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Abstract

We prove an abstract Nash–Moser implicit function theorem with parameters which covers the applications to the existence
of finite dimensional, differentiable, invariant tori of Hamiltonian PDEs with merely differentiable nonlinearities. The main new
feature of the abstract iterative scheme is that the linearized operators, in a neighborhood of the expected solution, are invertible,
and satisfy the “tame” estimates, only for proper subsets of the parameters. As an application we show the existence of periodic
solutions of nonlinear wave equations on Riemannian Zoll manifolds. A point of interest is that, in presence of possibly very large
“clusters of small divisors”, due to resonance phenomena, it is more natural to expect solutions with only Sobolev regularity.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Small divisors problems in Hamiltonian PDEs

Bifurcation problems of periodic and quasi-periodic solutions for Hamiltonian PDEs are naturally affected by small
divisors difficulties: the standard implicit function theorem cannot be applied because the linearized operators have
an unbounded inverse, due to arbitrarily “small divisors” in their Fourier series expansions. This problem has been
handled for PDEs with analytic nonlinearities via KAM methods, see e.g. Kuksin [22,23], Wayne [29], Pöschel [27],
Eliasson and Kuksin [15], or via Newton-type iterative schemes as developed in Craig and Wayne [14] and Bourgain
[7–10].

The pioneering KAM results in [22,29,27] were limited to 1-dimensional PDEs, with Dirichlet boundary condi-
tions, because they required the eigenvalues of the Laplacian to be simple (the square roots of the eigenvalues are the
normal mode frequencies of small oscillations). In this case one can impose the so-called “second order Melnikov”
non-resonance conditions between the “tangential” and the “normal” frequencies of the expected KAM torus to solve
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the homological equations which arise at each step of the KAM iteration. Such equations are linear PDEs with constant
coefficients and can be solved simply using Fourier series. Unfortunately, yet for periodic boundary conditions, where
two consecutive eigenvalues are possibly equal, the second order Melnikov non-resonance conditions are violated.
For wave equations this case has been later handled via KAM method by Chierchia and You in [11].

On the other hand, the Lyapunov–Schmidt decomposition approach, combined with the Newton method developed
in [14,7–10], has the advantage to require only the “minimal” non-resonance conditions, which, for example, are
fulfilled in higher dimensional PDE applications (we refer to [15] for the KAM approach in higher dimension). As
a drawback, its main difficulty relies on the inversion of the linearized operators in a neighborhood of the expected
solution, and in obtaining estimates of their inverses in analytic (or Gevrey) norms. Indeed these operators come
from linear PDEs with non-constant coefficients and are small perturbations of a diagonal operator having arbitrarily
small eigenvalues. Their spectrum depends very sensitively on the parameters, whence they are invertible only over
complicated Cantor-like set of parameters with possibly positive measure.

We also mention that, more recently, the Lindstedt series renormalization method has been developed by Gentile,
Mastropietro and Procesi to prove the existence of periodic solutions for analytic PDEs, one-dimensional in [16,17]
and also higher dimensional in [18].

In all the mentioned results analyticity is deeply exploited, either for the convergence proof of the iterative scheme,
or in obtaining suitable estimates for inverse linearized operators.

The existence of periodic solutions of Hamiltonian PDEs with merely differentiable nonlinearities has been re-
cently proved in [3,4] along the lines of the Craig–Wayne–Bourgain approach. The iterative scheme is combined
with a smoothing procedure and interpolation estimates to ensure convergence in spaces of functions with only
Sobolev regularity. The key step in [3,4] is to prove the “tame” estimates of the inverse operators in high Sobolev
norms.

The aim of this paper is to generalize the previous approach in an abstract functional analytic setting, proving a
Nash–Moser theorem “ready for applications” (Theorems 1–2), in particular, to prove the existence of lower dimen-
sional, differentiable, invariant tori of PDEs with only differentiable nonlinearities.

The problem consists in solving a nonlinear equation

F(ε,λ,u) = 0 (1)

where ε ∈ [0, ε0) is small, λ ∈ Λ ⊂ Rq with Λ open and bounded, and u belongs to some Banach space. Assuming
that F(0, λ,0) = 0, ∀λ ∈ Λ (see hypothesis (F1) in the next subsection), the aim is to find, for ε0 small enough,
a function u(ε,λ) with u(0, λ) = 0, which solves (1) for all (ε, λ) in a positive measure “Cantor-like” subset of
[0, ε0) × Λ.

In typical applications the parameters λ can be “frequencies” – as in Section 3 – or vectors of a “resonant space”
– when solving the “range equation” (called “P-equation”) obtained after a Lyapunov–Schmidt reduction, see e.g.
[2,13].

We assume that the nonlinear map F satisfies abstract “tame” properties, see (F2)–(F4), which in applications
are easily verified by differential and composition operators in scales of Sobolev functions, see e.g. [20] and Sec-
tion 3.

The Nash–Moser theory has been well developed till now, see e.g. [20,21] and references therein. The main dif-
ference between the present Theorems 1–2 and the “standard” Nash–Moser theory is the abstract assumption (L) (or
(LK)) in Section 1.2: the “tame” estimates for the inverse operators hold only for proper subsets of the parameters. On
the contrary, the standard Nash–Moser theory requires the invertibility of the derivative ∂uF in a full neighborhood,
albeit in a tame sense. Indeed, in typical small divisors problems – as the search of finite dimensional tori for PDEs
considered in this paper – an unbounded inverse (∂uF )−1 does not exist for all the values of the parameters, but only
for a “Cantor like” subset.

In [30] Zehnder observed that, for the convergence of the Nash–Moser iterative scheme, it is sufficient to assume
only the existence of an “approximate inverse” of ∂uF , which is required to be an exact inverse only at the solutions.
This weaker property has been proved in [30], in a full neighborhood of the expected solution, for many conjugacy
problems, thanks to algebraic features of the problem. In particular these theorems were sufficient to prove the ex-
istence of invariant Lagrangian tori for finite dimensional Hamiltonian systems. On the other hand, we remark that
for lower dimensional tori – as for finite dimensional tori of PDEs – one cannot expect, by general arguments, the
existence of an approximate inverse.
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The existence of an inverse of the linearized operator for a Cantor set of parameters, together with estimates
in scales of analytic functions, is the core of the Craig–Wayne–Bourgain method for analytic PDEs. With re-
spect to these estimates, the main novelty of our assumptions is to require only tame estimates for the inverse,
see (4).

By assumption (L), we ensure the invertibility of the linearized operators, at each step of the Nash–Moser iteration,
only on smaller and smaller open sets of “non-resonant” parameters. A task of the iteration is to prove that, at the
end of the recurrence, we have obtained a positive measure “Cantor-like” set of parameters where the solution is
defined. This is the common scenario in these type of problems, see [2–5,7–12,14,19]. Such a property is implied by
the abstract measure theoretical assumptions (7)–(8) in (L) and the rapid convergence of the iterative scheme, see the
proof of Theorem 1. This abstract framework highlights specific constructions which were implicitly used in all the
previous works. By means of a cut-off procedure at each step of the iteration, our solution can be smoothly extended
in the whole space of parameters.

The abstract assumptions (F1)–(F4) and, in particular, hypothesis (L), make transparent the iterative procedures
that, in specific contexts, have been performed in previous papers. In order to separate clearly the inductive ar-
gument and the measure estimates obtained in Theorem 1 (Section 2.5), we prove first the iterative Theorem 3
(Sections 2.2–2.4), where we do not assume hypothesis (L). We introduce an improvement with respect to the it-
erative scheme of [3,4] in order to prove the “C∞-result” of Theorem 2 (Section 2.6).

Returning to PDE applications, a point of interest in developing a Nash–Moser theory for solutions with only
Sobolev regularity is that, in presence of possibly very large clusters of small divisors (typical for higher dimensional
PDEs), it is more natural to expect solutions with only Sobolev regularity, instead of analytic or Gevrey ones. An
intuitive reason is that huge clusters of eigenvalues can produce strong resonance effects, having a consequence on
the regularity of the solutions.

In Section 3 we present an application of Theorems 1–3 to the existence of periodic solutions of Klein–Gordon
equations on a Zoll manifold M, e.g. spheres, recently considered in [1], see Theorem 4. Other applications are given
in [5]. The main issue for proving Theorem 4 is to verify the abstract assumption (L). For that, we exploit that the
eigenvalues of (−�+ V (x))1/2 on M are contained in disjoint intervals, growing linearly to infinity, see Lemma 3.1.
The corresponding geometry of the small divisors, see Lemma 3.6, suggests to look for solutions which are more
regular in the time variable t than in the spatial variable x. Actually, a key idea is to look for solutions in the Sobolev
scale (54) of time-periodic functions with values in a fixed Sobolev space Hs1(M), see Remark 3.2. Interestingly,
many tools in our proof are reminiscent of those used in the normal form result in [1].

A final comment is in order: in [25] Moser introduced the related technique of analytic smoothing to approach
the differentiable case. The idea is to first approximate, in a very accurate way, the differentiable Hamiltonian by
analytic ones. Then one constructs, using an analytic KAM theorem, a sequence of analytic approximate invariant tori
which actually converge to a differentiable torus of the original system. This powerful approach has been efficiently
developed by Pöschel [26] and Salamon and Zehnder [28], to prove, for finite dimensional systems, the existence
of invariant Lagrangian tori under the optimal finite regularity assumptions on the Hamiltonian. We think that this
technique cannot, in general, be directly implemented in PDE applications when, for the presence of large clusters
of small divisors, the resonance effects are so strong that the existence of analytic tori is doubtful. This is the main
reason why, in this paper, we develop a Nash–Moser iterative procedure that is in spirit more similar to the original
one in [24].

1.2. Functional setting and abstract Nash–Moser theorems

We consider a scale of Banach spaces (Xs,‖ ‖s)s�0 such that

∀s � s′, Xs′ ⊆ Xs, ‖u‖s � ‖u‖s′, ∀u ∈ Xs′ ,

and we define

X :=
⋂
s�0

Xs.

We assume that there are an increasing family (E(N))N�0 of closed subspaces of X such that
⋃

N�0 E(N) is dense in
Xs for every s � 0, and that there are projectors
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Π(N) : X0 → E(N) of range E(N)

satisfying, ∀s � 0, ∀d � 0,

• (S1) ‖Π(N)u‖s+d � C(s, d)Nd‖u‖s , ∀u ∈ Xs ;

• (S2) ‖(I − Π(N))u‖s � C(s, d)N−d‖u‖s+d , ∀u ∈ Xs+d

where C(s, d) are positive constants. The projectors Π(N) can be seen as smoothing operators.
Note that by (S1) the norms ‖ ‖s restricted to each E(N) are all equivalent. Moreover, by the density of

⋃
N�0 E(N)

in Xs , for u ∈ Xs , ‖u − Π(N)u‖s → 0 as N → ∞.

Example (Sobolev scale). If Xs is the Sobolev space Hs(Td), s � 0, T
d := R

d/2πZ
d , then X = C∞(Td) and we

can choose E(N) := Span{eik·y, k ∈ Z
d, |k| � N} and Π(N) the L2-orthogonal projector on E(N).

In every Banach scale with smoothing operators satisfying (S1)–(S2) as above, the following interpolation inequal-
ity holds.

Lemma 1.1 (Interpolation). ∀0 < s1 < s2 there is K(s1, s2) > 0 such that, ∀t ∈ [0,1],
‖u‖ts1+(1−t)s2 � K(s1, s2)‖u‖t

s1
‖u‖1−t

s2
, ∀u ∈ Xs2 .

Proof. Suppose u �= 0. Setting s := ts1 + (1 − t)s2, we have, ∀N � 1,

‖u‖s �
∥∥Π(N)u

∥∥
s
+ ∥∥u − Π(N)u

∥∥
s

(S1),(S2)

� C(s1, s2)
(
Ns−s1‖u‖s1 + Ns−s2‖u‖s2

)
and the result follows taking N � 1 as the integer part of (‖u‖s2/‖u‖s1)

1/(s2−s1). �
We consider a C2 map

F : [0, ε0) × Λ × Xs0+ν → Xs0 (2)

where s0 � 0, ν > 0, ε0 > 0 and Λ is a bounded open domain of R
q . We assume

• (F1) F(0, λ,0) = 0, ∀λ ∈ Λ,

and the “tame” properties:
∃S ∈ (s0,∞] such that ∀s ∈ [s0, S), ∀u ∈ Xs+ν with ‖u‖s0 � 2, ∀(ε, λ) ∈ [0, ε0) × Λ,

• (F2)2 ‖∂(ε,λ)F (ε,λ,u)‖s � C(s)(1 + ‖u‖s+ν), ‖DuF(ε,λ,0)[h]‖s � C(s)‖h‖s+ν ;

• (F3) ‖D2
uF (ε,λ,u)[h,v]‖s � C(s)(‖u‖s+ν‖h‖s0‖v‖s0 + ‖v‖s+ν‖h‖s0 + ‖h‖s+ν‖v‖s0);

• (F4) ‖∂(ε,λ)DuF(ε,λ,u)[h]‖s � C(s)(‖h‖s+ν + ‖u‖s+ν‖h‖s0).

From (F1)–(F4) we can deduce tame properties also for F(ε,λ,u) and (DuF)(ε,λ,u), see Section 2.1.
The main assumption concerns the invertibility of the linear operators

L(N)(ε, λ,u) := Π(N)DuF(ε,λ,u)|E(N) .

We consider two parameters μ � 0, σ � 0, such that

σ > 4(μ + ν), s̄ := s0 + 4(μ + ν + 1) + 2σ < S. (3)

For all γ > 0, we define appropriate subsets

2 The symbol ∂(ε,λ) denotes either the partial derivative ∂ε , or ∂λi
, i = 1, . . . , q .
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J (N)
γ,μ ⊆ {

(ε, λ,u) ∈ [0, ε0) × Λ × E(N)
∣∣ L(N)(ε, λ,u) is invertible and ∀s ∈ {s0, s̄},∥∥L(N)(ε, λ,u)−1[h]∥∥

s
� Nμ

γ

(‖h‖s + ‖u‖s‖h‖s0

)
, ∀h ∈ E(N)

}
. (4)

Given K> 0, we define

U (N)
K := {

u ∈ C1([0, ε0) × Λ,E(N)
) ∣∣ ‖u‖s0 � 1, ‖∂(ε,λ)u‖s0 � K

}
(5)

and, for all u ∈ U (N)
K , we set

G(N)
γ,μ(u) := {

(ε, λ) ∈ [0, ε0) × Λ
∣∣ (

ε,λ,u(ε,λ)
) ∈ J (N)

γ,μ

}
. (6)

We assume that

• (L) There exist σ � 0, μ � 0 satisfying (3), γ̄ > 0, M ∈ N, C > 0, such that:

(i) ∀γ ∈ (0, γ̄ ], ∀ε ∈ (0, ε0],
∣∣(G(M)

γ,μ (0)
)c ∩ ([0, ε) × Λ

)∣∣ � Cγ ε. (7)

(ii) ∀γ ∈ (0, γ̄ ], K̄> 0, ∃ε̃ := ε̃(γ, K̄) ∈ (0, ε0] such that, ∀ε ∈ (0, ε̃], N ′ � N � M , u1 ∈ U (N)

K̄ , u2 ∈ U (N ′)
K̄ with

‖u2 − u1‖s0 � N−σ ,∣∣(G(N ′)
γ,μ (u2)

)c\(G(N)
γ,μ(u1)

)c ∩ ([0, ε) × Λ
)∣∣ � C

γ ε

N
. (8)

Condition (7) says that L(M)(ε,λ,0) is invertible for most parameters in [0, ε) × Λ and condition (8) says that the

sets of “good” parameters G
(N ′)
γ,μ (u2), G

(N)
γ,μ(u1) do not change too much for u1, u2 close enough in “low” Sobolev

norm.
In applications, the verification of (L) strongly depends on the PDE. If in definition (4) we consider only s = s0,

then, by eigenvalue variation arguments, we can verify, for many PDEs, properties (i)–(ii). The main difficulty is to
pass from informations on the eigenvalues of L(N)(ε, λ,u) to the interpolation estimates (4) in the high Sobolev norm
‖ ‖s̄ . Typically this requires “separation” properties on the small divisors of the PDE, see e.g. [10,13] and, in Section 3,
Proposition 3.1 and Lemmas 3.4, 3.5.

Theorem 1. Assume (F1)–(F4), (L), (3). Then there is C > 0 and, ∀γ ∈ (0, γ̄ ), there exists ε3 := ε3(γ ) ∈ (0, ε0] and
a C1 map

u : [0, ε3) × Λ → Xs0+ν (9)

such that u(0, λ) = 0 and F(ε,λ,u(ε,λ)) = 0 except in a set Cγ of Lebesgue measure |Cγ | � Cγ ε3. Moreover, for all
ε ∈ (0, ε3), |Cγ ∩ ([0, ε) × Λ)| � Cγ ε.

Remark 1.1. As a consequence, if the freely chosen parameter γ → 0, then3

|Cγ ∩ ([0, ε3(γ )) × Λ)|
|[0, ε3(γ )) × Λ| → 0,

namely the “bad” set Cγ of parameters has asymptotically zero measure.

Remark 1.2. If u1, u2 are the maps in (9) associated respectively to γ1, γ2, with γ1 < γ2, then Cγ1 ⊂ Cγ2 and, for
ε � min(ε3(γ1), ε3(γ2)), u1 and u2 coincide outside Cγ2 . This is easily seen from the construction of u in Section 2.

Remark 1.3. In the applications to PDEs with small divisors, the “good” parameters (ε, λ) such that u(ε,λ) is a
solution of F(ε,λ,u) = 0 form typically a Cantor-like set. The property that the solution can be extended to a C1

function u(·,·) defined on all the space of parameters could be seen as a Whitney extension theorem. However, here, it

3 Also ε3(γ ) → 0.
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is just a consequence of the use of a smooth cut-off function at each step of the Nash–Moser iteration. Such a property
has been first proved in Pöschel [26] for KAM tori, and for PDEs it appeared in Kuksin [22,23] (actually it is sufficient
to consider only Lipschitz extensions).

The conclusions of Theorem 1 can be strengthened under slightly stronger assumptions. Given a non-decreasing
function K : [0,∞) → [1,∞), we define the subsets

J
(N)

γ,μ,K ⊆ {
(ε, λ,u) ∈ [0, ε0) × Λ × E(N)

∣∣ L(N)(ε, λ,u) is invertible and ∀s � s0,∥∥L(N)(ε, λ,u)−1[h]∥∥
s
� K(s)

Nμ

γ

(‖h‖s + ‖u‖s‖h‖s0

)
, ∀h ∈ E(N)

}
, (10)

and the corresponding set G
(N)

γ,μ,K(u) as in (6). We consider the stronger hypothesis

• (LK ) The analogue to (L), with the sets G
(N)
γ,μ( ) instead of G

(N)

γ,μ,K( ) in (7)–(8).

We remark that in typical PDEs applications, see Section 3, assumption (LK ) is proved to hold for some K with
just slightly more effort than (L).

Theorem 2 (Regularity). Assume (F1)–(F4) with S = ∞ and (LK). Then the conclusion of Theorem 1 holds with
u ∈ C1([0, ε3(γ )) × Λ;X) where X := ⋂

s�0 Xs .

The proofs of Theorems 1 and 2 are based on an iterative Nash–Moser scheme that we describe in the next sec-
tion.

2. The Nash–Moser iterative scheme

We shall deduce Theorem 1 from the following iterative result, where

Nn := N2n

0 , (11)

N0 ∈ N will be chosen large enough (depending on γ ), and En, Πn, Jn
γ,μ are abbreviations for E(Nn), Π(Nn), J

(Nn)
γ,μ

respectively. Given a set A and η > 0 we denote by N (A,η) the open neighborhood of A of width η (which is empty
if A is empty).

Theorem 3. Assume (F1)–(F4) and (3). Then, for all γ > 0 there are N0 := N0(γ ), K0(γ ) > 0, ε2 := ε2(γ ) ∈ (0, ε0]
and a sequence (un)n�0 of C1 maps un : [0, ε2) × Λ → Xs0+ν with the following properties:

(P 1)n un(ε,λ) ∈ En, un(0, λ) = 0, ‖un‖s0 � 1, ‖∂(ε,λ)un‖s0 � K0(γ )N
σ/2
0 .

(P 2)n For 1 � k � n, ‖uk − uk−1‖s0 � N−σ−1
k , ‖∂(ε,λ)(uk − uk−1)‖s0 � N−1−ν

k .

(P 3)n Let An := ⋂n
k=0 G

(Nk)
γ,μ (uk−1) with u−1 := 0. If (ε, λ) ∈ N (An, γN

−σ/2
n ) then un(ε,λ) solves the equation

(Fn) ΠnF(ε,λ,u) = 0.

(P 4)n Bn := 1 + ‖un‖s̄ , B ′
n := 1 + ‖∂(ε,λ)un‖s̄ (where s̄ is defined in (3)) satisfy

(i) Bn � 2N
μ+ν
n+1 , (ii) B ′

n � 2N
μ+ν+σ/2
n+1 .

The sequence (un)n�0 converges uniformly in C1([0, ε2)×Λ,Xs0+ν) (endowed with the sup-norm of the map and its
partial derivatives) to u with u(0, λ) = 0 and

(ε, λ) ∈ A∞ :=
⋂
n�0

An ⇒ F
(
ε,λ,u(ε,λ)

) = 0.
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Note that in Theorem 3 we do not use any hypothesis on the linearized operators L(N)(ε, λ,u), in particular we do
not assume (L). Then it could happen that An0 = ∅ for some n0. In such a case un = un0 , ∀n � n0, and A∞ = ∅. This
is certainly the case if γ is chosen too large or μ too small.

Then, in Section 2.5, we show, assuming also (L), that the Lebesgue measure of the set A∞ is large, deducing
Theorem 1.

Remark 2.1. A minor difference between Theorem 3 and most Nash–Moser iterative schemes is that we solve ex-
actly, at each step, the Galerkin approximate equations (Fn). It could be possible also to solve it only approximately,
following a standard Newton iteration plus smoothing. This different procedure accounts for the classical quadratic
convergence of our scheme where Nn := N2n

0 (see (11)) whereas a rapid convergence scheme in tame setting usually
requires Nn := eαχn

with 1 < χ < 2.

Let us give an outline of the convergence proof of Theorem 3. The sequence of approximate solutions un is con-
structed in Sections 2.2 and 2.3 solving the Galerkin approximate equations (Fn). First, in Section 2.2, we find u0 as
a fixed point of the nonlinear operator G0, defined in (18). We prove that G0 is a contraction on a ball of (E0,‖ ‖s0),
taking ε sufficiently small. Then, in Section 2.3, by induction, we construct un+1 = un + hn+1 from un, finding hn+1
as a fixed point of Gn+1 defined in (29), see Lemma 2.4.

At the origin of the convergence of this Nash–Moser iteration, is the fact that L−1
n+1 satisfies the “tame” esti-

mates (27), that the “remainder” term rn is supported on the “high Fourier modes”, and that Rn(h) is “quadratic”
in h, see (22) for the definition of Ln+1, rn, Rn(h). Then rn has a very small low norm ‖ ‖s0 thanks to the smoothing
estimates (S2), the tame estimate (F5), and the controlled growth of the high norms ‖un‖s̄ of the approximate solu-
tions given in (P 4)n (see the proof of Lemma 2.4). Actually, the main point is to prove that ‖un‖s does not grow, as
n → ∞, faster than some power of Nn independent of s, see Lemmas 2.5, 2.8, and Section 2.6.

We remark that the term rn does not appear in a purely quadratic Newton scheme because it is a consequence of
the smoothing procedure (projections). In the PDEs applications considered in [14,7–10] a term like rn is proved to
be small by decreasing the analyticity width at each step.

Finally, in Section 2.4, we conclude the convergence proof of Theorem 3. The proof of Theorem 1 is completed
in Section 2.5 and, in Section 2.6, using the stronger assumption (LK ) and the interpolation Lemma 1.1, we prove
Theorem 2.

2.1. Preliminaries

From (F1)–(F3) we deduce, using Taylor formula, the tame properties: for s ∈ [s0, S), there is C(s) > 0 such that
∀‖u‖s0 � 2, ‖h‖s0 � 1,

• (F5) ‖F(ε,λ,u)‖s � C(s)(ε + ‖u‖s+ν);

• (F6) ‖(DuF)(ε,λ,u)[h]‖s � C(s)(‖u‖s+ν‖h‖s0 + ‖h‖s+ν);

• (F7) ‖F(ε,λ,u + h) − F(ε,λ,u) − DuF(ε,λ,u)[h]‖s � C(s)(‖u‖s+ν‖h‖2
s0

+ ‖h‖s+ν‖h‖s0).

We have the following perturbation lemmas:

Lemma 2.1. Let A, R be linear operators in E(N) (A being possibly unbounded). Assume that A is invertible and
that the following bounds hold for some s > s0 and some α,β,ρ, δ � 0:∥∥A−1v

∥∥
s0

� α‖v‖s0,
∥∥A−1v

∥∥
s
� α‖v‖s + β‖v‖s0, (12)

‖Rk‖s0 � δ‖k‖s0, ‖Rk‖s � δ‖k‖s + ρ‖k‖s0 . (13)

If αδ � 1/2 then A + R is invertible and∥∥(A + R)−1v
∥∥

s0
� 2α‖v‖s0,

∥∥(A + R)−1v
∥∥

s
� 2α‖v‖s + 4

(
β + α2ρ

)‖v‖s0 . (14)
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Proof. The fact that A + R is invertible and the first bound in (14) are standard: it is enough to write
A + R = (I + RA−1)A and to notice that I + RA−1 is invertible because ‖RA−1‖s0 � 1/2 and E(N) is a Banach
space.

For the second bound, let k := (A + R)−1v. We have k = A−1(v − Rk) and so

‖k‖s

(12)

� α‖v − Rk‖s + β‖v − Rk‖s0

(13)

� α‖v‖s + αδ‖k‖s + αρ‖k‖s0 + β‖v‖s0 + βδ‖k‖s0 .

Hence, since αδ � 1/2 and ‖k‖s0 = ‖(A + R)−1v‖s0 � 2α‖v‖s0 , we obtain

‖k‖s � 2
(
α‖v‖s + (

2α2ρ + β + 2βδα
)‖v‖s0

)
� 2α‖v‖s + 4

(
β + α2ρ

)‖v‖s0

proving the second inequality in (14). �
Lemma 2.2. Let (ε, λ,u) ∈ J

(N)
γ,μ and ‖u‖s0 � 1. There is c0 := c0(s̄) > 0 such that, if |(ε′, λ′) − (ε, λ)| + ‖h‖s0 �

c0γN−(μ+ν), h ∈ E(N), then L(N)(ε′, λ′, u + h) is invertible and ∀v ∈ E(N)

∥∥L(N)
(
ε′, λ′, u + h

)−1[v]∥∥
s0

� 4
Nμ

γ
‖v‖s0, (15)

∥∥L(N)
(
ε′, λ′, u + h

)−1[v]∥∥
s̄
� 4

Nμ

γ
‖v‖s̄ + K

N2μ+ν

γ 2

(‖u‖s̄ + ‖h‖s̄

)‖v‖s0 . (16)

Proof. For brevity we set z := (ε, λ), z′ := (ε′, λ′) and we apply Lemma 2.1 with A = L(N)(z,u) and R =
L(N)(z′, u+h)−L(N)(z,u). Since ‖u‖s0 � 1, the bounds in (12) hold by (4) with α = 2γ −1Nμ and β = γ −1Nμ‖u‖s̄ .
By (F3) and (F4) we have, for s = s0 or s = s̄,

‖Rk‖s �
∣∣z′ − z

∣∣C(s)
(‖k‖s+ν + (‖u‖s+ν + ‖h‖s+ν

)‖k‖s0

)
+ C(s)

((‖u‖s+ν + ‖h‖s+ν

)‖h‖s0‖k‖s0 + ‖h‖s+ν‖k‖s0 + ‖h‖s0‖k‖s+ν

)
� C(s)Nν

(∣∣z′ − z
∣∣ + ‖h‖s0

)‖k‖s + C(s)Nν
((∣∣z′ − z

∣∣ + ‖h‖s0

)(‖u‖s + ‖h‖s

) + ‖h‖s

)‖k‖s0 .

Hence, the bounds in (13) are satisfied with δ = C(s̄, s0)N
ν(|z′ − z| + ‖h‖s0) and ρ = C(s̄)(‖u‖s̄ + 2‖h‖s̄ )N

ν , for
suitable positive constants C(s̄, s0), C(s̄). Then

αδ � 2γ −1NμC(s̄, s0)N
νc0γN−μ−ν = 1

2
, for c0 := 1

4C(s̄, s0)
,

and Lemma 2.1 can be applied. Then we deduce (15)–(16) by (14). �
The two following subsections are devoted to the construction of the sequence (un) of Theorem 3. Throughout this

construction we shall take N0 := N0(γ ) large enough.

2.2. Initialization in the iterative Nash–Moser scheme

Let A0 := G
(N0)
γ,μ (0). By the definition (6), the parameters (ε, λ) are in A0 if and only if (ε, λ,0) ∈ J

(N0)
γ,μ . Then, by

Lemma 2.2, if N0 is large enough, ∀(ε, λ) ∈ N (A0,2γN
−σ/2
0 ), the operator L(N0)(ε, λ,0) is invertible and∥∥L(N0)(ε, λ,0)−1

∥∥
s0

� 4N
μ
0 γ −1,

∥∥L(N0)(ε, λ,0)−1
∥∥

s̄
� 4N

μ
0 γ −1 (17)

(recall that σ > 4(μ + ν) by (3)). Let us introduce the notations L0 := L(N0)(ε, λ,0), r−1 := Π0F(ε,λ,0), and

R−1(u) := Π0
(
F(ε,λ,u) − F(ε,λ,0) − DuF(ε,λ,0)[u]).

A fixed point of

G0 : E0 → E0, G0(u) := −L−1
0

(
r−1 + R−1(u)

)
, (18)

is a solution of equation (F0). If 0 � ε � ε2(N0, γ ) is sufficiently small, G0 maps
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B0 := {
u ∈ E0

∣∣ ‖u‖s0 � ρ0 := C0N
μ
0 εγ −1}

into itself for some C0 := C0(s0). Indeed, by (17), (F5)–(F7), (S1), ∀‖u‖s0 � ρ0,∥∥G0(u)
∥∥

s0
� 4N

μ
0 γ −1(‖r−1‖s0 + ∥∥R−1(u)

∥∥
s0

)
� 4N

μ
0 γ −1C(s0)

(
ε + Nν

0 ‖u‖2
s0

)
� 4C(s0)N

μ
0 εγ −1 + 4N

μ+ν
0 γ −1C(s0)ρ

2
0 � ρ0 := C0N

μ
0 εγ −1, (19)

taking C0 := 8C(s0) and ε so small that

4N
μ+ν
0 γ −1C(s0)ρ0 = 4N

2μ+ν
0 γ −2C(s0)C0ε � 1

2
. (20)

In the same way, if ε is small enough, we have by (F3), ∀u ∈ B0, ‖DG0(u)[h]‖s0 � ‖h‖s0/2. Hence G0 is a contraction
on (B0,‖ ‖s0) and it has a unique fixed point in this set.

Remark 2.2. The only difference between the proofs in this first step and those of Section 2.3 (and that is why this
section is rather concise) is that the term r−1 is small thanks to the smallness of ε.

Let ũ0(ε, λ) denote the unique solution in B0 of (F0), defined for all (ε, λ) ∈ N (A0,2γN
−σ/2
0 ). By (F1), if (0, λ) ∈

N (A0,2γN
−σ/2
0 ) then ũ0(0, λ) = 0. Moreover, by the implicit function theorem, ũ0 ∈ C1(N (A0,2γN

−σ/2
0 ); B0) and

∂(ε,λ)ũ0 = −L(N0)(ε, λ, ũ0)
−1[Π0∂(ε,λ)F (ε,λ, ũ0)]. By (F2), (15) and (20) we have ‖∂(ε,λ)ũ0‖s0 � KN

μ
0 γ −1.

Then we define the C1 map u0 := ψ0ũ0 : [0, ε2)×Λ → E0 where the C1 cut-off function ψ0 : [0, ε2)×Λ → [0,1]
takes the values 1 on N (A0, γN

−σ/2
0 ) and 0 outside N (A0,2γN

−σ/2
0 ), and |∂(ε,λ)ψ0| � CN

σ/2
0 γ −1. The map u0

satisfies property (P 3)0.
Moreover, u0(0, λ) = 0, and, by the previous estimates, property (P 1)0 holds:

‖u0‖s0 � 1

2
, ‖∂(ε,λ)u0‖s0 �

(
CN

σ/2
0 + KN

μ
0

)
γ −1 � K0(γ )

2
N

σ/2
0 (21)

for some constant K0(γ ). It remains to show (P 4)0. By (17), proceeding as in (19), provided that 4N
μ+ν
0 γ −1C(s̄)ρ0 �

1/2, we have ‖ũ0‖s̄ � K(γ )N
μ
0 ε, and, similarly,

‖∂(ε,λ)ũ0‖s̄

(16)

� 4
N

μ
0

γ

∥∥∂(ε,λ)F (ε,λ, ũ0)
∥∥

s̄
+ K

N
2μ+ν
0

γ 2
‖ũ0‖s̄

∥∥∂(ε,λ)F (ε,λ, ũ0)
∥∥

s0
� K(γ )N

μ
0 .

Hence

‖ũ0‖s̄ � 2N
μ+ν
1 and ‖∂(ε,λ)ũ0‖s̄ � 2N

μ+ν+(σ/2)

1

for N0(γ ) large enough (since N1 � N2
0 /2 by (11)).

2.3. Iteration in the Nash–Moser scheme

In the previous subsection, we have proved that there is u0 that satisfies (P 1)0 (more precisely (21)),
(P 3)0 and (P 4)0. Note that (P 2)0 is automatically satisfied.

By induction, now suppose that we have already defined un ∈ C1([0, ε2) × Λ,En) satisfying the properties
(P 1)n–(P 4)n. We define the next approximation term un+1 via the following modified Nash–Moser scheme.

For h ∈ En+1 we write

Πn+1F
(
ε,λ,un(ε,λ) + h

) = rn + Ln+1[h] + Rn(h)

where

rn := Πn+1F(ε,λ,un), Ln+1 := Ln+1(ε, λ) := L(Nn+1)
(
ε,λ,un(ε,λ)

)
,

Rn(h) := Πn+1
(
F(ε,λ,un + h) − F(ε,λ,un) − DuF

(
ε,λ,un

)[h]). (22)

The “quadratic” term Rn(h) is estimated, by (F7), as
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∥∥Rn(h)
∥∥

s
� C(s)

(‖un‖s+ν‖h‖2
s0

+ ‖h‖s+ν‖h‖s0

)
. (23)

By (P 3)n, if (ε, λ) ∈ N (An;γN
−σ/2
n ) then un solves equation (Fn) and so

rn = Πn+1F(ε,λ,un) − ΠnF(ε,λ,un) = Πn+1(I − Πn)F(ε,λ,un). (24)

By (6) and (4), the operator Ln+1(ε, λ) is invertible on the set An+1 = An ∩ G
(Nn+1)
γ,μ (un). If An+1 = ∅ we define

uk := un, ∀k > n. Otherwise we continue the iteration.
Note that, by (11), for N0 large enough, we have the inclusion

N
(
An+1,2γN

−σ/2
n+1

) ⊂ N
(
An,γN

−σ/2
n

)
. (25)

Lemma 2.3. For all (ε, λ) ∈ N (An+1,2γN
−σ/2
n+1 ) the operator Ln+1(ε, λ) is invertible,

∥∥L−1
n+1[v]∥∥

s0
� 4

N
μ
n+1

γ
‖v‖s0, ∀v ∈ En+1, (26)

and ∥∥L−1
n+1[v]∥∥

s̄
� K(γ )N

μ
n+1

(‖v‖s̄ + N
2(μ+ν)
n+1 ‖v‖s0

)
, ∀v ∈ En+1. (27)

Proof. We apply Lemma 2.2. In fact, if z := (ε, λ) ∈ N (An+1,2γN
−σ/2
n+1 ), there is z′ := (ε′, λ′) ∈ An+1 (i.e.

(z′, un(z
′)) ∈ J

(Nn+1)
γ,μ ) such that |z − z′| � 2γN

−σ/2
n+1 , and then

∣∣z − z′∣∣ + ∥∥un(z) − un

(
z′)∥∥

s0

(P 1)n
� 2γN

−σ/2
n+1

(
1 + K0(γ )N

σ/2
0

)
� c0γN

−(μ+ν)
n+1

for N0 := N0(γ ) large enough, using (3) and (11). Thus (15) gives (26) and (16), together with the bound
‖un(z

′) − un(z)‖s � ‖un(z
′)‖s + ‖un(z)‖s � 2Bn, provides

∥∥L−1
n+1[v]∥∥

s̄
� K ′

γ
N

μ
n+1

(
‖v‖s̄ + N

μ+ν
n+1

γ
Bn‖v‖s0

)
(28)

which implies (27) by (P 4)n. �
Defining for (ε, λ) ∈ N (An+1,2γN

−σ/2
n+1 ) the map

Gn+1 : En+1 → En+1, Gn+1(h) := −L−1
n+1

[
rn + Rn(h)

]
, (29)

the equation (Fn+1) is equivalent to the fixed point problem h = Gn+1(h).

Lemma 2.4 (Contraction). Let (ε, λ) ∈ N (An+1,2γN
−σ/2
n+1 ). For N0(γ ) large enough Gn+1 is a contraction in

Bn+1 := {h ∈ En+1 | ‖h‖s0 � ρn+1 := N−σ−1
n+1 } endowed with the norm ‖ ‖s0 .

Proof. For all (ε, λ) ∈ N (An+1,2γN
−σ/2
n+1 ), by (26) and (29), we have∥∥Gn+1(h)

∥∥
s0

� 4N
μ
n+1γ

−1(‖rn‖s0 + ∥∥Rn(h)
∥∥

s0

)
(30)

and rn has the form (24) because of (25). Now, if ‖h‖s0 � ρn+1 := N−σ−1
n+1 then

‖rn‖s0 + ∥∥Rn(h)
∥∥

s0

(S2),(23)

� K
(
N−(s̄−s0)

n

∥∥F(ε,λ,un)
∥∥

s̄
+ ‖un‖s0+ν‖h‖2

s0
+ ‖h‖s0‖h‖s0+ν

)
(F5),(S1),(11)

� K ′(N−(s̄−s0)/2
n+1 Nν

nBn + Nν
n+1‖h‖2

s0

)
(P 4)n,(3)

� K1
(
N

−μ−σ−2
n+1 + Nν

n+1ρ
2
n+1

)
� K1ρn+1

(
N

−μ−1 + Nν−σ−1) (3)

� K2ρn+1N
−μ−1

.
n+1 n+1 n+1
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As a consequence, for N0 := N0(γ ) large enough, we have

‖h‖s0 � ρn+1 ⇒ ‖rn‖s0 + ∥∥Rn(h)
∥∥

s0
� ρn+1N

−μ
n+1γ /4. (31)

Hence by (30), Gn+1(Bn+1) ⊂ Bn+1.
Next, differentiating (29) with respect to h and using (22), we get, ∀h ∈ Bn+1,

DhGn+1(h)[v] = −L−1
n+1Πn+1

(
DuF(ε,λ,un + h)[v] − DuF(ε,λ,un)[v])

and

∥∥DhGn+1(h)[v]∥∥
s0

(26),(F3),(P 1)n
� K

γ
N

μ+ν
n+1 ρn+1‖v‖s0

(3)

� K

γ
N−1

n+1‖v‖s0 � ‖v‖s0

2

for N0 large enough. Hence Gn+1 is a contraction in Bn+1. �
Let h̃n+1 := h̃n+1(ε, λ) ∈ En+1 be the unique fixed point of Gn+1, for (ε, λ) ∈ N (An+1,2γN

−σ/2
n+1 ). Since h̃n+1

solves

Un+1(ε, λ,h) := Πn+1F
(
ε,λ,un(ε,λ) + h

) = 0 (32)

and un(0, λ)
(P 1)n= 0, we deduce, by (F1) and the uniqueness of the fixed point, that

(0, λ) ∈ N
(
An+1,2γN

−σ/2
n+1

) ⇒ h̃n+1(0, λ) = 0. (33)

Lemma 2.5 (Estimate in high norm). ∀(ε, λ) ∈ N (An+1,2γN
−σ/2
n+1 ) we have

‖h̃n+1‖s̄ � N
2(μ+ν)
n+1 . (34)

Proof. By h̃n+1 = Gn+1(h̃n+1) we estimate

‖h̃n+1‖s̄

(27)

� K(γ )N
μ
n+1

(‖rn‖s̄ + ∥∥Rn(h̃n+1)
∥∥

s̄
+ N

2(μ+ν)
n+1

(‖rn‖s0 + ∥∥Rn(h̃n+1)
∥∥

s0

))
. (35)

By (22) and (F5),

‖rn‖s̄ � K
(
ε + ‖un‖s̄+ν

) (S1)

� K ′Nν
nBn

(P 4)n,(11)

� K ′′Nμ+ 3
2 ν

n+1 . (36)

By (23) and (S1)∥∥Rn(h̃n+1)
∥∥

s̄
� K

(
Nν

nBn‖h̃n+1‖2
s0

+ Nν
n+1‖h̃n+1‖s0‖h̃n+1‖s̄

)
� N−σ−1

n+1 + KNν−σ−1
n+1 ‖h̃n+1‖s̄ , (37)

using (P 4)n, ‖h̃n+1‖s0 � ρn+1 := N−σ−1
n+1 (Lemma 2.4) and σ > 4(μ + ν). Inserting in (35) the estimates (36)–(37)

and (31) we get, for N0 := N0(γ ) large enough,

‖h̃n+1‖s̄ � 1

2
N

2(μ+ν)
n+1 + K ′(γ )N

μ+ν−σ−1
n+1 ‖h̃n+1‖s̄ � 1

2
N

2(μ+ν)
n+1 + 1

2
‖h̃n+1‖s̄

and (34) follows. �
Lemma 2.6 (Estimates of the derivatives). The map h̃n+1 is in C1(N (An+1, 2γN

−σ/2
n+1 ); Bn+1) and

(i) ‖∂(ε,λ)h̃n+1‖s0 � 1

2
N−1−ν

n+1 , (ii) ‖∂(ε,λ)h̃n+1‖s̄ � N
2(μ+ν)+σ
n+1 . (38)
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Proof. We set for brevity z := (ε, λ). Recall that Un+1(z, h̃n+1(z)) = 0, see (32). The partial derivative
DhUn+1(z, h̃n+1) = L(Nn+1)(z, un(z) + h̃n+1) is invertible by Lemma 2.2. Actually, arguing as in the proof of
Lemma 2.3, since ‖h̃n+1‖s0 � N−σ−1

n+1 � c0γN
−(μ+ν)
n+1 for N0 large, the estimates (15)–(16) imply

∥∥(
DhUn+1(z, h̃n+1)

)−1[v]∥∥
s0

� 4γ −1N
μ
n+1‖v‖s0, ∀v ∈ En+1, (39)

∥∥(
DhUn+1(z, h̃n+1)

)−1[v]∥∥
s̄

(P 4)n
� K(γ )N

μ
n+1

(‖v‖s̄ + N
μ+ν
n+1

(
N

μ+ν
n+1 + ‖h̃n+1‖s̄

)‖v‖s0

)
(34)

� K ′(γ )N
μ
n+1

(‖v‖s̄ + N
3(μ+ν)
n+1 ‖v‖s0

)
. (40)

Then, by the implicit function theorem, h̃n+1 ∈ C1(N (An+1,2γN
−σ/2
n+1 ); Bn+1) and

∂zh̃n+1 = −(
(DhUn+1)(z, h̃n+1)

)−1
(∂zUn+1)(z, h̃n+1). (41)

Now, using that un(z) solves (Fn) for z ∈ N (An, γN
−σ/2
n ), we get by (25)

∂zUn+1(z,h) = Πn+1
(
∂zF (z,un + h) + DuF(z,un + h)[∂zun]

)
(42)

= Πn+1(∂zF )(z,un + h) − Πn(∂zF )(z,un)

+ Πn+1(DuF)(z,un + h)[∂zun] − Πn(DuF)(z,un)[∂zun]
= Πn+1

(
(∂zF )(z,un + h) − (∂zF )(z,un)

)
(43)

+ Πn+1
(
(DuF)(z,un + h) − (DuF)(z,un)

)[∂zun] (44)

+ Πn+1(I − Πn)
(
∂zF (z,un) + DuF(z,un)[∂zun]

)
. (45)

Using (F4), (F3), (P 1)n, (S1), we get∥∥(43)
∥∥

s0
+ ∥∥(44)

∥∥
s0

� K(γ )Nν
n+1‖h̃n+1‖s0 � K(γ )Nν−σ−1

n+1 (46)

by Lemma 2.4. By the smoothing estimate (S2), and (F2), (F3), (F6), (P 1)n,∥∥(45)
∥∥

s0
� K(γ )N−(s̄−s0)

n

(
1 + ‖un‖s̄+ν + ‖∂zun‖s̄+ν

)
(S1),(P 4)n

� K ′(γ )N−(s̄−s0)
n Nν

nN
ν+μ+ σ

2
n+1

(3)

� K ′(γ )N
− 1

2 (μ+ν+σ+4)

n+1 . (47)

From (41), (39), (46)–(47) we deduce estimate (38)(i) for N0(γ ) large enough. To prove (38)(ii) we use (41) and
estimate (40), whence

‖∂zh̃n+1‖s̄ � K ′(γ )N
μ
n+1

(∥∥∂zUn+1(z, h̃n+1)
∥∥

s̄
+ N

3(μ+ν)
n+1

∥∥∂zUn+1(z, h̃n+1)
∥∥

s0

)
� K̃(γ )N

μ
n+1

(‖un‖s̄+ν + ‖h̃n+1‖s̄+ν + ‖∂zun‖s̄+ν + N
2(μ+ν)
n+1

)
(48)

(P 4)n,(34)

� K ′′(γ )N
μ+ν
n+1

(
N

μ+ν+σ/2
n+1 + N

2(μ+ν)
n+1

)
� N

2(μ+ν)+σ
n+1 (49)

for N0 := N0(γ ) large enough. To obtain (48) we have used (F2), (F6) and (P 1)n in (42) to bound ‖∂zUn+1(z, h̃n+1)‖s̄

and (46)–(47) to bound ‖∂zUn+1(z, h̃n+1)‖s0 . �
We now define a C1-extension of (h̃n+1)|An+1 onto the whole [0, ε2) × Λ.

Lemma 2.7 (Extension). There is hn+1 ∈ C1([0, ε2) × Λ, Bn+1) satisfying

hn+1(0, λ) = 0, ‖hn+1‖s0 � N−σ−1
n+1 , ‖∂(ε,λ)hn+1‖s0 � N−ν−1

n+1

and that is equal to h̃n+1 on N (An+1, γN
−σ/2

).
n+1
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Proof. Let

hn+1(ε, λ) :=
{

ψn+1(ε, λ)h̃n+1(ε, λ) if (ε, λ) ∈ N (An+1,2γN
−σ/2
n+1 ),

0 if (ε, λ) /∈ N (An+1,2γN
−σ/2
n+1 )

(50)

where ψn+1 is a C1 cut-off function satisfying 0 � ψn+1 � 1, ψn+1 = 1 on N (An+1, γN
−σ/2
n+1 ), ψn+1 = 0 outside

N (An+1,2γN
−σ/2
n+1 ), and |∂(ε,λ)ψn+1| � Cγ −1N

σ/2
n+1.

By (33) and the definition of ψn+1 we get hn+1(0, λ) = 0, ∀λ ∈ Λ.
By the definition, ‖hn+1‖s0 � ‖h̃n+1‖s0 � ρn+1 = N−σ−1

n+1 by Lemma 2.4, and

‖∂(ε,λ)hn+1‖s0 � |∂(ε,λ)ψn+1|‖h̃n+1‖s0 + ‖∂(ε,λ)h̃n+1‖s0 � N−ν−1
n+1

for N0(γ ) large enough, by the previous bound on |∂(ε,λ)ψn+1| and Lemma 2.6. �
Finally we define un+1 ∈ C1([0, ε2) × Λ,En+1) as un+1 := un + hn+1. By Lemma 2.7, on N (An+1, γN

−σ/2
n ) we

have hn+1 = h̃n+1 that solves Eq. (32) and so un+1 solves Eq. (Fn+1). Hence property (P 3)n+1 holds. By Lemma 2.7,
property (P 2)n+1 holds. By (21) and (P 2)n+1, for N0(γ ) large enough,

‖un+1‖s0 � 1

2
+

n∑
k=0

‖hk+1‖s0 � 1,

‖∂(ε,λ)un+1‖s0 � K0(γ )

2
N

σ/2
0 +

n∑
k=0

‖∂(ε,λ)hk+1‖s0 � K0(γ )N
σ/2
0 .

Moreover, still by Lemma 2.7 we have un+1(0, λ) = 0, ∀λ ∈ Λ, and also property (P 1)n+1 is verified. The induction
of Theorem 3 is concluded in the following lemma.

Lemma 2.8. For N0 := N0(γ ) large, property (P 4)n+1 holds.

Proof. By the definition (50) and (34) we have ‖hn+1‖s̄ � N
2(μ+ν)
n+1 and, by (P 4)n,

Bn+1 � Bn + ‖hn+1‖s̄ � 2N
μ+ν
n+1 + N

2(μ+ν)
n+1 � 2N

μ+ν
n+2

for N0 := N0(γ ) large enough. The second inequality follows similarly by

‖∂(ε,λ)hn+1‖s̄ � |∂(ε,λ)ψn+1|‖h̃n+1‖s̄ + ‖∂(ε,λ)h̃n+1‖s̄

(34),(38)

� C

γ
N

(σ/2)+2(μ+ν)

n+1 + N
2(μ+ν)+σ
n+1 � 3

2
N

μ+ν+σ/2
n+2

for N0 := N0(γ ) large enough. �
2.4. Proof of Theorem 3 completed

The sequence of maps un ∈ C1([0, ε2) × Λ,En) converges in C1([0, ε2) × Λ,Xs0+ν) to u, because Xs0+ν is a
Banach space and

∑
n�0

‖un − un−1‖s0+ν

(S1)

� K
∑
n�0

Nν
n‖un − un−1‖s0

(P 2)n
� K

∑
n�0

Nν−σ−1
n �

∑
n�0

N−1
n < ∞

and, similarly,
∑

n�0 ‖∂(ε,λ)un − ∂(ε,λ)un−1‖s0+ν � K ′ ∑
n�0 N−1

n < ∞.



390 M. Berti et al. / Ann. I. H. Poincaré – AN 27 (2010) 377–399
Finally, if (ε, λ) ∈ A∞ := ⋂
n�0 An then F(ε,λ,u) = 0 because

F(ε,λ,u) = Πn

(
F(ε,λ,u) − F(ε,λ,un)

) + (I − Πn)F(ε,λ,u)
‖ ‖s0−−−→ 0

for n → ∞.

2.5. Proof of Theorem 1

In order to deduce Theorem 1 from Theorem 3 it is sufficient to prove that assumption (L) implies
|Ac∞ ∩ ([0, ε) × Λ)| � Cγ ε, ∀ε ∈ (0, ε3) for some ε3 � ε2.

Setting Gn := G
(Nn)
γ,μ (un−1) for n � 1, and G0 := G

(N0)
γ,μ (0) we have A∞ = ⋂∞

n=0 Gn. Its complementary set in
[0, ε) × Λ is (here the apex c denotes the complementary in [0, ε) × Λ)

Ac∞ =
∞⋃

n=0

Gc
n ⊂ Hc ∪ (

Gc
0 \ Hc

) ∪
∞⋃

n=1

(
Gc

n \ Gc
n−1

)

where H := G
(M)
γ,μ (0), and N0 � M . This implies, by (7)–(8), the measure estimate

∣∣Ac∞
∣∣ �

∣∣Hc
∣∣ + ∣∣Gc

0 \ Hc
∣∣ +

∞∑
n=1

∣∣Gc
n \ Gc

n−1

∣∣ � Cγ ε
(
1 + M−1) +

∞∑
n=1

Cγ εN−1
n−1 � 2Cγ ε

where we can apply (8) for

0 < ε � ε3(γ ) := min
(
ε1(γ, K̄), ε2(γ )

)
with K̄= K0(γ )N

σ/2
0 (γ )

because, by (P 1)n, we have un ∈ U (Nn)

K̄ and ‖un − un−1‖s0 � N−σ−1
n by (P 2)n for all n.

2.6. Proof of Theorem 2

Under (LK) we can apply Theorem 3 with An = ⋂n
k=0 G

(Nk)

γ,μ,K(uk−1), and the conclusion of Theorem 1 holds. We

have to check that u is in C1([0, ε3) × Λ;Xs′) for all s′ > 0. For this, the main point is property (P 4)′n below whose
proof requires only small changes in the arguments used in Lemmas 2.5 and 2.6.

Lemma 2.9. For any s > s̄, Bn(s) := 1 + ‖un‖s , B ′
n(s) := 1 + ‖∂(ε,λ)un‖s satisfy

(P 4)′n Bn(s) � C(s)N
μ+ν
n+1 , B ′

n(s) � C(s)N
μ+ν+σ/2
n+1 .

This implies ‖hn‖s � 2C(s)N
μ+ν
n+1 .

Proof. First consider the map h̃n+1 defined on N (An+1,2γN
−σ/2
n+1 ) after Lemma 2.4. Applying Lemma 2.2 with s̄

replaced by s, we get, for all n � n0(s) large enough,∥∥L−1
n+1[v]∥∥

s
� K(γ, s)N

μ
n+1

(‖v‖s + N
μ+ν
n+1 Bn(s)‖v‖s0

)
,

similarly to (28) in the proof of Lemma 2.3. Then, from h̃n+1 = Gn+1(h̃n+1) we derive (using (31))

‖h̃n+1‖s � K(γ, s)N
μ
n+1

(‖rn‖s + ∥∥Rn(h̃n+1)
∥∥

s

) + K(γ, s)N
μ+ν
n+1 Bn(s)ρn+1.

As in (36)–(37), we get

‖rn‖s � C(s)Nν
nBn(s),

∥∥Rn(h̃n+1)
∥∥

s
� C(s)

(
Nν

nBn(s)ρ
2
n+1 + Nν

n+1‖h̃n+1‖sρn+1
)
.

Since ρn+1 = N−σ−1
n+1 , for n � n0(s) large enough, K(γ, s)C(s)N

μ+ν
n+1 ρn+1 � 1/2, and we derive from the previous

inequalities, using (3) again, that

‖h̃n+1‖s � K ′(γ, s)N
μ

Nν
nBn(s) � N

μ+ν
Bn(s).
n+1 n+1
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Hence, as in Lemma 2.7, ‖hn+1‖s � N
μ+ν
n+1 Bn(s) and

Bn+1(s) �
(
1 + N

μ+ν
n+1

)
Bn(s)

for n � n0(s), which implies that the sequence (Bn(s)N
−μ−ν
n+1 )n is bounded. This proves the first bound in (P 4)′n.

With similar changes in Lemma 2.6 we obtain the second bound in (P 4)′n. �
Now, consider any s > s′ > s0. By Lemma 1.1, writing s′ := (1 − t)s0 + ts, t ∈ (0,1),

‖hn‖s′ � K(s0, s)‖hn‖1−t
s0

‖hn‖t
s � K ′(s)N−(σ+1)(1−t)

n N2(μ+ν)t
n = K ′(s)N−1

n

using ‖hn‖s0 � N−σ−1
n (Lemma 2.4), ‖hn‖s � 2C(s)N

2(μ+ν)
n (Lemma 2.9), and choosing s large such that

t = s′ − s0

s − s0
= σ

2(μ + ν) + σ + 1
.

Hence
∑‖hn‖s′ < ∞ and, since Xs′ is a Banach space, u ∈ Xs′ . We prove exactly in the same way that ‖∂(ε,λ)hn‖s′ �

C(s)N−1
n and we derive that u is C1 to Xs′ . Since s′ � s0 is arbitrary we conclude that u is in C1([0, ε3) × Λ,X)

where X := ⋂
s�0 Xs .

3. An application to PDEs

We present here an application of Theorems 1–2 to the search of periodic solutions of nonlinear wave equations

utt − �u + V (x)u = εf (ωt, x,u), x ∈ M, (51)

where M is a d-dimensional connected, compact, Riemannian C∞-manifold without boundary, of Zoll type, namely
the geodesic flow on the unit tangent bundle is periodic of minimal period T > 0. Classical examples of Zoll manifolds
are the spheres and the symmetric compact spaces of rank 1 endowed with the canonical Riemannian structure. By
results of Zoll, Funk, Guillemin and Weinstein, there exist many different metrics on the spheres, besides the standard
one, whose geodesics are all simple closed curves of equal length, see e.g. [6].

In (51), � denotes the Laplace–Beltrami operator and we assume that the potential satisfies

V (x) � 0, V ∈ Cp(M) for some p > max{2, d/2}, V �≡ 0 (52)

the forcing term f is differentiable only finitely many times, and f (ωt, x,u) is (2π/ω)-periodic in time, i.e. f (·, x,u)

is 2π -periodic.

Remark 3.1. Wave equations on Zoll manifolds have been recently studied in [1] for time independent C∞-
nonlinearities. The present techniques, written in the forced case for simplicity, apply also to such autonomous PDEs.

For ε = 0 the equilibrium u = 0 is a solution of (51). If ε �= 0 and f (t, x,0) �= 0 then u = 0 is no more a solution.
After a rescaling in time, we look for periodic solutions of

ω2utt − �u + V (x)u − εf (t, x,u) = 0 (53)

for ε �= 0 small enough, in the Sobolev scale

Hs := Hs
(
T,H s1(M,R)

)
, s � 0, (54)

of real, 2π -periodic in time functions with values in the Sobolev space Hs1(M,R), where s1 ∈ (max{2, d/2},p]. For
s1 > d/2, the Sobolev space Hs1(M) ⊂ L∞(M) is a Banach algebra. Thanks to this property, for s > 1/2, each Hs

is a Banach algebra too, see e.g. [2].
We define the closed subspaces of H 0

E(N) :=
{
u =

∑
eiltul(x), ul ∈ Hs1(M,C), ūl(x) = u−l (x)

}

|l|�N



392 M. Berti et al. / Ann. I. H. Poincaré – AN 27 (2010) 377–399
and the corresponding L2-orthogonal projectors Π(N). The smoothing properties (S1)–(S2) hold. Moreover

E(N) ⊂
⋂
s�0

Hs = C∞(
T,H s1(M,R)

)
.

We need informations on the eigenvalues of the unbounded, self-adjoint operator

P := √−� + V (x)

densely defined on L2(M) := L2(M,C). The eigenvalues of P are the normal mode frequencies of the membrane.
The spectrum σ(P ) of P is discrete, real and every λ ∈ σ(P ) is an eigenvalue of P of finite multiplicity. The following
lemma, due to Colin de Verdière [12] and taken from [1], describes the asymptotic distribution of the eigenvalues of
P when M is a Zoll manifold.

Lemma 3.1. If M is a Zoll manifold, there are constants α ∈ R, c0 > 0, δ ∈ (0,1), C0 > 0, and disjoint compact
intervals (Ij )j�1 with I1 at the left of I2, and

Ij :=
[

2π

T
j + α − c0

jδ
,

2π

T
j + α + c0

jδ

]
, j � 2, (55)

such that the spectrum of P satisfies

σ(P ) ⊂
⋃
j�1

Ij and cardinality
(
σ(P ) ∩ Ij

)
� C0j

d−1 (56)

(counted with multiplicity).

We call ωj,k , 1 � k � dj , dj � C0j
d−1, the eigenvalues of P in each Ij . There is an orthonormal basis of

L2(M) composed of corresponding eigenvectors ϕj,k . Since the manifold M has no boundary, the Sobolev norms in
Hs1(M) := Hs1(M,C) can be defined as∥∥∥∥ ∑

1�j,1�k�dj

vj,kϕj,k

∥∥∥∥
2

Hs1 (M)

=
∑

1�j,1�k�dj

(
1 + ω2

j,k

)s1 |vj,k|2.

We consider forcing frequencies ω that are not in resonance with the normal mode frequencies ωj,k of the mem-
brane. More precisely, fixed some τ > d − 1, we restrict to ω such that

∣∣ω2l2 − ω2
j,k

∣∣ � γ

1 + |l|τ , ∀l ∈ Z, j ∈ N, k ∈ [1, dj ], (57)

for some γ ∈ (0,1). By standard arguments, and taking into account (56), the non-resonance condition (57) is satisfied
∀ω ∈ (ω1,ω2) but a subset of measure O(γ ).

Theorem 4. Let M be a Zoll manifold and assume (52). Fix 0 < ω1 < ω2 and s1 ∈ (max{2, d/2},p]. Then

(i) Existence. There exists s∗ > 1/2, k∗ ∈ N such that: ∀f ∈ Ck∗
(T × M × R), ∀γ ∈ (0,1), there is ε0 := ε0(γ ) > 0,

a map

u ∈ C1([0, ε0) × (ω1,ω2),H
s∗)

with u(0,ω) = 0,

such that u(ε,ω) is a solution of (53) for all (ε,ω) ∈ [0, ε0) × (ω1,ω2) except in a set Cγ of Lebesgue measure
O(γ ε0). Moreover, ∀0 < ε � ε0(γ ), |Cγ ∩ ([0, ε) × (ω1,ω2))| = O(γ ε).

(ii) Regularity. If f ∈ C∞(T × M × R) then

u ∈ C1([0, ε0) × (ω1,ω2),C
∞(

T,H s1(M,R)
))

.
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The proof Theorem 4 is an application of Theorems 1 and 2.
Applying the linear operator Q := (−� + V (x) + I )−1 in (53), we look for zeros of

F(ε,ω,u) := ω2Qutt + u − Qu − εQf (t, x,u) (58)

in the Sobolev scale (Hs)s�0.
By classical elliptic estimates the operator Q is regularizing of order 2 in the spatial variables: more precisely, we

have ∥∥(−� + V (x) + I
)−1

u
∥∥

s,s′
1
� ‖u‖s,max (0,s′

1−2), ∀u ∈ Hs,s′
1, (59)

where Hs,s′
1 := Hs(T,H s′

1(M,R)), s′
1 � 0, with Hilbert norms

‖u‖2
s,s′

1
=

∑
l∈Z

〈l〉2s‖ul‖2

H
s′1 (M)

, 〈l〉 := max
(
1, |l|). (60)

When s′
1 = s1 we shall more simply denote ‖ ‖s,s′

1
= ‖ ‖s,s1 = ‖ ‖s the norm in Hs . Finally, given a linear operator L

in Hs,s′
1 , ‖L‖s,s′

1
denotes the associated operatorial norm.

Lemma 3.2. If f ∈ Ck(T × M × R) with S := k − s1 − 2 > s0 > 1/2, the map F satisfies (2), with ν = 2, Λ =
(ω1,ω2) ⊂ R, and (F1) holds. Moreover F is C2 and the tame properties (F2)–(F4) hold for all s ∈ [s0, S].

Proof. Use standard properties for the composition operators in Sobolev spaces, see e.g. [3]. �
There remains to verify properties (L) and (LK ) concerning the linearized operators

L(N)(u)[v] = QL(N)(u)[v] = ω2Qvtt + v − Qv − εΠ(N)Q
(
b(t, x)v

)
, v ∈ E(N), (61)

where b(t, x) := (∂uf )(t, x,u(t, x)) and

L(N)(u)[v] := L(N)(ε,ω,u)[v] := ω2vtt − �v + V (x)v − εΠ(N)
(
b(t, x)v

)
.

We shall prove in detail property (LK ), assuming that f is in C∞. The proof of (L) is similar.

Proposition 3.1. For all τ > 0, τ0 > 1, there exist constants μ0 � 0, s̃ > 1/2, a non-decreasing function K : R+ →
[1,∞) and, ∀γ > 0, a constant η(γ ) > 0 such that: if ε(‖b‖s̃ + 1) � η(γ ),∣∣∣∣ωl − 2π

T
p

∣∣∣∣ � γ

(1 + |l|)τ0
, ∀(l,p) ∈ Z

2\{(0,0)
}
, (62)

and

∀1 � K � N,
∥∥(

L(K)(u)
)−1∥∥

0,0 � 4
Kτ

γ
, (63)

then, ∀s � s̃,∥∥(
L(N)(u)

)−1
h
∥∥

s,0 � K(s)

γ
Nμ0

(‖h‖s,0 + ‖b‖s‖h‖s̃,0
)
, ∀h ∈ E(N). (64)

Postponing the proof of Proposition 3.1 to the end of the section, we complete the proof of property (LK ). By a
bootstrap type argument, (64) implies a similar estimate for ‖(L(N)(u))−1h‖s .

Lemma 3.3. Under the assumptions of Proposition 3.1, ∀s � s̃,

∥∥(
L(N)(u)

)−1
h
∥∥

s
� K(s)

γ
Nμ

(‖h‖s + ‖u‖s‖h‖s̃

)
, ∀h ∈ E(N),

where μ := μ0 + s1 + 2, taking, if necessary, K(s) larger.
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Proof. Setting h := (L(N)(u))[v] = v + Q(ω2vtt − v − εΠ(N)(bv)) in (61), we estimate

‖v‖s = ∥∥Q
(−ω2vtt + v + εΠ(N)(bv)

) + h
∥∥

s

(59)

�
∥∥ − ω2vtt + v + εΠ(N)(bv)

∥∥
s,s1−2 + ‖h‖s � CN2‖v‖s,s1−2 + εC(s)‖b‖s‖v‖s̃,s1−2 + ‖h‖s

by interpolation inequality (82). Using ‖v‖s̃,s1−2 � CN2‖v‖s̃,max (0,s1−4) + ‖h‖s̃ , and iterating, we obtain

‖v‖s � C(s)Ns1+2(‖v‖s,0 + ‖h‖s + ‖b‖s‖v‖s̃,0 + ‖b‖s‖h‖s̃

)
. (65)

Since v = (L(N)(u))−1(−� + V (x) + I )h,

‖v‖s,0
(64)

� K(s)

γ
Nμ0

(‖h‖s,2 + ‖b‖s‖h‖s̃,2
)
� K′(s)

γ
Nμ0

(‖h‖s + ‖u‖s‖h‖s̃

)
, (66)

using s1 � 2 and ‖b‖s = ‖(∂uf )(t, x,u)‖s � C(s)(1 + ‖u‖s). By (65) and (66) the lemma follows. �
To conclude the proof of property (LK) we have to define J

(N)

γ,μ,K and show the measure estimates (7) and (8). Fix
τ � d + 2 (the exponent in (57) and in (63)), τ0 > 1 (the exponent in (62)) and define

G := {
(ε,ω) ∈ [0, ε0) × (ω1,ω2)

∣∣ ω satisfies (57) and (62)
}
.

By standard arguments |Gc ∩ ([0, ε) × (ω1,ω2))| = O(γ ε). We also define

J
(N)

γ,μ,K := {
(ε,ω,u) ∈ [0, ε0) × (ω1,ω2) × E(N)

∣∣ (ε,ω) ∈ G, ‖u‖s0 � 1, and (63) holds
}
.

By Proposition 3.1 and Lemma 3.3, for ε0 > 0 small enough, the inclusion (10) is satisfied, with

μ := μ0 + s1 + 2 and s0 > max{1/2, s̃}.
Next, given a function u ∈ U (N)

K (see (5)), K> 0, the set G
(N)

γ,μ,K(u) defined as in (6) can be written as

G
(N)

γ,μ,K(u) =
⋂

1�K�N

BK(u) ∩ G (67)

where

BK(u) :=
{
(ε,ω) ∈ [0, ε0) × (ω1,ω2)

∣∣ ∥∥(
L(K)(u)

)−1∥∥
0,0 � 4

Kτ

γ

}
.

Lemma 3.4. If ε0γ
−1Mτ � c is small enough, then G

(M)

γ,μ,K(0) = G. Hence (7) holds.

Proof. We have L(K)(u) = D(K) + T (K) with

D(K)h := ω2htt − �h + V (x)h and T (K)h := −εΠ(K)(bh). (68)

If ω satisfies (57) then ‖(D(K))−1‖0,0 � 2Kτγ −1. Moreover ‖T (K)‖0,0 � Cε‖b‖s̃ . By Lemma 2.1, if
2Mτγ −1Cε‖b‖s̃ < 1/2, then, ∀1 � K � M , L(K)(u) is invertible in H 0,0 and ‖(L(K)(u))−1‖0,0 � 4Kτγ −1. �

We fix σ > max{4(μ + 2), d + 2} (the first condition is (3) with ν = 2).

Lemma 3.5. The measure estimate (8) holds.

Proof. Fix ε̃ ∈ (0, ε0]. As in the proof of Lemma 3.4, for all N,N ′ � Nε̃ := (cγ /ε̃)1/τ , for all u1 ∈ U (N ′)
K̄ , u2 ∈ U (N ′)

K̄ ,

it results G
(N)

γ,μ,K(u1) = G
(N ′)
γ,μ,K(u2) = G and thus (8) is trivially satisfied in such cases. Given a set A ⊂ (0, ε0] ×

[ω1,ω2] let Ac represent the complementary in (0, ε̃] × [ω1,ω2]. For N ′ � N ,
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(
G

(N ′)
γ,μ,K(u2)

)c\(G(N)

γ,μ,K(u1)
)c = (

G
(N ′)
γ,μ,K

)c
(u2) ∩ G

(N)

γ,μ,K(u1)

⊂
[ ⋃

K�N

(
Bc

K(u2) ∩ BK(u1) ∩ G
)] ∪

[ ⋃
K>N

Bc
K(u2) ∩ G

]
.

As we have just seen, if K � Nε̃ then Bc
K(u2) ∩ G = ∅. Hence it is enough to prove that, if ‖u1 − u2‖s0 � N−σ , then

B :=
∑

K�N

∣∣Bc
K(u2) ∩ BK(u1)

∣∣ +
∑

K>max{N,Nε̃}

∣∣Bc
K(u2)

∣∣ � C̄
γ ε̃

N
. (69)

Since L(K)(u) is selfadjoint in H 0,0 and (CI + L(K)(u))−1 is compact for some large C depending on K , H 0,0 has
an orthonormal basis of eigenvectors of L(K)(u), and ‖(L(K)(u))−1‖0,0 is the inverse of the eigenvalue of smallest
modulus.

Since ‖L(K)(u2) − L(K)(u1)‖0,0 = O(ε‖u2 − u1‖s0) = O(εN−σ ), if one of the eigenvalues of L(K)(u2) is in
[−4γK−τ ,4γK−τ ] then, by the variational characterization of the eigenvalues of L(K)(u), one of the eigenvalues of
L(K)(u1) is in [−4γK−τ − CεN−σ ,4γK−τ + CεN−σ ]. As a result

Bc
K(u2) ∩ BK(u1) ⊂ {

(ε,ω)
∣∣ ∃ at least one eigenvalue of L(K)(ε,ω,u1)

with modulus in
[
4γK−τ ,4γK−τ + CεN−σ

]}
.

By a simple eigenvalue variation argument, as is Lemma 3.2 of [4], we have that: if ε is small enough (depending
on K̄), if I is a compact interval in [−γ, γ ] of length |I |, then

∣∣{ω ∈ [ω1,ω2] s.t. at least one eigenvalue of L(K)(ε,ω,u1) belongs to I
}∣∣ � C

Kd |I |
ω1

. (70)

As a consequence |{ω|(ε,ω) ∈ Bc
K(u2) ∩ BK(u1)}| � CεN−σ Kd/ω1 for each ε ∈ (0, ε̃], whence |Bc

K(u2) ∩
BK(u1)| � C′ε̃2KdN−σ . Moreover, still by (70), |Bc

K(u2)| � Cε̃KdγK−τ /ω1 � C′ε̃γKd−τ . Hence B defined
in (69) satisfies

B � Cε̃2
( ∑

K�N

Kd

)
N−σ + Cε̃γ

( ∑
K>max{N,Nε̃}

Kd−τ

)

� Cε̃2Nd+1−σ + C′ε̃γ
(
max{N,Nε̃}

)d+1−τ � C̄γ ε̃N−1,

for σ, τ � d + 2. This proves the measure estimate (8). �
We have verified all the assumptions of Theorems 1–2 whence Theorem 4 follows.

Proof of Proposition 3.1. Fixed ρ > 0, we consider the “singular” S and “regular” R sites

S := {
l ∈ Z ∩ [−N,N ] ∣∣ ∥∥Dl(ω)−1

∥∥
L(L2(M))

> ρ−1}, R := S c,

where Dl(ω) := −ω2l2 − � + V (x) are self-adjoint, unbounded operators, densely defined in L2(M). �
The singular sites S are “separated” like in the 1-dimensional wave equations.

Lemma 3.6. Assume the diophantine condition (62). Then ∃c(γ ) > 0, δ0 := δ0(τ0, δ) ∈ (0,1), such that ∀l, l′ ∈ S with
l �= l′, we have |l − l′| � c(γ )(|l| + |l′|)δ0 .

Proof. Suppose that l1, l2 > 0; if l1, l2 ∈ S then there are j1, k1 ∈ [1, dj1], j2, k2 ∈ [1, dj2 ] such that

|ωl1 − ωj1,k1 | � C
ρ

|l1| , |ωl2 − ωj2,k2 | � C
ρ

|l2| .

Using the spectral asymptotics in (55), and the diophantine condition, we get, if l1 �= l2,
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γ

(1 + |l1 − l2|)τ0
�

∣∣∣∣ω(l1 − l2) − 2π

T
(j1 − j2)

∣∣∣∣ � c

|l1|δ + c

|l2|δ
and the thesis follows, using |l1| + |l2| � 2 min(|l1|, |l2|) + |l1 − l2|. �
Remark 3.2. According to the definitions in [13,14,7] the singular sites are the integers (l, j, k) such that
|−ω2l2 + ω2

j,k| < ρ, where ω2
j,k are the eigenvalues of −� + V (x). Due to the multiplicity of such eigenvalues

they may form very large clusters. However, the previous lemma shows good separation properties for their projection
in time-Fourier indices. This is the main motivation for working with the spaces Hs defined in (54). This setting en-
ables to proceed similarly to the 1-dimensional wave equation; the only difference is that, after decomposing in time
Fourier series, we get matrices of spatial operators.

Now, we shall follow closely the procedure in [4], which is here much simpler because the singular sites are sin-
gletons (in time-Fourier indices), see Lemma 3.6. A difference is that, in order to prove the C∞-result, Theorem 4(ii),
we need to assume ε(‖b‖s̃ + 1) small (independently of s).

According to the orthogonal decomposition E(N) := ER ⊕ ES , where

ER :=
{
u =

∑
l∈R

eiltul(x) ∈ E(N)

}
and ES :=

{
u =

∑
l∈S

eiltul(x) ∈ E(N)

}
,

for (ε,ω) ∈ G, we represent L(N) := L(N)(u) as the self-adjoint block matrix (of spatial operators)

L(N) =
(

ΠR L(N)
|ER

ΠR L(N)
|ES

ΠS L(N)
|ER

ΠS L(N)
|ES

)
=

(
LR LS

R

LR
S LS

)

where ΠS : E(N) → ES , ΠR : E(N) → ER denote the corresponding orthogonal projectors. It results that LS
R = (LR

S )†,

L†
R := LR , L†

S = LS . We fix

s̃ := 1 + (τ + 2)δ−1
0 (71)

where δ0 is given by Lemma 3.6.

Lemma 3.7. For ε‖b‖s̃ small enough, LR is invertible and, ∀s � s̃,∥∥L−1
R h

∥∥
s,0 � 2ρ−1‖h‖s,0 + ρ−2εC(s)‖b‖s‖h‖s̃,0, ∀h ∈ E(N). (72)

Proof. We have LR = D
(N)
R + T

(N)
R as in (68). By the definition of R, ∀s � 0, ‖(D(N)

R )−1‖s,0 � ρ−1, and, by
Lemma 4.1,∥∥T

(N)
R h

∥∥
s,0 � εC0(s̃)‖b‖s̃‖h‖s,0 + εC1(s, s̃)‖b‖s‖h‖s̃,0.

Hence, by Lemma 2.1, if ρ−1ε‖b‖s̃ is small enough, then LR is invertible and (72) follows with C(s) := 4C1(s, s̃). �
The invertibility of L(N) is then reduced to the invertibility of the self-adjoint operator

U := (
U

l2
l1

)
l1,l2∈S := LS − LR

S L−1
R LS

R : ES → ES (73)

by the “resolvent” identity

(
L(N)

)−1 =
(

I −L−1
R LS

R

0 I

)(
L−1

R 0
0 U−1

)(
I 0

−LR
S L−1

R I

)
.

Then (64), and so Proposition 3.1, is a consequence of the following lemma.

Lemma 3.8. If (62)–(63) are satisfied and ε(‖b‖s̃ + 1) � η(γ ) is small enough, then, ∀s � s̃,∥∥U−1h
∥∥

s,0 � K(s)

γ
Nμ0

(‖h‖s,0 + ‖b‖s‖h‖0,0
)
, ∀h ∈ HS, (74)

with μ0 := 2τ + 2.
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Proof. To prove (74) we use that, for all l1, l2 ∈ S ,

(i)
∥∥(

U
l1
l1

)−1∥∥
L(L2(M))

� C
|l1|τ
γ

, (ii)
∥∥U

l2
l1

∥∥
L(L2(M))

� C(s)ε‖b‖s

|l2 − l1|s−1/2
, l1 �= l2. (75)

Estimate (75)(ii) is a consequence of the decay of the Fourier coefficients ‖bl‖Hs1 (M), as in Lemma 3.12 of [4]. More-
over it can be proved that, by the separation of the singular sites, assumption (63) can be translated to estimate (75)(i),
like in Lemma 3.13 of [4]. To prove (74) we write

U = D
(
I + D−1 R

)
, D := diag

(
Ul

l

)
l∈S , R := U − D. (76)

Given L1 ∈ N+, we estimate

∥∥(
I − Π(L1)

)
D−1 Rh

∥∥
s,0 �

∑
l1∈S,|l1|>L1

|l1|s
∥∥∥∥(

U
l1
l1

)−1 ∑
l2∈S,l2 �=l1

U
l2
l1

hl2

∥∥∥∥
L2(M)

(75)(i)
� C

∑
l1∈S,|l1|>L1

|l1|s+τ

γ

( ∑
l2∈S,l2 �=l1

∥∥U
l2
l1

∥∥
L(L2(M))

‖hl2‖L2(M)

)

= (P 1) + (P 2) (77)

where in (P 1), resp. (P 2), the sum is restricted to the indices L1 � |l1| � 2|l2|, resp. |l1| > 2|l2|. By (75)(ii),
Lemma 3.6, Schwarz inequality, and since δ0 ∈ (0,1), we deduce

(P 1) � C(γ )
∑

l1∈S,|l1|>L1

ε|l1|s+τ‖b‖s̃

( ∑
|l2|�|l1|/2

|l2|s‖hl2‖L2(M)

|l2|s+δ0(s̃−1/2)

)

� C(γ )
∑

l1∈S,|l1|>L1

ε|l1|s+τ‖b‖s̃‖h‖s,0

( ∑
|l2|�|l1|/2

|l2|−2s−δ0(2s̃−1)

)1/2

� εC(γ )C(s)‖b‖s̃‖h‖s,0

∑
l1∈S,|l1|>L1

|l1|τ+1−δ0 s̃ � εC(γ )C(s)‖b‖s̃‖h‖s,0L
−α
1 (78)

where α := δ0s̃ −τ −2 > 0 by the definition of s̃ in (71). By (75)(ii) and, since in (P 2) we have |l1 − l2| � |l1|− |l2| �
|l1| − (|l1|/2) = |l1|/2, we deduce that

(P 2) � C(s)

γ

∑
l1∈S

|l1|s+τ ε‖b‖s

|l1|s−1/2

( ∑
|l2|<|l1|/2

‖hl2‖L2(M)

)

� C(s)

γ
ε‖b‖s

∑
l1∈S

|l1|τ+1‖h‖0,0 � C(s)

γ
ε‖b‖sN

μ1‖h‖0,0 (79)

where μ1 := τ + 2. Similarly one obtains∥∥D−1 Rh
∥∥

0,0 � C(γ )ε‖b‖s̃‖h‖0,0 (80)

and then∥∥Π(L1)D−1 Rh
∥∥

s,0

(S1)

� Ls
1

∥∥D−1 Rh
∥∥

0,0 � Ls
1C(γ )ε‖b‖s̃‖h‖0,0. (81)

We choose L1 := L1(s) large enough so that in estimate (78) it results C(s)L−α
1 � 1. Then we deduce from (77)–(81)

that there is η(γ ) > 0 such that, for ε(‖b‖s̃ + 1) � η(γ ),∥∥D−1 Rh
∥∥

s,0 � 1

2
‖h‖s,0 + C′(s)‖b‖sN

μ1‖h‖0,0,
∥∥D−1 Rh

∥∥
0,0 � 1

2
‖h‖0,0.

Hence, by Lemma 2.1, for ε(‖b‖s̃ + 1) � η(γ ), I + D−1 R is invertible in H 0,0 and∥∥(
I + D−1 R

)−1
h
∥∥

s,0 � 2‖h‖s,0 + 4C′(s)‖b‖sN
μ1‖h‖0,0.

Finally, (74) follows by (75)(i), with μ0 := μ1 + τ = 2τ + 2. �
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4. Appendix

Lemma 4.1. Fix s̃ > 1/2, s1 > d/2. For all s � s̃, s′
1 ∈ [0, s1] there exist constants C0(s̃), C1(s̃, s) > 0 such that,

∀b ∈ Hs , u ∈ Hs,s′
1 , we have

‖bu‖s,s′
1
� C0(s̃)‖b‖s̃‖u‖s,s′

1
+ C1(s̃, s)‖b‖s‖u‖s̃,s′

1
. (82)

Proof. We estimate

‖bu‖2
s,s′

1

(60):=
∑
m∈Z

〈m〉2s

∥∥∥∥∑
l∈Z

blum−l

∥∥∥∥
2

H
s′1 (M)

�
∑
m∈Z

〈m〉2s

( ∑
l∈Z

‖blum−l‖
H

s′1 (M)

)2

(83)

� C(s1)
∑
m∈Z

〈m〉2s

( ∑
l∈Z

‖bl‖Hs1 (M)‖um−l‖
H

s′1 (M)

)2

� 2C(s1)
(
(P 1) + (P 2)

)
(84)

where in (P 1) the sum is restricted to the indices such that

〈m〉
〈m − l〉 � 1 + η(s) with η(s) := 21/s − 1 > 0, (85)

and in (P 2) on the complementary set of indices. In passing from (83) to (84) we use that the multiplication operator
Tb for b ∈ Hs1(M) ⊂ L∞(M), s1 > d/2, satisfies

‖Tb‖L(L2(M)) � ‖b‖L∞(M) � C(s1)‖b‖Hs1 (M), ‖Tb‖L(Hs1 (M)) � C(s1)‖b‖Hs1 (M),

and so, by interpolation theory (see [23, Chapter 1], and references therein), ∀0 � s′
1 � s1, we have

‖Tb‖L(H
s′1 (M),H

s′1 (M))
� C(s1)‖b‖Hs1 (M).

Using Cauchy–Schwartz inequality (for brevity ‖ ‖Hs1 := ‖ ‖Hs1 (M))

(P 1) :=
∑
m∈Z

( ∑
l s.t. (85) holds

‖bl‖Hs1 〈l〉s̃‖um−l‖
H

s′1 〈m − l〉s 〈m〉s
〈l〉s̃〈m − l〉s

)2

(85)

�
∑
m∈Z

( ∑
l∈Z

‖bl‖2
Hs1 〈l〉2s̃‖um−l‖2

H
s′1

〈m − l〉2s

)( ∑
l∈Z

2

〈l〉2s̃

)
= C(s̃)‖b‖2

s̃‖u‖2
s,s′

1
. (86)

Next, in the sum (P 2) we have 〈l〉 > 〈m〉 − 〈m〉
1+η(s)

= 〈m〉η(s)(1 + η(s))−1 and, arguing as in (86),

(P 2) � ‖b‖2
s‖u‖2

s̃,s′
1
C(s, s̃). (87)

By (84), (86) and (87) we deduce (82). �
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