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Abstract

We consider a model for the flow of a mixture of two homogeneous and incompressible fluids in a two-dimensional bounded
domain. The model consists of a Navier–Stokes equation governing the fluid velocity coupled with a convective Cahn–Hilliard
equation for the relative density of atoms of one of the fluids. Endowing the system with suitable boundary and initial conditions,
we analyze the asymptotic behavior of its solutions. First, we prove that the initial and boundary value problem generates a strongly
continuous semigroup on a suitable phase-space which possesses the global attractor A. Then we establish the existence of an
exponential attractors E . Thus A has finite fractal dimension. This dimension is then estimated from above in terms of the physical
parameters. Moreover, assuming the potential to be real analytic and in absence of volume forces, we demonstrate that each
trajectory converges to a single equilibrium. We also obtain a convergence rate estimate in the phase-space metric.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

It is widely accepted that the incompressible Navier–Stokes equation governs the complex motions of single-phase
fluids such as air or water, while we are faced with the persistent and intriguing questions of recovering complex
motions of binary fluid mixtures (see [52]). The turbulence issues for single-phase flows have been analyzed in many
fundamental works (see, e.g., [14,24,25,45,47] and their references). On the other hand, the mathematical study of
turbulent binary (or even multi-phase) mixture flows is only in its infancy. Thus, the present article may be viewed as
a preliminary contribution to the analysis of the turbulence problem for multi-phase flows (cf. also [28]).
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The quenching of a system from a disordered phase into an ordered one produces a time-dependent growth process
of ordered regions. The evolution of these regions is the subject of phase ordering dynamics, a relevant subject of
investigation for a number of physical systems ranging from solid alloys to polymer blends, multi-phase fluids and
nematic liquid crystals [5,7,13,40,36,46,49,53]. The first to address the problem were J.W. Cahn and J.E. Hilliard [16]
who studied the spinodal decomposition of binary alloys (see also [15]). Similar phenomena occur in the phase
separation of binary fluids, that is, fluids composed by either two phases of the same chemical species or phases of
different composition. In this case, however, the phenomenology is much more complicated because of the interplay
between the phase separation stage and the fluid dynamics.

The mathematical analysis of these phenomena is far from being well understood. For instance, the spinodal de-
composition under shear consists of a two-stage evolution of a homogeneous initial mixture: a phase separation stage
in which some macroscopic pattern appear, then a shear stage in which these patterns organize themselves into par-
allel layers (see, e.g., [50] for experimental snapshots). This model has to take into account the chemical interactions
between the two phases at the interface, achieved using a Cahn–Hilliard approach, as well as the hydrodynamic prop-
erties of the mixture (e.g., in the shear case), for which Navier–Stokes equations with surface tension terms acting at
the interface are needed. When the two fluids have the same constant density, the temperature differences are negligi-
ble and the diffusive interface between the two phases has a small but non-zero thickness, a well-known model is the
so-called “Model H” (cf. [37], see [34] for a rigorous derivation). This is a system of equations where an incompress-
ible Navier–Stokes equation for the (mean) velocity field u = (u1, . . . , uN), N = 2,3, is coupled with a convective
Cahn–Hilliard equation for the order parameter φ which represents the relative concentration of one of the fluids (for
the compressible case see [3] and its references). More precisely, the equations read as follows

∂tu + u · ∇u − ν�u + ∇p = Kμ∇φ + g, (1.1)

∇ · u = 0, (1.2)

∂tφ + u · ∇φ − �0�μ= 0, (1.3)

μ= −ε�φ + αf (φ), (1.4)

in Ω × (0,+∞), where Ω is a bounded domain in R
N, N = 2,3, with smooth boundary Γ , g is an external time-

independent volume force and we have assumed the density equal to one. We remind that an external nongradient force
(e.g., a stirring force) can play a basic role in certain phenomena like coarsening (see [7]). The quantities ν, �0 and
K are positive constants that correspond to the kinematic viscosity of fluid, mobility constant and capillarity (stress)
coefficient, respectively. Here μ is the chemical potential of the binary mixture which is given by the variational
derivative of the following free energy functional

F(φ)=
∫
Ω

(
ε

2
|∇φ|2 + αF(φ)

)
dx,

where, e.g., F(r)= ∫ r
0 f (ζ ) dζ is a suitable double-well potential. Here ε and α are two positive parameters describing

the interactions between the two phases. In particular, ε is related to the thickness of the interface separating the
two fluids. A typical example of potential F is of logarithmic type (see [16] and references therein). However, this
potential is very often replaced by a polynomial approximation of the type F(r) = γ1r

4 − γ2r
2, γ1 and γ2 being

positive constants. We also note that (1.1) can be replaced by

∂tu + u · ∇u − ν�u + ∇p̃ = −K div(∇φ ⊗ ∇φ)+ g

with p̃ = p− κ( ε2 |∇φ|2 + αF(φ)) since

κμ∇φ = κ∇
(
ε

2
|∇φ|2 + αF(φ)

)
− K div(∇φ ⊗ ∇φ).

The stress tensor ∇φ ⊗ ∇φ is considered the main contribution modelling capillary forces due to surface tension at
the interface between the two phases of the fluid.

Regarding possible boundary conditions for these models, we recall two cases considered in the literature: the
mixing of two fluids in a driven cavity (see, e.g., [17] and the references therein) and the spinodal decomposition
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under shear in a channel (cf., for instance, [50]; see also [12]). In the first case, the boundary conditions for φ in (1.3)
are the natural no-flux conditions

∂nφ = ∂n�φ = 0, (1.5)

on Γ × (0,+∞), where n is the outward normal to Γ . These conditions ensure the mass conservation. In fact, it is
easy to check that (1.5) implies that

∂nμ= 0, on Γ × (0,+∞),
which yields the conservation of the following quantity〈

φ(t)
〉= 1

|Ω|
∫
Ω

φ(x, t) dx,

where |Ω| stands for the Lebesgue measure ofΩ . More precisely, we get from (1.3) that 〈φ(t)〉 = 〈φ(0)〉 for all t � 0.
Concerning the boundary condition for u, we will assume the Dirichlet (no-slip) boundary condition

u = 0, on Γ × (0,+∞). (1.6)

Therefore we suppose that there is no relative motion at the fluid-solid interface. On the other hand, in the case
of channel under shear, periodicity conditions may be imposed for φ, μ and u, in the longitudinal direction. The
periodicity conditions are natural because in the physical experiments the shear is obtained by putting the mixture
between two rotating cylinders whose diameters are very close (Couette–Taylor flows), curvature effects are usually
neglected because of the thickness of the domain (see, e.g., [12]). We could also consider these conditions here, but
for the sake of exposition, we will focus our attention to (1.5)–(1.6) only. However, we remark that all the subsequent
results concerning problem (1.1)–(1.4) can also be extended to the mentioned periodic boundary conditions on a
rectangular domain Ω . Of course, system (1.1)–(1.5) is also subject to initial conditions, that is,

u|t=0 = u0, φ|t=0 = φ0, in Ω. (1.7)

Problems like (1.1)–(1.7) have recently received lot of attention from the numerical viewpoint (see, e.g., [6,11,23,
39,42,44,48] and references therein). Well-posedness issues have been analyzed in [9] for a system where the Cahn–
Hilliard equation has nonconstant mobility and the Navier–Stokes equation has non-matched viscosity ν = ν(φ)
(see [10] for the nonhomogeneous case and [21,43] for non-Newtonian fluids). The concentration dependent mo-
bility forces φ to take values within a bounded interval (say, [−1,1]) and also logarithmic-type potentials can be
handled (see [9]). In particular, the author has proven the existence and uniqueness of global weak and strong solu-
tions in 2D as well as local asymptotic stability of suitable stationary solutions. The hard case of constant mobility,
nonconstant viscosity and singular potentials has been analyzed in [2]. In this noteworthy paper, besides existence
and uniqueness results, the regularity of solutions has been carefully examined and convergence to a single equi-
librium has been established. The case Ω = R

2 with smooth potentials has also been considered and existence,
uniqueness and stability of stationary solutions have been investigated [54]. A further interesting qualitative result
is contained in [4, Appendix A]. There, the authors take K = ε and α = ε−1, and identify the limit as ε tends to 0 of
system (1.1)–(1.4) endowed with suitable initial and boundary conditions. The resulting limiting system is a combina-
tion of the classical Navier–Stokes sharp interface model with a Mullins–Sekerka type problem (see [4] and references
therein).

As far as the longtime behavior is concerned, existence of a global attractor for (1.1)–(1.4) has recently been
proven in [1]. Here, we want to carry out a more detailed analysis of the same system endowed with (1.5)–(1.7)
for N = 2. The goals are similar to the ones of [28], where the 2D Navier–Stokes equation coupled with an Allen–
Cahn equation has been examined. Both these systems have been then considered in a unified way in [29], where
we have studied the longtime behavior in the 3D case, subject to a time-dependent external nongradient force using
the trajectory approach [20]. Moreover, in [30], we have proved the instability of certain stationary solutions for
systems (1.1)–(1.4) subject to periodic boundary conditions on elongated domains Tα0 = (0,2π/α0) × (0,2π) or
Tα0β0 = (0,2π/α0) × (0,2π) × (0,2π/β0), α0 and β0 being small nondimensional parameters. In this case g is a
suitable periodic external force (e.g., like the one in the Kolmogorov problem, see [38, Section 5] and its references).
As a consequence, a lower bound for the Hausdorff dimension of the global attractor can be deduced. This bound
shows that the coupling gives rise to additional instabilities and, thus, to novel and even more complex flow behavior
(see [30] for details).
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The plan of the paper goes as follows. In Section 2 we present and discuss the weak formulation of our problem. In
Section 3, we prove that the problem generates a strongly continuous semigroup on a suitable phase-space. Moreover,
we show that dynamical system possesses a global attractor and an exponential attractor. Section 4 is devoted to
demonstrate an upper bound of the fractal dimension of the global attractor in terms of the most relevant physical
parameters ν, ε, K and α. Finally, in Section 5, assuming the potential F to be real analytic and no external nongradient
forces (g = 0), we prove that each trajectory converges to a single equilibrium with respect to the phase-space metric
and find a convergence rate estimate.

2. Weak formulation

We begin by setting �0 = 1 for the sake of simplicity. Then we assume that f ∈ C2(R) and satisfies⎧⎨⎩ lim inf|r|→+∞f
′(r) > 0,∣∣f ′′(r)

∣∣� cf (1 + |r|m−1), ∀r ∈ R,
(2.1)

where cf is some positive constant and m ∈ [1,+∞) is fixed, but otherwise arbitrary. It is immediate that (2.1) entails
that ∣∣f ′(r)

∣∣� cf (1 + |r|m), ∣∣f (r)∣∣� cf (1 + |r|m+1), ∀r ∈ R. (2.2)

Note that the derivative f of the typical double-well potential F satisfies (2.1).
Let us describe the functional setup of Eqs. (1.1)–(1.4). From now on Ω denotes a two-dimensional bounded

domain with C2-boundary Γ . If X is real Hilbert space with inner product (·,·)X , then we denote the induced norm
by | · |X, while X∗ will indicate its dual. Moreover, we indicate by X the space X × X endowed with the product
structure. Let us consider the Hilbert spaces

H := {
u ∈ C∞

c (Ω): divu = 0 in Ω
}L

2

, V = {
u ∈ C∞

c (Ω): divu = 0 in Ω
}H

1
0
, (2.3)

where L
2(Ω,dx)= (L2(Ω,dx))2 and H

1
0(Ω)= (H 1

0 (Ω))
2. The space H is endowed with the scalar product and the

norm of L
2(Ω,dx) are denoted by (·,·) and | · |, respectively. The space V becomes is Hilbert with respect to the

scalar product

(
(u,v)

)=
2∑
i=1

(∂xiu, ∂xiv), ‖u‖ = (
(u,u)

)1/2
.

We recall that the norm in V is equivalent to that induced by H
1
0(Ω), due to Poincaré’s inequality.

Let us indicate by A0 the self-adjoint positive unbounded operators in H defined by

A0u = −P�u, ∀u ∈D(A0)= H
2(Ω)∩ V,

where P is the Leray-Helmholtz projector in L
2(Ω,dx) on H. Observe that A−1

0 is a compact linear operator on H

and |A0 · | is a norm on D(A0) that is equivalent to H
2-norm.

Then we introduce the linear nonnegative unbounded operator on L2(Ω)

ANφ = −�φ, ∀φ ∈D(AN)=
{
φ ∈H 2(Ω): ∂nφ = 0, on Γ

}
and we endow D(AN) with the norm |AN · |L2 + |〈·〉| which is equivalent to the H 2-norm. Also, we define the linear
positive unbounded operator on the Hilbert space L2

0(Ω) of the L2-functions with null mean

BNφ = −�φ, ∀φ ∈D(BN)=D(AN)∩L2
0(Ω).

Observe that B−1
N is a compact linear operator on L2

0(Ω). More generally, we can define BsN for any s ∈ R, noting

that |Bs/2N · |L2 , s > 0, is an equivalent to the canonical Hs -norm on D(Bs/2N )⊆Hs(Ω)∩L2
0(Ω). Note that AN ≡ BN

on D(BN). If φ is such that φ − 〈φ〉 ∈D(Bs/2N ) we have that |Bs/2N (φ − 〈φ〉)|L2 + |〈φ〉| is equivalent to the Hs -norm.
Moreover, we set H−s(Ω) := (H−s(Ω))∗ whenever s < 0.
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In order to define the variational setting for the Navier–Stokes equations, we also need to introduce the bilinear
operators B0, B1 (and their related trilinear forms b0 and b1) as well as the coupling mapping R0 which are defined,
respectively, from D(A0)×D(A0) into H, D(A0)×D(AN) into L2(Ω) and L2(Ω)× (D(AN) ∩H 3(Ω)) into H.
More precisely, we set(

B0(u,v),w
)=

∫
Ω

[
(u · ∇)v] · w dx =: b0(u,v,w), ∀u,v,w ∈D(A0),

(
B1(u, φ),ψ

)
L2 =

∫
Ω

[
(u · ∇)φ]ψ dx =: b1(u, φ,ψ), ∀u ∈D(A0), ∀φ,ψ ∈D(AN),

(
R0(ξ,φ),w

)=
∫
Ω

ξ [∇φ · w]dx, ∀w ∈D(A0), ∀φ ∈D(AN)∩H 3(Ω), ∀ξ ∈ L2(Ω).

Remark 2.1. The operators defined above enjoy continuity properties which depend on the space dimension (cf.,
e.g., [51, Chap. 9] or [55, Chap. 3]). In addition, note that R0(μ,φ)= Pμ∇φ.

We are now in a position to formulate problem (1.1)–(1.7) in a weak form. However, due to the mass conservation〈
φ(t)

〉= 〈
φ(0)

〉=:M0, ∀t � 0, (2.4)

we need to put a constraint, namely, we have to take as phase-space the following

YM = H × {
φ ∈H 1(Ω):

∣∣〈φ〉∣∣�M},
whereM � 0 is fixed. The space YM is a complete metric space with respect to the metric associated with the norm∥∥(u, φ)∥∥2

YM
:= 1

K |u|2 + ε(|∇φ|2 + 〈φ〉2). (2.5)

Then our problem can be formulated as follows.

Problem P. For g ∈ V
∗ and any given pair of initial data

(u0, φ0) ∈ YM, (2.6)

find a pair of functions

(u, φ) ∈ C([0,+∞);YM

)∩L2
loc

([0,+∞);V × (
D(AN)∩H 3(Ω)

))
(2.7)

such that

(∂tu, ∂tφ) ∈ L2
loc

([0,+∞);V
∗ ×H−1(Ω)

)
, (2.8)

which fulfills (1.7) and satisfies⎧⎨⎩
∂tu + νA0u +B0(u,u)− KR0(εANφ,φ)= g, in V

∗, a.e. in (0,+∞),
μ= εANφ + αf (φ), a.e. in Ω × (0,+∞),
∂tφ +ANμ+B1(u, φ)= 0, in H−1, a.e. in (0,+∞).

(2.9)

Remark 2.2. Note that the chemical potential does no longer appear in the first equation of (2.9). More precisely, μ∇φ
has been replaced by εANφ∇φ (cf. the right-hand side of Eq. (1.1)). This is justified since f ′(φ)∇φ is the gradient
of F(φ) and can be incorporated into the pressure gradient. This remarks also holds when the volume force g is the
gradient of some potential (e.g., gravity). In the sequel, for the sake of convenience, we will also replace μ in the last
equation of (2.9) with μ= μ− 〈μ〉, that is,

μ= εANφ + αf (φ)− α〈f (φ)〉, a.e. in Ω × (0,+∞).
Obviously, we have 〈μ(t)〉 = 0 for all t > 0.
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We finish this section by pointing out once more that other kind of boundary conditions can be handled with
simple modifications of the phase-space. For instance, one can suppose that Ω is a rectangular domain and u, its first
spatial derivatives, p and φ are Ω-periodic or we can assume that u satisfies a free boundary condition (see, e.g., [55,
Chap. III, Section 2]). In these cases all the subsequent results for P are still valid, provided that f satisfies suitable
assumptions.

3. Global and exponential attractors

In this section, we first establish some uniform (in time) a priori estimates and prove the existence of a strongly
continuous dissipative semigroup. Then, we show some smoothing properties of the solutions which allow us to
demonstrate the existence of global and exponential attractors. All the estimates are obtained through formal argu-
ments which can be justified within a suitable Faedo–Galerkin approximation scheme (see, e.g., [9]).

3.1. Uniform estimates on the solutions

Observe preliminarily that if (u, φ) is a smooth solution of P, by taking the scalar product in H of Eq. (1.1) with u,
then integrating over Ω , and using Eqs. (1.3)–(1.4), we obtain the energy identity

d

dt

[
1

2K
∣∣u(t)∣∣2 + F

(
φ(t)

)]− 1

K
(
u(t),g

)+ ν

K
∥∥u(t)∥∥2 + ∣∣∇μ(t)∣∣2

L2 = 0. (3.1)

It is also worth mentioning that (3.1) is a consequence of the orthogonality properties of the products below, which
will be also employed in the sequel, namely,(

B0(u,v),v
)= 0, ∀u,v ∈ V,

(
B1(u, φ),φ

)
L2 = 0, ∀u ∈ V, ∀φ ∈H 1(Ω). (3.2)

By exploiting (3.1), we prove the following dissipative estimate.

Proposition 3.1. Let g ∈ V
∗ and f ∈ C2(R) satisfy (2.1). If (u, φ) is a solution to P, then the following estimate

holds:

∥∥(u(t), φ(t))∥∥2
YM

+
t+1∫
t

(
ν

K
∥∥u(s)∥∥2 + ∣∣μ(s)∣∣2

H 1 + ∣∣F (φ(s))∣∣
L1

)
ds

+
t+1∫
t

(∥∥∂tu(s)∥∥2
V∗ + ∣∣φ(s)∣∣2

H 3 + ∣∣∂tφ(s)∣∣2H−1

)
ds

�Q
(∥∥(u(0),φ(0))∥∥2

YM

)
e−ρt +C0

(
ν, ε,α,K,M,‖g‖V∗

)
, ∀t � 0, (3.3)

where the monotone non-decreasing function Q and the positive constants ρ and C0 are independent of t and of the
initial conditions.

Proof. We now introduce the functions φ(t) := φ(t)−M0 and μ(t) := μ(t)− 〈μ(t)〉 and note that 〈φ(t)〉 = 0, due
to (2.4). Let us take the scalar product in L2(Ω) of the second equation of (2.9) with 2ξφ(t), ξ > 0. We obtain

2ξ
(
μ(t), φ(t)

)
L2 = 2ξε

∣∣∇φ(t)∣∣2
L2 + 2αξ

(
f
(
φ(t)

)
, φ(t)

)
L2 ,

since 〈μ(t)〉 = 0. Then adding together the obtained relationship with (3.1), we get

d

dt
E(t)+ κE(t)=Λ1(t), (3.4)

where κ ∈ (0, ξ) and

E(t) := ∥∥(u(t), φ(t))∥∥2
YM

+ 2α
(
F
(
φ(t)

)
,1
)+ cE.

Here the constant cE = 2αCF |Ω|> 0, where CF is taken large enough in order to ensure that E is nonnegative (note
that F is bounded from below by a constant independent of ε and α). The function Λ1 is given by
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Λ1(t) := −2
ν

K
∥∥u(t)∥∥2 + κ

K
∣∣u(t)∣∣2 − 2

∣∣∇μ(t)∣∣2
L2 − (2ξ − κ)ε∣∣∇φ(t)∣∣2 + 2

K
(
u(t),g

)
+ 2α

[
κ
(
F
(
φ(t)

)− f (φ(t))φ(t),1)
L2 − (ξ − κ)(f (φ(t))φ(t),1)

L2

]
+ 2ξ

(
μ(t), φ(t)

)
L2 + κcE. (3.5)

The Hölder, Friedrich and Young inequalities yield

2ξ(μ,φ)L2 � 2ξ |μ|L2 |φ|L2 � 2ξc1/2
Ω |Ω|1/2|∇μ|L2 |∇φ|L2

� |∇μ|2
L2 + ξ2cΩ |Ω||∇φ|2

L2 .

Moreover, owing to the first assumption of (2.1), we have

c∗
∣∣f (y)∣∣(1 + |y|)� 2f (y)(y −M0)+ cf,M0 , (3.6)

F(y)− f (y)(y −M0)� c′f (y −M0)
2 + c′′f,M0

, (3.7)

for any y ∈ R. Here cf,M0 , c∗, c′f and c′′f,M0
are positive, sufficiently large constants that depend on f and M0 only.

From (3.5)–(3.7) and Poincaré’s inequality (cf. [55, (3.17), p. 461]), it follows that

Λ1(t)� − 1

K
(
ν − κcΩ |Ω|)∥∥u(t)∥∥2 − ∣∣∇μ(t)∣∣2

L2 − [
ξ
(
2 − ξcΩ |Ω|ε−1)− κ(1 + 2αε−1cΩc

′
f |Ω|)]ε∣∣∇φ(t)∣∣2

− c∗α(ξ − κ)(∣∣f (φ(t))∣∣,1 + ∣∣φ(t)∣∣)+ 1

νK ‖g‖2
V∗ + c1,

where cΩ depends on the shape ofΩ , but not on its size and c1 > 0 depends on κ , cf ,M0 and c′′f at most. Furthermore,
performing a more careful computation of c1, we get

c1 = 2καCF |Ω| + 2ακc′′f,M0
|Ω| + cf,M0α(ξ − κ)|Ω|.

From now on, ci stands for a positive constant which is independent on the initial data and on time.
Observe that it is possible to adjust ξ = ε/(cΩ |Ω|) and κ ∈ (0, ξ) by letting

κ = min
{
ν/
(
2cΩ |Ω|), ε/(2cΩ |Ω|), ξ/(1 + 2αε−1cΩc

′
f |Ω|)},

in order to have

d

dt
E(t)+ κE(t)+ κ1

(
ν

K
∥∥u(t)∥∥2 + ε∣∣∇φ(t)∣∣2)+ ∣∣∇μ(t)∣∣2

L2 + κ2
(∣∣f (φ(t))∣∣,1 + ∣∣φ(t)∣∣)

L2

� 1

νK ‖g‖2
V∗ + c1.

Then, applying a suitable version of the Gronwall inequality (see, e.g., [32, Lemma 2.5]), we deduce that

E(t)+
t+1∫
t

[
κ1

(
ν

K
∥∥u(s)∥∥2 + ε∣∣∇φ(s)∣∣2)+ ∣∣∇μ(s)∣∣2

L2

]
ds + κ2

t+1∫
t

(∣∣f (φ(s))∣∣,1 + ∣∣φ(s)∣∣)
L2 ds

� 2E(0)e−κt + 2κ−1
(

1

νK ‖g‖2
V∗ + c1

)
, ∀t � 0. (3.8)

On the other hand, one can check that there exists a monotone non-decreasing function Q, independent of t and on
the initial data, such that∥∥(u(t), φ(t))∥∥2

YM
− ε〈φ(t)〉2 �E(t)�Q

(∥∥(u(t), φ(t))∥∥2
YM

)
. (3.9)

Taking (3.9) into account and observing that assumption (2.1) also implies that∣∣F(y)∣∣− cM0 �
∣∣f (y)∣∣(1 + |y|),

for some positive constant cM0 and all y ∈ R, we obtain the following estimate:
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∥∥(u(t), φ(t))∥∥2
YM

+
t+1∫
t

(
ν

K
∥∥u(s)∥∥2 + ∣∣∇μ(s)∣∣2

L2

)
ds +

t+1∫
t

(
ε
∣∣∇φ(s)∣∣2 + ∣∣F (φ(s))∣∣

L1

)
ds

�Q
(∥∥(u(t), φ(t))∥∥2

YM

)
e−κt + c2, (3.10)

where c2 = 2κ−1(ν−1 K−1‖g‖2
V∗ +c1)+cM0 +ε(M0)

2. It is left to prove the estimate for the remaining terms in (3.3).
We proceed as follows. First, take the average over Ω of the second equation of (2.9) and notice that, due to (1.5) and
assumption (2.1), we have〈

μ(t)
〉2 = α2〈f (φ(t))〉2 � α2cf

(
1 + ∣∣φ(t)∣∣2m+2

L2m+2

)
� α2cf,m

[
1 + ε−m−1(ε∣∣∇φ(t)∣∣2

L2 + ε〈φ(t)〉2)m+1]
.

Here we have used the injection H 1(Ω) ↪→ L2m+2(Ω), m ∈ [1,+∞). Thus, we deduce from (3.10) the required
estimate for the average of μ over Ω , that is,

t+1∫
t

〈
μ(s)

〉2
ds �Q

(∥∥(u(t), φ(t))∥∥2
YM

)
e−(m+1)κt + c3, ∀t � 0,

where c3 = α2cf,m[1 + cm2 ε−(m+1)]. Hence the above inequality together with the estimate for |∇μ|L2 from (3.10),
yields

t+1∫
t

∣∣μ(s)∣∣2
H 1 ds �Q

(∥∥(u(t), φ(t))∥∥2
YM

)
e−ρt + c4, ∀t � 0, (3.11)

for some positive constant ρ that depends only on κ and m, and where c4 = c2 + c3. Furthermore, we observe that,
from (3.10)–(3.11) and the injection H 1(Ω) ↪→ Lβ(Ω), β ∈ [1,+∞), it follows that

t+1∫
t

∣∣ANφ(s)∣∣2L2 ds � ε−2

t+1∫
t

(∣∣μ(s)∣∣2
L2 + α2

∣∣f (φ(s))∣∣2
L2

)
ds

� ε−2(Q(∥∥(u(t), φ(t))∥∥2
YM

)
e−ρt + c6

)
,

for all t � 0. Also, using a well-known regularity result, we obtain

t+1∫
t

∣∣φ(s)∣∣2
H 3 ds �Q

(∥∥(u(t), φ(t))∥∥2
YM

)
e−ρt + c7, ∀t � 0. (3.12)

In order to deduce an a priori bound on ∂tφ in L2([t, t + 1];H−1(Ω)), we use the last two equations of (2.9).
From (3.8), (3.11), and the fact that 〈∂tφ(t)〉 = 0 for all t � 0, we have that

t+1∫
t

∣∣∂tφ(s)∣∣2H−1 ds �
t+1∫
t

(∣∣ANμ(s)∣∣2H−1 + ∣∣B1
(
u(s),φ(s)

)∣∣2
H−1

)
ds

�
t+1∫
t

(∣∣μ(s)∣∣2
H 1 + cΩ

∥∥u(s)∥∥2∣∣φ(s)∣∣2
H 1

)
ds

�Q
(∥∥(u(t), φ(t))∥∥2

YM

)
e−ρt + c8, ∀t � 0. (3.13)

To get a uniform bound on ∂tu in L2([t, t + 1];V
∗), it is enough to observe that∥∥B0(u,u)

∥∥2
∗ � cΩ |u|2‖u‖2

V
, ∀u ∈ V,
V
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and νA0u ∈ L2([t, t + 1];V
∗). Besides, the following inequality holds (cf., e.g., [55]):∣∣(R0(εANφ,φ),v

)∣∣= ∣∣b1(v, φ, εANφ)
∣∣� c9‖v‖|φ|H 1 |ANφ|1/2

L2 |φ|1/2
H 3 ,

for all v ∈ V and φ ∈D(AN)∩H 3(Ω). Therefore, we have∥∥R0(εANφ,φ)
∥∥2

V∗ � c10|φ|2
H 1 |ANφ|L2 |φ|H 3 . (3.14)

Hence, if (u, φ) satisfies (3.10) and (3.12), then R0(εANφ,φ) ∈ L2([t, t + 1];V
∗). Finally, from estimates (3.10)

and (3.12)–(3.14), the integral control of ∂tu in (3.3) is deduced by comparison from the first equation of (2.9).
Summing up, we have completed the proof of (3.3). �

As a consequence, we also prove some bounds which will be useful to estimate the dimension of the global attractor
in Section 4.

Proposition 3.2. Let the assumptions of Proposition 3.1 hold. Then we have

lim sup
t→+∞

1

t

t∫
0

∥∥u(s)∥∥2
ds �

‖g‖2
V∗
ν2

, lim sup
t→+∞

1

t

t∫
0

∣∣μ(s)∣∣2
H 1 ds � δ2, (3.15)

lim sup
t→+∞

[
1

K
∣∣u(t)∣∣2 + ε(∣∣∇φ(t)∣∣2

L2 + 〈
φ(t)

〉2)]� δ1, (3.16)

where

δ1 := 2

νKκ1
‖g‖2

V∗ + 2c1(M)

κ1
+ εM2,

δ2 := (2νK)−1‖g‖2
V∗ + α2cf

(
1 + ε−(m+1)δm+1

1

)
,

with

κ1 = min
{
ν/
(
2cΩ |Ω|), ξ1/2, ξ1/(1 + 2c′f αε−1cΩ |Ω|)}, ξ1 = ε/(cΩ |Ω|)

and c1 = c1(M) as in the proof of Proposition 3.1. In addition, we have

lim sup
t→+∞

1

t

t∫
0

(∣∣ANφ(s)∣∣2L2 + 〈
φ(s)

〉2)
ds � δ3, (3.17)

where

δ3 := ε−2δ2 + α2ε−2cf + α2c′′f ε−(m+3)δm+1
1 +M2.

Proof. Integrating relation (3.1) over (0, t) and employing the standard Hölder and Young inequalities, we get the
energy inequality

1

K
∣∣u(t)∣∣2 + 2F

(
φ(t)

)+
t∫

0

(
ν

K
∥∥u(s)∥∥2 + 2

∣∣∇μ(s)∣∣2
L2

)
ds � 1

K
∣∣u(0)∣∣2 + 2F

(
φ(0)

)+ ‖g‖2
V∗

νK t, ∀t � 0,

from which we deduce (3.16) and the first part of estimate (3.15). Moreover, we have

lim sup
t→+∞

1

t

t∫
0

∣∣∇μ(s)∣∣2
L2 ds �

‖g‖2
V∗

2νK . (3.18)

Using assumption (2.1) on the nonlinearity f , we readily see that
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t∫
0

〈
μ(s)

〉2
ds = α2

t∫
0

〈
f
(
φ(s)

)〉2
ds

� α2cf

(
t + ε−(m+1)

t∫
0

(
ε
∣∣∇φ(s)∣∣2

L2 + ε〈φ(s)〉2)m+1
ds

)
.

Dividing both sides of the above inequality by t and employing estimate (3.16), the second part of estimate (3.15) is
a straightforward consequence of (3.18).

Analogously, using the second equation of (2.9), we deduce

t∫
0

∣∣ANφ(s)∣∣2L2 ds � ε−2

t∫
0

∣∣μ(s)∣∣2
L2 ds + α2ε−2cf

t∫
0

(
1 + ∣∣φ(s)∣∣2m+2

L2m+2

)
ds

� ε−2

t∫
0

∣∣μ(s)∣∣2
L2 ds + α2ε−2cf t + α2ε−2c′′f ε−(m+1)

t∫
0

(
ε
∣∣∇φ(s)∣∣2

L2 + ε〈φ(s)〉2)m+1
ds,

for some positive constant c′′f depending on cf . Here we have also used the fact that H 1(Ω) ↪→ L2m+2(Ω), for any
arbitrary m. Dividing both sides of the above inequality by t and employing estimates (3.15)–(3.16) once again and
the Hölder inequality, we infer (3.17). �

Proposition 3.1 is the basic ingredient to establish the existence of a solution to P by means of a Faedo–Galerkin
approach (see, e.g., [9]). Instead, uniqueness of weak solutions and their time continuity are consequences of the
following lemma.

Lemma 3.3. Let the assumptions of Proposition 3.1 hold. Let (ui , φi) be the solution corresponding to the initial data
(ui (0),φi(0)) ∈ YM , i = 1,2. Then, for any t � 0, the following estimate holds:

∥∥((u1 − u2)(t), (φ1 − φ2)(t)
)∥∥2

YM
+

t∫
0

[
ν
∥∥(u1 − u1)(s)

∥∥2 + ε2
∣∣(φ1 − φ2)(s)

∣∣2
H 2

]
ds

� CeLt
∥∥((u1 − u2)(0), (φ1 − φ2)(0)

)∥∥2
YM
, (3.19)

where C and L are positive constants depending only on the norms of the initial data in YM , on Ω and on the
parameters of the problem, but are both independent of time.

Proof. Let us first set ψ := φ1 − φ2, w := u1 − u2. Also, let us introduce the function μ := μ̃− 〈μ̃〉, where

μ̃(t)= εANψ(t)− α
[
f
(
φ2(t)

)− f (φ1(t)
)]

and note that 〈μ(t)〉 = 0 and 〈∂tψ(t)〉 = 0, due (2.4). We also have〈
ψ(t)

〉= 〈
φ1(0)

〉− 〈
φ2(0)

〉=:M1,2.

However, in general 〈φ1(0)〉 �= 〈φ2(0)〉. To this end, we introduce a new function ψ(t) = ψ(t) − M1,2 so that
〈ψ(t)〉 = 0, by definition. Then we easily realize that (w,ψ) solves the system⎧⎨⎩

∂tw + νA0w = B0(u2,u2)−B0(u1,u1)− KR0(εANφ2, φ2)+ KR0(εANφ1, φ1),

μ= εANψ − α[f (φ2)− f (φ1)
]− 〈μ̃〉,

∂tψ +ANμ= B1(u2, φ2)−B1(u1, φ1),

which we rewrite, using the properties of the bilinear forms B0, B1 and R0, as⎧⎪⎨⎪⎩
∂tw + νA0w = −(B0(w,u1)+B0(u2,w)

)+ K
(
R0(εANφ2,ψ)− R0(εANψ,φ1)

)
,

μ= εANψ − α[f (φ2)− f (φ1)
]− 〈μ̃〉,

∂ ψ +A μ= −(B (w, φ )+B (u ,ψ)). (3.20)
t N 1 1 1 2
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Take w(t) as a test function in the first equation of (3.20). Then, take the duality coupling of the second and third equa-
tions of (3.20) with ANμ(t)+ εζANψ(t) (with ζ > 0 sufficiently small to be selected in the sequel) and εANψ(t),
respectively. On account of the orthogonality properties of b0 and b1, we add the resulting equations and we deduce
the identity

1

2

d

dt
Y1(t)+ ν

∥∥w(t)∥∥2 + ∣∣∇μ(t)∣∣2
L2 + ε2ζ

∣∣ANψ(t)∣∣2L2

= −b0(w,u1,w)+ K
(
R0(εANφ2,ψ),w

)− K
(
R0(εANψ,φ1),w

)
− b1(w, φ1, εANψ)− b1(u2,ψ, εANψ)+ ζ(μ, εANψ)L2

+ αζε(f (φ1)− f (φ2),ANψ
)
L2 − α(f (φ1)− f (φ2),ANμ

)
L2 , (3.21)

where

Y1(t) :=
∣∣w(t)∣∣2 + ε∣∣∇ψ(t)∣∣2.

Before we proceed with estimating all the terms on the right-hand side of (3.21). From now on, throughout the paper,
c will denote a generic positive constant (depending only on ν, ε, K, α, Ω , M) which can take different values,
sometimes even within the same line. This constant is independent of time and initial data. Using [51, Proposition 9.2,
(9.26)–(9.27)] and suitable Young inequalities, we estimate the first, fourth and fifth terms on the right-hand side
of (3.21), as follows:∣∣b0(w,u1,w)

∣∣� c|w|1/2‖w‖1/2‖u1‖1/2|w|1/2‖w‖1/2

� ν
4
‖w‖2 + c‖u1‖2|w|2. (3.22)

Similarly, we have∣∣b1(w, φ1, εANψ)
∣∣� c|w|1/2‖w‖1/2|φ1|1/2H 1 |φ1|1/2H 2 |ANψ |L2

� c|w|‖w‖|φ1|H 1 |φ1|H 2 + ε
2ζ

16
|ANψ |2

L2

� 1

4

(
ν‖w‖2 + ε

2ζ

4
|ANψ |2

L2

)
+ cζ |φ1|2H 1 |φ1|2H 2 |w|2 (3.23)

and ∣∣b1(u2,ψ, εANψ)
∣∣� c|u2|1/2‖u2‖1/2|ψ |1/2

H 1 |ANψ |1/2
L2 |ANψ |L2

= c|u2|1/2‖u2‖1/2|ψ |1/2
H 1 |ANψ |3/2

L2

� c|u2|2‖u2‖2(ε|∇ψ |2
L2 + ε〈ψ〉2)+ ε

2ζ

16
|ANψ |2

L2 , (3.24)

where, in estimating (3.24), we have used the Young inequality with exponents 4 and 4/3. Regarding the last two
terms in (3.21), employing the standard Hölder and Sobolev inequalities, we obtain

α
∣∣(f (φ1)− f (φ2),ANμ

)
L2

∣∣= α∣∣(∇(f (φ1)− f (φ2)
)
,∇μ)

L2

∣∣
�Q

(|φ1|H 1 + |φ2|H 1

)(|φ1|2H 2 + |φ2|2H 2

)(
ε|∇ψ |2

L2 +M2
1,2

)+ 1

2
|∇μ|2

L2 (3.25)

and

αζε
∣∣(f (φ1)− f (φ2),ANψ

)
L2

∣∣�Qζ (|φ1|H 1 + |φ2|H 1

)(
ε|∇ψ |2

L2 +M2
1,2

)+ ε
2ζ

16
|ANψ |2

L2 ,

for suitable monotone non-decreasing functionsQ,Qζ independent of time, which clearly depend on ε and α. Besides,
we have
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K
∣∣(R0(εANφ2,ψ),w

)∣∣� c|w|1/2‖w‖1/2|ψ |1/2
H 1 |ANψ |1/2

L2 |φ2|H 2

� c|w|2/3‖w‖2/3|ψ |2/3
H 1 |φ2|4/3H 2 + ε

2ζ

8
|ANψ |2

L2

� 1

4

(
ν‖w‖2 + ε

2ζ

8
|ANψ |2

L2

)
+ c|w||ψ |H 1 |φ2|2H 2

� 1

4

(
ν‖w‖2 + ε

2ζ

8
|ANψ |2

L2

)
+ c(|w|2 + ε|∇ψ |2

L2

)|φ2|2H 2 (3.26)

and

K
∣∣(R0(εANψ,φ1),w

)∣∣� c|w|1/2‖w‖1/2|φ1|1/2H 1 |φ1|1/2H 2 |ANψ |L2

� ν
8
‖w‖2 + ε

2ζ

32
|ANψ |2

L2 + c|w|2|φ1|2H 1 |φ1|2H 2

� 1

4

(
ν

2
‖w‖2 + ε

2ζ

8
|ANψ |2

L2

)
+ c|w|2|φ1|2H 1 |φ1|2H 2 . (3.27)

Finally, we estimate the remaining term in (3.21) as follows:

ζ(μ, εANψ)L2 � ζCΩ
2

|∇μ|2
L2 + ε

2ζ

2
|ANψ |2

L2 .

Inserting the above estimates into the right-hand side of (3.21), we obtain

d

dt
Y1(t)+ ν

4

∥∥w(t)∥∥2 + (1 − ζCΩ)
∣∣∇μ(t)∣∣2

L2 + ε
2ζ

2

∣∣ANψ(t)∣∣2L2 � J1(t)Y(t)+M2
1,2 J2(t), (3.28)

where

J1(t) := c
(∥∥u1(t)

∥∥2 + (
1 + ∣∣φ1(t)

∣∣2
H 1

)∣∣φ1(t)
∣∣2
H 2 + ∣∣u2(t)

∣∣2∥∥u2(t)
∥∥2)

+Q(∣∣φ1(t)
∣∣
H 1 + ∣∣φ2(t)

∣∣
H 1

)(
1 + ∣∣φ1(t)

∣∣2
H 2 + ∣∣φ2(t)

∣∣2
H 2

)
and

J2(t) :=Q
(∣∣φ1(t)

∣∣
H 1 + ∣∣φ2(t)

∣∣
H 1

)(
1 + ∣∣φ1(t)

∣∣2
H 2 + ∣∣φ2(t)

∣∣2
H 2

)
.

Obviously, (3.28) implies that

Y1(t)� J3(t)+
t∫

0

J1(s)Y1(s) ds,

where

J3(t) := Y1(0)+M2
1,2

t∫
0

J2(s) ds.

From (3.3), it is readily seen that, for i = 1,2,

sup
t�0

t+1∫
t

Ji (s) ds �Q
(∥∥(u1(0),φ1(0)

)∥∥
YM

+ ∥∥(u2(0),φ2(0)
)∥∥

YM

)+ c. (3.29)

Thus, exploiting a suitable version of the Gronwall inequality, and choosing ζ sufficiently small in (3.28), we deduce
the following inequality:

Y1(t)+
t∫ [
ν
∥∥(u1 − u1)(s)

∥∥2 + ε2
∣∣ANψ(s)∣∣2L2

]
ds � J3(t)+

t∫
J3(s)J1(s) exp

( t∫
J1(τ ) dτ

)
ds, ∀t � 0.
0 0 s
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Finally, employing both estimates of (3.29) and the obvious inequalities〈
ψ(t)

〉2 =M2
1,2 � c

∥∥(w(0),ψ(0))∥∥2
YM
, J3(t)� CeCt

∥∥(w(0),ψ(0))∥∥2
YM
, (3.30)

for all t � 0, the claim (3.19) follows immediately from (3.30). We recall that C is a positive constant that depends on
the norm of the initial data in YM , but is independent of t . The proof of lemma is now complete. �
Remark 3.4. Note that we can control the terms R0(ANψ,φ1) and R0(εANφ2,ψ) in the first equation of (3.20),
thanks to the assumption f ∈ C2(R).

Thanks to Lemma 3.3 we can now state

Theorem 3.5. Let the assumptions of Proposition 3.1 hold. Then P defines a (nonlinear) strongly continuous semi-
group

S(t) : YM → YM, (3.31)

by setting, for all t � 0,

S(t)(u0, φ0)=
(
u(t), φ(t)

)
, (3.32)

where (u, φ) is the unique solution to Problem P.

Besides, Proposition 3.1 yields

Proposition 3.6. Let the assumptions of Proposition 3.1 hold. Then S(t) has a YM -bounded absorbing set. For
instance

B := {
(u, φ) ∈ YM :

∥∥(u, φ)∥∥
YM

� (C0 + 1)1/2
}
,

where C0 is the positive constant in (3.3), is an absorbing set for S(t). This means that, for any bounded set B in YM ,
there exists t0 = t0(B) > 0 for which

sup
(u0,φ0)∈B

∥∥S(t)(u0, φ0)
∥∥2

YM
� C0 + 1, ∀t � t0. (3.33)

3.2. Existence of compact absorbing sets

In this subsection, we prove that our dynamical system has absorbing sets which are compact in the phase-space.
These results will entail the existence of the global attractor (see next subsection).

Lemma 3.7. Let g ∈ H and f ∈ C2(R) satisfy (2.1). Then there is a positive constant C1, only depending on the
physical parameters, such that for any YM -bounded set B, there exists t1 = t1(B) > 0 such that

sup
(u0,φ0)∈B

∥∥S(t)(u0, φ0)
∥∥

V×H 2(Ω)
� C1, ∀t � t1. (3.34)

Proof. The following estimates will be deduced by a formal argument as before. However, even in this case, they can
be rigorously justified taking advantage once more of a standard approximation procedure (see [9]). We recall that c
denotes a generic positive constant which is independent of time and of the initial data. This constant may vary even
within the same line.

First we introduce the functions φ(t) = φ(t)−M0 and μ(t) = μ(t)− 〈μ(t)〉 (with μ given by Remark 2.2) and
observe that 〈φ(t)〉 = 〈μ(t)〉 = 0. Let us now take the inner product of the first equation of (2.9) in H with 2A0u(t)

(recall that we can do that within a suitable Galerkin discretization scheme, see, e.g., [9]). Then, we take the inner
product of both the second and third equations of (2.9) in L2(Ω) with 2B2

Nμ(t) + 2ηB3
Nφ(t) (η > 0 is a small

parameter to be chosen later) and 2εB2 φ(t), respectively. Adding up the resulting relationships, we obtain
N
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d

dt
Y2(t)+ 2ν

∣∣A0u(t)
∣∣2 + 2ηε

∣∣B2
Nφ(t)

∣∣2
L2 + 2

∣∣BNμ(t)∣∣2L2

= 2K
(
R0
(
εANφ(t),φ(t)

)
,A0u(t)

)− 2
(
B0
(
u(t),u(t)

)
,A0u(t)

)+ (
g,A0u(t)

)
− 2α

(
AN

(
f
(
φ(t)

)− 〈
f
(
φ(t)

)〉)
,BNμ(t)

)
L2 − 2

(
B1
(
u(t), φ(t)

)
,B2
Nφ(t)

)
L2

+ 2η
(
BNμ(t),B

2
Nφ(t)

)+ 2αη
(
BN
(
f
(
φ(t)

)− 〈
f
(
φ(t)

)〉)
,B2
Nφ(t)

)
L2 , (3.35)

where

Y2(t) :=
∥∥u(t)∥∥2 + ε∣∣BNφ(t)∣∣2L2 , ∀t � t0. (3.36)

We begin by estimating all the terms on the right-hand side of (3.35). Using the Agmon inequality in two dimensions
and the Young inequality (with exponents (4,4/3) and (3/2,3), respectively), we obtain

2K
∣∣(R0(εANφ,φ),A0u

)∣∣= 2K
∣∣(R0(εBNφ,φ),A0u

)∣∣
� 2Kε

∣∣R0(BNφ,φ)
∣∣|A0u|

� 2Kε|BNφ|L2 |∇φ|L∞|A0u|
� cε|BNφ|L2 |∇φ|1/2

L2

∣∣B3/2
N φ

∣∣1/2
L2 |A0u|

� c|BNφ|4/3
L2 |∇φ|2/3

L2 |A0u|4/3 + ηε
2

∣∣B2
Nφ
∣∣2
L2

� c|BNφ|4
L2 |∇φ|2

L2 + ν
2
|A0u|2 + ηε

2

∣∣B2
Nφ
∣∣2
L2

= c|BNφ|2
L2 |∇φ|2

L2 |BNφ|2
L2 + ν

2
|A0u|2 + ηε

2

∣∣B2
Nφ
∣∣2
L2 . (3.37)

By the continuity properties of B0, we also get

2
∣∣(B0(u,u),A0u

)∣∣� 2
∣∣B0(u,u)

∣∣|A0u| � c|u|1/2‖u‖|A0u|1/2|A0u|
� c|u|2‖u‖2‖u‖2 + ν

2
|A0u|2,

where we have employed the Young inequality with exponents 4/3 and 4. Moreover, we have

2
∣∣(B1(u, φ),B

2
Nφ
)
L2

∣∣� 2
∣∣B1(u, φ)

∣∣
L2

∣∣B2
Nφ
∣∣
L2

� ηε
2

∣∣B2
Nφ
∣∣2
L2 + c|u|‖u‖|∇φ|L2 |BNφ|L2

� ηε
2

∣∣B2
Nφ
∣∣2
L2 + c(|u|2‖u‖2 + |∇φ|2

L2 |BNφ|2
L2

)
and

2η
∣∣(BNμ,B2

Nφ
)
L2

∣∣� ηε
4

∣∣B2
Nφ
∣∣2
L2 + 4ε−1η|BNμ|2

L2 .

Then, using the Hölder, Young and Sobolev inequalities, we obtain (cf. also (2.1))

2α
∣∣(BN (f (φ)− 〈

f (φ)
〉)
,BNμ

)
L2

∣∣
� αη|BNμ|2

L2 + c∣∣BN (f (φ)− 〈
f (φ)

〉)∣∣2
L2

� αη|BNμ|2
L2 + c(∣∣f ′′(φ)|∇φ|2∣∣2

L2 + ∣∣f ′(φ)BNφ
∣∣2
L2

)
� αη|BNμ|2

L2 +Q(|φ|H 1

)|BNφ|2
L2

(
1 + |BNφ|2

L2

)+ ηε
4

∣∣B3/2
N φ

∣∣2
L2, (3.38)

for some monotone non-decreasing function Q, which is independent of time and of initial data. Finally, arguing
exactly as in (3.38), we also have that

2αη
∣∣(BN (f (φ)− 〈

f (φ)
〉)
,B2
Nφ
)
L2

∣∣� ηε
4

∣∣B2
Nφ
∣∣2
L2 +Q(|φ|H 1

)|BNφ|2
L2

(
1 + |BNφ|2

L2

)
. (3.39)

Collecting now all estimates (3.37)–(3.39), using them to estimate the right-hand side of (3.35) and observing that
(3.33) also holds, after standard transformations, we obtain that
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d

dt
Y2(t)+ ν

∣∣A0u(t)
∣∣2 + ηε

4

∣∣B2
Nφ(t)

∣∣2
L2 + [

2 − (
4ε−1 + α)η]∣∣BNμ(t)∣∣2L2

� G1(t)Y(t)+ G2(t), ∀t � t0, (3.40)

where

G1(t) := c
∣∣u(t)∣∣2∥∥u(t)∥∥2 + c∣∣∇φ(t)∣∣2

L2

∣∣BNφ(t)∣∣2L2 +Q(∣∣φ(t)∣∣
H 1

)(
1 + ∣∣BNφ(t)∣∣2L2

)
,

G2(t) := ν−1|g|2 + c(1 + ∣∣u(t)∣∣2 + ∣∣∇φ(t)∣∣2
L2

)
.

Choosing η := 1/(4ε−1 +α) in (3.40), recalling that φ(t)= φ(t)−M0 and μ(t)= μ(t)−〈μ(t)〉, and exploiting (3.3),
it is easy to check that there exist positive constants ai , i = 1,2,3 (independent of time and initial data) such that

sup
t�t0

t+1∫
t

Y2(s) ds � α1, sup
t�t0

t+1∫
t

G1(s) ds � α2, sup
t�t0

t+1∫
t

G2(s) ds � α3. (3.41)

From (3.40)–(3.41), owing to the uniform Gronwall lemma (see, e.g., [55, Chap. III, Lemma 1.1]), we conclude that

Y2(t + 1)� (α3 + α2)e
α1 , ∀t � t0,

which entails, for all t � t1 = t0 + 1,

∥∥u(t)∥∥2 + ε∣∣BNφ(t)∣∣2L2 +
t+1∫
t

ν
∣∣A0u(s)

∣∣2 ds +
t+1∫
t

(∣∣BNμ(s)∣∣2L2 + ε∣∣B2
Nφ(t)

∣∣2
L2

)
ds � c. (3.42)

The claim (3.34) follows from (3.33) and (3.42). The proof is finished. �
Remark 3.8. Observe that, thanks to (3.34) and to the embedding H 2(Ω) ↪→L∞(Ω), we have∣∣φ(t)∣∣

L∞ � c, ∀t � t1. (3.43)

We can also prove (see [26] or [51, Chap. 12] for the Navier–Stokes equations)

Proposition 3.9. Let the assumptions of Lemma 3.7 hold. Assume Γ is of class C4. Then there exists a H
2(Ω) ×

H 4(Ω)-bounded absorbing set, for the semigroup S(t). More precisely, there exist a time t2 � t1 and a positive
constant C2 such that∣∣A0u(t)

∣∣2 + ∣∣φ(t)∣∣2
H 4 + ∣∣μ(t)∣∣2

D(AN)
� C2, ∀t � t2. (3.44)

Proof. First, observe that, from (3.3) and (3.42), we also have that

sup
t�t1

t+1∫
t

(∣∣μ(s)∣∣2
H 2 + ε∣∣φ(t)∣∣2

H 4

)
ds � c, (3.45)

which yields, using (3.42) once more and (3.43), and arguing exactly as in [51, Proposition 12.4, (12.9)–(12.10)],

sup
t�t1

[∣∣μ(t)∣∣2
L2 +

t+1∫
t

∣∣∂tu(s)∣∣2 ds]� c. (3.46)

From (2.9), we have that

∂tφ(t)= −BN
(
μ(t)− 〈

μ(t)
〉)−B1

(
u(t), φ(t)

)
, a.e. in Ω × (t1,+∞). (3.47)

Using known properties of the bilinear form B1 (see, e.g., [51, p. 243]), the Hölder and Ladyzhenskaya inequalities,
we have
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∣∣B1(u, φ)
∣∣2
L2 �

2∑
i=1

(|ui |2L4 |∂xi φ|2
L4

)
� cΩ

2∑
i=1

(|ui |L2 |ui |H 1 |∂xi φ|L2 |∂xi φ|H 1

)
� cΩ |u|‖u‖|φ|H 1 |φ|H 2 , (3.48)

where cΩ > 0 depends only on Ω . Then, using estimates (3.34), (3.45), (3.48), and recalling that 〈∂tφ(t)〉 = 0, it is
not difficult to realize that

sup
t�t1

∣∣B−1
N ∂tφ(t)

∣∣2
L2 + sup

t�t1

t+1∫
t

∣∣∂tφ(s)∣∣2L2 ds � c. (3.49)

To prove (3.44), we need to differentiate all the equations of (2.9) with respect to time. Taking the inner products of
the resulting equations in H and L2(Ω) with 2∂tu(t), 2BN∂tφ(t) and 2∂tφ(t), respectively, and adding the resulting
relations, after standard transformations (i.e., orthogonality properties of the trilinear forms b0, b1 and the fact that
〈∂tφ(t)〉 = 0), we infer that

d

dt
Y3(t)+ 2ν

∥∥∂tu(t)∥∥2 + 2ε
∣∣BN∂tφ(t)∣∣2L2 =Λ1(t), ∀t � t1, (3.50)

where

Y3(t) :=
∣∣∂tu(t)∣∣2 + ∣∣∂tφ(t)∣∣2L2

and

Λ1(t) := −2b0
(
∂tu(t),u(t), ∂tu(t)

)− 2b1
(
∂tu(t), φ(t), ∂tφ(t)

)
+ 2K

(
R0
(
εBN∂tφ(t), φ(t)

)
, ∂tu(t)

)+ 2K
(
R0
(
εANφ(t), ∂tφ(t)

)
, ∂tu(t)

)
− 2α

(
f ′(φ(t))∂tφ(t),BN∂tφ(t))L2 . (3.51)

Using the continuity properties of the trilinear forms b0, b1, we estimate the first two terms in Λ1(t), as follows:

2
∣∣b0(∂tu,u, ∂tu)+ b1(∂tu, φ, ∂tφ)

∣∣
� c|∂tu|‖u‖1/2‖∂tu‖ + c|∂tu|1/2‖∂tu‖1/2|φ|1/2

H 1 |BN∂tφ|1/2
L2 |∂tφ|L2 (3.52)

and by applying Young’s inequality repeatedly, we get

2
∣∣b0(∂tu,u, ∂tu)+ b1(∂tu, φ, ∂tφ)

∣∣
�
(
ν

4
‖∂tu‖2 + c|∂tu|2‖u‖

)
+
(
ν

4
‖∂tu‖2 + ε

4
|BN∂tφ|2

L2 + c|∂tu||φ|H 1 |∂tφ|2
L2

)
� ν

2
‖∂tu‖2 + ε

4
|BN∂tφ|2

L2 + c|∂tu|2‖u‖ + c|∂tu||φ|H 1 |∂tφ|2
L2 .

Analogously, using the generalized Hölder and Agmon inequalities, we obtain

2K
(
R0(εBN∂tφ,φ), ∂tu

)= 2Kεb1(∂tu, φ,BN∂tφ)

� c|∂tu||∇φ|L∞|BN∂tφ|L2

� c|∂tu|(|∇φ|1/2
L2 |φ|1/2

H 3

)|BN∂tφ|L2

� ε

4
|BN∂tφ|2

L2 + c|∂tu|2|φ|H 1 |φ|H 3 .

Here and in the sequel of this proof,Q(·) stands for some continuous, positive and monotone non-decreasing function
independent of time and initial data. Arguing now as in the proof of Lemma 3.7 (see (3.37)), we easily get
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2K
(
R0(εBNφ, ∂tφ), ∂tu

)− 2α
(
f ′(φ)∂tφ,BN∂tφ

)
L2

� ε

4
|∇∂tφ|2

L2 + ν
2
‖∂tu‖2 + c|∂tu|2

L2 |φ|2
H 2 |φ|2

H 3 +Q(|φ|H 1

)|∂tφ|2
L2 + ε

4
|BN∂tφ|2

L2 . (3.53)

Recalling (3.51) and inserting all estimates (3.52)–(3.53) into the right-hand side of (3.50), we get

d

dt
Y3(t)+ ν

∥∥∂tu(t)∥∥2 + ε∣∣BN∂tφ(t)∣∣2L2 �Λ2(t)Y3(t), ∀t � t1, (3.54)

where

Λ2 := c(|∂tu||φ|H 1 + ∣∣φ(t)∣∣
H 1 |φ|H 3 + |φ|2

H 2 |φ|2
H 3

)+Q(|φ|H 1

)+ c‖u‖.
Applying the uniform Gronwall inequality once more (see, e.g., [55, Chap. III, Lemma 1.1]), and using esti-
mates (3.34), (3.43), (3.45), (3.46), (3.49), we can find a time t2 � t1 such that∣∣∂tu(t)∣∣2 + ∣∣∂tφ(t)∣∣2L2 � c, ∀t � t2. (3.55)

Finally, using estimates (3.34) and (3.55), we infer from (3.46)–(3.48), that∣∣μ(t)∣∣
D(AN)

� c, ∀t � t2. (3.56)

Rewriting now the first two equations of system (2.9) into the following form

A0u = −ν−1(∂tu +B0(u,u)− KR0(εANφ,φ)− g
)
,

ANφ = ε−1(μ− αf (φ)),
and exploiting the above estimates together with (3.55)–(3.56), recalling (2.1) and the regularity of Γ , we de-
duce (3.44). This finishes the proof. �
3.3. Global and exponential attractors

We are now in a position to prove the following.

Theorem 3.10. Let the assumptions of Lemma 3.7 hold. The dynamical system (YM,S(t)) possesses a connected
global attractor AM which is bounded in V×H 2(Ω). Moreover, if Γ is of class C4, then AM is bounded in H

2(Ω)×
H 4(Ω).

Proof. Proposition 3.6, Lemma 3.7 and Proposition 3.9 imply that the dynamical system (YM,S(t)) has a bounded
absorbing set and a compact absorbing set which is contained in V×D(AN) orD(A0)× (D(AN)∩H 4(Ω)), accord-
ing to the smoothness of Γ . Therefore, recalling that S(t) is also a Lipschitz continuous semigroup (cf. Lemma 3.3),
the proof follows from a well-known result (see, e.g., [51, Theorem 10.5]). �
Remark 3.11. Let h > 1 and assume g ∈ Hh−1(Ω) is divergence free and f ∈ Ch+1(R) satisfies (2.1). Then, arguing
as in Proposition 3.9, we can prove that any functional invariant set for the semigroup S(t) is in fact bounded in
H
h+1(Ω)×Hh+3(Ω), provided that Γ is smooth enough (e.g., of class Ch+3).

The second main result of this subsection is concerned with the existence of exponential attractors.

Theorem 3.12. Let Γ be of class C4, g ∈ H and f ∈ C3(R) satisfy (2.1). Then S(t) possesses an exponential attractor
EM ⊂ YM which is bounded in H

2(Ω)×H 4(Ω). Thus, by definition, we have that:

(i) EM is compact and semi-invariant with respect S(t), i.e.,

S(t)(EM)⊂ EM, ∀t � 0.

(ii) The fractal dimension dimF (EM,YM) of EM is finite.
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(iii) EM attracts exponentially fast any bounded subset B of YM , that is, there exist a positive non-decreasing func-
tion Q and a constant ρ > 0 such that

distYM
(

S(t)B,EM
)
�Q

(‖B‖YM

)
e−ρt , ∀t � 0.

Here distYM denotes the Hausdorff semi-distance between sets in YM and ‖B‖YM
stands for the size of B in YM .

Both Q and ρ can be explicitly calculated.

Remark 3.13. Theorem 3.12 entails that AM has finite fractal dimension. In the next section, this dimension will be
estimated from above in terms of ν, ε, K,M and α. In addition, it is worth observing that, due to the boundedness of E
in H

2(Ω)×H 4(Ω), then, through interpolation, one can prove that (ii) and (iii) hold with respect to the V ×H 3(Ω)-
metric.

The proof of Theorem 3.12 is based on a fundamental result on discrete semigroups (see [22]), which is reported
here below for the reader’s convenience.

Theorem 3.14. Let X1 and X2 be two Banach spaces such that X2 is compactly embedded in X1. LetX0 be a bounded
subset of X2 and consider a nonlinear map Σ :X0 →X0 satisfying the smoothing property∥∥Σ(x1)−Σ(x2)

∥∥
X2

� d‖x1 − x2‖X1, (3.57)

for all x1, x2 ∈ X0, where d > 0 depends on X0. Then the discrete dynamical system (X0,Σ
n) possesses a discrete

exponential attractor E ∗
M ⊂ X2, that is, a compact set in X1 with finite fractal dimension such that

Σ
(

E ∗
M

)⊂ E ∗
M, (3.58)

distX1

(
Σn(X0),E ∗

M

)
� dXe−ρ∗n, n ∈ N, (3.59)

where dX and ρ∗ are positive constants independent of n, with the former depending on X0.

The validity of the smoothing property as well as the extension of the discrete case to the continuous one are
consequences of the following lemmas.

Lemma 3.15. Let the assumptions of Theorem 3.12 be satisfied. Indicate by (ui , φi) the solution to P which corre-
sponds to the initial data (ui (0),φi(0)) ∈ YM , i = 1,2. Then the following estimate holds:∥∥(u1 − u1)(t)

∥∥2 + ε∣∣(φ1 − φ2)(t)
∣∣2
H 2 � C3

t + 1

t
eC4t

(∥∥((u1 − u2)(0), (φ1 − φ2)(0)
)∥∥2

YM

)
, ∀t > t2, (3.60)

where t := t − t2, while C3 and C4 are positive constants which only depend on the norms of the initial data in YM ,
on Ω and on the other structural parameters of the problem.

Proof. Let us again set ψ := φ1 −φ2, w := u1 − u2 and ψ =ψ −M1,2, whereM1,2 is as in the proof of Lemma 3.3.
Recall that (w,ψ) solves system (3.20) and that each solution (w(t),ψ(t)) satisfies (3.19) for every t � t2 (t2 is as in
the proof of Proposition 3.9). We are now ready to verify estimate (3.60). We take the inner product of the first equation
of (3.20) with A0w(t) in H. Then, take the inner product in L2(Ω) of the second and third equations of (3.20) with
B2
Nμ(t)+ εζB2

Nψ(t) (with ζ > 0 sufficiently small to be selected in the sequel) and εB2
Nψ(t), respectively. Adding

the resulting equations, we deduce that

1

2

d

dt
Y4(t)+ ν

∣∣A0w(t)
∣∣2 + ε2ζ

∣∣B3/2
N ψ(t)

∣∣2
L2 + ∣∣BNμ(t)∣∣2L2 =Λ3(t), (3.61)

for all t � t2, where Y4(t) := ‖w(t)‖2 + ε|BNψ(t)|2L2 and

Λ3 := −b0(w,u1,A0w)− b0(u2,w,A0w)+ K
(
R0(εBNφ1,ψ),A0w

)
+ K

(
R0(εBNψ,φ2),A0w

)− b1
(
w, φ1, εB

2
Nψ

)− b1
(
u2,ψ, εB

2
Nψ

)
+ α(f (φ1)− f (φ2),B

2
Nμ

)
2 + εζ(BNψ,BNμ)L2 − εζα(f (φ1)− f (φ2),B

2
Nψ

)
2 .
L L
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Before we begin estimating Λ3, it is worth recalling that (ui , φi) satisfies (3.34), (3.43)–(3.44), (3.46)–(3.49)
and (3.56). In particular, we have that∣∣A0ui (t)

∣∣2 + ∣∣φi(t)∣∣2H 4 + ∣∣μi(t)∣∣2H 2 � c, ∀t � t2, i = 1,2. (3.62)

Using the continuity properties of b0 and suitable Young inequalities, we control the first two terms in Λ3, as follows:∣∣b0(w,u1,A0w)+ b0(u2,w,A0w)
∣∣

�
(
ν

4
|A0w|2 + cΩ |w|‖w‖‖u1‖|A0u1|

)
+
(
ν

4
|A0w|2 + cΩ |u2|2‖u2‖2‖w‖2

)
� ν

2
|A0w|2 + c‖w‖2. (3.63)

Here, we have employed (3.62). Similarly, we obtain∣∣b1
(
w, φ1, εB

2
Nψ

)∣∣� c∣∣B1/2
N B1(w, φ1)

∣∣
L2

∣∣B3/2
N ψ

∣∣
L2

� c|w|1/2|A0w|1/2|φ1|1/2H 1 |φ1|1/2H 2

∣∣B3/2
N ψ

∣∣
L2 + c|w|1/2‖w‖1/2|φ1|1/2H 2 |φ1|1/2H 3

∣∣B3/2
N ψ

∣∣
L2

� ε
2ζ

2

∣∣B3/2
N ψ

∣∣2
L2 + cζ |w||A0w||φ1|H 1 |φ1|H 2 + cζ |w|‖w‖|φ1|H 2 |φ1|H 3

� ε
2ζ

2

∣∣B3/2
N ψ

∣∣2
L2 + ν

4
|A0w|2 + c‖w‖2 (3.64)

and ∣∣b1
(
u2,ψ, εB

2
Nψ

)∣∣� c∣∣B1/2
N B1(u2,ψ)

∣∣
L2

∣∣B3/2
N ψ

∣∣
L2

� c|u2|1/2|A0u2|1/2|ψ |1/2
H 1 |BNψ |1/2

L2

∣∣B3/2
N ψ

∣∣
L2 + c|u2|1/2|∇u2|1/2|BNψ |1/2

L2

∣∣B3/2
N ψ

∣∣3/2
L2

� ε
2ζ

4

∣∣B3/2
N ψ

∣∣2
L2 + cζ |u2||A0u2||ψ |H 1 |BNψ |L2 + cζ |u2|2|∇u2|2|BNψ |2

L2 . (3.65)

Moreover, we have that

εζα
∣∣(f (φ1)− f (φ2),B

2
Nψ

)
L2

∣∣= αεζ ∣∣(∇(f (φ1)− f (φ2)
)
,∇BNψ

)
L2

∣∣
� cζ

∣∣f (φ1)− f (φ2)
∣∣2
H 1 + ε

2ζ

4

∣∣B3/2
N ψ

∣∣2
L2

� cζ
(|ψ |2

H 1 +M2
1,2

)+ ε
2ζ

4

∣∣B3/2
N ψ

∣∣2
L2 . (3.66)

Analogously to (3.66), we deduce

α
(
f (φ1)− f (φ2),B

2
Nμ

)
L2 = α(AN (f (φ1)− f (φ2)

)
,BNμ

)
L2

� α
2ζ

2
|BNμ|2

L2 + c∣∣AN (f (φ1)− f (φ2)
)∣∣2
L2

� α
2ζ

2
|BNμ|2

L2 + c(|BNψ |2
L2 +M2

1,2

)
,

where we have exploited the fact that f ∈ C3(R) and used the bound (3.62), repeatedly. Let us now consider the
remaining terms of Λ3. First, Young’s inequality yields

εζ(BNψ,BNμ)L2 � ζ
2
|BNμ|2

L2 + c|BNψ |2
L2 . (3.67)

Then, exploiting the generalized Hölder and Young inequalities combined with some interpolation inequalities, and
arguing as in the proof of Lemma 3.7 (see (3.37)), we get
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K
∣∣(R0(εANφ1,ψ),A0w

)+ (
R0(εBNψ,φ2),A0w

)∣∣
� εK

(∣∣R0(ANφ1,ψ)
∣∣+ ∣∣R0(BNψ,φ2)

∣∣)|A0w|

� c|φ1|2H 2 |BNψ |2
L2 |ψ |2

H 1 + ν
8
|A0w|2 + ε

2ζ

4

∣∣B3/2
N ψ

∣∣2
L2 + c|BNψ |L2 |φ2|W 1,∞|A0w|

� c|BNψ |2
L2 + ν

4
|A0w|2 + ε

2ζ

4

∣∣B3/2
N ψ

∣∣2
L2 + c|BNψ |2

L2 |φ2|2W 1,∞

� ν
4
|A0w|2 + ε

2ζ

4

∣∣B3/2
N ψ

∣∣2
L2 + c|BNψ |2

L2 + c|BNψ |2
L2 |φ2|H 1 |φ2|H 3

� ν
4
|A0w|2 + ε

2ζ

4

∣∣B3/2
N ψ

∣∣2
L2 + c|BNψ |2

L2 . (3.68)

Consequently, collecting all the above estimates and choosing ζ > 0 sufficiently small, from (3.61), we deduce the
following differential inequality:

d

dt
Y4(t)� c

(
Y4(t)+M2

1,2

)
, ∀t > t2. (3.69)

Multiplying now both sides of this inequality by t = t − t2 and integrating the resulting relation over (t2, t), we get

tY4(t)� c
t∫
t2

(s − t2 + 1)Y4(s) ds + c

2
M2

1,2t
2, ∀t > t2, (3.70)

which entails (3.60), thanks to Lemma 3.3 and the inequalityM2
1,2 � c‖(w(0),ψ(0))‖2

YM
. The proof is complete. �

The second lemma is concerned with the time regularity of the semigroup S(t). The proof is standard and is left to
the reader (just recall (3.55)).

Lemma 3.16. Let the assumptions of Theorem 3.12 be satisfied. Then, for any bounded set B ⊂ YM there is a positive
constant c and a time t∗ = t∗(B) > 0 such that∥∥S(t)(u0, φ0)− S( t̃ )(u0, φ0)

∥∥� c
(|t − t̃ |1/2 + |t − t̃ |1/4), (3.71)

for all t, t̃ ∈ [t∗,+∞) and any (u0, φ0) ∈ B ⊂ YM .

Proof of Theorem 3.12. Using Lemma 3.3, Proposition 3.9 and (3.60), we can find a bounded subset X0 of
D(A0)× (D(AN) ∩H 4(Ω)) and t� > 0 such that, setting Σ = S(t�), the mapping Σ :X0 →X0 enjoys the smooth-
ing property (3.57). Therefore Theorem 3.14 applies to Σ and there exists a compact set E ∗

M ∈X0 with finite fractal
dimension (with respect to the metric topology of YM ) that satisfies (3.58) and (3.59). Hence, setting

EM =
⋃

t∈[t�,2t�]
S(t)E ∗

M,

we deduce that (i) and (iii) are fulfilled, while (ii) is a consequence of (3.19) and (3.71). �
Remark 3.17. Thanks to some results concerning second-order differential operators with variable coefficients (see,
e.g., [2,1]), it should be possible to extend the main results of this section to the case of concentration depen-
dent viscosities ν = ν(φ) ∈ C2(R, [ν0, ν1]), for some ν1 > ν0 > 0. In this case, the operator −ν�u is replaced by
−div(ν(φ)Du), where Du is the rate-of-strain tensor (see, for instance, [29]).

3.4. The modified problem and its semigroup

In the next two sections, we aim to estimate in terms of the physical parameters the dimension of the global attractor
and to study the convergence of a given solution of Problem P to a single equilibrium. In order to do that, it is more
convenient to concentrate our attention on S(t) restricted to the phase-space

YM0 := H × {
φ ∈H 1(Ω): 〈φ〉 =M0

}
,
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where M0 is fixed. In this case, P can be rewritten into an equivalent form. More precisely, we set, as in the proof of
Proposition 3.1, φ(t)= φ(t)−M0 and f (φ)= f (φ +M0). Then we observe that P rewritten for (u, φ) reads

Problem P0. For g ∈ V
∗ and any given pair of initial data (u0, φ0) ∈ YM0 , find a pair of functions (u, φ) satisfy-

ing (2.7)–(2.8) and⎧⎨⎩
∂tu + νA0u +B0(u,u)− KR0(εANφ,φ)= g, in V

∗, a.e. in (0,+∞),
μ= εANφ + αf (φ), a.e. in Ω × (0,+∞),
∂tφ +ANμ+B1(u, φ)= 0, in H−1, a.e. in (0,+∞),

(3.72)

and the initial conditions

u|t=0 = u0, φt=0 = φ0 −M0.

It is clear that f (r)= f (r +M0) also satisfies (2.1). Thus, all the a priori estimates and the results of the previous
sections still hold for the solutions of Problem P0.

We can then define the solving semigroup associated with Problem P0, namely,

S(t) : Y0 → Y0, S(t)(u0, φ0)=
(
u(t), φ(t)

)
, (3.73)

where (u, φ) is the unique solution of (3.72) with initial data (u0, φ0) ∈ Y0 and

Y0 := H × (
H 1(Ω)∩L2

0(Ω)
)
,

which is a Hilbert space with norm∥∥(u, φ)∥∥2
Y0

:= 1

K |u|2 + ε|∇φ|2
L2 . (3.74)

Of course, S(t)(u0, φ0 −M0)= (u(t), φ(t)−M0), where (u(t), φ(t))= S(t)(u0, φ0) is the unique solution to Prob-
lem P with initial data (u0, φ0) ∈ YM0 .

4. The fractal dimension of the global attractor

In this section, we let the assumptions of Lemma 3.7 hold. Then we consider the dynamical system (Y0,S(t))
which possesses the global attractor A ⊂ Y0. In the sequel, for the sake of exposition, we will drop the bars from φ,
μ and f .

Our goal is to estimate in terms of the physical parameters the fractal dimension of A. We begin by reviewing a few
results taken from [14]. Recalling Theorem 3.5, we consider a solution (u, φ) to P0 and we write the first variation
equations with given initial values ξ = (ξ1, ξ2) ∈ Y0, namely,⎧⎪⎪⎨⎪⎪⎩

∂tU + νA0U + B0(U)− R0(Φ)= 0,

Ψ = εANΦ + αf ′(φ +M0)Φ,

∂tΦ +ANΨ + B1(Φ)= 0,

U(0)= ξ1, Φ(0)= ξ2,
(4.1)

where

B0(U) := B0(u,U)+B0(U ,u), B1(Φ) := B1(u,Φ)+B1(U , φ), (4.2)

R0(Φ) := KR0(εANφ,Φ)+ KR0(εANΦ,φ). (4.3)

Then, we recall the following (adapted) definition of Fréchet differentiability for S(t).

Definition 4.1. Let X ⊂ Y0 be a bounded functional invariant set for S(t) and let Ξi := (ui , φi) ∈ X, i = 0,1. We say
that the mapping Ξ �→ S(t)Ξ is differentiable on X if for any Ξ0 ∈ Y0, there exists an operator L(t,Ξ0) ∈ L(Y0)

such that

sup
Ξ0,Ξ1∈X

0<‖Ξ0−Ξ1‖Y0�σ

‖S(t)Ξ1 − S(t)Ξ0 − L(t,Ξ0) · (Ξ1 −Ξ0)‖Y0

‖(Ξ1 −Ξ0)‖Y0

→ 0, (4.4)

as σ → 0.
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Using the techniques developed in Section 3 and known regularity results for parabolic equations (see, e.g., [55,
Theorem II.3.4]), we can rigorously prove the following result (the details are left to the reader since they are very
similar to the ones in [55, Chap. 6, Section 8]).

Proposition 4.2. For any fixed T > 0, problem (4.1)–(4.3) possesses a unique solution

(U ,Φ) ∈ C([0, T ];Y0
)∩L2([0, T ];V × (

D(AN)∩H 3(Ω)
))
. (4.5)

Furthermore, for every t > 0, the function Ξ0 �→ S(t)Ξ0 is Fréchet differentiable in Y0 at Ξ0 with differential

L(t,Ξ0) : ξ = (ξ1, ξ2) ∈ Y0 �→ (U ,Φ) ∈ Y0, (4.6)

where (U ,Φ) is the unique solution to (4.1)–(4.3).

For L ∈ Lin(Y0) and j ∈ N, we denote by ωj (L) the norm of the exterior product
∧j L in

∧j
Y0, thus if L =

L(t,Ξ0) and Υj := (U j ,Φj ), we have

ωj
(
L(t,Ξ0)

)= sup
ξ1,...,ξ j∈Y0

‖ξ i‖Y0 �1, i=1,...,j

∣∣Υ1(t)∧ · · · ∧Υj (t)
∣∣∧j

Y0
, (4.7)

where Υ1, . . . ,Υj , are j solutions of (4.1)–(4.3) corresponding respectively to given initial values ξ1 = (ξ1
1 , ξ

1
2 ), . . . ,

ξ j = (ξ j1 , ξ j2 ). We then set

ωj (t)= sup
Ξ0∈X

ωj
(
L(t,Ξ0)

)
and observe that these numbers are subexponential with respect to t (see, e.g., [55, Chap. 5]). As a consequence, the
limit

lim
t→+∞ωj (t)

1/t =Πj
exists for every j . The uniform Lyapunov numbers λj for X are then defined by the formula λ1 =Π1, λj =Πj/Πj−1,
j � 2. The uniform Lyapunov exponents are the numbers πj = logλj , j � 1.

We now recall the following basic result (see [14]).

Theorem 4.3. Let X be a compact functional invariant set for the semigroup S(t). If for some integer n� 1,

π1 + · · · + πn < 0, (4.8)

then

dH (X)� n and dF (X)� n
{

max
1�j�n−1

1 + π1 + · · · + πj
|π1 + · · · + πj |

}
� 2n, (4.9)

where dH (X) and dF (X) are the Hausdorff and fractal dimension of X, respectively, with respect to the Y0-metric.

It is well known that the estimation of the Lyapunov numbers depends on the following inequality (cf. [14,55])

ωn(t)� sup
Ξ0∈X

exp

(
−

t∫
0

inf
ξj∈Y0

Tr M
(
u(s),φ(s)

) ·Qn(s) ds
)

(4.10)

and Πn � exp(−qn), where

qn = lim
t→∞ sup

{
inf
Ξ0∈X

1

t

t∫
0

inf
ξj∈Y0

Tr M
(
u(s),φ(s)

) ·Qn(s) ds
}
. (4.11)

Here M(u, φ)= M(u(s),φ(s)) is the linear mapping(
U

Φ

)
�→
(

νA0U + B0(U)− R0(Φ)

εB2 Φ + αA (f ′(φ +M )Φ)+ B (Φ)

)
(4.12)
N N 0 1
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andQn(s)=Qn(s, ξ1, . . . , ξn) is the projection in Y0 onto span{Υ1(s), . . . ,Υn(s)}. Furthermore, we infer from (4.9)
that if qn > 0 for some n, then the Hausdorff dimension of X is less or equal than n and its fractal dimension is
bounded by n(1 + max1�k�n(−qk/qn)).

To this end, we proceed as follows. Let {Ψj (s)} = {(vj (s),ψj (s))} be an orthonormal basis of Y0 with Ψj (s) ∈
V ×D(B3/2

N ), for any j and almost any s, such that Ψ1(s), . . . ,Ψn(s) spans QnY0. Then the family(
K−1/2vj (s), ε

1/2ψj(s)
)

is orthonormal in H × (H 1(Ω)∩L2
0(Ω)) with respect to (·,·)+ (∇·,∇·). Consequently, the families{

K−1/2vj (s)
}
j=1,...,n and

{
ε1/2ψj(s)

}
j=1,...,n

are suborthonormal in (H, (·,·)) and in (H 1(Ω) ∩ L2
0(Ω), (∇·,∇·)), respectively (cf. [31,38]). Before proceeding

with calculating the trace of the linearized operator M on QnY0, we report below two basic inequalities which will
be helpful in the sequel. Following [38, Corollary 2.1, Theorems 2.3 and 3.1], generalized versions of the Lieb–
Thirring inequalities can be applied to the families above. More precisely, there exists a positive constant C", which
is independent of n, such that∫

Ω

[
ρ0(x)

]2
dx � C"

n∑
j=1

∫
Ω

∣∣∇vj (x)
∣∣2 dx, (4.13)

∫
Ω

[
ap,q(x)

]1+q
dx � C"

n∑
j=1

∫
Ω

∣∣Bq/2+i
N ψj (x)

∣∣2 dx, (4.14)

where

ρ0(x) :=
n∑
j=1

K−1/2
∣∣vj (x)∣∣2, ap,q(x) :=

n∑
j=1

εq/(1+q)∣∣BpNψj (x)∣∣2,
with the following choices of indices: (p, q) ∈ {(0,1), (0,2), (0,3)} if i = 0, (p, q) ∈ {(1/2,1), (1/2,2)} if i = 1/2
and (p, q) ∈ {(1,1)} if i = 1. Moreover, the constant C" does not increase when passing from a suborthonormal family
to an orthonormal one (cf. [38, Sections 3 and 4]). In the rest of this section, all the positive constants indicated with
ci , c′i , c′′i , c′′′i , i ∈ N, are independent of time, ν, ε, K, α, n andM0.

We now state a result on the behavior of the eigenvalues for the operator (v,ψ) �→ (A0v,B
2
Nψ), so that we can

estimate the first two terms on the right-hand side of (4.22) (see below).

Lemma 4.4. Let {Ψj } = {(vj ,ψj )}, 1 � j � n, be a finite family of V ×D(B3/2
N ), which is orthonormal in Y0. We

have:
n∑
j=1

(
ν

K ‖vj‖2 + ε2
∣∣B3/2
N ψj

∣∣2
L2

)
� c0

n2

|Ω|
(
νε

ν + ε
)

− c′0|Ω|
(
νε

ν + ε
)
, (4.15)

where the constants c0, c′0 depend on the shape of Ω , but are independent of the size of Ω , ν, ε, K, α, n, M0 and
of Ψj .

Proof. The proof of (4.15) is based on a slight modification of inequalities (4.13)–(4.14). To this end, set

(̃vj , ψ̃j ) :=
(

K−1/2vj , ε
1/2ψj

)
, 1 � j � n, (4.16)

and note that this family is orthonormal in H × (H 1(Ω)∩L2
0(Ω)) with respect to (·,·)+ (∇·,∇·). Consequently, the

families{̃
vj (s)

}
j=1,...,n and

{
ψ̃j (s)

}
j=1,...,n (4.17)

are suborthonormal in H and H 1(Ω) ∩ L2
0(Ω), respectively, and the following Lieb–Thirring inequalities hold

(see [38] again):
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∫
Ω

[
ρ̃0(x)

]2
dx � C"

n∑
i=1

∫
Ω

∣∣∇ṽj (x)
∣∣2 dx, (4.18)

∫
Ω

[
ρ̃1(x)

]3
dx � C"

n∑
i=1

∫
Ω

∣∣B3/2
N ψ̃j (x)

∣∣2 dx, (4.19)

where

ρ̃0(x) :=
n∑
j=1

∣∣̃vj (x)∣∣2, ρ̃1(x) :=
n∑
j=1

∣∣∇ψ̃j (x)∣∣2.
Also, the constant C" in (4.18)–(4.19) depends only on the shape of Ω (but not on its size) and does not increase. Let
ρ̃(x) := ρ̃0(x)+ ρ̃1(x). By the Hölder inequality,

n=
∫
Ω

ρ̃(x) dx � |Ω|1/2
(∫
Ω

[
ρ̃(x)

]2
dx

)1/2

,

which easily yields, on account of (4.18)–(4.19), that

n2 � c1|Ω|
(∫
Ω

[
ρ̃0(x)

]2
dx +

∫
Ω

[
ρ̃1(x)

]2
dx

)

� c′1|Ω|
[∫
Ω

[
ρ̃0(x)

]2
dx +

(
|Ω| +

∫
Ω

[
ρ̃1(x)

]3
dx

)]

� c′′1 |Ω|
n∑
j=1

(‖̃vj‖2 + ∣∣B3/2
N ψ̃j

∣∣2
L2

)+ c′′′1 |Ω|2. (4.20)

By rewriting (4.20) in terms of (4.16), we deduce

n2 � c′′1 |Ω|
n∑
j=1

(
1

K ‖vj‖2 + ε∣∣B3/2
N ψj

∣∣2
L2

)
+ c′′′1 |Ω|2

� c′′1 |Ω|(ν−1 + ε−1) n∑
j=1

(
ν

K ‖vj‖2 + ε2
∣∣B3/2
N ψj

∣∣2
L2

)
+ c′′′1 |Ω|2. (4.21)

Thus, (4.15) is a straightforward consequence of (4.21). The proof is finished. �
We can now calculate Tr M(u(s),φ(s)) ·Qn(s). Omitting the s-dependence, by (3.2), (4.2)–(4.4) and (4.10), we

have

Tr M(u, φ) ·Qn =
n∑
j=1

(
M(u, φ)Ψj ,Ψj

)
Y0

=
n∑
j=1

{
ν

K ‖vj‖2 + ε2
∣∣B3/2
N ψj

∣∣2
L2 + 1

K
(
B0(vj ,u),vj

)+ ε(B1(u,ψj ),BNψj
)
L2

− (
R0(εBNφ,ψj ),vj

)− (
R0(εBNψj ,φ),vj

)
+ ε(B1(vj , φ),BNψj

)
L2 + αε(∇(f ′(φ +M0)ψj

)
,∇BNψj

)
L2

}
. (4.22)

We start by estimating from above the third term on the right-hand side of (4.22). Thanks to the pointwise Schwarz
inequality∣∣(((vj · ∇) · u)vj )(x)∣∣� ∣∣∇u(x)

∣∣∣∣vj (x)∣∣2, (4.23)
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so that

K−1

∣∣∣∣∣
n∑
j=1

(
B0(vj ,u),vj

)∣∣∣∣∣�
∫
Ω

|∇u(x)|√
K

ρ0(x) dx � ‖u‖√
K

|ρ0|L2 . (4.24)

Using now (4.13), we can bound (4.24) by

c1
‖u‖√

K

(
n∑
j=1

‖vj‖2

)1/2

� ν

8K

n∑
j=1

‖vj‖2 + c
′
1

ν
‖u‖2. (4.25)

Note that, employing a similar pointwise Schwarz inequality as in (4.23), we have that∣∣∣∣∣
n∑
j=1

ε
(
B1(u,ψj ),BNψj

)
L2

∣∣∣∣∣
� ε−1/6

∫
Ω

∣∣u(x)∣∣a1/2
1,1 (x)a

1/2
1/2,2(x) dx

� ε−1/6
(∫
Ω

∣∣u(x)∣∣4/3a2/3
1/2,2(x) dx

)3/4(∫
Ω

a2
1,1(x) dx

)1/4

� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c2

ε8/9

∫
Ω

∣∣u(x)∣∣4/3a2/3
1/2,2(x) dx

� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c2

ε8/9

(∫
Ω

∣∣u(x)∣∣12/7
dx

)7/9(∫
Ω

a3
1/2,2(x) dx

)2/9

. (4.26)

Since a1/2,2 satisfies (4.14), the last expression in (4.26) can be estimated by

ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 +

(
ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′2

ε12/7
|u|12/7

L12/7

)
� ε

2

8

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′′2

ε12/7

(|Ω| + |u|2).
Thus, we deduce that∣∣∣∣∣

n∑
j=1

ε
(
B1(u,ψj ),BNψj

)
L2

∣∣∣∣∣� ε2

8

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′′′2

ε12/7

(|Ω| + |u|2). (4.27)

Next, we estimate

n∑
j=1

ε
(
B1(vj , φ),BNψj

)
L2 =

n∑
j=1

∫
Ω

ε
(
vj (x) · ∇φ(x)

)
BNψj (x) dx.

Using the Cauchy–Schwarz inequality and (4.14) again, the right-hand side is bounded by

ε3/4 K1/4
∫
Ω

∣∣∇φ(x)∣∣ρ1/2
0 (x)a

1/2
1,1 (x) dx � ε3/4 K1/4

(∫
Ω

ρ2
0(x) dx

)1/4(∫
Ω

∣∣∇φ(x)∣∣4/3a2/3
1,1 (x) dx

)3/4

� ν

8εK

n∑
j=1

‖vj‖2 + c3εν
3 K−8/9

∫
Ω

∣∣∇φ(x)∣∣4/3a2/3
1,1 (x) dx. (4.28)

We estimate the last term on the right-hand side of (4.28), using (4.14), as follows:
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c3εν
3 K−8/9

∫
Ω

∣∣∇φ(x)∣∣4/3a2/3
1,1 (x) dx � c3εν

3 K−8/9
(∫
Ω

∣∣∇φ(x)∣∣2 dx)2/3(∫
Ω

a2
1,1(x) dx

)1/3

� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′3ν9/2ε1/2 K−4/3|∇φ|2

L2 . (4.29)

Then, from (4.28) and (4.29), we readily see that∣∣∣∣∣
n∑
j=1

ε
(
B1(vj , φ),Aγψj

)
L2

∣∣∣∣∣� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + ν

8K

n∑
j=1

‖vj‖2 + c′3ν9/2ε1/2 K−4/3|∇φ|2
L2 . (4.30)

We now estimate the fifth term on the right-hand side of (4.22),∣∣∣∣∣
n∑
j=1

(
R0(εBNφ,ψj ),vj

)
L2

∣∣∣∣∣� ε2/3 K1/4
∫
Ω

∣∣BNφ(x)∣∣ρ1/2
0 (x)a

1/2
1/2,2(x) dx

� ε2/3 K1/4
(∫
Ω

ρ
3/5
0 (x)

∣∣BNφ(x)∣∣6/5 dx)5/6(∫
Ω

a3
1/2(x) dx

)1/6

� c4ε
2/5 K3/10

∫
Ω

ρ
3/5
0 (x)

∣∣BNφ(x)∣∣6/5 dx + ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2

� c4ε
2/5 K3/10

(∫
Ω

ρ2
0(x) dx

)3/10(∫
Ω

∣∣BNφ(x)∣∣12/7
dx

)7/10

+ ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2

�
c′4ε4/7 K6/7

ν3/7
|BNφ|12/7

L12/7 + ν

8K

n∑
j=1

‖vj‖2 + ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 . (4.31)

Thus, we deduce∣∣∣∣∣
n∑
j=1

(
R0(εBNφ,ψj ),vj

)
L2

∣∣∣∣∣� ν

8K

n∑
j=1

‖vj‖2 + ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c

′′
4ε

4/7 K6/7

ν3/7

(|Ω| + |BNφ|2
L2

)
. (4.32)

Furthermore, we have from assumption (2.1) and the Cauchy–Schwarz inequality, that∣∣∣∣∣
n∑
j=1

αε
(∇(f ′(φ +M0)ψj

)
,∇BNψj

)
L2

∣∣∣∣∣
� αεcf

n∑
j=1

∫
Ω

∣∣ψj (x)∣∣∣∣∇φ(x)∣∣∣∣B3/2
N ψj (x)

∣∣(1 + ∣∣φ(x)+M0
∣∣m−1)

dx

+ αεcf
n∑
j=1

∫
Ω

∣∣∇ψj(x)∣∣∣∣B3/2
N ψj (x)

∣∣(1 + ∣∣φ(x)+M0
∣∣m)dx

� αε5/8cf,m

∫
Ω

a
1/2
0,3 (x)a

1/2
3/2,0(x)

∣∣∇φ(x)∣∣(1 +Mm−1
0 + ∣∣φ(x)∣∣m−1)

dx

+ αε2/3cf,m

∫
Ω

a
1/2
1/2,2(x)a

1/2
3/2,0(x)

(
1 +Mm

0 + ∣∣φ(x)∣∣m)dx
=: J1 + J2. (4.33)



C.G. Gal, M. Grasselli / Ann. I. H. Poincaré – AN 27 (2010) 401–436 427
We can estimate the term J2 as follows:

J2 � c5αε
2/3
(∫
Ω

a1/2,2(x)
(
1 +M2m

0 + ∣∣φ(x)∣∣2m)dx)1/2(∫
Ω

a3/2,0(x) dx

)1/2

� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′5α2ε−2/3

∫
Ω

a1/2,2(x)
(
1 +M2m

0 + ∣∣φ(x)∣∣2m)dx
� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′′5α2ε−2/3

(∫
Ω

a3
1/2,2(x) dx

)1/3(∫
Ω

(
1 +M2m

0 + ∣∣φ(x)∣∣2m)3/2 dx)2/3

� ε
2

8

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′′′5 α

3ε−2
∫
Ω

(
1 +M3m

0 + ∣∣φ(x)∣∣3m)dx, (4.34)

where c′′′5 is a suitable constant that depends on c5, but is independent of Ω . Similarly, we have

J1 � c6αε
5/8
(∫
Ω

a0,3(x)
∣∣∇φ(x)∣∣2(1 +M2(m−1)

0 + ∣∣φ(x)∣∣2(m−1))
dx

)1/2(∫
Ω

a3/2,0(x) dx

)1/2

� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + αc′6ε−3/4

∫
Ω

a0,3(x)
∣∣∇φ(x)∣∣2(1 +M2(m−1)

0 + ∣∣φ(x)∣∣2(m−1))
dx

� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2

+ αc′6ε−3/4
(∫
Ω

a4
0(x) dx

)1/4(∫
Ω

∣∣∇φ(x)∣∣8/3(1 +M8(m−1)/3
0 + ∣∣φ(x)∣∣8(m−1)/3)

dx

)3/4

. (4.35)

Since a0,3 satisfies (4.14), we can bound the last expression in (4.35) by

αc′6ε−3/4
(∫
Ω

a4
0(x) dx

)1/4(∫
Ω

∣∣∇φ(x)∣∣8/3(1 +M8(m−1)/3
0 + ∣∣φ(x)∣∣8(m−1)/3)

dx

)3/4

� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′′6α4/3ε−5/3

(∫
Ω

∣∣∇φ(x)∣∣8/3(1 +M8(m−1)/3
0 + ∣∣φ(x)∣∣8(m−1)/3)

dx

)

� ε2

16

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′′′6 α

4/3ε−5/3|∇φ|4/3
L2

(
1 + |BNφ|2

L2

)(|∇φ|2
L2 + 〈φ〉2)4(m−1)/3

.

Combining the above estimates, from (4.33) and the continuous embedding H 1(Ω) ↪→ Ls(Ω), s ∈ [1,+∞), we
readily deduce that∣∣∣∣∣

n∑
j=1

αε
(∇(f ′(φ +M0)ψj

)
,∇BNψj

)
L2

∣∣∣∣∣
� ε

2

4

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c′′′5 α

3ε−2[|Ω| + (|∇φ|2
L2 +M2

0

)3m/2]
+ c′′′6 α

4/3ε−5/3|∇φ|4/32
(
1 + |BNφ|2 2

)(|∇φ|2 2 +M2
0

)4(m−1)/3
. (4.36)
L L L
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We now treat the seventh term on the right-hand side of (4.22), namely,

n∑
j=1

(
R0(εBNψj ,φ),vj

)
L2 = ε

n∑
j=1

∫
Ω

(vj · ∇φ)(x)BNψj (x) dx =: J3.

We have

|J3| � ε
∫
Ω

∣∣∇φ(x)∣∣ n∑
j=1

∣∣vj (x)∣∣∣∣BNψj (x)∣∣dx
� ε1/2 K1/4

∫
Ω

∣∣∇φ(x)∣∣[ρ0(x)
]1/2[

a1,1(x)
]1/2

dx

� ε1/2 K1/4
(∫
Ω

∣∣∇φ(x)∣∣4/3ρ2/3
0 (x) dx

)3/4(∫
Ω

a2
1,1(x) dx

)1/4

� ε
2

8

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c7 K1/3

∫
Ω

∣∣∇φ(x)∣∣4/3ρ2/3
0 (x) dx

� ε
2

8

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + c7 K1/3

(∫
Ω

∣∣∇φ(x)∣∣2 dx)2/3(∫
Ω

ρ2
0(x) dx

)1/3

. (4.37)

Thus, by a standard interpolation inequality applied to the second term on the right-hand side of (4.37), we get∣∣∣∣∣
n∑
j=1

(
R0(εBNψj ,φ),vj

)
L2

∣∣∣∣∣� ε2

8

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 + ν

8K

n∑
j=1

‖vj‖2 + c′7 Kν−1/2|∇φ|2
L2 . (4.38)

We are now ready to estimate Tr M(u, φ) ·Qn. Recalling (4.22) and collecting inequalities (4.24)–(4.27), (4.30),
(4.32), (4.36) and (4.38), after simple computations, we find that

Tr M(u, φ) ·Qn � ν

2K

n∑
j=1

‖vj‖2 + 5ε2

8

n∑
j=1

∣∣B3/2
N ψj

∣∣2
L2 − c8 Zε,ν(u, φ),

where we have set

Zε,ν(u, φ) := ν−1‖u‖2 + ε−12/7(|Ω| + |u|2)+ (
ν9/2ε1/2 K−4/3 + Kν−1/2)|∇φ|2

L2

+ ν−3/7ε4/7 K6/7(|Ω| + |BNφ|2
L2

)+ α4/3ε−5/3|∇φ|4/3
L2

(
1 + |BNφ|2

L2

)(|∇φ|2
L2 +M2

0

)4(m−1)/3

+ α3ε−2[|Ω| + (|∇φ|2
L2 +M2

0

)3m/2]
. (4.39)

Finally, on account of (4.15), we get

Tr M(u, φ) ·Qn � c9
n2

|Ω|
(
νε

ν + ε
)

− c′9|Ω|
(
νε

ν + ε
)

− c8 Zε,ν(u, φ). (4.40)

Since the right-hand side of (4.40) does not depend on ξ1, . . . , ξn ∈ Y0, we integrate with respect to the hidden
variable s and we find that

1

t

t∫
0

inf
ξj∈Y0

Tr M
(
u(s),φ(s)

) ·Qn(s) ds

� c9
n2

|Ω|
(
νε

ν + ε
)

− c′9|Ω|
(
νε

ν + ε
)

− c8

t

t∫
Zε,ν

(
u(s),φ(s)

)
ds. (4.41)
0
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On the other hand, due to Proposition 3.2 (cf. (3.16)–(3.17)), it is easy to see that

1

t

t∫
0

Zε,ν
(
u(s),φ(s)

)
ds � ν−3‖g‖2

V∗ + ε−12/7|Ω|(1 + ν−2‖g‖2
V∗
)

+ ε−1(ν9/2ε1/2 K−4/3 + Kν−1/2)δ1 + ν−3/7ε4/7 K6/7(|Ω| + δ3
)

+ α4/3ε−(4m+1)/3δ
2(2m−1)/3
1 (1 + δ3)+ α3ε−2(|Ω| + (

ε−1δ1
)3m/2)

=: δ4. (4.42)

Recalling the definition of qn from (4.11), we infer from (4.41)–(4.42) that

qn � c9
n2

|Ω|
(
νε

ν + ε
)

− c′9|Ω|
(
νε

ν + ε
)

− c8δ4 = δ5n2 − δ6 =: "(n), (4.43)

where

δ5 := c9

|Ω|
(
νε

ν + ε
)
, δ6 := c′9|Ω|

(
νε

ν + ε
)

+ c8δ4.

In conclusion, thanks to (4.43), Theorem 4.3 yields

Theorem 4.5. We consider the dynamical system (Y0,S(t)) associated with Problem P0. Let n∗ = (δ6/δ5)1/2 and let
n be the first integer such that

n� n∗ > n− 1. (4.44)

Then, the corresponding global attractor A defined by Theorem 3.10 has a Hausdorff dimension less than or equal
to n and a fractal dimension less than or equal to 2n.

Remark 4.6. Actually, we can refer to [19, Corollary 3.1] (see also [8,18]) to deduce that

dF (A)� n. (4.45)

Indeed, "′′(y) > 0 for all y > 0, so that " is convex. In addition, making use of more refined Lieb–Thirring type
inequalities a smaller n can possibly be found (cf. [19,38]).

Remark 4.7. Estimate (4.45) gives information about the complexity of a two-phase flow. Although chaotic behavior
can be measured and observed for Navier–Stokes equations for single-phase flows (even in two dimensions), the
coupling with a convective Cahn–Hilliard equation gives rise to novel and possibly even more complex flow behavior.
Indeed, estimate (4.44) yields a number that depends on the kinematic viscosity ν of the fluid, as well as on the
capillarity coefficient K and on the fluid–fluid interface parameter ε, which are as small as ν in many experiments,
and on α which is of order ε−1. The dynamics restricted to the global attractor is described by a finite number of
parameters, but our estimate indicates that this number might be larger than the one obtained for single-phase flows.
Indeed, this is confirmed by a lower estimate recently obtained by analyzing a Kolmogorov-type problem (see [30]).

5. Convergence to equilibria

In this section, we analyze the convergence of given trajectories to stationary states in absence of external forces,
i.e., g = 0. In particular, we prove that each trajectory converges to a single equilibrium, provided that f is real
analytic. A convergence result of this kind is also proven in [2] for a similar system with singular potential, but no
convergence rate estimate is provided.

Let us begin with the following straightforward proposition.

Proposition 5.1. Let the assumptions of Proposition 3.1 hold. Then the semigroup S(t) has a (strict) global Lyapunov
functional defined by the free energy, namely,

L(u0, φ0)= 1

2

[
ε|∇φ0|2L2 + 1

K |u0|2
]

+ α
∫
F(φ0) dx, ∀(u0, φ0) ∈ YM.
Ω
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In particular, we have, for all t > 0,

d

dt
L
(
u(t), φ(t)

)= − νK
∥∥u(t)∥∥2 − ∣∣∇μ(t)∣∣2

L2 . (5.1)

Let us now examine more closely the set of equilibria. The stationary problem corresponding to P is⎧⎪⎪⎨⎪⎪⎩
v = 0, in Ω,

−�(−ε�ψ + αf (ψ))= 0, in Ω,

∂nψ = ∂n�ψ = 0, on Γ,

〈ψ〉 =M0.

(5.2)

This can be seen from the next two standard results, whose proofs are similar to [28, Section 5] and are left to the
reader.

Lemma 5.2. Let the assumptions of Proposition 3.1 hold and let f be real analytic. Suppose that (v,ψ) such that v ∈
D(A0) and ψ,ANψ ∈D(AN), satisfies (5.2). Then (v,ψ) is a critical point of the functional L over YM . Conversely,
if (v,ψ) ∈ YM is a critical point of L and Γ is C∞, then (v,ψ) ∈ C∞(Ω)×C∞(Ω) and it is a classical solution to
problem (5.2).

Lemma 5.3. Let the assumptions of Proposition 3.1 hold and let f be real analytic. The functional L has at least one
minimizer (0,ψ) ∈ YM whose smoothness depends on Γ , that is,

L(0,ψ)= inf
(u,φ)∈YM

L(u, φ). (5.3)

In other words, problem (5.2) admits at least one (possibly) classical solution.

Remark 5.4. When g is small enough (e.g., g = 0), it is well known that the global attractor of the 2D Navier–
Stokes equation reduces to a single steady state which is globally asymptotically stable (see, e.g., [20, Chap. II]). In
presence of a two-phase flow, the global attractor AM given by Theorem 3.10 is much richer in structure. Indeed,
if g = 0, thanks to (5.1), we know that (YM,S(t)) is a gradient system (see, e.g., [55]) so that AM coincides with
the unstable manifold of the set of the stationary points (0,ψ) (see (5.2)). However, this set can be a continuum (cf.,
for instance, [35]). Moreover, in addition to the equilibria, AM also contains heteroclinic orbits connecting different
equilibria.

We now report some standard implications of the fact that (YM,S(t)) is a gradient system with precompact trajec-
tories (see, e.g., [35]).

Lemma 5.5. Let the assumptions of Proposition 3.1 hold. Then, for any (u0, φ0) ∈ YM , the set ω(u0, φ0) is a nonempty
compact connected subset of YM . Furthermore, we have:

(i) ω(u0, φ0) is fully invariant for S(t);
(ii) L is constant on ω(u0, φ0);

(iii) distYM (S(t)(u0, φ0),ω(u0, φ0))→ 0 as t → +∞;
(iv) ω(u0, φ0) consists of equilibria only.

While global and exponential attractors represent the maximal level of complexity that can be observed in a dy-
namical system, they do not provide, in general, information on the asymptotic behavior of single trajectories. The
result below is concerned with the convergence of a trajectory to a single equilibrium, which shows, in a strong form,
their asymptotic stability. This constitutes the main result of this section.

Theorem 5.6. Let the assumptions of Proposition 3.9 hold. Suppose, in addition, that f is real analytic. For any
given initial datum (u0, φ0) ∈ YM , the corresponding solution (u(t), φ(t))= S(t)(u0, φ0) to P converges to a single
equilibrium (0,ψ) in the topology of V ×D(AN), that is,

lim
(∥∥u(t)∥∥+ ∣∣φ(t)−ψ∣∣

H 2

)= 0. (5.4)

t→+∞
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Moreover, there exist C � 0 and ξ ∈ (0,1/2) depending on (0,ψ) such that∣∣u(t)∣∣+ ∣∣φ(t)−ψ∣∣
H 1 � C(1 + t)−ξ/(1−2ξ), ∀t � 0. (5.5)

Remark 5.7. It is also worth noting that, by using the smoothing property of the solutions, the convergence result (5.4)
as well as the convergence rate estimate (5.5) can be demonstrated with respect to higher-order norms, provided that
Γ is smooth enough.

To prove Theorem 5.6, we can assume, without loss of generality, that the solution (u(t), φ(t)) to Problem P
satisfies the condition 〈φ〉 = 0 (that is, M0 = 0), since it suffices to replace the solution (u, φ) by (u, φ −M0) and to
note that (u(t), φ(t)−M0) satisfies the system of Eqs. (3.72) with initial data (u0, φ0 −M0). Therefore, we replace
F(s) by F(s +M0) in the functional L : Y0 → R, respectively. The question of whether (u(t), φ(t)) converges as
t → +∞ is not affected by this normalization.

We next state a result which is crucial for the proof of Theorem 5.6. The version of the Łojasiewicz–Simon in-
equality we need is given by

Lemma 5.8. Let (0,ψ) ∈ Y0 satisfy (5.2), that is, (0,ψ) is a critical point of L. Assume that f is real analytic. There
exist constants ζ ∈ (0,1/2) and CL > 0, ζ > 0 depending on (0,ψ) such that, for any (u, φ) ∈ Y0, if∥∥(u, φ)− (0,ψ)∥∥

Y0
� ζ,

denoting by L′ the Fréchet derivative of L, we have

CL
∥∥L′(u, φ)

∥∥
Y

∗
0
�
∣∣L(u, φ)− L(0,ψ)

∣∣1−ζ
. (5.6)

Remark 5.9. The proof of Lemma 5.8 can be achieved arguing as in [41] (see also [27,33]).

Proof of Theorem 5.6. We first observe that, if there is t # � 0 such that

L
(
u
(
t #
)
, φ
(
t #
))= L∞,

then, for all t � t #, L(u(t), φ(t))= L∞, that is,

φ(t)=ψ, u(t)= 0, ∀t � t #.
In this case, there is nothing to prove. Therefore, without loss of generality, suppose now that, for all t � t0 � 0,
we have L(u(t), φ(t)) > L∞. We observe that, by Lemmas 5.5 and 5.8, the functional L satisfies the Łojasiewicz–
Simon inequality (5.6) near every (0,ψ) ∈ ω(u0, φ0). Since ω(u0, φ0) is compact in Y0, we can cover it by the union
of finitely many balls Bj with centers (0,ψj ) and radii rj , where each radius is such that (5.6) holds in Bj . Since
L = L∞ on ω(u0, φ0), it follows from Lemma 5.8 that there exist uniform constants ξ ∈ (0,1/2), CL > 0 (depending
on (0,ψ)) and a neighborhood V of ω(u0, φ0) such that

CL
∥∥L′(u, φ)

∥∥
Y

∗
0
�
∣∣L(u, φ)− L∞

∣∣1−ξ
, ∀(u, φ) ∈ V . (5.7)

Recalling property (iii) of Lemma 5.5, we can find a time t1 > 0 such that (u(t), φ(t)) belongs to V , for all t � t1. Set
now t2 � max{t0, t1} so that Proposition 3.9 holds. Recalling (5.1), we obtain, for every t � t2,

− d
dt

(
L
(
u(t), φ(t)

)− L∞
)ξ = ξ

(
− d
dt

L
(
u(t), φ(t)

))(
L
(
u(t), φ(t)

)− L∞
)ξ−1

� ξ

CL

(ν/K)‖u(t)‖2 + |∇μ(t)|2
L2

‖L′(u(t), φ(t))‖Y
∗
0

. (5.8)

Using now Green’s formula on Ω , since k ∈ {φ ∈H 1(Ω): 〈φ〉 = 0}, we obtain〈
L′(u, φ), (h, k)

〉
Y

∗
0,Y0

=
∫ (−ε�φ + αf (φ)− 〈μ〉)k dx +

∫
u · hdxK , (5.9)
Ω Ω
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where μ= −ε�φ + αf (φ). Hence, by using the Cauchy–Schwarz inequality and Poincaré’s inequality, we obtain∥∥L′(u, φ)
∥∥

Y
∗
0
= sup

‖(h,k)‖Y0 �1

〈
L′(u, φ), (h, k)

〉
Y

∗
0,Y0

� C∗
(∣∣μ− 〈μ〉∣∣

L2 +√
ν/K‖u‖)

� C∗
(|∇μ|L2 +√

ν/K‖u‖), (5.10)

where C∗ depends on ν and Ω , but is independent of time and initial data. Inserting now estimate (5.10) into esti-
mate (5.8), we deduce

− d
dt

(
L
(
u(t), φ(t)

)− L∞
)ξ � C

(∣∣∇μ(t)∣∣
L2 +√

ν/K
∥∥u(t)∥∥). (5.11)

Here C is some positive constant depending on C∗, CL and ξ . By integrating this inequality on [t2,+∞), and using
the fact that L(u(t), φ(t))→ L∞ as t goes to +∞, we also infer that

∇μ ∈ L1([t2,+∞);L
2(Ω)

)
, u ∈ L1([t2,+∞);V

)
. (5.12)

Consequently, since |B1(u, φ)|H−1 � c‖u‖|∇φ|L2 , we also deduce, on account of (5.12) and the last equation of (2.9),
that

∂tφ ∈ L1([t2,+∞);H−1(Ω)
)
. (5.13)

Furthermore, setting W := V ∩ H
2(Ω), the following bounds are also consequences of [51, Proposition 9.2,

(9.25)–(9.26)] and standard Sobolev embeddings:∥∥B0(u,u)
∥∥

V∗ � c|u|‖u‖,∥∥R0(εANφ,φ)
∥∥

W∗ = ∥∥R0
(
μ− 〈μ〉, φ)∥∥

W∗ � c|∇φ|L2

∣∣μ− 〈μ〉∣∣
L2 . (5.14)

Consequently, employing these inequalities, on account of (5.12), Poincaré’s inequality and the first equation of (2.9),
we also deduce that

∂tu ∈ L1([t2,+∞);W
∗). (5.15)

We now recall that, due to Lemma 3.7, there exists an increasing unbounded sequence {tk} and an element (0,ψ) ∈
ω(u0, φ0) such that (u(tl), φ(tl))→ (0,ψ) in H ×H 1(Ω) as l goes to +∞. This fact combined with the above L1-
integrability (5.13)–(5.15) imply that (u(t), φ(t))→ (0,ψ) in W

∗ ×H−1(Ω) as t goes to +∞ and in V ×D(AN) as
well, thanks to Proposition 3.9. Hence ω(u0, φ0)= {(0,ψ)} and (5.4) holds.

It remains to prove (5.5). From now on C will stand for a generic positive constant which depends on the initial
data, on the equilibrium (0,ψ) and on the parameters of the problem, but it is independent of time. For t � t2, it
follows from (5.7) and (5.8) that

d

dt

(
L
(
u(t), φ(t)

)− L∞
)ξ +C(L

(
u(t), φ(t)

)− L∞
)1−ξ � 0. (5.16)

Then, we deduce that

L
(
u(t), φ(t)

)− L∞ � C(1 + t)−1/(1−2ξ), ∀t � t2. (5.17)

Thus, integrating (5.11) on [t,+∞), thanks to estimate (5.17), we get

+∞∫
t

(∣∣∇μ(s)∣∣
L2 +√

ν/K
∥∥u(s)∥∥)ds � C(1 + t)−ξ/(1−2ξ), ∀t � t2. (5.18)

By properly adjusting the constant C in (5.18), from (5.13)–(5.15) we also infer∣∣φ(t)−ψ∣∣
H−1 � C(1 + t)−ξ/(1−2ξ), ∀t � t2, (5.19)∥∥u(t)∥∥ ∗ � C(1 + t)−ξ/(1−2ξ), ∀t � t2. (5.20)
W
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Taking advantage of the above (lower order) convergence estimates we can prove the higher-order ones. For this
purpose, let us set ϕ := φ −ψ , w := u − 0 and notice that these functions solve the following equations⎧⎨⎩

∂tw + νA0w +B0(w,w)= KR0(εANϕ,φ)+ KR0(εANψ,ϕ),

μ̂= εANϕ + α(f (φ)− f (ψ)),
∂tϕ +ANμ̂+B1(w, ϕ)+B1(w,ψ)= 0.

(5.21)

We multiply the first equation of (5.21) by 2A−1
0 w(t) and the second and third ones each one by 2ANϕ(t) and

2ϕ(t), respectively. Integrating the obtained relations over Ω , and then adding the results, we obtain, after obvious
manipulations,

d

dt

[∥∥w(t)∥∥2
V∗ + ∣∣ϕ(t)∣∣2

L2

]+ 2ν
∣∣w(t)∣∣2 + 2ε

∣∣ANϕ(t)∣∣2L2

= −2b0
(
w(t),w(t),A−1

0 w(t)
)+ 2K

(
R0
(
εANψ(t), ϕ(t)

)
,A−1

0 w(t)
)
L2

+ 2K
(
R0
(
εANϕ(t),φ(t)

)
,A−1

0 w(t)
)
L2 − 2b1

(
w(t),ψ(t), ϕ(t)

)− 2α
(
f
(
φ(t)

)− f (ψ(t)),ANϕ(t))L2

=:Λ4(t). (5.22)

Setting now

Y5(t) :=
∥∥w(t)∥∥2

V∗ + ∣∣ϕ(t)∣∣2
L2 ,

we can rewrite the above energy equality as follows:

d

dt
Y5(t)+ κY5(t)+ (2ν − κcΩ)

∣∣w(t)∣∣2 + (2ε− κcΩ)
∣∣ANϕ(t)∣∣2L2 =Λ4(t),

provided that κ ∈ (0,max{ν, ε}) is sufficiently small.
Observe now that

|Λ4| � 2
∣∣b0
(
w,w,A−1

0 w
)∣∣+ 2K

∣∣(R0(εANψ,ϕ),A
−1
0 w

)
L2

∣∣+ 2K
∣∣(R0(εANϕ,φ),A

−1
0 w

)
L2

∣∣
+ 2

∣∣b1(w,ψ,ϕ)
∣∣+ 2α

∣∣(f (φ)− f (ψ),ANϕ)L2

∣∣. (5.23)

Using Agmon’s inequality, standard interpolation, Young’s inequality and Proposition 3.9, we have

2b0
(
w,w,A−1

0 w
)
� c|w|L∞‖w‖∣∣A−1

0 w
∣∣
L2

� C|w|1/2|w|1/2
W

‖w‖‖w‖V∗

� C|w||w|W‖w‖V∗

� C|w|3/2|w|W‖w‖1/2
W∗ � κcΩ |w|2 +C‖w‖2

W∗ . (5.24)

Using again standard interpolation inequalities, Proposition 3.9 and Poincaré’s inequality, noting that 〈ϕ(t)〉 = 0, we
deduce

2b1(w,ψ,ϕ)� c|w||ψ |H 1 |ϕ|1/2
L2 |ANϕ|1/2L2

� C|w|4/3|ϕ|2/3
L2 + κcΩ |ANϕ|2L2

� C|w|4/3|ϕ|1/3
H−1 |∇ϕ|1/3L2 + κcΩ |ANϕ|2L2

� C|w|8/5|ϕ|2/5
H−1 + 2κcΩ |ANϕ|2L2

� C|ϕ|2
H−1 + κcΩ |w|2 + 2κcΩ |ANϕ|2L2 . (5.25)

Arguing similarly, we get

2K
(
R0(εANψ,ϕ),A

−1
0 w

)
L2 � cΩ

∣∣A−1
0 w

∣∣1/2∥∥A−1
0 w

∥∥1/2|∇ϕ|L2 |ANψ |1/2
L2 |ANψ |1/2

H 1

� C‖w‖1/2
W∗‖w‖1/2

V∗ |ANϕ|L2

� C‖w‖1/2
∗
(|w|1/4‖w‖1/4

∗
)|ANϕ|L2
W W
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� κcΩ |ANϕ|2L2 +C|w|1/2‖w‖3/2
W∗

� κcΩ |ANϕ|2L2 + κcΩ |w|2 +C‖w‖2
W∗ (5.26)

and

2K
(
R0(εANϕ,φ),A

−1
0 w

)
L2 � cΩ

∣∣A−1
0 w

∣∣1/2∥∥A−1
0 w

∥∥1/2|φ|1/2
H 1 |ANφ|1/2

L2 |ANϕ|L2

� C‖w‖1/2
W∗‖w‖1/2

V∗ |ANϕ|L2

� C‖w‖1/2
W∗
(|w|1/4‖w‖1/4

W∗
)|ANϕ|L2

� κcΩ |ANϕ|2L2 +C‖w‖3/2
W∗ |w|1/2

� κcΩ |ANϕ|2L2 + κcΩ |w|2 +C‖w‖2
W∗ .

Besides, we obtain

2α
∣∣(f (φ)− f (ψ),ANϕ)L2

∣∣� C|ϕ|L2 |ANϕ|L2 � C|ϕ|1/2
H−1 |∇ϕ|1/2L2 |ANϕ|L2

� κcΩ |ANϕ|2L2 +C|ϕ|2
H−1 .

Thus, combining all the above estimates, from (5.23), we deduce that

|Λ4| � 5κcΩ |ANϕ|2L2 + 4κcΩ |w|2 +C(|ϕ|2
H−1 + ‖w‖2

W∗
)
. (5.27)

Combining (5.27) with (5.22), then using (5.27) and (5.18)–(5.19), it is possible to find κ > 0 and κ ′ > 0 such that,
for all t � t2,

d

dt
Y5(t)+ κY5(t)+ κ ′(∣∣w(t)∣∣2 + ∣∣ANϕ(t)∣∣2L2

)
� C(1 + t)−2ξ/(1−2ξ). (5.28)

Consequently, from (5.28), we deduce that

Y5(t)� Y5(t2)e
κ(t2−t) +Ce−κt

t∫
t2

eκτ (1 + τ)−2ξ/(1−2ξ) dτ

� Ce−κt +Ce−κt
( t/2∫

0

eκτ (1 + τ)−2ξ/(1−2ξ) dτ +
t∫

t/2

eκτ (1 + τ)−2ξ/(1−2ξ) dτ

)

� Ce−κt +Ce−κt
(
e(κ/2)t

t/2∫
0

(1 + τ)−2ξ/(1−2ξ) dτ +C(1 + t)−2ξ/(1−2ξ)eκt

)

� C(1 + t)−2ξ/(1−2ξ), ∀t � t2, (5.29)

which implies that, for any t � t2,

t∫
t2

(∣∣w(s)∣∣2 + ∣∣ANϕ(s)∣∣2L2

)
ds � C(1 + t)−2ξ/(1−2ξ),

∥∥w(t)∥∥
V∗ + ∣∣ϕ(t)∣∣

L2 � C(1 + t)−ξ/(1−2ξ).

In order to deduce (5.5), we now multiply again the first equation of (5.21) by 2w(t), and the remaining two each
one by 2B2

Nϕ(t) and 2BNϕ(t), respectively. Then we integrate the obtained relations over Ω . Adding these energy
equalities, we obtain the following energy equality (recall that, in the present case, BNϕ =ANϕ)

d

dt
Y6(t)+ 2ν

∥∥w(t)∥∥2 + 2ε
∣∣B3/2
N ϕ(t)

∣∣2
L2

= 2K
(
R0
(
εBNψ(t), ϕ(t)

)
,w(t)

)
L2 − 2b1

(
w(t), ϕ(t),BNϕ(t)

)+ 2K
(
R0
(
εBNϕ(t),φ(t)

)
,w(t)

)
L2

− 2b1
(
w(t),ψ(t),BNϕ(t)

)− 2α
(∇(f (φ(t))− f (ψ(t))),∇BNϕ(t)) 2 =:Λ5(t), (5.30)
L
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where

Y6(t) :=
∣∣w(t)∣∣2 + ∣∣∇ϕ(t)∣∣2

L2 .

After repeated manipulations and computations, similar to (5.22)–(5.28), it is not difficult to show that∣∣Y6(t)
∣∣� C(∥∥w(t)∥∥2

V∗ + ∣∣ϕ(t)∣∣2
L2

)+ cκ(∥∥w(t)∥∥2 + ∣∣B3/2
N ϕ(t)

∣∣2
L2

)
,

provided that κ > 0 is sufficiently small. Finally, we have that Y6 satisfies an energy inequality analogous to (5.28)
and to argue exactly as in (5.29), in order to obtain the conclusion of our theorem. The rigorous details are left to the
reader, the argument being the same as the one leading to (5.29). �
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