentiating, we have $\dot{U}^{\perp}{ }^{T} U+U^{\perp T} \dot{U}=0$. Thus $\dot{U}^{\perp}=$ $-\left(U^{\perp}{ }^{T} \dot{U} U^{-1}\right)^{T}=-D f(\gamma)^{T} U^{\perp}$. Thus U^{\perp} is the fundamental matrix solution for the adjoint equation of (2.1). Obviously, $U^{-1}=U^{\perp^{T}},\left\{u_{1}^{\perp}, \ldots, u_{d}^{\perp}, 0, \ldots, 0\right\}=P_{u u} U^{-1}$ and $\left\{0, \ldots, 0, u_{d+1}^{\perp}, \ldots, u_{2 d}^{\perp}, 0, \ldots, 0\right\}=P_{s s} U^{-1}$. It is clear that

$$
\begin{aligned}
& \lim _{t \rightarrow \pm \infty}\left|u_{i}^{\perp}(t)\right| e^{2 \alpha|t|}=0, \quad i=1, \ldots, d \\
& \lim _{t \rightarrow \pm \infty}\left|u_{d+i}^{\perp}(t)\right| e^{-2 \alpha|t|}=\infty, \quad i=1, \ldots, d .
\end{aligned}
$$

Now we introduce some notations. Let

$$
\Delta_{i j}:=\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(t), D^{2} f(\gamma(t)) u_{d+j}(t) u_{d+j}(t)\right\rangle d t, \quad i, j=1, \ldots, d .
$$

We further make an assumption.
(H5) $\Delta_{1 j} \neq 0, j=1, \ldots, d$.
For the perturbative term, we define a subset of $C^{3}\left(\mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}^{n}\right)$ by

$$
\mathcal{G}=\left\{g \in C^{3}: \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(t), g(\gamma(t), 0,0)\right\rangle d t=0, i=1, \ldots, d, g(0, \epsilon, t)=0, \text { and }\|g\|_{C^{3}} \text { is small }\right\} .
$$

The following is our main result.
Theorem 2.1. Assume that (H1)-(H5) hold. Let $d=T_{\gamma(0)} W^{s} \cap T_{\gamma(0)} W^{u}$. Then there are $\epsilon_{0}>0$, neighborhood $\mathcal{U} \subset \mathcal{G}$ which contains origin, and d submanifolds $\mathfrak{M}_{j} \subset \mathcal{G}, 0 \in \mathfrak{M}_{j}$, with codimension $d j, j=1, \ldots, d$, such that for every $g \in \mathcal{U} \cap\left(\mathfrak{M}_{k} /\left(\mathfrak{M}_{k+1} \cup \cdots \cup \mathfrak{M}_{d}\right)\right)$ and $\epsilon \in\left(-\epsilon_{0}, 0\right) \cup\left(0, \epsilon_{0}\right)$, the system (1.1) has k linearly independent homoclinic solutions where $k=1, \ldots, d$.

3. The homoclinic bifurcations

For each $\beta \in(0, \alpha)$, we define the space

$$
\mathcal{Z}_{\beta}=\left\{z \in C^{0}\left(\mathbb{R}, \mathbb{R}^{n}\right)\left|\sup _{t \in \mathbb{R}}\right| z(t) \mid e^{-\beta|t|}<\infty\right\} .
$$

We know that \mathcal{Z}_{β} is a Banach space with the sup norm $\|\cdot\|$. Clearly, for any $z \in \mathcal{Z}_{\beta}$, the function $|z(t)|$ grows no faster than $e^{\alpha|t|}$ as $t \rightarrow \pm \infty$. Thus we can define a subspace of \mathcal{Z}_{β} by

$$
\tilde{\mathcal{Z}}_{\beta}=\left\{z \in \mathcal{Z}_{\beta} \mid \int_{-\infty}^{\infty}\left\langle P_{u u} U^{-1}(t), z(t)\right\rangle d t=0\right\} .
$$

Using \mathcal{Z}_{β}, we define another space $\mathcal{Z}_{0}=\bigcap_{\beta \in(0, \alpha)} \mathcal{Z}_{\beta}$.
Let S denote subspace of \mathcal{Z}_{β}, such that $\mathcal{Z}_{\beta}=S \oplus \operatorname{span}\left\{u_{d+1}, \ldots, u_{2 d}\right\}$. We make transformation

$$
\begin{equation*}
x(t)=\gamma(t)+\sum_{i=1}^{d} k_{i} u_{d+i}(t)+z(t) \tag{3.1}
\end{equation*}
$$

where $k_{i} \in \mathbb{R}$ and $z \in S$. We take some special forms of (3.1). For any fixed j, we choose $k_{i}=0$ if $i \neq j$. Then (3.1) is

$$
\begin{equation*}
x_{j}(t)=\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t) \tag{3.2}
\end{equation*}
$$

where x_{j} and z_{j} are x and z in (3.1) respectively. Under the transformation (3.2), Eq. (1.2) is

$$
\begin{equation*}
\dot{z}_{j}(t)=D f(\gamma(t)) z_{j}(t)+h_{j}\left(z_{j}, \beta_{j}, g, \epsilon\right)(t) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
h_{j}\left(z_{j}, \beta_{j}, g, \epsilon\right)(t)= & f\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t)\right)-D f(\gamma(t))\left(k_{j} u_{d+j}(t)+z_{j}(t)\right) \\
& -f(\gamma(t))+g\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t), \epsilon, \epsilon t\right) .
\end{aligned}
$$

Naturally, we wish to convert (3.3) to integral equation $F\left(z_{j}, k_{j}, g, \epsilon\right)=0$. By implicit function theorem, we find the solution of $F\left(z_{j}, k_{j}, g, \epsilon\right)=0$ for $z_{j} \in \mathcal{Z}_{\beta}$. There is a problem that we cannot control the growth of $h_{j}\left(z_{j}, \beta_{j}, g, \epsilon\right)$. As in [17], we can introduce a so-called cut-off function. Let $\chi: \mathbb{R}^{n} \rightarrow[0,1]$ be a C^{∞} function, such that

$$
\chi(x)= \begin{cases}1 & \text { if }|x| \leqslant 1 \\ 0 & \text { if }|x| \geqslant 2 .\end{cases}
$$

For each $\rho>0$, we define new function $h_{j_{\rho}}: \mathcal{Z}_{\beta} \times \mathbb{R} \times C^{3} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
h_{j_{\rho}}\left(z_{j}, k_{j}, g, \epsilon\right)=h_{j}\left(z_{j}, k_{j}, g, \epsilon\right) \chi\left(z_{j} / \rho\right) \tag{3.4}
\end{equation*}
$$

For $\rho_{i}>0, r_{i}>0$ and $\sigma_{i}>0$, let $B_{1}\left(\rho_{i}\right) \in \mathcal{Z}_{\beta}, B_{2}\left(r_{i}\right) \in \mathbb{R}$ and $B_{3}\left(\sigma_{i}\right) \in C^{3}$ be balls with radius ρ_{i}, r_{i} and σ_{i} centered at respective origin.

Proposition 3.1. For any given $K_{1}>0$, there are $\rho_{1}>0, r_{1}>0$ and $\sigma_{1}>0$ such that the function $h_{j_{\rho_{1}}}\left(z_{j}, k_{j}, g, \epsilon\right)$ satisfies
(a) $\left|D_{1} h_{j_{\rho_{1}}}\left(z_{j}, k_{j}, g, \epsilon\right)(t)\right|<K_{1}$ for $\left(z_{j}, k_{j}, g, \epsilon\right) \in \mathcal{Z}_{\beta} \times B_{2}\left(r_{1}\right) \times B_{3}\left(\sigma_{1}\right) \times \mathbb{R}$,
(b) for any $z_{j}^{(1)}, z_{j}^{(2)} \in \mathcal{Z}_{\beta}$,

$$
\left|h_{j_{\rho_{1}}}\left(z_{j}^{(1)}, k_{j}, g, \epsilon\right)(t)-h_{j_{\rho_{1}}}\left(z_{j}^{(2)}, k_{j}, g, \epsilon\right)(t)\right|<K_{1}\left|z_{j}^{(1)}(t)-z_{j}^{(2)}(t)\right|
$$

for $\left(k_{j}, g, \epsilon\right) \in B_{2}\left(r_{1}\right) \times B_{3}\left(\sigma_{1}\right) \times \mathbb{R}$.
Proof. (a). From (3.4), we have

$$
\begin{align*}
D_{1} h_{j_{\rho}}\left(z_{j}, k_{j}, g, \epsilon\right)(t)= & {\left[D f\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t)\right)-D f(\gamma(t))\right.} \\
& \left.+D_{1} g\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t), \epsilon, \epsilon t\right)\right] \cdot \chi\left(z_{j} / \rho\right) \\
& +\frac{1}{\rho}\left[f\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t)\right)-D f(\gamma(t))\left(k_{j} u_{d+j}(t)+z_{j}(t)\right)\right. \\
& \left.-f(\gamma(t))+g\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t), \epsilon, \epsilon t\right)\right] \cdot D \chi\left(z_{j} / \rho\right) . \tag{3.5}
\end{align*}
$$

Let $C_{1}=\sup _{t \in \mathbb{R}}\left|u_{d+j}(t)\right|, C_{2}=\sup _{t \in \mathbb{R}} \sup _{|x| \leqslant 2, a \in[-1,1]}\left|D^{2} f\left(\gamma(t)+a u_{d+j}(t)+x(t)\right)\right|, C_{3}=\sup _{x}|D \chi(x / \rho)|$. For any given $K_{1}>0$, we choose $0<\rho_{1} \leqslant \min \left\{\frac{1}{2}, \frac{K_{1}}{16 C_{2}}, \frac{K_{1}}{64 C_{2} C_{3}}\right\}$. Let

$$
r_{1}=\min \left\{1, \frac{2 \rho_{1}}{C_{1}}\right\}, \quad \sigma_{1}=\min \left\{\frac{K_{1}}{4}, \frac{K_{1} \rho_{1}}{4 C_{3}}\right\} .
$$

Since $h_{\rho_{\rho_{1}}}=0$ for $\left|z_{j}(t)\right|>2 \rho_{1}$, we see that (a) and (b) hold if $\left|z_{j}(t)\right|>2 \rho_{1}$. Thus we assume $\left|z_{j}(t)\right| \leqslant 2 \rho_{1}$.
For $\left(z_{j}, k_{j}\right) \in \mathcal{Z}_{\beta} \times B_{2}\left(r_{1}\right)$, define $\psi_{1}[0,1] \rightarrow L\left(\mathcal{Z}_{\beta}, \mathcal{Z}_{\beta}\right)$ by $\psi_{1}(s)=D f\left(\gamma(t)+s k_{j} u_{d+j}(t)+s z_{j}(t)\right)-$ $D f(\gamma(t))$. It is clear that $\psi_{1} \in C^{1}$. Then there is $s_{1} \in[0,1]$ such that

$$
\begin{array}{rl}
\mid D & f\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t)\right)-D f(\gamma(t)) \mid \\
\quad=\left|\psi_{1}(1)-\psi_{1}(0)\right|=\left|\psi_{1}^{\prime}\left(s_{1}\right)\right| \\
\quad \leqslant\left|D^{2} f\left(\gamma(t)+s_{1} k_{j} u_{d+j}(t)+s_{1} z_{j}(t)\right)\right|\left(\left|k_{j}\right| \cdot\left|u_{d+j}(t)\right|+\left|z_{j}(t)\right|\right) \\
\quad \leqslant C_{2}\left(\frac{2 \rho_{1}}{C_{1}} C_{1}+2 \rho_{1}\right) \\
\quad=4 C_{2} \rho_{1} \leqslant \min \left\{\frac{K_{1}}{4}, \frac{K_{1}}{16 C_{3}}\right\} . \tag{3.6}
\end{array}
$$

For $\left(z_{j}, k_{j}\right) \in \mathcal{Z}_{\beta} \times B_{2}\left(r_{1}\right)$, define $\psi_{2}:[0,1] \rightarrow \mathcal{Z}_{\beta}$ by $\psi_{2}(s)=f\left(\gamma(t)+s k_{j} u_{d+j}(t)+s z_{j}(t)\right)-f(\gamma(t))-$ $D f(\gamma(t))\left(s k_{j} u_{d+j}(t)+s z_{j}(t)\right)$. It is clear that $\psi_{2} \in C^{1}$. Then there is $s_{2} \in[0,1]$ such that

$$
\begin{align*}
& \left|f\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t)\right)-f(\gamma(t))-D f(\gamma(t))\left(k_{j} u_{d+j}(t)+z_{j}(t)\right)\right| \\
& \quad=\psi_{2}(1)-\psi_{2}(0)=\psi_{2}^{\prime}\left(s_{2}\right) \\
& \quad \leqslant\left|D f\left(\gamma(t)+s_{2} k_{j} u_{d+j}(t)+s_{2} z_{j}(t)\right)-D f(\gamma(t))\right|\left(\left|k_{j}\right| \cdot\left|u_{d+j}(t)\right|+\left|z_{j}(t)\right|\right) \\
& \quad \leqslant \frac{K_{1}}{16 C_{3}}\left(\frac{2 \rho_{1}}{C_{1}} C_{1}+2 \rho_{1}\right)=\frac{K_{1} \rho_{1}}{4 C_{3}} \tag{3.7}
\end{align*}
$$

where (3.6) is used.
For $\left(z_{j}, k_{j}, g, \epsilon\right) \in \mathcal{Z}_{\beta} \times B_{2}\left(r_{1}\right) \times B_{3}\left(\sigma_{1}\right) \times \mathbb{R}$, we can get from (3.5)-(3.7) that

$$
\begin{aligned}
\left|D_{1} h_{\rho_{\rho_{1}}}\left(z_{j}, k_{j}, g, \epsilon\right)(t)\right| \leqslant & \left|D f\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t)\right)-D f(\gamma(t))\right| \\
& +\left|D_{1} g\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t), \epsilon, \epsilon t\right)\right| \\
& +\frac{1}{\rho_{1}}\left[\left|f\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t)\right)-D f(\gamma(t))\left(k_{j} u_{d+j}(t)+z_{j}(t)\right)-f(\gamma(t))\right|\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left|g\left(\gamma(t)+k_{j} u_{d+j}(t)+z_{j}(t), \epsilon, \epsilon t\right)\right|\right] \cdot\left|D \chi\left(z_{j} / \rho_{1}\right)\right| \\
\leqslant & \frac{K_{1}}{4}+\sigma_{1}+\frac{1}{\rho_{1}}\left(\frac{K_{1} \rho_{1}}{4 C_{3}}+\sigma_{1}\right) C_{3} \leqslant K_{1} . \tag{3.8}
\end{align*}
$$

The proof of (a) is completed.
(b). For any $z_{j}^{(1)}, z_{j}^{(1)} \in \mathcal{Z}_{\beta}$, and $\left(k_{j}, g, \epsilon\right) \in B_{2}\left(r_{1}\right) \times B_{3}\left(\sigma_{1}\right) \times \mathbb{R}$, define $\psi_{3}:[0,1] \rightarrow \mathcal{Z}_{0}$ by $\psi_{3}(s)=h_{j_{\rho_{1}}}\left(s z_{j}^{(1)}+\right.$ $\left.(1-s) z_{j}^{(2)}, k_{j}, g, \epsilon\right)(t)$. There is $s_{3} \in[0,1]$, such that

$$
\begin{aligned}
& \left|h_{j_{\rho_{1}}}\left(z_{j}^{(1)}, k_{j}, g, \epsilon\right)(t)-h_{j_{\rho_{1}}}\left(z_{j}^{(2)}, k_{j}, g, \epsilon\right)(t)\right| \\
& \quad=\left|\psi_{3}(1)-\psi_{3}(0)\right|=\left|\psi_{3}^{\prime}\left(s_{3}\right)\right| \\
& \quad=\left|D_{1} h_{j_{\rho_{1}}}\left(s_{3} z_{j}^{(1)}+\left(1-s_{3}\right) z_{j}^{(2)}, k_{j}, g, \epsilon\right)(t)\right|\left|z_{j}^{(1)}(t)-z_{j}^{(2)}(t)\right| \\
& \quad \leqslant K_{1}\left|z_{j}^{(1)}(t)-z_{j}^{(2)}(t)\right| .
\end{aligned}
$$

The proof of (b) is completed.
Let $b: \mathbb{R} \rightarrow \mathbb{R}$ be smooth function with $\int_{-\infty}^{\infty} b(t) d t=1$. Define a map $P: \mathcal{Z}_{\beta} \rightarrow \mathcal{Z}_{\beta}$ by

$$
(P w)(t)=b(t) U(t) \int_{-\infty}^{\infty}\left\langle P_{u u} U^{-1}(s), w(s)\right\rangle d s
$$

Lemm 3.1. The operator P is a projection and $P(\dot{z}-D f(\gamma(t)) z)=0$ for $z \in \mathcal{Z}_{\beta}$.
Proof. For $z \in \mathcal{Z}_{\beta}$, we have

$$
\begin{aligned}
\left(P^{2} z\right)(t) & =b(t) U(t) \int_{-\infty}^{\infty}\left\langle P_{u u} U^{-1}(s),(P z)(s)\right\rangle d s \\
& =b(t) U(t) \int_{-\infty}^{\infty}\left\langle P_{u u} U^{-1}(s), b(s) U(s) \int_{-\infty}^{\infty}\left\langle P_{u u} U^{-1}(\tau), z(\tau)\right\rangle d \tau\right\rangle d s \\
& =b(t) U(t) \int_{-\infty}^{\infty}\left\langle P_{u u} U^{-1}(\tau), z(\tau)\right\rangle d \tau=(P z)(t) .
\end{aligned}
$$

Thus P is projection.
Note that $\left|u_{i}^{\perp}(t)\right|, i=1, \ldots, d$, approach zero like $e^{-2 \alpha|t|}$ as $t \rightarrow \pm \infty$. For $z \in \mathcal{Z}_{\beta},|z(t)|$ grows no faster than $e^{\alpha|t|}$ as $t \rightarrow \pm \infty$. Thus $\left.\left\langle u_{i}^{\perp}(t), z(t)\right\rangle\right|_{-\infty} ^{\infty}=0$. Then for $z \in \mathcal{Z}_{\beta}$, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}, \dot{z}-D f(\gamma(t)) z\right\rangle d t & =\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}, \dot{z}\right\rangle d t-\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}, D f(\gamma(t)) z\right\rangle d t \\
& =-\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}, \dot{z}\right\rangle d t-\int_{-\infty}^{\infty}\left\langle D f(\gamma(t))^{*}(t) u_{i}^{\perp}, z\right\rangle d t \\
& =\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}, \dot{z}\right\rangle d t+\int_{-\infty}^{\infty}\left\langle\dot{u}_{i}^{\perp}, z\right\rangle d t \\
& =\int_{-\infty}^{\infty} \frac{d}{d t}\left\langle u_{i}^{\perp}, z\right\rangle d t=\left.\left\langle\dot{u}_{i}^{\perp}(t), z(t)\right\rangle\right|_{-\infty} ^{\infty}=0 .
\end{aligned}
$$

Thus we get $P(\dot{z}-D f(\gamma(t)) z)=0$ for $z \in \mathcal{Z}_{\beta}$. The proof finishes.

Consider the equation

$$
\begin{equation*}
\dot{v}(t)=D f(0) v(t) . \tag{3.9}
\end{equation*}
$$

Since $\left|\operatorname{Re}\left(\lambda_{i}\right)\right| \geqslant 3 \alpha$ where λ_{i} are the eigenvalues of $D f(0)$, Eq. (3.9) has a fundamental matrix solution, $V(t)$, with projections $Q,(I-Q)$ and constants $A>0, \beta_{0} \in(0, \alpha)$, such that

$$
\begin{align*}
& \left|V(t) Q V^{-1}(s)\right| \leqslant A e^{2 \beta_{0}(s-t)}, \quad \text { for } s \leqslant t, \\
& \left|V(t)(I-Q) V^{-1}(s)\right| \leqslant A e^{2 \beta_{0}(t-s)}, \quad \text { for } t \leqslant s . \tag{3.10}
\end{align*}
$$

Let ρ_{1} and P be as in Proposition 3.1 and Lemma 3.1 respectively. We define

$$
\begin{equation*}
\eta_{j_{\rho_{1}}}\left(z_{j}, k_{j}, g, \epsilon\right)(t):=(D f(\gamma(t))-D f(0)) z_{j}(t)+(I-P) h_{j_{\rho_{1}}}\left(z_{j}, k_{j}, g, \epsilon\right)(t) . \tag{3.11}
\end{equation*}
$$

Proposition 3.2. Let β_{0} and A be as in (3.10). There are $t_{0}>0, r_{2}>0$ and $\sigma_{2}>0$ such that
(1) for $z_{j}^{(1)}, z_{j}^{(2)} \in \mathcal{Z}_{\beta_{0}},\left(k_{j}, g\right) \in B_{2}\left(r_{2}\right) \times B_{3}\left(\sigma_{2}\right)$ and $t \in\left(-\infty,-t_{0}\right] \cup\left[t_{0}, \infty\right)$,

$$
\left|\eta_{j_{\rho_{1}}}\left(z_{j}^{(1)}, k_{j}, g, \epsilon\right)(t)-\eta_{j_{\rho_{1}}}\left(z_{j}^{(2)}, k_{j}, g, \epsilon\right)(t)\right| \leqslant \frac{3 \beta_{0}}{8 A}\left|z_{j}^{(1)}(t)-z_{j}^{(2)}(t)\right|,
$$

(2) for $\left(k_{j}, g\right) \in B_{2}\left(r_{2}\right) \times B_{3}\left(\sigma_{2}\right)$ and $t \in \mathbb{R}$,

$$
\left|\eta_{j_{\rho_{1}}}\left(0, k_{j}, g, \epsilon\right)(t)\right| \leqslant \frac{3 \beta_{0} \rho_{1}}{16 A} e^{-\beta_{0}|t|} .
$$

Proof. Since u_{d+j} is bounded solution of (2.1) and γ is homoclinic solution, there is $c_{1}>0$ such that

$$
|\gamma(t)| \leqslant c_{1} e^{-\beta_{0}|t|}, \quad\left|u_{d+j}(t)\right| \leqslant c_{1} e^{-\beta_{0}|t|} .
$$

Let $c_{2}=\sup _{t \in \mathbb{R}} \max _{s \in[-1,1]}\left|D f\left(\gamma(t)+s u_{d+j}(t)\right)-D f(\gamma(t))\right|$ and

$$
r_{2}=\min \left\{1, r_{1}, \frac{3 \beta_{0} \rho_{1}}{32 A c_{1} c_{2}}\right\}, \quad \sigma_{2}=\min \left\{\sigma_{1}, \frac{3 \beta_{0} \rho_{1}}{64 A c_{1}}\right\}
$$

where ρ_{1}, r_{1} and σ_{1} are defined in Proposition 3.1. Since $\lim _{t \rightarrow \pm \infty} \gamma(t)=0$, there is $t_{0}>0$ such that

$$
\begin{equation*}
|D f(\gamma(t))-D f(0)| \leqslant \frac{3 \beta_{0}}{16 A} \quad \text { for }|t| \geqslant t_{0} \tag{3.12}
\end{equation*}
$$

(1). We only give the proof for $t \in\left[t_{0}, \infty\right)$ since the similar argument can be used to prove the case of $t \in\left(-\infty,-t_{0}\right]$.

For any $z_{j}^{(1)}, z_{j}^{(2)} \in \mathcal{Z}_{\beta_{0}},\left(k_{j}, g\right) \in B_{2}\left(r_{2}\right) \times B_{3}\left(\sigma_{2}\right)$, we can get from (b) in Proposition 3.1 that

$$
\begin{equation*}
\left|h_{j_{\rho_{1}}}\left(z_{j}^{(1)}, k_{j}, g, \epsilon\right)(t)-h_{j_{\rho_{1}}}\left(z_{j}^{(2)}, k_{j}, g, \epsilon\right)(t)\right| \leqslant \frac{3 \beta_{0}}{16 A}\left|z_{j}^{(1)}(t)-z_{j}^{(2)}(t)\right| \tag{3.13}
\end{equation*}
$$

where we have taken $K_{1}=\frac{3 \beta_{0}}{16 A}$. Note that $\|(I-P)\| \leqslant 1$ since $(I-P)$ is projection. Then we can get

$$
\begin{aligned}
& \left|\eta_{j_{\rho_{1}}}\left(z_{j}^{(1)}, k_{j}, g, \epsilon\right)(t)-\eta_{j_{\rho_{1}}}\left(z_{j}^{(2)}, k_{j}, g, \epsilon\right)(t)\right| \\
& \quad \leqslant|D f(\gamma(t))-D f(0)| \cdot\left|z_{j}^{(1)}(t)-z_{j}^{(2)}(t)\right|+\left|h_{j_{\rho_{1}}}\left(z_{j}^{(1)}, k_{j}, g, \epsilon\right)(t)-h_{j_{\rho_{1}}}\left(z_{j}^{(2)}, k_{j}, g, \epsilon\right)(t)\right| \\
& \quad \leqslant \frac{3 \beta_{0}}{8 A}\left|z_{j}^{(1)}(t)-z_{j}^{(2)}(t)\right|
\end{aligned}
$$

for $t \in\left[t_{0}, \infty\right)$, where (3.12) and (3.13) are used. The proof of (1) finishes.
(2). It is clear that

$$
\begin{aligned}
\eta_{\rho_{\rho_{1}}}\left(0, k_{j}, g, \epsilon\right)(t)= & (I-P)\left[f\left(\gamma(t)+k_{j} u_{d+j}(t)\right)-D f(\gamma(t)) k_{j} u_{d+j}(t)\right. \\
& \left.-f(\gamma(t))+g\left(\gamma(t)+k_{j} u_{d+j}(t), \epsilon, \epsilon t\right)\right] .
\end{aligned}
$$

For any $\left(k_{j}, g\right) \in B_{2}\left(r_{2}\right) \times B_{3}\left(\sigma_{2}\right)$, define $\varphi:[0,1] \rightarrow \mathcal{Z}_{\beta_{0}}$ by

$$
\begin{aligned}
\varphi(\tau)= & (I-P)\left[f\left(\gamma(t)+\tau k_{j} u_{d+j}(t)\right)-D f(\gamma(t)) \tau k_{j} u_{d+j}(t)\right. \\
& \left.-f(\gamma(t))+g\left(\tau\left(\gamma(t)+k_{j} u_{d+j}(t)\right), \epsilon, \epsilon t\right)\right] .
\end{aligned}
$$

Then we can get

$$
\begin{aligned}
\left|\eta_{j_{\rho_{1}}}\left(0, k_{j}, g, \epsilon\right)(t)\right|= & |\varphi(1)-\varphi(0)|=\left|\int_{0}^{1} \varphi^{\prime}(\tau) d \tau\right| \\
\leqslant & \int_{0}^{1}\left|D f\left(\gamma+\tau k_{j} u_{d+j}\right)-D f(\gamma)(t)\right|\left|k_{j} u_{d+j}(t)\right| d \tau \\
& +\int_{0}^{1}\left|D_{1} g\left(\tau\left(\gamma+k_{j} u_{d+j}\right), \epsilon, \epsilon t\right)\right|\left(|\gamma(t)|+\left|k_{j} u_{d+j}(t)\right|\right) d \tau \\
\leqslant & {\left[c_{2} r_{2} c_{1}+\sigma_{2}\left(c_{1}+r_{2} c_{1}\right)\right] e^{-\beta_{0}|t|} \leqslant \frac{3 \beta_{0} \rho_{1}}{16 A} e^{-\beta_{0}|t|} . }
\end{aligned}
$$

The proof is finished.
For each $\rho>0$, we consider the nonlinear ordinary differential equation

$$
\begin{equation*}
\dot{z}_{j}(t)=D f(\gamma(t)) z_{j}(t)+h_{j_{\rho}}\left(z_{j}, k_{j}, g, \epsilon\right)(t) \tag{3.14}
\end{equation*}
$$

where $h_{j_{\rho}}\left(z_{j}, k_{j}, g, \epsilon\right)(t)$ is defined in (3.4). It is clear that if there are some $\rho>0$ such that $\left|z_{j}(t)\right| \leqslant \rho$, then (3.14) is equivalent to Eq . (3.3).

From Lemma 3.1, we see that P and $(I-P)$ are projections. Thus Eq. (3.14) is equivalent to

$$
\begin{align*}
& \dot{z}_{j}(t)=D f(\gamma(t)) z_{j}(t)+(I-P) h_{j_{\rho}}\left(z_{j}, k_{j}, g, \epsilon\right)(t), \tag{3.15}\\
& 0=P h_{j_{\rho}}\left(z_{j}, k_{j}, g, \epsilon\right)(t) \tag{3.16}
\end{align*}
$$

Our strategy is to solve (3.15) for $z_{j} \in \mathcal{Z}_{\beta_{0}}$. Then (3.16) becomes the bifurcation equation.
Theorem 3.1. For any fixed $\rho>0$, there are constants $\delta>0, r_{3}>0, \sigma_{3}>0$, such that (3.15) has a solution $z_{j}^{*}\left(k_{j}, g, \epsilon\right) \in \mathcal{Z}_{\beta_{0}}$ for $\left(k_{j}, g, \epsilon\right) \in B_{2}\left(r_{3}\right) \times B_{3}\left(\sigma_{3}\right) \times \mathbb{R}$ satisfying $z_{j}^{*}(0,0, \epsilon)=\partial z_{j}^{*} /\left.\partial k_{j}\right|_{(0,0, \epsilon)}=0$ and $\left\|z_{j}^{*}\right\| \leqslant \delta$.

Proof. Using variation of constants, we define map $\mathcal{K}: \tilde{\mathcal{Z}}_{\beta_{0}} \rightarrow \mathcal{Z}_{\beta_{0}}$ by

$$
\mathcal{K}(w)(t)=\left\{\begin{array}{l}
U(t)\left[-\int_{0}^{\infty}\left\langle P_{u s} U^{-1}(s), w(s)\right\rangle d s+\int_{0}^{t}\left\langle\left(P_{s s}+P_{s u}\right) U^{-1}(s), w(s)\right\rangle d s\right. \\
\left.\quad+\int_{-\infty}^{t}\left\langle\left(P_{u s}+P_{u u}\right) U^{-1}(s), w(s)\right\rangle d s\right], \quad t \leqslant 0, \\
U(t)\left[\int_{-\infty}^{0}\left\langle P_{u s} U^{-1}(s), w(s)\right\rangle d s+\int_{0}^{t}\left\langle\left(P_{s s}+P_{u s}\right) U^{-1}(s), w(s)\right\rangle d s\right. \\
\left.-\int_{t}^{\infty}\left\langle\left(P_{s s}+P_{u s}\right) U^{-1}(s), w(s)\right\rangle d s\right], \quad t \geqslant 0
\end{array}\right.
$$

Define map $F: \mathcal{Z}_{\beta_{0}} \times \mathbb{R} \times C^{3} \times \mathbb{R} \rightarrow \mathcal{Z}_{\beta_{0}}$ by

$$
\begin{equation*}
F\left(z_{j}, k_{j}, g, \epsilon\right)=\mathcal{K}(I-P) h_{j_{\rho}}\left(z_{j}, k_{j}, g, \epsilon\right) \tag{3.17}
\end{equation*}
$$

It is clear that the fixed points $z_{j} \in \mathcal{Z}_{\beta_{0}}$ of (3.17) are solutions of (3.15). Through direct calculations, we have

$$
F(0,0,0, \epsilon)=0, \quad D_{1} F(0,0,0, \epsilon)=0, \quad D_{2} F(0,0,0, \epsilon)=0
$$

For a large $r>0$, let $B_{1}(r) \in \mathcal{Z}_{\beta_{0}}, B_{2}(r) \in \mathbb{R}$ and $B_{3}(r) \in C^{3}$ be balls centered at respective origin. There is $M_{0}>0$ such that

$$
\begin{aligned}
& \|F(\cdot, \cdot, \cdot, \epsilon)\|<M_{0}, \quad\left\|D_{1} F(\cdot, \cdot, \cdot, \epsilon)\right\|<M_{0}, \quad\left\|D_{2} F(\cdot, \cdot, \cdot, \epsilon)\right\|<M_{0} \\
& \left\|D_{11} F(\cdot, \cdot, \cdot, \epsilon)\right\|<M_{0}, \quad\left\|D_{12} F(\cdot, \cdot, \cdot, \epsilon)\right\|<M_{0}, \quad\left\|D_{13} F(\cdot, \cdot, \cdot, \epsilon)\right\|<M_{0}
\end{aligned}
$$

for $\left(z_{j}, k_{j}, g\right) \in B_{1}(r) \times B_{2}(r) \times B_{3}(r)$.
We choose $0<\delta \leqslant \min \left\{r, \frac{1}{8 M_{0}}\right\}$. Let

$$
r_{3}=\min \left\{1, \delta, \frac{\delta}{4 M_{0}}\right\}, \quad \sigma_{3}=\min \left\{\delta, \frac{\delta}{4 M_{0}}\right\}
$$

For $\left(z_{j}, k_{j}, g\right) \in B_{1}(\delta) \times B_{2}\left(r_{3}\right) \times B_{3}\left(\sigma_{3}\right)$, define $\xi_{1}:[0,1] \rightarrow L\left(\mathcal{Z}_{\beta_{0}}, \mathcal{Z}_{\beta_{0}}\right)$ by $\xi_{1}(s)=D_{1} F\left(s z_{j}, s k_{j}, s g, \epsilon\right)$. It is clear that $\xi_{1} \in C^{1}$. There is $s_{1} \in[0,1]$ such that

$$
\begin{align*}
\left\|D_{1} F\left(z_{j}, k_{j}, g, \epsilon\right)\right\|= & \left\|\xi_{1}(1)-\xi_{1}(0)\right\|=\left\|\xi_{1}^{\prime}\left(s_{1}\right)\right\| \\
\leqslant & \left\|D_{11} F\left(s_{1} z_{j}, s_{1} k_{j}, s_{1} g, \epsilon\right)\right\|\left\|z_{j}\right\|+\left\|D_{12} F\left(s_{1} z_{j}, s_{1} k_{j}, s_{1} g, \epsilon\right)\right\|\left|k_{j}\right| \\
& +\left\|D_{13} F\left(s_{1} z_{j}, s_{1} k_{j}, s_{1} g, \epsilon\right)\right\|\|g\| \\
\leqslant & M_{0} \cdot \frac{1}{8 M_{0}}+M_{0} \cdot \frac{1}{8 M_{0}}+M_{0} \cdot \frac{1}{8 M_{0}}=\frac{3}{8} . \tag{3.18}
\end{align*}
$$

For $\left(z_{j}, k_{j}, g\right) \in B_{1}(\delta) \times B_{2}\left(r_{3}\right) \times B_{3}\left(\sigma_{3}\right)$, as before we define $\xi_{2}:[0,1] \rightarrow \mathcal{Z}_{\beta_{0}}$ by $\xi_{2}(s)=F\left(s z_{j}, s k_{j}, s g, \epsilon\right)$. Then there is $s_{2} \in[0,1]$ such that

$$
\begin{align*}
\left\|F\left(z_{j}, k_{j}, g, \epsilon\right)\right\|= & \left\|\xi_{2}(1)-\xi_{2}(0)\right\|=\left\|\xi_{2}^{\prime}\left(s_{1}\right)\right\| \\
\leqslant & \left\|D_{1} F\left(s_{2} z_{j}, s_{2} k_{j}, s_{2} g, \epsilon\right)\right\|\left\|z_{j}\right\|+\left\|D_{2} F\left(s_{2} z_{j}, s_{2} k_{j}, s_{2} g, \epsilon\right)\right\|\left|k_{j}\right| \\
& +\left\|D_{3} F\left(s_{2} z_{j}, s_{2} k_{j}, s_{2} g, \epsilon\right)\right\|\|g\| \\
\leqslant & \frac{3}{8} \cdot \delta+M_{0} \cdot \frac{\delta}{4 M_{0}}+M_{0} \cdot \frac{\delta}{4 M_{0}}<\delta \tag{3.19}
\end{align*}
$$

where (3.18) is used.
For $z_{j}^{(1)}, z_{j}^{(2)} \in B_{1}(\delta)$, and $\left(k_{j}, g\right) \in B_{2}\left(r_{3}\right) \times B_{3}\left(\sigma_{3}\right)$, let $\xi_{3}:[0,1] \rightarrow \mathcal{Z}_{\beta_{0}}$ by $\xi_{3}(s)=F\left(s z_{j}^{(1)}+(1-s) z_{j}^{(2)}, k_{j}, g, \epsilon\right)$. Then there is $s_{3} \in[0,1]$ such that

$$
\begin{align*}
\left\|F\left(z_{j}^{(1)}, k_{j}, g, \epsilon\right)-F\left(z_{j}^{(2)}, k_{j}, g, \epsilon\right)\right\| & =\left\|\xi_{3}(1)-\xi_{3}(0)\right\|=\left\|\xi_{3}^{\prime}\left(s_{3}\right)\right\| \\
& \leqslant\left\|D_{1} F\left(s_{3} z_{j}^{(1)}+\left(1-s_{3}\right) z_{j}^{(2)}, k_{j}, g, \epsilon\right)\right\|\left\|z_{j}^{(1)}-z_{j}^{(2)}\right\| \\
& \leqslant \frac{3}{8}\left\|z_{j}^{(1)}-z_{j}^{(2)}\right\| \tag{3.20}
\end{align*}
$$

where (3.18) is used.
From (3.19) and (3.20), we see that the map $F\left(\cdot, k_{j}, g, \epsilon\right): B_{1}(\delta) \rightarrow B_{1}(\delta)$ is uniformly contractive. By contraction mapping theorem, there is a C^{1} map $z_{j}^{*}: B_{2}\left(r_{3}\right) \times B_{3}\left(\sigma_{3}\right) \times \mathbb{R} \rightarrow B_{1}(\delta)$, such that $z_{j}^{*}(0,0, \epsilon)=0$ and

$$
\begin{equation*}
z_{j}^{*}\left(k_{j}, g, \epsilon\right)=F\left(z_{j}^{*}\left(k_{j}, g, \epsilon\right), k_{j}, g, \epsilon\right) \tag{3.21}
\end{equation*}
$$

It is clear that $\left\|z_{j}^{*}\left(k_{j}, g, \epsilon\right)\right\| \leqslant \delta$ for $\left(k_{j}, g, \epsilon\right) \in B_{2}\left(r_{3}\right) \times B_{3}\left(\sigma_{3}\right) \times \mathbb{R}$.
Differentiating (3.21) in k_{j} and evaluating at $(0,0, \epsilon)$, we can get that

$$
D_{1} z_{j}^{*}(0,0, \epsilon)=D_{1} F(0,0,0, \epsilon) D_{1} z_{j}^{*}(0,0, \epsilon)+D_{2} F(0,0,0, \epsilon)=0
$$

The proof is completed.

Let r_{i} and $\sigma_{i}, i=1,2,3$, be as in Propositions 3.1, 3.2 and Lemma 3.1 respectively. Let

$$
r_{0}=\min \left\{r_{1}, r_{2}, r_{3}\right\}, \quad \sigma_{0}=\min \left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} .
$$

Lemma 3.2. Let $z_{j}^{*}\left(k_{j}, g, \epsilon\right)(t)$ be as in Theorem 3.1. Then there is $\rho_{0}>0$ such that $\sup _{t \in \mathbb{R}}\left|z_{j}^{*}\left(k_{j}, g, \epsilon\right)(t)\right| \leqslant \rho_{0}$ for $\left(k_{j}, g, \epsilon\right) \in B_{2}\left(r_{0}\right) \times B_{3}\left(\sigma_{0}\right) \times \mathbb{R}$.

Proof. Let $K_{2}=\sup _{t \in \mathbb{R}}|(D f(\gamma(t))-D f(0))|, \beta_{0}$ and A be as in (3.10), and t_{0} be as in Proposition 3.2. We choose $\rho_{0}>0$ such that ρ_{1} and δ which are obtained in Proposition 3.1 and Theorem 3.1 respectively satisfy

$$
\rho_{1} \leqslant \rho_{0}, \quad \delta \leqslant \min \left\{\frac{\rho_{0} e^{-3 \beta_{0} t_{0}}}{4 A}, \frac{5 \rho_{0}}{12 A}, \frac{4 \beta_{0} \rho_{0} e^{-\beta_{0} t_{0}}}{3 \beta_{0}+16 A K_{2}}\right\} .
$$

We only give the proof of $t \in[0, \infty)$ since the similar method can be used to prove the case of $t \in(-\infty, 0]$.
Case 1. If $t \in\left[t_{0}, \infty\right)$.
For $\rho=\rho_{1}$, we rewrite Eq. (3.15) as

$$
\begin{equation*}
\dot{z}_{j}(t)=D f(0) z_{j}(t)+\eta_{j_{\rho_{1}}}\left(z_{j}, k_{j}, g, \epsilon\right)(t) \tag{3.22}
\end{equation*}
$$

where $\eta_{j_{\rho_{1}}}\left(z_{j}, k_{j}, g, \epsilon\right)(t)$ is defined in (3.11).
We know from Theorem 3.1 that $z_{j}^{*} \in \mathcal{Z}_{\beta_{0}}$ is solution of (3.22) with $\left\|z_{j}^{*}\right\| \leqslant \delta$, i.e., $\left|z_{j}^{*}(t)\right| \leqslant \delta e^{\beta_{0} t}$ for $t \in \mathbb{R}^{+}$. Thus we have

$$
\begin{aligned}
z_{j}^{*}(t)= & V(t) V^{-1}\left(t_{0}\right) z_{j}^{*}\left(t_{0}\right)+V(t) \int_{t_{0}}^{t}\left\langle V^{-1}(s), \eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right\rangle d s \\
= & V(t) Q V^{-1}\left(t_{0}\right) z_{j}^{*}\left(t_{0}\right)+V(t) \int_{t_{0}}^{t}\left\langle Q V^{-1}(s), \eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right\rangle d s \\
& -V(t) \int_{t}^{\infty}\left\langle(I-Q) V^{-1}(s), \eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right\rangle d s \\
& +V(t)(I-Q)\left[V^{-1}\left(t_{0}\right) z_{j}^{*}\left(t_{0}\right)+\int_{t_{0}}^{\infty}\left\langle V^{-1}(s), \eta_{\rho_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right\rangle d s\right] .
\end{aligned}
$$

In the last equation, we know that the last term grows like $e^{2 \beta_{0} t}$ as $t \rightarrow \infty$ and other terms grow no more than $e^{\beta_{0} t}$ as $t \rightarrow \infty$. Thus the last term must vanish and the solution can be expressed as

$$
\begin{align*}
z_{j}^{*}(t)= & V(t) Q V^{-1}\left(t_{0}\right) z_{j}^{*}\left(t_{0}\right)+V(t) \int_{t_{0}}^{t}\left\langle Q V^{-1}(s), \eta_{\rho_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right\rangle d s \\
& -V(t) \int_{t}^{\infty}\left\langle(I-Q) V^{-1}(s), \eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right\rangle d s . \tag{3.23}
\end{align*}
$$

We define the space

$$
X=\left\{x \in C^{0}\left(\left[t_{0}, \infty\right), \mathbb{R}^{n}\right)\left|\sup _{t \geqslant t_{0}}\right| x(t) \mid e^{\beta_{0} t}<\infty\right\} .
$$

Then X is Banach space with sup norm $\|\cdot\|_{X}$. Define $\mathcal{F}: X \times \mathbb{R} \times C^{3} \times \mathbb{R} \rightarrow X$ by

$$
\begin{align*}
\mathcal{F}\left(\phi, k_{j}, g, \epsilon\right)(t)= & V(t) Q V^{-1}\left(t_{0}\right) z_{j}^{*}\left(t_{0}\right)+V(t) \int_{t_{0}}^{t}\left\langle Q V^{-1}(s), \eta_{\rho_{\rho_{1}}}\left(\phi, k_{j}, g, \epsilon\right)(s)\right\rangle d s \\
& -V(t) \int_{t}^{\infty}\left\langle(I-Q) V^{-1}(s), \eta_{j_{\rho_{1}}}\left(\phi, k_{j}, g, \epsilon\right)(s)\right\rangle d s . \tag{3.24}
\end{align*}
$$

Let $B\left(\rho_{0}\right) \subset X$ be ball centered at origin with radius ρ_{0}. For any $\phi_{1}, \phi_{2} \in B\left(\rho_{0}\right)$ and $\left(k_{j}, g, \epsilon\right) \in B_{2}\left(r_{0}\right) \times B_{3}\left(\sigma_{0}\right) \times \mathbb{R}$, we have

$$
\begin{aligned}
\mid \mathcal{F} & \left(\phi_{1}, k_{j}, g, \epsilon\right)(t)-\mathcal{F}\left(\phi_{2}, k_{j}, g, \epsilon\right)(t) \mid \\
& \leqslant \int_{t_{0}}^{t}\left|V(t) Q V^{-1}(s)\right|\left|\eta_{j_{\rho_{1}}}\left(\phi_{1}, k_{j}, g, \epsilon\right)(s)-\eta_{j_{\rho_{1}}}\left(\phi_{2}, k_{j}, g, \epsilon\right)(s)\right| d s \\
& +\int_{t}^{\infty}\left|V(t)(I-Q) V^{-1}(s)\right|\left|\eta_{j_{\rho_{1}}}\left(\phi_{1}, k_{j}, g, \epsilon\right)(s)-\eta_{j_{\rho_{1}}}\left(\phi_{2}, k_{j}, g, \epsilon\right)(s)\right| d s \\
& \leqslant \frac{3 \beta_{0}}{8} \int_{t_{0}}^{t} e^{2 \beta_{0}(s-t)}\left|\phi_{1}(s)-\phi_{2}(s)\right| d s+\frac{3 \beta_{0}}{8} \int_{t}^{\infty} e^{2 \beta_{0}(t-s)}\left|\phi_{1}(s)-\phi_{2}(s)\right| d s \\
& \leqslant \frac{3 \beta_{0}}{8} e^{-2 \beta_{0} t} \int_{t_{0}}^{t} e^{\beta_{0} s}\left(\left|\phi_{1}(s)-\phi_{2}(s)\right| e^{\beta_{0} s}\right) d s+\frac{3 \beta_{0}}{8} e^{2 \beta_{0} t} \int_{t}^{\infty} e^{-3 \beta_{0} s}\left(\left|\phi_{1}(s)-\phi_{2}(s)\right| e^{\beta_{0} s}\right) d s \\
& \leqslant\left[\frac{3}{8}\left(1-e^{\beta_{0}\left(t_{0}-t\right)}\right)+\frac{1}{8}\right] \cdot\left\|\phi_{1}-\phi_{2}\right\|_{X} \cdot e^{-\beta_{0} t}
\end{aligned}
$$

where (1) of Proposition 3.2 is used. Thus we can get that

$$
\begin{equation*}
\left\|\mathcal{F}\left(\phi_{1}, k_{j}, g, \epsilon\right)-\mathcal{F}\left(\phi_{2}, k_{j}, g, \epsilon\right)\right\|_{X} \leqslant \frac{1}{2}\left\|\phi_{1}-\phi_{2}\right\|_{X} . \tag{3.25}
\end{equation*}
$$

Moreover, from (3.24) we have

$$
\begin{aligned}
\left|\mathcal{F}\left(0, k_{j}, g, \epsilon\right)(t)\right| \leqslant & \left|V(t) Q V^{-1}\left(t_{0}\right) z_{j}^{*}\left(t_{0}\right)\right|+\int_{t_{0}}^{t}\left|V(t) Q V^{-1}(s)\right|\left|\eta_{j_{\rho_{1}}}\left(0, k_{j}, g, \epsilon\right)(s)\right| d s \\
& +\int_{t}^{\infty}\left|V(t)(I-Q) V^{-1}(s)\right|\left|\eta_{j_{\rho_{1}}}\left(0, k_{j}, g, \epsilon\right)(s)\right| d s \\
\leqslant & A e^{2 \beta_{0}\left(t_{0}-t\right)}\left|z_{j}^{*}\left(t_{0}\right)\right|+\frac{3 \beta_{0} \rho_{1}}{16}\left(\int_{t_{0}}^{t} e^{\beta_{0}(s-2 t)} d s+\int_{t}^{\infty} e^{\beta_{0}(2 t-3 s)} d s\right) \\
\leqslant & \left.\leqslant A \delta e^{\beta_{0}\left(3 t_{0}-2 t\right)}+\frac{3 \rho_{1}}{16}\left(1-e^{\beta_{0}\left(t_{0}-t\right)}\right)+\frac{\rho_{1}}{16}\right] e^{-\beta_{0} t}
\end{aligned}
$$

where (2) of Proposition 3.2 is used. Thus we can get that

$$
\begin{align*}
\left\|\mathcal{F}\left(0, k_{j}, g, \epsilon\right)\right\|_{X} & \leqslant A e^{3 \beta_{0} t_{0}} \delta+\frac{3 \rho_{0}}{16}+\frac{\rho_{0}}{16} \\
& \leqslant A e^{3 \beta_{0} t_{0}} \frac{\rho_{0} e^{-3 \beta_{0} t_{0}}}{4 A}+\frac{\rho_{0}}{4}=\frac{\rho_{0}}{2} . \tag{3.26}
\end{align*}
$$

For any $\phi \in B\left(\rho_{0}\right)$, we can get from (3.25) and (3.26) that

$$
\begin{align*}
\left\|\mathcal{F}\left(\phi, k_{j}, g, \epsilon\right)\right\|_{X} & \leqslant\left\|\mathcal{F}\left(\phi, k_{j}, g, \epsilon\right)-\mathcal{F}\left(0, k_{j}, g, \epsilon\right)\right\|_{X}+\left\|\mathcal{F}\left(0, k_{j}, g, \epsilon\right)\right\|_{X} \\
& \leqslant \frac{1}{2}\|\phi\|_{X}+\frac{\rho_{0}}{2} \leqslant \rho_{0} \tag{3.27}
\end{align*}
$$

From (3.25) and (3.27), we see that the map $\mathcal{F}\left(\cdot, k_{j}, g, \epsilon\right): B\left(\rho_{0}\right) \rightarrow B\left(\rho_{0}\right)$ is uniformly contractive. The contraction mapping theorem implies that the map $\mathcal{F}\left(\cdot, k_{j}, g, \epsilon\right)$ has unique fixed point $\phi^{*} \in X$. It is that

$$
\begin{align*}
\phi^{*}(t)= & V(t) Q V^{-1}(s) z_{j}^{*}\left(t_{0}\right)+V(t) \int_{t_{0}}^{t}\left\langle Q V^{-1}(s), \eta_{j_{\rho_{1}}}\left(\phi^{*}, k_{j}, g, \epsilon\right)(s)\right\rangle d s \\
& -V(t) \int_{t}^{\infty}\left\langle(I-Q) V^{-1}(s), \eta_{j_{\rho_{1}}}\left(\phi^{*}, k_{j}, g, \epsilon\right)(s)\right\rangle d s, \quad \text { for } t \geqslant t_{0} \tag{3.28}
\end{align*}
$$

Let $\tilde{M}=\sup _{t \geqslant t_{0}}\left|\phi^{*}(t)-z_{j}^{*}(t)\right| e^{-\beta_{0} t}$. Since $z_{j}^{*} \in \mathcal{Z}_{\beta_{0}}$ and $\phi^{*} \in X$, we know that $0 \leqslant \tilde{M}<\infty$. From (3.23) and (3.28), we see that

$$
\begin{aligned}
\left|\phi^{*}(t)-z_{j}^{*}(t)\right| \leqslant & \int_{t_{0}}^{t}\left|V(t) Q V^{-1}(s)\right|\left|\eta_{j_{\rho_{1}}}\left(\phi^{*}, k_{j}, g, \epsilon\right)(s)-\eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right| d s \\
& +\int_{t}^{\infty}\left|V(t)(I-Q) V^{-1}(s)\right|\left|\eta_{j_{\rho_{1}}}\left(\phi^{*}, k_{j}, g, \epsilon\right)(s)-\eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right| d s \\
\leqslant & \frac{3 \beta_{0}}{8} e^{-2 \beta_{0} t} \int_{t_{0}}^{t} e^{3 \beta_{0} s} \cdot\left(\left|\phi^{*}(s)-z_{j}^{*}(s)\right| e^{-\beta_{0} s}\right) d s \\
& +\frac{3 \beta_{0}}{8} e^{2 \beta_{0} t} \int_{t}^{\infty} e^{-\beta_{0} s} \cdot\left(\left|\phi^{*}(s)-z_{j}^{*}(s)\right| e^{-\beta_{0} s}\right) d s \\
\leqslant & \left.\frac{1}{8}\left(1-e^{3 \beta_{0}\left(t_{0}-t\right)}\right)+\frac{3}{8}\right] \cdot \tilde{M} \cdot e^{\beta_{0} t} \\
\leqslant & \frac{1}{2} \tilde{M} \cdot e^{\beta_{0} t}
\end{aligned}
$$

where (1) of Proposition 3.2 is used. Then we have $\tilde{M} \leqslant \frac{1}{2} \tilde{M}$ which implies that $\tilde{M}=0$. Hence $\phi^{*}(t)=z_{j}^{*}(t) \in X$ for $t \in\left[t_{0}, \infty\right)$. We know that $z_{j}^{*}(t)$ approaches zero like $e^{-\beta_{0} t}$ as $t \rightarrow \infty$. Thus we can take larger t_{0} if necessary such that $\left|z_{j}^{*}(t)\right| \leqslant \rho_{0}$ for $t \in\left[t_{0}, \infty\right)$.

Case 2. For $t \in\left[0, t_{0}\right]$.
As in the proof of Proposition 3.2, we take $K_{1}=\frac{3 \beta_{0}}{16 A}$. From (3.11), we have

$$
\begin{align*}
\left|\eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(t)\right| \leqslant & \left|\eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(t)-\eta_{j_{\rho_{1}}}\left(0, k_{j}, g, \epsilon\right)(t)\right|+\left|\eta_{j_{\rho_{1}}}\left(0, k_{j}, g, \epsilon\right)(t)\right| \\
\leqslant & \left|h_{\rho_{1}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(t)-h_{\rho_{1}}\left(0, k_{j}, g, \epsilon\right)(t)\right| \\
& +\left|(D f(\gamma(t))-D f(0)) z_{j}^{*}(t)\right|+\left|\eta_{j_{\rho_{1}}}\left(0, k_{j}, g, \epsilon\right)(t)\right| \\
\leqslant & \frac{3 \beta_{0}}{16 A}\left|z_{j}^{*}(t)\right|+K_{2}\left|z_{j}^{*}(t)\right|+\frac{3 \beta_{0} \rho_{1}}{16 A} e^{-\beta_{0} t} \\
\leqslant & \left(\frac{3 \beta_{0}}{16 A}+K_{2}\right) \delta e^{\beta_{0} t}+\frac{3 \beta_{0} \rho_{1}}{16 A} e^{-\beta_{0} t} \tag{3.29}
\end{align*}
$$

where (b) of Proposition 3.1 and (2) of Proposition 3.2 are used.

Substituting (3.29) in (3.23), we have

$$
\begin{align*}
\left|z_{j}^{*}(t)\right| \leqslant & \left|V(t) Q V^{-1}(0) z_{j}^{*}(0)\right|+\int_{0}^{t}\left|V(t) Q V^{-1}(s)\right|\left|\eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right| d s \\
& +\int_{t}^{\infty}\left|V(t)(I-Q) V^{-1}(s)\right|\left|\eta_{j_{\rho_{1}}}\left(z_{j}^{*}, k_{j}, g, \epsilon\right)(s)\right| d s \\
\leqslant & A e^{-2 \beta_{0} t}\left|z_{j}^{*}(0)\right|+\int_{0}^{t} A e^{2 \beta_{0}(s-t)}\left[\left(\frac{3 \beta_{0}}{16 A}+K_{2}\right) \delta e^{\beta_{0} s}+\frac{3 \beta_{0} \rho_{1}}{16 A} e^{-\beta_{0} s}\right] d s \\
& +\int_{t}^{\infty} A e^{2 \beta_{0}(t-s)}\left[\left(\frac{3 \beta_{0}}{16 A}+K_{2}\right) \delta e^{\beta_{0} s}+\frac{3 \beta_{0} \rho_{1}}{16 A} e^{-\beta_{0} s}\right] d s \\
\leqslant & A \delta+\frac{3 \beta_{0}+16 A K_{2}}{12 \beta_{0}} \delta e^{\beta_{0} t_{0}}+\frac{\rho_{1}}{4} \\
\leqslant & \frac{5 \rho_{0}}{12}+\frac{\rho_{0}}{3}+\frac{\rho_{0}}{4}=\rho_{0} . \tag{3.30}
\end{align*}
$$

From Case 1 and Case 2, we see that $\left|z_{j}^{*}(t)\right| \leqslant \rho_{0}$ for $t \in[0, \infty)$. Using the same method, we can get that $\left|z_{j}^{*}(t)\right| \leqslant \rho_{0}$ for $t \in(-\infty, 0]$. Thus we can get that $\left|z_{j}^{*}(t)\right| \leqslant \rho_{0}$ for $t \in \mathbb{R}$. The proof is completed.

Let $\rho=\rho_{0}$ be as in Lemma 3.2. From Theorem 3.1 and Lemma 3.2, we know that $\chi\left(z_{j}^{*}\left(k_{j}, g, \epsilon\right)(t) / \rho_{0}\right)=1$. Then the bifurcation function is

$$
\begin{aligned}
B_{j}\left(k_{j}, g, \epsilon\right) & :=P h_{j_{\rho_{0}}}\left(z_{j}^{*}\left(k_{j}, g, \epsilon\right), k_{j}, g, \epsilon\right)(t) \\
& =P h_{j}\left(z_{j}^{*}\left(k_{j}, g, \epsilon\right), k_{j}, g, \epsilon\right)(t) \\
& =b(t) U(t) \int_{-\infty}^{\infty}\left\langle P_{u u} U^{-1}(s), h_{j}\left(z_{j}^{*}\left(k_{j}, g, \epsilon\right), k_{j}, g, \epsilon\right)(s)\right\rangle d s \\
& =b(t) \sum_{i=1}^{d} u_{i}(t) \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), h_{j}\left(z_{j}^{*}\left(k_{j}, g, \epsilon\right), k_{j}, g, \epsilon\right)(s)\right\rangle d s=0 .
\end{aligned}
$$

By the independence of u_{1}, \ldots, u_{d}, the bifurcation function is equivalent to

$$
\begin{aligned}
\tilde{H}_{i j}\left(k_{j}, g, \epsilon\right): & \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), h_{j}\left(z_{j}^{*}\left(k_{j}, g, \epsilon\right), k_{j}, g, \epsilon\right)(s)\right\rangle d s \\
= & \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), f\left(\gamma(s)+k_{j} u_{d+j}(s)+z_{j}^{*}(s)\right)-D f(\gamma(s))\left(k_{j} u_{d+j}(s)+z_{j}^{*}(s)\right)\right. \\
& \left.-f(\gamma(s))+g\left(\gamma(s)+k_{j} u_{d+j}(s)+z_{j}^{*}(s), \epsilon, \epsilon s\right)\right\rangle d s
\end{aligned}
$$

where $i=1, \ldots, d$. It is clear that if $\tilde{H}_{i j}\left(k_{j}, g, \epsilon\right)=0$ can be solved for $k_{j}=k_{j}^{*}(g, \epsilon)$, then system (1.2) has a homoclinic orbit which is given by

$$
x_{j}^{*}(t)=\gamma(t)+k_{j}^{*} u_{d+j}+z_{j}^{*}(t)
$$

where z_{j}^{*} is derived in Theorem 3.1.

We introduce a function

$$
\xi_{j}\left(k_{j}, g, \epsilon\right)= \begin{cases}z_{j}^{*}\left(k_{j}, g, \epsilon\right) / k_{j}, & \text { if } k_{j} \neq 0 \\ \frac{\partial}{\partial k_{j}} z_{j}^{*}(0, g, \epsilon), & \text { if } k_{j}=0\end{cases}
$$

From Theorem 3.1, we see that $\xi_{j}(0,0, \epsilon)=\frac{\partial}{\partial k_{j}} z_{j}^{*}(0,0, \epsilon)=0$. If $k_{j} \neq 0$, the bifurcation function can be written as

$$
\begin{align*}
\tilde{H}_{i j}\left(k_{j}, g, \epsilon\right)= & \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), f\left(\gamma(s)+k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)-f(\gamma(s))\right. \\
& \left.-D f(\gamma(s))\left(k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)\right\rangle d s \\
& +\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), g\left(\gamma(s)+k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s), \epsilon, \epsilon s\right)\right\rangle d s \\
= & \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), f\left(\gamma(s)+k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)-f(\gamma(s))\right. \\
& \left.-D f(\gamma(s))\left(k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)\right\rangle d s \\
& +\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), g(\gamma(s), 0,0)+D_{1} g(\gamma(s), 0,0)\left(k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)\right. \\
& \left.+\epsilon\left[D_{2} g(\gamma(s), 0,0)+s D_{3} g(\gamma(s), 0,0)\right]\right\rangle d s+R\left(k_{j}, \epsilon\right) \tag{3.31}
\end{align*}
$$

for $i=1, \ldots, d$, where $R\left(k_{j}, \epsilon\right)$ is order $O\left(\left|k_{j} u_{d+j}+k_{j} \xi_{j}\right|^{2}+|\epsilon|^{2}\right)$.
In (3.31), the Taylor's expansion of $g(x(t), \epsilon, \epsilon t)$ along $(\gamma(t), 0)$ is considered. Let

$$
\begin{align*}
g(\gamma(t)+z(t), \epsilon, \epsilon t)= & g(\gamma(t), 0,0)+D_{1} g(\gamma(t), 0,0) z(t) \\
& +\epsilon\left(D_{2} g(\gamma(t), 0,0)+t D_{3} g(\gamma(t), 0,0)\right)+\tilde{g}+\epsilon^{2} \tag{3.32}
\end{align*}
$$

where \tilde{g} is remainder and $\|\tilde{g}\|$ is order $O\left(\|z\|^{2}\right)$. Let
$G=\{\tilde{g}: \tilde{g}$ is derived in (3.32), $g \in \mathcal{G}\}$.
Note that $\|g\|_{C^{3}}$ is small and $\left|u_{i}^{\perp}(t)\right|$ approaches zero like $e^{-2 \beta_{0}|t|}$ as $t \rightarrow \pm \infty, i=1, \ldots, d$. We have

$$
\begin{aligned}
& \left|\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), D_{2} g(\gamma(s), 0,0)+s D_{3} g(\gamma(s), 0,0)\right\rangle d s\right| \\
& \quad \leqslant \int_{-\infty}^{\infty}\left|u_{i}^{\perp}(s)\right| \cdot(1+|s|)\|g\|_{C^{3}} d s \\
& \quad=\|g\|_{C^{3}} \int_{-\infty}^{\infty}\left|u_{i}^{\perp}(s)\right| \cdot(1+|s|) d s<\infty, \quad i=1, \ldots, d
\end{aligned}
$$

For $g \in \mathcal{G}$, Eq. (3.31) is

$$
\tilde{H}_{i j}\left(k_{j}, \tilde{g}, \epsilon\right)=\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), f\left(\gamma(s)+k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)-f(\gamma(s))\right.
$$

$$
\begin{align*}
& \left.-D f(\gamma(s))\left(k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)\right\rangle d s \\
& +\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), D_{1} g(\gamma(s), 0,0)\left(k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)\right\rangle d s \\
& +O(\|\tilde{g}\|)+O(\epsilon), \quad i=1, \ldots, d \tag{3.33}
\end{align*}
$$

For any $m, m=1, \ldots, d$, our goal is find m homoclinic solutions of (1.2). Our strategy is to find some special subclass \mathfrak{M}_{m} with finite codimension of \mathcal{G} to realize the goal. Let

$$
\tilde{M}(i, j)=\left(a_{k l}\right)_{d \times d}
$$

where $a_{k l}=\delta_{i k} \delta_{j l}, i, j, k, l=1, \ldots, d$. We choose some special $g \in \mathcal{G}$ such that

$$
\begin{equation*}
D_{1} g(\gamma, 0,0)=\sum_{i, j=1}^{d} \beta_{i j} M_{i j} P_{s s} \tag{3.34}
\end{equation*}
$$

where $M_{i j}: \operatorname{span}\left\{u_{d+1}, \ldots, u_{2 d}\right\} \rightarrow \operatorname{span}\left\{u_{1}, \ldots, u_{d}\right\}$ is defined by

$$
M_{i j}\left(u_{d+1}, \ldots, u_{2 d}\right)=\left(u_{1}, \ldots, u_{d}\right) \tilde{M}(i, j)
$$

With the choice of (3.34), Eq. (3.33) is

$$
\begin{align*}
\tilde{H}_{i j}\left(k_{j}, \beta, \tilde{g}, \epsilon\right)= & \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), f\left(\gamma(s)+k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)-f(\gamma(s))\right. \\
& \left.-D f(\gamma(s))\left(k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)\right\rangle d s \\
& +\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), \sum_{i, j=1}^{d} k_{j} \beta_{i j} M_{i j} P_{s s}\left(u_{d+j}(s)+\xi_{j}(s)\right)\right\rangle d s \\
& +O(\|\tilde{g}\|)+O(\epsilon) \\
= & \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), D^{2} f(\gamma(s))\left(k_{j} u_{d+j}(s)+k_{j} \xi_{j}(s)\right)^{2}\right\rangle d s \\
& +\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), \sum_{i, j=1}^{d} k_{j} \beta_{i j} M_{i j} P_{s s}\left(u_{d+j}(s)+\xi_{j}(s)\right)\right\rangle d s \\
& +O\left(\left\|k_{j} u_{d+j}+k_{j} \xi_{j}\right\|^{3}\right)+O(\|\tilde{g}\|)+O(\epsilon) \tag{3.35}
\end{align*}
$$

where $\beta=\left(\beta_{11}, \ldots, \beta_{d d}\right)$.
Let

$$
H_{i j}\left(k_{j}, \beta, \tilde{g}, \epsilon\right)= \begin{cases}\tilde{H}_{i j}\left(k_{j}, \beta, \tilde{g}, \epsilon\right) / k_{j}, & \text { if } k_{j} \neq 0 \\ \frac{\partial \tilde{H}_{i j}}{\partial k_{j}}(0, \beta, \tilde{g}, \epsilon), & \text { if } k_{j}=0 .\end{cases}
$$

If $k_{j} \neq 0$, we know that $\tilde{H}_{i j}\left(k_{j}, \beta, \tilde{g}, \epsilon\right)=0$ if and only if $H_{i j}\left(k_{j}, \beta, \tilde{g}, \epsilon\right)=0$. Through direct calculation, we have

$$
\begin{aligned}
\frac{\partial \tilde{H}_{i j}}{\partial k_{j}}(0, \beta, \tilde{g}, \epsilon) & =\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), \sum_{i, j=1}^{d} \beta_{i j} M_{i j} P_{s s}\left(u_{d+j}(s)+\xi_{j}(s)\right)\right\rangle d s+O(\|\tilde{g}\|)+O(\epsilon) \\
& =\beta_{i j}+\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), \sum_{i, j=1}^{d} \beta_{i j} M_{i j} P_{s s} \xi_{j}(s)\right\rangle d s+O(\|\tilde{g}\|)+O(\epsilon) .
\end{aligned}
$$

Then we have

$$
H_{i j}(0,0,0,0)=0
$$

and

$$
\begin{equation*}
\left.\frac{\partial H_{i j}}{\partial \beta_{k l}}\right|_{(0,0,0,0)}=\delta_{i k} \delta_{j l}+o(1) \tag{3.36}
\end{equation*}
$$

as $\|g\|$ goes to zero. Moreover,

$$
\begin{aligned}
\frac{H_{i j}}{\partial k_{j}}= & \frac{\partial}{\partial k_{j}}\left(\frac{\tilde{H}_{i j}}{k_{j}}\right) \\
= & \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), D^{2} f(\gamma(s))\left(u_{d+j}(s)+\xi_{j}(s)\right)^{2}\right\rangle d s+O\left(\left|k_{j}\right|\right)+O(\|\tilde{g}\|)+O(\epsilon) \\
= & \int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), D^{2} f(\gamma(s)) u_{d+j}(s) u_{d+j}(s)\right\rangle d s \\
& +\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), 2 D^{2} f(\gamma(s)) u_{d+j}(s) \xi_{j}(s)+D^{2} f(\gamma(s)) \xi_{j}(s) \xi_{j}(s)\right\rangle d s \\
& +O\left(\left|k_{j}\right|\right)+O(\|\tilde{g}\|)+O(\epsilon) .
\end{aligned}
$$

Since $\xi_{j}(0,0, \epsilon)=0$, we have

$$
\int_{-\infty}^{\infty}\left\langle u_{i}^{\perp}(s), 2 D^{2} f(\gamma(s)) u_{d+j}(s) \xi_{j}(s)+D^{2} f(\gamma(s)) \xi_{j}(s) \xi_{j}(s)\right\rangle d s=o(1)
$$

as $\|g\|$ goes to zero. Then we can get that

$$
\begin{equation*}
\left.\frac{H_{i j}}{\partial k_{j}}\right|_{(0,0,0,0)}=\Delta_{i j}+o(1) \tag{3.37}
\end{equation*}
$$

as $\|g\|$ goes to zero. For convenience, let

$$
H_{l}=\left(H_{1 l}, \ldots, H_{d l}\right), \quad \eta_{l}=\left(k_{l}, \beta_{2 l}, \ldots, \beta_{d l}\right), \quad l=1, \ldots, d .
$$

From (3.36) and (3.37), we have

$$
M_{j}:=\left.\frac{\partial H_{j}}{\partial \eta_{j}}\right|_{(0,0,0,0)}=\left[\begin{array}{cccc}
\Delta_{1 j}+o(1) & o(1) & \ldots & o(1) \tag{3.38}\\
\Delta_{2 j}+o(1) & 1+o(1) & \ldots & o(1) \\
\ldots & \ldots & \ldots & \ldots \\
\Delta_{d j}+o(1) & o(1) & \ldots & 1+o(1)
\end{array}\right]_{d \times d}
$$

as $\|g\|$ goes to zero. It is clear that M_{j} is nonsingular for small $\|g\|$ since $\Delta_{1 j} \neq 0$. With the same argument, we have

$$
M_{l}:=\left.\frac{\partial H_{l}}{\partial \eta_{l}}\right|_{(0,0,0,0)}=\left[\begin{array}{cccc}
\Delta_{1 l}+o(1) & o(1) & \ldots & o(1) \tag{3.39}\\
\Delta_{2 l}+o(1) & 1+o(1) & \ldots & o(1) \\
\ldots & \ldots & \ldots & \ldots \\
\Delta_{d l}+o(1) & o(1) & \ldots & 1+o(1)
\end{array}\right]_{d \times d}
$$

where $l=1, \ldots, d$ and M_{l} is nonsingular.
Theorem 3.2. Assume that (H1)-(H5) hold. For any $m, m=1, \ldots, d$, there are $\epsilon_{m}>0$ and submanifold $\mathfrak{M}_{m} \subset \mathcal{G}$ with codimension $d m, 0 \in \mathfrak{M}_{m}$, such that for $\epsilon \in\left(-\epsilon_{m}, 0\right) \cup\left(0, \epsilon_{0}\right)$ and each small $g \in \mathfrak{M}_{m}$, the system (1.2) has m linearly independent homoclinic solutions.

Proof. Let

$$
\hat{H}(k, \beta, \tilde{g}, \epsilon)=\left(H_{1}(k, \beta, \tilde{g}, \epsilon), \ldots, H_{m}(k, \beta, \tilde{g}, \epsilon)\right)
$$

where $k=\left(k_{1}, \ldots, k_{m}\right)$. We rearrange variables.

$$
H(\eta, \bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon):=\hat{H}(k, \beta, \tilde{g}, \epsilon)
$$

where $\eta=\left(\eta_{1}, \ldots, \eta_{m}\right) \in \mathbb{R}^{m d}, \bar{\beta}=\left(\beta_{11}, \ldots, \beta_{1 m}\right) \in \mathbb{R}^{m}, \tilde{\beta}=\left(\beta_{1 m+1}, \ldots, \beta_{2 d}\right) \in \mathbb{R}^{d(d-m)}$. It is clear that the system (1.2) has m homoclinic solutions if $H(k, \beta, \tilde{g}, \epsilon)=0$. Notice that

$$
H(0,0,0,0)=0 .
$$

From (3.39), we have

$$
\left.\frac{\partial H}{\partial\left(\eta_{1}, \ldots, \eta_{m}\right)}\right|_{(0,0,0,0)}=\left[\begin{array}{cccc}
M_{1} & \mathcal{O} & \ldots & \mathcal{O} \\
\mathcal{O} & M_{2} & \ldots & \mathcal{O} \\
& \ldots & \ldots & \\
\mathcal{O} & \mathcal{O} & \ldots & M_{m}
\end{array}\right]_{m d \times m d}
$$

as $\|g\|$ goes to zero, where

$$
\mathcal{O}=\left[\begin{array}{cccc}
0 & o(1) & \ldots & o(1) \\
0 & o(1) & \ldots & o(1) \\
& \ldots & \ldots & \\
0 & o(1) & \ldots & o(1)
\end{array}\right]_{d \times d} .
$$

It is clear that $\left.\frac{\partial H}{\partial\left(\eta_{1}, \ldots, \eta_{m}\right)}\right|_{(0,0,0,0)}$ is nonsingular matrix. Then the implicit function theorem implies that there are neighborhoods $U_{1} \in \mathbb{R}^{m}, U_{2} \in \mathbb{R}^{d(d-m)}, U_{3} \in G, \epsilon_{m}>0$ and C^{1} functions

$$
\left\{\begin{array}{l}
k_{1}=k_{1}^{*}(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon), \ldots, k_{m}=k_{m}^{*}(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon) \tag{3.40}\\
\beta_{21}=\beta_{21}^{*}(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon), \ldots, \beta_{d 1}=\beta_{d 1}^{*}(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon) \\
\ldots \\
\beta_{2 m}=\beta_{2 m}^{*}(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon), \ldots, \beta_{d m}=\beta_{d m}^{*}(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon)
\end{array}\right.
$$

for $(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon) \in U_{1} \times U_{2} \times U_{3} \times\left(-\epsilon_{m}, 0\right) \cup\left(0, \epsilon_{m}\right)$ such that

$$
k_{i}^{*}(0,0,0,0)=0, \quad \beta_{j k}^{*}(0,0,0,0)=0, \quad \text { for } i, k=1, \ldots, m, j=2, \ldots, m
$$

and

$$
\begin{equation*}
H\left(k^{*}(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon), \beta^{*}(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon), \bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon\right)=0 \tag{3.41}
\end{equation*}
$$

for $(\bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon) \in U_{1} \times U_{2} \times U_{3} \times\left(-\epsilon_{m}, 0\right) \cup\left(0, \epsilon_{0}\right)$, where $k^{*}:=\left(k_{1}^{*}, \ldots, k_{m}^{*}\right)$ and $\beta^{*}:=\left(\beta_{21}^{*}, \ldots, \beta_{d m}^{*}\right)$. From the transformation (3.2), the m homoclinic solutions are given by

$$
\left\{\begin{array}{l}
x_{1}(t)=\gamma(t)+k_{1}^{*} u_{d+1}(t)+z_{1}^{*}(t) \tag{3.42}\\
\cdots \quad \cdots \\
x_{m}(t)=\gamma(t)+k_{m}^{*} u_{d+m}(t)+z_{m}^{*}(t)
\end{array}\right.
$$

where k_{j}^{*} and z_{j}^{*} are as in (3.40) and Theorem 3.1 respectively, $j=1, \ldots, m$.
In order to prove that the m solutions given in (3.42) are linear independence, we need to prove $k_{j}^{*} \neq 0$. From system (3.41), we choose m equations and get

$$
\begin{equation*}
\bar{H}\left(k^{*}, \beta^{*}, \bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon\right):=\left(H_{11}\left(k^{*}, \beta^{*}, \bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon\right), \ldots, H_{1 m}\left(k^{*}, \beta^{*}, \bar{\beta}, \tilde{\beta}, \tilde{g}, \epsilon\right)\right)=0 \tag{3.43}
\end{equation*}
$$

Differentiating (3.43) in $\bar{\beta}$, we have

$$
\begin{equation*}
D_{1} \bar{H} \cdot \frac{\partial k^{*}}{\partial \bar{\beta}}+D_{2} \bar{H} \cdot \frac{\partial \beta^{*}}{\partial \bar{\beta}}+\frac{\partial \bar{H}}{\partial \bar{\beta}}=0 . \tag{3.44}
\end{equation*}
$$

From (3.37), we have

$$
\left.D_{1} \bar{H}\right|_{(0,0,0,0)}=\left[\begin{array}{cccc}
\Delta_{11}+o(1) & o(1) & \ldots & o(1) \\
o(1) & \Delta_{12}+o(1) & \ldots & o(1) \\
& \ldots & \ldots & \\
o(1) & o(1) & \ldots & \Delta_{1 m}+o(1)
\end{array}\right]_{m \times m} .
$$

Moreover, from (3.36) we get

$$
\left.\frac{\partial \bar{H}}{\partial \bar{\beta}}\right|_{(0,0,0,0)}=\left[\begin{array}{cccc}
1+o(1) & o(1) & \ldots & o(1) \\
o(1) & 1+o(1) & \ldots & o(1) \\
& \ldots & \ldots & \\
o(1) & o(1) & \ldots & 1+o(1)
\end{array}\right]_{m \times m}
$$

and $\left|D_{2} \bar{H}\right|_{(0,0,0,0)}=o(1)$. Since $\beta^{*} \in C^{1}$, we have that $\left|D_{2} \bar{H} \cdot \frac{\partial \beta^{*}}{\partial \bar{\beta}}\right|_{(0,0,0,0)}=o(1)$. Thus we can get from (3.44) that

$$
\left.\frac{\partial k^{*}}{\partial \bar{\beta}}\right|_{(0,0,0,0)}=-\left.\left(\left.D_{1} \bar{H}\right|_{(0,0,0,0)}\right)^{-1} \frac{\partial \bar{H}}{\partial \bar{\beta}}\right|_{(0,0,0,0)}+o(1)
$$

as $\|g\|$ goes to zero. It is clear that $\left.\frac{\partial \hbar^{*}}{\partial \bar{\beta}}\right|_{(0,0,0,0)}$ is nonsingular. Thus there exists appropriate $\bar{\beta}^{*}=\left(\beta_{1}^{*}, \ldots, \beta_{m}^{*}\right)$, such that $k_{j}^{*}\left(\beta^{*}, 0,0,0\right) \neq 0$. From the continuity of k_{j}^{*}, we can shrink U_{2}, U_{3} and $\epsilon_{m}>0$ if necessary, such that

$$
\begin{equation*}
k_{j}^{*}\left(\bar{\beta}^{*}, \tilde{\beta}, \tilde{g}, \epsilon\right) \neq 0, \quad j=1, \ldots, m \tag{3.45}
\end{equation*}
$$

for $(\tilde{\beta}, \tilde{g}, \epsilon) \in U_{2} \times U_{3} \times\left(-\epsilon_{m}, 0\right) \cup\left(0, \epsilon_{m}\right)$.
From (3.42), to prove the linear independence of the m homoclinic solutions is sufficient to prove the linear independence of the functions

$$
k_{1}^{*} u_{d+1}+z_{1}^{*}, \ldots, k_{m}^{*} u_{d+m}+z_{m}^{*} .
$$

If there are some $a_{j} \in \mathbb{R}$, such that

$$
\sum_{j=1}^{m} a_{j}\left(k_{j}^{*} u_{d+j}+z_{j}^{*}\right)=\sum_{j=1}^{m} a_{j} k_{j}^{*} u_{d+j}+\sum_{j=1}^{m} a_{j} z_{j}^{*}=0
$$

From (3.2), we see that $\sum_{j=1}^{m} a_{j} z_{j}^{*} \in S$ and $\sum_{j=1}^{m} a_{j} k_{j}^{*} u_{d+j} \in \operatorname{span}\left\{u_{d+1}, \ldots, u_{2 d}\right\}$. Thus we have

$$
\sum_{j=1}^{m} a_{j} k_{j}^{*} u_{d+j}=0
$$

By the independence of u_{d+1}, \ldots, u_{d+m}, we have $a_{j} k_{j}^{*}=0$ which implies from (3.45) that $a_{j}=0$. Thus the m homoclinic solution are linearly independent.

We now establish the codimension of the bifurcation manifold. Let \mathcal{G}_{0} be the subclass of \mathcal{G} such that $D_{1} g(\gamma, 0,0)$ has the form of (3.34) for each $g \in \mathcal{G}_{0}$. Let

$$
\mathfrak{M}_{m}=\left\{g \in \mathcal{G}_{0}:\left(\beta_{21}, \ldots, \beta_{d m}\right)=\left(\beta_{21}^{*}\left(\bar{\beta}^{*}, \tilde{\beta}, \tilde{g}, \epsilon\right), \ldots, \beta_{d m}^{*}\left(\bar{\beta}^{*}, \tilde{\beta}, \tilde{g}, \epsilon\right)\right)\right\}
$$

for $(\tilde{\beta}, \tilde{g}, \epsilon) \in U_{2} \times U_{3} \times\left(-\epsilon_{m}, 0\right) \cup\left(0, \epsilon_{m}\right)$. In \mathfrak{M}_{m}, the $d m$ parameters, $\left(\beta_{11}, \ldots, \beta_{d 1}, \ldots, \beta_{m d}\right)$, are restricted. Thus \mathfrak{M}_{m} defines a submanifold with codimension $m d$ in \mathcal{G}_{0} and hence in \mathcal{G}. The proof is completed.

Let $\epsilon_{0}=\min \left\{\epsilon_{1}, \ldots, \epsilon_{d}\right\}$. From Theorem 3.2, we see that there are d submanifolds $\mathfrak{M}_{k} \subset \mathcal{G}$ with codimension $d k, 0 \in \mathfrak{M}_{k}, k=1, \ldots, d$ and neighborhood $\mathcal{U} \subset \mathcal{G}, 0 \in \mathcal{U}$ such that for any $k, k=1, \ldots, d$, the system (1.2) has k linearly independent homoclinic solutions for every $g \in \mathcal{U} \cap\left(\mathfrak{M}_{k} /\left(\mathfrak{M}_{k+1} \cup \cdots \cup \mathfrak{M}_{d}\right)\right)$ and $\epsilon \in\left(-\epsilon_{0}, 0\right) \cup\left(0, \epsilon_{0}\right)$. The proof of Theorem 2.1 is finished.

We give an example to illustrate the theory. As in [11], we consider the system

$$
\begin{equation*}
\dot{x}(t)=f(x(t))+g(x(t), \epsilon, \epsilon t) \tag{3.46}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), f(x)=\left(x_{2}, x_{1}-x_{1}^{3}-x_{1} x_{3}^{2}, x_{3}, x_{3}-\frac{4}{3} x_{3}^{3}-\frac{2}{3} x_{1}^{3}\right)$ and $g: \mathbb{R}^{4} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{4}$. Eq. (3.46) is the form of (1.2). The corresponding unperturbed system is

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2} \tag{3.47}\\
\dot{x}_{1}(t)=x_{1}-x_{1}^{3}-x_{1} x_{3}^{2} \\
\dot{x}_{3}(t)=x_{4} \\
\dot{x}_{4}(t)=x_{3}-\frac{4}{3} x_{3}^{3}-\frac{2}{3} x_{1}^{3}
\end{array}\right.
$$

Let $r(t)=\operatorname{sech}(t)$. One can check that Eq. (3.47) has a homoclinic solution $\gamma(t)=(r(t), \dot{r}(t), r(t), \dot{r}(t))$. It is clear that 0 is a fixed point and $\lim _{t \rightarrow \pm \infty} \gamma(t)=0$. Moreover, the matrix $D f(0)$ has eigenvalues $\{-1,-1,1,1\}$ which lie off the imaginary axis. Thus (H1)-(H4) are satisfied. The variation equation of (3.47) along $\gamma(t)$ is

$$
\begin{equation*}
\dot{u}(t)=D f(\gamma(t)) u(t) \tag{3.48}
\end{equation*}
$$

where

$$
D f(\gamma(t))=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1-4 r^{2}(t) & 0 & -2 r^{2}(t) & 0 \\
0 & 0 & 0 & 1 \\
-2 r^{2}(t) & 0 & 1-4 r^{2}(t) & 0
\end{array}\right]
$$

As in [11], let $P(t)$ and $Q(t)$ be differential functions satisfying $\dot{P} \dot{r}^{2}=1$ and $\dot{Q} r^{2}=1$. Then (3.48) has fundamental solutions

$$
\begin{array}{ll}
u_{1}=\left(Q r,(Q r)^{\cdot},-Q r,-(Q r)^{\cdot}\right), & u_{2}=\left(P \dot{r},(Q \dot{r})^{\cdot}, Q \dot{r},(Q \dot{r})^{\cdot}\right) \\
u_{3}=(r, \dot{r},-r,-\dot{r}), & u_{4}=(r+\dot{r}, \dot{r}+\ddot{r},-r+\dot{r},-\dot{r}+\ddot{r})
\end{array}
$$

It is clear that u_{1} and u_{2} are unbounded solutions of (3.48), u_{3} and u_{4} are bounded ones. Thus $d=2$. The bounded solutions of the adjoint equation of (3.48) are

$$
u_{1}^{\perp}=\frac{1}{2}(-\dot{r}, r, \dot{r},-r), \quad u_{2}^{\perp}=\frac{1}{2}(-\ddot{r}, \dot{r},-\ddot{r}, \dot{r})
$$

As required in Theorem 2.1, we need to calculate $\Delta_{1 j}, j=1,2$.

$$
\begin{aligned}
\Delta_{11}= & \int_{-\infty}^{\infty}\left\langle u_{1}^{\perp}(t), D^{2} f(\gamma(t)) u_{3}(t) u_{3}(t)\right\rangle d t \\
= & \int_{-\infty}^{\infty}\left\langle u_{1}^{\perp}(t), \operatorname{col}\left(0,-4 r^{3}(t), 0,-12 r^{3}(t)\right)\right\rangle d t \\
= & \int_{-\infty}^{\infty} 4 r^{3}(t) d t=\frac{16}{3}, \\
\Delta_{12}= & \int_{-\infty}^{\infty}\left\langle u_{1}^{\perp}(t), D^{2} f(\gamma(t)) u_{4}(t) u_{4}(t)\right\rangle d t \\
= & \int_{-\infty}^{\infty}\left\langle u_{1}^{\perp}(t), \operatorname{col}\left(0,-4 r^{3}(t)-12 r(t) \dot{r}^{2}(t), 0,-12 r^{3}(t)-12 r(t) \dot{r}^{2}(t)\right)\right\rangle d t \\
= & \int_{-\infty}^{\infty} 4 r^{3}(t) d t=\frac{16}{3} .
\end{aligned}
$$

Thus the assumption (H5) holds. As well as (H1)-(H4) hold, Theorem 2.1 can be applied to system (3.46). There are $\epsilon_{0}>0$ and two submanifolds $\mathfrak{M}_{m} \subset \mathcal{G}$ with codimension $2 m, 0 \in \mathfrak{M}_{m}, m=1,2$, such that for $\epsilon \in\left(-\epsilon_{0}, 0\right) \cup\left(0, \epsilon_{0}\right)$ and every small $g \in \mathfrak{M}_{1} / \mathfrak{M}_{2}$ (respectively $g \in \mathfrak{M}_{2}$) the system (3.46) has one (respectively two) homoclinic solutions.

Acknowledgements

The authors are greatly indebted to the anonymous referees for their careful reading and helpful comments.

References

[1] F. Battelli, C. Lazzari, Exponential dichotomies, heteroclinic orbits, and Melnikov functions, J. Differential Equations 86 (1990) $342-366$.
[2] F. Battelli, C. Lazzari, Heteroclinic orbits in systems with slowing varying coefficients, J. Differential Equations 105 (1993) 1-29.
[3] F. Battelli, K.J. Palmer, Chaos in the Duffing equation, J. Differential Equations 101 (1993) 276-301.
[4] F. Battelli, K.J. Palmer, Singular perturbations, transversality, and Silnikov saddle-focus homoclinic orbits, in: Special Issue Dedicated to Victor A. Pliss on the Occasion of his 70th Birthday, J. Dynamics Differential Equations 15 (2003) 357-425.
[5] C.M. Blazquez, Bifurcation from a homoclinic orbit in parabolic differential equations, Proc. Roy. Soc. Edinburgh 103A (1986) $265-274$.
[6] S.N. Chow, J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.
[7] S.N. Chow, J.K. Hale, J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Differential Equations 37 (1980) $351-373$.
[8] M. Fečkan, J. Gruendler, Transversal bounded solutions in systems with normal and slow variables, J. Differential Equations 165 (2000) 123-142.
[9] J. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J. Math. Anal. 23 (3) (1992) 702-721.
[10] J. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations, J. Differential Equations 122 (1995) 1-26.
[11] J. Gruendler, Homoclinic solutions and chaos in ordinary differential equations with singular perturbations, Trans. Amer. Math. Soc. 350 (1998) 3797-3814.
[12] J.K. Hale, Introduction to dynamic bifurcation, in: Bifurcation Theory and Application, in: Lecture Notes in Mathematics, vol. 1057, SpringerVerlag, Berlin, 1984.
[13] J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, Preprint No M 15/94, Technical University of IImenau, PSF 327, D 98684 IImenau, Germany, 1984.
[14] K.J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations 55 (1984) 225-256.
[15] U. Schalk, J. Knobloch, Homoclinic points near degenerate homoclinics, Nonlinearity 8 (1995) 1133-1141.
[16] A. Vanderbauwhede, Bifurcation of degenerate homoclinics, Results in Mathematics 21 (1992) 211-223.
[17] A. Vanderbauwhede, S.A. Van Gils, Center manifolds and contractions on a scale of Banach spaces, J. Funct. Anal. 72 (1987) $209-224$.
[18] C. Zhu, W. Zhang, Linearly independent homoclinic bifurcations parameterized by a small function, J. Differential Equations 240 (2007) 38-57.

[^0]: Hupported by NSFC (China) grant and Natural Science Foundation Project of CQ CSTC.

 * Corresponding author at: Department of Mathematics and Physics, Chongqing University, Chongqing 400044, PR China.

 E-mail address: zhuchangrong126@126.com (C. Zhu).

