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Abstract

We study an initial boundary value problem for the three-dimensional Navier–Stokes equations of viscous heat-conductive fluids
in a bounded smooth domain. We establish a blow-up criterion for the local strong solutions in terms of the temperature and the
gradient of velocity only, similar to the Beale–Kato–Majda criterion for ideal incompressible flows.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions un problème de valeur limite initiale pour les équations de Navier–Stokes tridimensionnelles des fluides vis-
queux conducteurs de chaleur dans un domaine délimité lisse. Nous établissons un critère d’explosion pour les solutions fortes
en termes de température et de gradient de vitesse seulement, semblable au critère de Beale–Kato–Majda pour les écoulements
incompressibles idéaux.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper is concerned with a blow-up criterion for the three-dimensional Navier–Stokes equations of a viscous
heat-conductive gas which describe the conservation of mass, momentum and total energy, and can be written in the
following form:

∂tρ + div(ρu) = 0, (1.1)

∂t (ρu) + div(ρu ⊗ u) − μ�u − (λ + μ)∇ divu + ∇P = 0, (1.2)

c
V

(
∂t (ρθ) + div(ρθ)

) − κ�θ + P divu = μ

2

∣∣∇u + ∇ut
∣∣2 + λ(divu)2. (1.3)
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Here we denote by ρ, θ and u = (u1, u2, u3) the density, temperature, and velocity, respectively. The physical con-
stants μ,λ are the viscosity coefficients satisfying μ > 0, λ + 2μ/3 � 0, c

V
> 0 and κ > 0 are the specific heat at

constant volume and thermal conductivity coefficient, respectively. P is the pressure which is a known function of ρ

and θ , and in the case of an ideal gas P has the following form

P = Rρθ, (1.4)

where R > 0 is a generic gas constant.
Let Ω be a bounded domain in R

3 with smooth boundary ∂Ω and exterior normal vector ν. We will consider an
initial boundary value problem for (1.1)–(1.3) in Q := (0,∞) × Ω with initial and boundary conditions:

(ρ,u, θ)|t=0 = (ρ0, u0, θ0) in Ω, (1.5)

u = 0,
∂θ

∂ν
= 0 on ∂Ω. (1.6)

In the last decades significant progress has been made in the study of global in time existence for the system
(1.1)–(1.6). With the assumption that the initial data are sufficiently small, Matsumura and Nishida [14,15] first proved
the global existence of smooth solutions to initial boundary value problems and the Cauchy problem for (1.1)–(1.3),
and the existence of global weak solutions was shown by Hoff [7]. For large data, however, it is still an open question
whether a global solution to (1.1)–(1.6) exists or not, except certain special cases, such as the spherically symmetric
case in domains without the origin, see [10] for example. Recently, Feireisl [5,6] obtained the global existence of
the so-called “variational solutions” to (1.1)–(1.3) in the case of real gases in the sense that the energy equation is
replaced by an energy inequality. However, this result excludes the case of ideal gases unfortunately. We mention that
in the isentropic case, the existence of global weak solutions of the multidimensional compressible Navier–Stokes
equations was first shown by Lions [13], and his result was then improved and generalized in [4,11,12], and among
others.

Xin [18], Rozanova [16] showed the non-existence of global smooth solutions when the initial density is compactly
supported, or decreases to zero rapidly. Since the system (1.1)–(1.3) is a model of non-dilute fluids, these non-existence
results are natural to expect when vacuum regions are present initially. Thus, it is very interesting to investigate
whether a strong or smooth solution will still blow up in finite time, when there is no vacuum initially. Recently, Fan
and Jiang [3] proved the following blow-up criteria for the local strong solutions to (1.1)–(1.6) in the case of two
dimensions:

lim
T →T ∗

(
sup

0�t�T

{‖ρ‖L∞,
∥∥ρ−1

∥∥
L∞,‖θ‖L∞

}
(t) +

T∫
0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2 + ‖u‖

2r
r−2
Lr,∞

)
dt

)
= ∞,

or,

lim
T →T ∗

(
sup

0�t�T

{‖ρ‖L∞,
∥∥ρ−1

∥∥
L∞,‖θ‖L∞

}
(t) +

T∫
0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2

)
dt

)
= ∞,

provided 2μ > λ, where T ∗ < ∞ is the maximal time of existence of a strong solution (ρ,u), q0 > 3 is a certain
number, 3 < r � ∞ with 2/s + 3/r = 1, and Lr,∞ ≡ Lr,∞(Ω) is the Lorentz space.

In the isentropic case, the result in [3] reduces to

lim
T →T ∗

(
sup

0�t�T

‖ρ‖L∞ +
T∫

0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2

)) = ∞, (1.7)

provided 7μ > 9λ. Very recently, Huang and Xin [9] established the following blow-up criterion, similar to the Beale–
Kato–Majda criterion for ideal incompressible flows [1], for the isentropic compressible Navier–Stokes equations:

lim
t→T ∗

T∫
‖∇u‖L∞ dt = ∞, (1.8)
0
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provided

7μ > λ. (1.9)

The aim of the current paper is to extend the result in [9] to the non-isentropic flows, that is, to establish a blow-up
criterion similar to (1.8) for the non-isentropic Navier–Stokes equations. This is a nontrivial generalization, since one
has to control the terms involved with the temperature by assuming additionally upper boundedness of the temperature,
but not upper boundedness of derivatives of the temperature. Furthermore, it is not necessary to derive a positive lower
bound of the temperature in our proof. These are exactly the new points of this paper.

At the same time, the current paper also generalizes the result in [3] in the sense that the restriction on the viscosity
coefficients in (1.7) is relaxed and the vacuum is allowed in an open subset of Ω initially. Moreover, it is interesting
to see that the a priori assumption (2.1) is more concise than the one in [3].

For the sake of generality, we will study the blow-up criterion for local strong solutions with initial vacuum, the
existence of which is essentially obtained in [2]. The case that the initial density has a positive lower bound can be
dealt with in the same manner (in fact, simpler) and the same result holds.

Before giving our main result, we state the following local existence of the strong solutions with initial vacuum,
the proof of which can be found in [2].

Proposition 1.1 (Local Existence). Let Ω be a bounded domain in R
3 with smooth boundary ∂Ω . Suppose that the

initial data ρ0, u0, θ0 satisfy

ρ0 � 0, ρ0 ∈ W 1,q(Ω) for some 3 < q � 6,

u0 ∈ H 1
0 (Ω) ∩ H 2(Ω), inf

x∈Ω
θ0(x) > 0, θ0 ∈ H 2(Ω), (1.10)

and the compatibility conditions

μ�u0 + (μ + λ)∇ divu0 − R∇(ρ0θ0) = ρ
1/2
0 g1,

κ�θ0 + μ

2

∣∣∇u0 + ∇ut
0

∣∣2 + λ(divu0)
2 − Rρ0θ0 divu0 = ρ

1/2
0 g2, (1.11)

for some g1, g2 ∈ L2(Ω). Moreover, {x ∈ Ω | ρ0(x) = 0} is an open subset of Ω . Then there exist a positive constant
T0 and a unique strong solution (ρ, θ,u) to (1.1)–(1.6), such that

ρ � 0, ρ ∈ C
([0, T0];W 1,q

)
, ρt ∈ C

([0, T0];Lq
)
,

u ∈ C
([0, T0];H 1

0 ∩ H 2) ∩ L2(0, T0;W 2,q
)
,

√
ρut ∈ L∞(

0, T0;L2), ut ∈ L2(0, T0;H 1
0

)
,

θ > 0, θ ∈ C
([0, T0];H 2) ∩ L2(0, T0;W 2,q

)
,

√
ρθt ∈ L∞(

0, T0;L2), θt ∈ L2(0, T0;H 1). (1.12)

We remark that in Proposition 1.1, θ > 0 can be obtained when the initial temperature is bounded from below
by a positive constant, although it is not discussed in [2]. In fact, it is not necessary to estimate the positive lower
boundedness of θ(t, x) at t = T0 in terms of infx∈Ω θ0(x), since the boundedness of sup0�t�T0

∫
Ω

ρ|log θ |dx in
Lemma 2.1 below serves as a substitute condition for the extension of the local strong solution given in Proposi-
tion 1.1.

We also remark that u, θ and their weak derivatives ut , θt are defined to be zero in the presence of vacuum,
and also well defined in the usual sense away from vacuum. Thus by the regularities ut ∈ L∞(0, T0;L2) and θt ∈
L∞(0, T0;L2), ‖ut (T0)‖L2(Ω) and ‖θt (T0)‖L2(Ω), redefined if necessary, are finite, which leads to the validity of the
compatibility conditions at t = T0. One may refer to Remark 2 in [2] for the necessity of the compatibility conditions
in (1.11).

Therefore, with the regularities in (1.12) and the new compatibility conditions at t = T0, we are able to extend the
solution to the time beyond T0. Now, we are interested in the question what happens to the solution if we extend the
solution repeatedly. One possible case is that the solution exists in [0,∞), while another case is that the solution will
blow up in finite time in the sense of (1.12), that is, some of the regularities in (1.12) no longer hold.
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Definition 1.1. T ∗ ∈ (0,∞) is called the maximal life time of existence of a strong solution to (1.1)–(1.6) in the
regularity class (1.12) if for any 0 < T < T ∗, (ρ,u, θ) solves (1.1)–(1.6) in [0, T ] × Ω and satisfies (1.12) with
T0 = T , and moreover, (1.12) does not hold for T0 = T ∗.

Now, we are in a position to state the main theorem of this paper.

Theorem 1.1 (Blow-up Criterion). Suppose that the assumptions in Proposition 1.1 are satisfied. Let (ρ,u, θ) be the
strong solution obtained in Proposition 1.1. Then either this solution can be extended to [0,∞), or there exists a
positive constant T ∗ < ∞, the maximal time of existence, such that the solution only exists in [0, T ] for every T < T ∗,
and

lim
T →T ∗

(‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞)

) = ∞,

provided that the condition (1.9) is satisfied.

Remark 1.1.

(1) As aforementioned, the situation that infx∈Ω ρ0 > 0 can be studied in the same manner (in fact, simpler) and the
same result holds.

(2) Obviously, in the isentropic or isothermal case, Theorem 1.1 reduces to the result given in [9].
(3) It is interesting to see that, in comparison with the isentropic case in [9], the additional blow-up assumption for

non-isentropic flows is made on θ only, but not on any derivative of θ .

We will prove Theorem 1.1 by contradiction in the next section. In fact, the proof of the theorem is based on a priori
estimates under the assumption that ‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞) is bounded independent of any T ∈ [0, T ∗).
The a priori estimates are then sufficient for us to apply the local existence theorem repeatedly to extend a local
solution beyond the maximal time of existence T ∗, consequently, contradicting the maximality of T ∗.

The key step in getting the a priori estimates is to bound ‖∇ρ‖L∞(0,T ;L2), ‖u‖L∞(0,T ;H 1
0 ) and ‖u‖L2(0,T ;H 2). This

requires the assumption on the viscosity coefficients 7μ > λ, which also implies ρ|u|3+δ ∈ L∞(0, T ;L1), other than
the usual estimate

√
ρu ∈ L∞(0, T ;L2). Moreover, the boundedness of ‖u‖L2(0,T ;H 2) relies heavily on ‖u‖L2(0,T ;L2)

and ‖∇P ‖L2(0,T ;L2) in view of the momentum equation (1.2). Note that these two terms cannot be bounded by a usual
L2-estimate as in the isentropic case (cf. [9]), since the viscous dissipation and thermal diffusion are involved in the
evolution of the pressure. In the current paper we will circumvent this difficulty by estimating the equation for log θ

(cf. [3,5]). We also point out that due to presence of the temperature, the estimates on the temporal and higher-order
spatial derivatives of the solution are much more involved than in the isentropic flow case, and depend essentially on
bounds of ‖θ‖L2(0,T ;H 1).

Throughout this paper, we will use the following abbreviations:

Lp ≡ Lp(Ω), Hm ≡ Hm(Ω), Hm
0 ≡ Hm

0 (Ω).

2. Proof of Theorem 1.1

Let 0 < T < T ∗ be arbitrary but fixed. Throughout this section we denote by C (or C(X, . . .) to emphasize the
dependence of C on X, . . .) a general positive constant which may depend continuously on T ∗.

Let (ρ,u, θ) be a strong solution to the problem (1.1)–(1.6) in the function space given in (1.12) on the time interval
[0, T ]. Suppose that T ∗ < ∞. We will prove Theorem 1.1 by a contradiction argument. To this end, we suppose that
for any T < T ∗,

‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞) � C < ∞, (2.1)

we will deduce a contradiction to the maximality of T ∗.
First, we show that the density ρ is non-negative and bounded from above due to the assumptions in (2.1). It is

easy to see that the continuity equation (1.1) on the characteristic curve χ̇ (t) = u(χ(t)) can be written as
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d

dt
ρ
(
χ(t), t

) = −ρ
(
χ(t), t

)
divu

(
χ(t), t

)
.

Thus, by Gronwall’s inequality and (2.1), one obtains that for any x ∈ Ω̄ and t ∈ [0, T ],

0 � ρ exp

(
−

T∫
0

‖divu‖L∞ dt

)
� ρ(x, t)

� ρ̄ exp

( T∫
0

‖divu‖L∞ dt

)
� C, (2.2)

where 0 � ρ � ρ0 � ρ̄. Next, we show that θ is positive a.e. in [0, T ] × Ω (see also [5]). Let H(θ)(x, t) :=
cV min{−θ(x, t),0}. Clearly, H ′(θ) � 0 and H ′′(θ) = 0. We multiply (1.3) by H ′(θ) and integrate over Ω to ob-
tain ∫

Ω

(
ρ
(
H(θ)t + u · ∇H(θ)

) + RρH(θ)divu
)
dx =

∫
Ω

H ′(θ)

(
κ�θ + μ

2

∣∣∇u + ∇ut
∣∣2 + λ(divu)2

)
dx

� κ

∫
∂Ω

H ′(θ)
∂θ

∂n
dS − κ

∫
Ω

H ′′(θ)|∇θ |2 dx � 0.

By the continuity equation (1.1), we integrate by parts to get

d

dt

∫
Ω

ρH(θ)dx � C

∫
Ω

|divu|∣∣ρH(θ)
∣∣dx

� −‖divu‖L∞
∫
Ω

ρH(θ)dx.

Utilizing (2.1) and Gronwall’s inequality, we have∫
Ω

ρH(θ)dx ≡ 0, ∀t ∈ [0, T ],

since θ0 � 0. Thus θ � 0 by the definition of H(θ) again. Observing that

�θ

θ
= div

(∇θ

θ

)
− ∇

(
1

θ

)
· ∇θ = div

(∇θ

θ

)
+ |∇θ |2

θ2
,

the function s := log θ satisfies the equation:

∂t (ρs) + div(ρsu) − κ div

(∇θ

θ

)
+ Rρ divu = 1

θ

[
μ

2

∣∣∇u + ∇uT
∣∣2 + λ(divu)2

]
+ κ

θ2
|∇θ |2.

Integrating the above equation over (0, T ) × Ω and applying (1.10), (2.1) and (2.4), we obtain

T∫
0

∫
Ω

(
α|∇u|2

θ
+ κ|∇θ |2

θ2

)
dx ds −

∫
Ω

ρ log θ dx

∣∣∣∣
t=T

� C‖ρ‖L∞(0,T ;L∞)‖divu‖L1(0,T ;L∞) +
∫
Ω

ρ0 log θ0 dx � C, (2.3)

for some constant α > 0. The second term on the left-hand side of (2.3) can be estimated as follows. Noting that ρ

and θ are indeed continuous in [0, T ] × Ω by the Sobolev embedding theorem, we have∫
ρ log θ dx

∣∣∣∣
t=T

� C‖ρ‖L∞(0,T ;L∞) log‖θ‖L∞(0,T ;L∞) � C.
Ω∩{θ�1}
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Inserting the above inequality into (2.3), we obtain

T∫
0

∫
Ω

(
α|∇u|2

θ
+ κ|∇θ |2

θ2

)
dx ds +

∫
Ω∩{0�θ�1}

ρ|log θ |dx

∣∣∣∣
t=T

� C.

It follows that

Lemma 2.1. For any T < T ∗, we have

sup
0�t�T

∫
Ω

ρ(t)
∣∣log θ(t)

∣∣dx +
T∫

0

∫
Ω

(|∇ log θ |2 + |∇u|2 + |∇θ |2)dx dt � C. (2.4)

With the help of the above lemma and the upper boundedness of ρ, we are able to deduce the positiveness of θ by
the following auxiliary lemma from [6]:

Lemma 2.2. (See [6].) Let Ω be a bounded domain in R
N and γ > 1 be a constant. Given constants M and E0 with

0 < M < E0, there is a constant C(E0,M), such that for any non-negative function ρ satisfying

M �
∫
Ω

ρ dx,

∫
Ω

ργ dx � E0

and any v ∈ H 1(Ω),

‖v‖2
L2 � C

[
‖∇v‖2

L2(Ω)
+

( ∫
Ω

ρ|v|dx

)2]
.

Therefore, from (2.2) and Lemma 2.2, we get

T∫
0

∫
Ω

|log θ |2 dx dt � C. (2.5)

Notice that θ ∈ C([0, T ],H 2), which means that θ and thus log θ is continuous in both space and time. It follows that
|log θ | < ∞ everywhere. Moreover, the continuity of θ up to the initial time t = 0 and the assumption that θ(·,0) > 0
immediately imply that

θ(x, t) > 0, ∀x ∈ Ω̄, t ∈ [0, T ]. (2.6)

The following key lemma is due to Hoff [8] (see also [9]).

Lemma 2.3. Let 7μ > λ. Then there is a small δ > 0, such that

sup
0�t�T

∫
Ω

ρ(x, t)
∣∣u(x, t)

∣∣3+δ
dx +

T∫
0

∫
Ω

|u|1+δ|∇u|2 dx dt � C. (2.7)

Proof. Denoting q = 3 + δ with δ > 0 to be determined below, after a straightforward calculation we derive from
Eq. (1.2) that

ρ
[(|u|q)

t
+ u · ∇(|u|q)] + q|u|q−2u · ∇P + q|u|q−2[μ|∇u|2 + (μ + λ)(divu)2]

= q|u|q−2
(

1
μ�

(|u|2) + (μ + λ)div(udivu)

)
.

2
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Using (1.1) and (1.5), we integrate the above identity over (0, t) × Ω to get

∫
Ω

ρ|u|q dx

∣∣∣∣
t

0
+

t∫
0

∫
Ω

{
q|u|q−2(μ|∇u|2 + (μ + λ)(divu)2 + μ(q − 2)

∣∣∇|u|∣∣2)

+ (μ + λ)q(q − 2)|u|q−3u · ∇|u|divu
}
dx ds =

t∫
0

∫
Ω

qRρθ divu|u|q−2udx ds. (2.8)

Due to 7μ > λ, there exists a small δ > 0, such that for q = 3 + δ,

4μ(q − 1) − (μ + λ)(q − 2)2 > 0.

Hence, recalling the fact that |∇|u|| � |∇u|, we find that the time- and spatial-integral term (the second term) on the
left-hand side of (2.8) is bounded from below by(

μ(q − 1) − μ + λ

4
(q − 2)2

)
q|u|q−2|∇u|2 � 1

C
|u|q−2|∇u|2. (2.9)

Moreover, since the density ρ and the temperature θ are bounded, the right-hand side of (2.8) is less than

C

t∫
0

∫
Ω

ρ|u|q−2|∇u|dx ds � ε

t∫
0

∫
Ω

|u|q−2|∇u|2 dx ds + C(ε)

( t∫
0

∫
Ω

ρ|u|q dx ds

) q−2
q

� ε

t∫
0

∫
Ω

|u|q−2|∇u|2 dx ds +
t∫

0

∫
Ω

ρ|u|q dx ds + C(ε), (2.10)

by Hölder’s inequality and Young’s inequality. Inserting (2.9) and (2.10) into (2.8), and choosing ε small enough, we
obtain (2.7) by Gronwall’s inequality. �

Now, we are ready to bound the first-order spatial derivatives of ρ and u, which are also necessary for estimating
other quantities.

Lemma 2.4 (Main Estimates). Under (2.1), we have for any T < T ∗ that

sup
0�t�T

∥∥∇ρ(t)
∥∥

L2 +
T∫

0

‖ρt‖2
L2 dt � C, (2.11)

sup
0�t�T

∥∥u(t)
∥∥2

H 1
0

+
T∫

0

∫
Ω

ρ|ut |2 dx dt � C, (2.12)

T∫
0

∥∥u(t)
∥∥2

H 2 dt � C. (2.13)

Proof. We multiply Eq. (1.2) by ut and then integrate over Ω . Using (1.1) and (1.5), we easily derive that

d

dt

∫
Ω

(
μ

2
|∇u|2 + μ + λ

2
(divu)2

)
dx + 1

2

∫
Ω

ρ|ut |2 dx

�
∫

ρ|u · ∇u|2 dx −
∫

∇P · ut dx, (2.14)
Ω Ω
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where the first term on the right-hand side of (2.14) is estimated as follows, using (2.2), Lemma 2.3 and the interpo-
lation inequality (cf. [17])∫

Ω

ρ|u · ∇u|2 dx �
∫
Ω

ρ1/q |u · ∇u|2 dx

�
( ∫

Ω

ρ|u|q dx

)2/q

‖∇u‖2

L
2q

q−2

� ε‖∇u‖2
H 1 + C(ε)‖∇u‖2

L2 , 0 < ε < 1, q = 3 + δ. (2.15)

Next, we rewrite the second integral on the right-hand side of (2.14), so that the time derivative of u is represented
by spatial derivatives of u, that is,∫

Ω

∇P · ut dx = −
∫
Ω

P divut dx

=
∫
Ω

Pt divudx − d

dt

∫
Ω

P divudx. (2.16)

Notice that by (1.1), (1.3) and (1.4), one gets

Pt + u · ∇P + γP divu = (γ − 1)κ�θ + (γ − 1)

(
μ

2

∣∣∇u + ∇uT
∣∣2 + λ(divu)2

)
,

thus, the first term on the right-hand side of (2.16) is bounded by

C

∣∣∣∣
∫
Ω

divu(κ�θ − u · ∇P)dx

∣∣∣∣ + C

∣∣∣∣
∫
Ω

(|∇u|3 + |∇u|2)dx

∣∣∣∣
� C

∣∣∣∣
∫
Ω

(|∇ divu||∇θ | + ∣∣div(udivu)
∣∣)dx

∣∣∣∣ + C

∣∣∣∣
∫
Ω

(|∇u|3 + |∇u|2)dx

∣∣∣∣
� ε‖u‖2

H 2 + C(ε)
(‖∇θ‖2

L2 + (
1 + ‖∇u‖L∞

)‖∇u‖2
L2

)
, ∀0 < ε < 1, (2.17)

where we have also used Poincaré’s inequality.
On the other hand, since u is a solution of the elliptic system

−μ�u − (λ + μ)∇ divu = f,

where f := −ρut − ρu · ∇u − ∇P , it follows from the classical regularity theory and (2.15) that

‖u‖H 2 � C‖f ‖L2

� C
(‖√ρut‖L2 + ‖√ρu · ∇u‖L2 + ‖∇ρ‖L2 + ‖∇θ‖L2

)
� C

(‖√ρut‖L2 + ‖∇ρ‖L2 + ‖∇θ‖L2 + ‖∇u‖L2

) + 1

2
‖u‖H 2,

whence,

‖u‖H 2 � C
(‖√ρut‖L2 + ‖∇u‖L2 + ‖∇ρ‖L2 + ‖∇θ‖L2

)
. (2.18)

Substituting (2.15)–(2.18) into (2.14) and taking ε appropriately small, we conclude

d

dt

∫
Ω

(
μ

2
|∇u|2 + λ + μ

2
(divu)2 − P divu

)
dx + 1

4

∫
Ω

ρu2
t dx

� C
[(

1 + ‖∇u‖L∞
)‖∇u‖2

2 + ‖∇θ‖2
2

] + ‖∇ρ‖2
2 . (2.19)
L L L
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Clearly, it remains to estimate the L2-norm of ∇ρ. The calculations are routine, namely, we apply ∇ to Eq. (1.1), then
multiply the resulting equation by ∇ρ and integrate over Ω to get

d

dt

∫
Ω

|∇ρ|2 dx � C‖∇u‖L∞‖∇ρ‖2
L2 + C‖u‖H 2‖∇ρ‖L2

� C
[(

1 + ‖∇u‖L∞
)‖∇ρ‖2

L2 + ‖∇u‖2
L2 + ‖∇θ‖2

L2

] + 1

8
‖√ρut‖2

L2, (2.20)

where we have also applied (2.18).
Moreover, observing that by (2.1) and (2.2), we have∫

Ω

P divudx

∣∣∣∣
t

0
� μ

4

∥∥∇u(t)
∥∥2

L2 + C. (2.21)

Adding (2.20) to (2.19), applying Gronwall’s inequality, and employing (2.21), (2.1) and (2.3), we obtain

sup
t∈[0,T ]

∫
Ω

(|∇u|2 + |∇ρ|2)(x, t) dx +
T∫

0

∫
Ω

ρu2
t dx dt � C. (2.22)

Thus, (2.13) follows from (2.18), (2.22) and (2.3) immediately. Finally, from (1.1), (2.2), Sobolev’s inequality
and (2.13), we have

T∫
0

‖ρt‖2
L2 dt � C

T∫
0

(‖ρ‖L∞‖∇u‖2
L2 + ‖u‖2

L∞‖∇ρ‖2
L2

)
dt

� C + C

T∫
0

‖u‖2
H 2 dt � C.

This completes the proof. �
Next, we will exploit the a priori estimates obtained so far to derive bounds on higher derivatives.

Lemma 2.5. Let

Φ(t) := 1 +
( t∫

0

∥∥θt (s)
∥∥2

H 1 ds

)1/2

.

Then for any T < T ∗, we have

sup
0�t�T

∥∥θ(t)
∥∥2

H 1 +
T∫

0

∫
Ω

ρθ2
t dx dt � CΦ(T ), (2.23)

sup
0�t�T

∥∥u(t)
∥∥2

H 2 +
T∫

0

∥∥θ(t)
∥∥2

H 2 dt � CΦ(T ), (2.24)

sup
0�t�T

∥∥√
ρ(t)ut (t)

∥∥2
L2 +

T∫
0

∥∥ut (t)
∥∥2

H 1
0
dt � CΦ(T ). (2.25)
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Proof. Multiplying (1.3) by θt in L2(Ω), we make use of (2.4), (2.11), (2.12) and (2.18) to infer

k

2

d

dt

∫
Ω

|∇θ |2 dx + c
V

∫
Ω

ρθ2
t dx

= −c
V

∫
Ω

ρ(u · ∇)θθt dx −
∫
Ω

P divuθt dx +
∫
Ω

(
μ

2

∣∣∇u + ∇uT
∣∣2 + λ(divu)2

)
θt dx

� C‖u‖L∞‖∇θ‖L2‖√ρθt‖L2 + C‖∇u‖L2

(‖√ρθt‖L2 + ‖∇u‖L3‖θt‖H 1

)
� C‖u‖H 2‖∇θ‖L2‖√ρθt‖L2 + C‖√ρθt‖L2 + C‖u‖1/2

H 2 ‖θt‖H 1

� ε‖√ρθt‖2
L2 + C(ε)

(
1 + ‖u‖2

H 2‖∇θ‖2
L2 + ‖u‖1/2

H 2 ‖θt‖H 1

)
,

for any 0 < ε < 1. Taking ε appropriately small, we integrate the above inequality over [0, t] and apply Gronwall’s
inequality to obtain (2.23) by (2.13).

Now, taking ∂t to Eq. (1.2), multiplying then the resulting equation by ut in L2(Ω), integrating by parts, and
employing (1.1) and (2.11), we find that

1

2

d

dt

∫
Ω

ρu2
t dx +

∫
Ω

(
μ|∇ut |2 + (λ + μ)(divut )

2)dx

=
∫
Ω

Pt divut dx −
∫
Ω

ρu · ∇[
(ut + u · ∇u)ut

]
dx −

∫
Ω

ρut · ∇u · ut dx

:= I1 + I2 + I3. (2.26)

Observing that Pt = Rρtθ + Rρθt , we have

|I1| � ε‖∇ut‖2
L2 + C(ε)

(‖ρt‖2
L2 + ‖√ρθt‖2

L2

)
, (2.27)

|I2| �
∫
Ω

ρ|u||ut ||∇ut |dx +
∫
Ω

ρ|u||∇u|2|ut |dx +
∫
Ω

ρ|u|2∣∣∇2u
∣∣|ut |dx +

∫
Ω

ρ|u||∇u||∇ut |dx

:= I21 + I22 + I23 + I24, (2.28)

where each term on the right-hand side of (2.28) can be estimated as follows, using (2.12), the interpolation inequality
and Sobolev’s imbedding theorem

|I21| � C‖u‖H 1‖∇ut‖L2‖√ρut‖L3

� C‖∇ut‖L2‖√ρut‖L3

� ε‖∇ut‖2
L2 + Cε−1‖√ρut‖L6‖√ρut‖L2

� ε‖ut‖2
H 1 + ε‖ut‖2

L6 + Cε−3‖√ρut‖2
L2

� Cε‖ut‖2
H 1 + Cε−3‖√ρut‖2

L2 , (2.29)

|I22| � C‖u‖L6‖∇u‖L2‖∇u‖L6‖ut‖L6

� C‖u‖2
H 1‖u‖H 2‖ut‖H 1

� ε‖ut‖2
H 1 + Cε−1‖u‖2

H 2 . (2.30)

Similarly,

|I23| � C‖u‖2
H 1

∥∥∇2u
∥∥

L2‖ut‖H 1 � ε‖ut‖2
H 1 + Cε−1‖u‖2

H 2, (2.31)

and

|I24| � C‖u‖2
H 1‖∇u‖H 1‖∇ut‖L2 � ε‖ut‖2

H 1 + Cε−1‖u‖2
H 2 . (2.32)

Again, we apply the interpolation inequality and Sobolev’s imbedding theorem to get
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|I3| � C‖∇u‖L2‖√ρut‖2
L4

� C‖∇u‖L2‖√ρut‖3/2
L6 ‖√ρut‖1/2

L2

� C‖ut‖3/2
H 1 ‖√ρut‖1/2

L2

� ε‖ut‖2
H 1 + Cε−1‖√ρut‖2

L2 . (2.33)

Substituting (2.27)–(2.33) into (2.26), and taking ε suitably small, we arrive at

1

2

d

dt

∫
Ω

ρu2
t dx +

∫
Ω

(
μ|∇ut |2 + (λ + μ)(divut )

2)dx

� C
(‖√ρut‖2

L2 + ‖u‖2
H 2 + ‖ρt‖2

L2

) + C1‖√ρθt‖2
L2 .

Applying Gronwall’s inequality to the above inequality and using (2.23), one obtains (2.25). Moreover, (2.24) follows
from Eq. (1.3) and the inequality (2.18), together with the estimates obtained so far. This completes the proof. �

Next, we derive bounds for θt to close the desired energy estimates. We have

Lemma 2.6. For any T < T ∗, we have

sup
0�t�T

∫
Ω

ρ(x, t)θ2
t (x, t) dx +

T∫
0

∥∥θt (t)
∥∥2

H 1 dt � C, (2.34)

sup
0�t�T

∥∥θ(t)
∥∥2

H 2 � C. (2.35)

Proof. Taking ∂t on both sides of Eq. (1.3), then multiplying the resulting equation by θt in L2(Ω), we obtain

1

2

d

dt

∫
Ω

ρθ2
t dx + κ

∫
Ω

|∇θt |2 dx =
∫
Ω

Rρθ2
t divudx +

∫
Ω

Rρtθ divuθt dx +
∫
Ω

Rρθ divutθt dx

+
∫
Ω

[
μ

(∇u + ∇ut
) : (∇ut + ∇ut

t

) + 2λdivudivut

]
θt dx

−
∫
Ω

ρtu · ∇θθt dx −
∫
Ω

ρut · ∇θθt dx −
∫
Ω

ρtθ
2
t dx :=

7∑
i=1

Ji. (2.36)

We have to estimate each term on the right-hand side of (2.36). First, from (1.1), Lemma 2.4, and Sobolev’s imbedding
theorem, we easily get

|J1| � C‖θt‖H 1‖√ρθt‖L2‖divu‖H 1 � ε‖θt‖2
H 1 + Cε−1‖u‖2

H 2‖√ρθt‖2
L2 , (2.37)

|J2| �
∣∣∣∣
∫
Ω

R(ρ divu + ∇ρ · u)θ divuθt dx

∣∣∣∣
� C‖√ρθt‖L2‖∇u‖2

L4 + C‖∇ρ‖L2‖u‖H 1‖divu‖H 1‖θt‖H 1

� Cε−1(‖∇u‖2
H 1‖√ρθt‖2

L2 + ‖u‖2
H 2

) + ε‖θt‖2
H 1, (2.38)

and

|J3| � C‖√ρθt‖L2‖divut‖L2 � ε‖ut‖2
H 1 + Cε−1‖√ρθt‖2

L2 . (2.39)

Next, we calculate the crucial terms J4 and J5. To bound J4, observing that

|J4| � C‖∇u‖L3‖∇ut‖L2‖θt‖H 1 � C‖u‖1/2
2 ‖θt‖H 1‖ut‖H 1,
H
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we make use of (2.18) and Lemma 2.5 to deduce that

t∫
0

|J4|ds � C
(

sup
0�s�T

∥∥u(s)
∥∥

H 2

)1/2‖ut‖L2(0,t;H 1)‖θt‖L2(0,t;H 1)

� C
(
1 + ‖θt‖1/4

L2(0,t;H 1)

)(
1 + ‖θt‖1/2

L2(0,t;H 1)

)‖θt‖L2(0,t;H 1)

� C
(
1 + ‖θt‖7/4

L2(0,t;H 1)

)
� Cε−1 + ε‖θt‖2

L2(0,t;H 1)
. (2.40)

Recalling that ρt = −ρ divu − ∇ρ · u and ‖u‖L∞ � C‖u‖W 1,4 � C‖u‖3/4
H 2 ‖u‖1/4

H 1 , we find that

|J5| � C

∫
Ω

(
ρ|divu| + |u||∇ρ|)|u||∇θ ||θt |dx

� C
(‖√ρθt‖L2‖divu‖H 1 + ‖θt‖H 1‖∇ρ‖L2‖u‖L∞

)‖u‖H 1‖∇θ‖H 1

� ε‖θ‖2
H 2 + Cε−1(‖u‖2

H 2‖√ρθt‖2
L2 + ‖θt‖H 1‖u‖3/4

H 2 ‖θ‖H 2

)
� ε

(‖θ‖2
H 2 + ‖θt‖2

H 1

) + Cε−1(‖u‖2
H 2‖√ρθt‖2

L2 + ‖u‖3/2
H 2 ‖θ‖2

H 2

)
,

which, together with Lemma 2.5 and Young’s inequality, yields

t∫
0

|J5|ds � C + ε‖θt‖2
L2(0,t;H 1)

+ Cε−1

t∫
0

‖u‖2
H 2‖√ρθt‖2

L2 ds

+ C
(
1 + ‖θt‖3/4

L2(0,t;H 1)

)(
ε−1 + ε‖θt‖L2(0,t;H 1)

)

� Cε‖θt‖2
L2(0,t;H 1)

+ C(ε)

(
1 +

t∫
0

‖u‖2
H 2‖√ρθt‖2

L2 ds

)
. (2.41)

On the other hand, we integrate by parts and apply Lemma 2.5 to get

t∫
0

|J6|ds �
t∫

0

∫
Ω

(
θ
(|∇ρ||θt | + ρ|∇θt |

)|ut | + ρθ |θt ||divut |
)
dx ds

� C

t∫
0

[(
1 + ‖∇ρ‖L2

)‖θt‖H 1‖ut‖H 1 + ‖θt‖H 1‖divut‖L2

]
ds

� ε‖θt‖2
L2(0,t;H 1)

+ Cε−1‖ut‖2
L2(0,t;H 1)

� C(ε) + Cε‖θt‖2
L2(0,t;H 1)

. (2.42)

Recalling that ρt = −ρ divu − ∇ρ · u, we have in the same manner that

|J7| �
∣∣∣∣
∫
Ω

(
ρ divuθ2

t − ρ div
(
θ2
t u

))
dx

∣∣∣∣
� C

∫
Ω

(
ρ|divu||θt |2 + ρ

(|θt |2|divu| + |θt ||∇θt ||u|))dx

� ‖√ρθt‖L2

(‖divu‖H 1‖θt‖H 1 + ‖u‖H 1‖∇θt‖L2

)
� ε‖θt‖2

1 + Cε−1‖u‖2
2‖√ρθt‖2

2 . (2.43)

H H L
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Finally, we integrate (2.36) and utilize (2.37)–(2.43) with ε sufficiently small to conclude

∥∥√
ρ(t)θt (t)

∥∥2
L2 + ‖θt‖2

L2(0,T ;H 1)
� C + C

t∫
0

(
1 + ‖u‖2

H 2

)∥∥√
ρ(s)θt (s)

∥∥2
L2 ds, 0 � t � T ,

which, by applying Gronwall’s inequality, implies (2.34). As a consequence of (2.34), we see that the left-hand sides
of (2.23)–(2.25) are all bounded by a positive constant. Moreover, from the energy equation (1.3) and the energy
estimates obtained so far, we easily obtain (2.35). �

Finally, in the next lemma we show the additional Lq bounds of the solution.

Lemma 2.7. Let q be the same as in Theorem 1.1. Then,

sup
0�t�T

(∥∥ρt (t)
∥∥

Lq + ∥∥ρ(t)
∥∥

W 1,q

)
� C, (2.44)

T∫
0

(∥∥u(t)
∥∥2

W 2,q + ∥∥θ(t)
∥∥2

W 2,q

)
dt � C. (2.45)

Proof. Differentiating (1.1) with respect to xj and multiplying the resulting equation by |∂jρ|q−2∂jρ in L2(Ω), one
deduces that

d

dt

∫
Ω

|∇ρ|q dx � C

∫
Ω

(|∇u||∇ρ|q + |ρ||∇ρ|q−1|∇2u|)dx

� C‖∇u‖L∞‖∇ρ‖q
Lq + C

∥∥∇2u
∥∥

Lq ‖∇ρ‖q−1
Lq ,

which gives

sup
0�t�T

∥∥∇ρ(t)
∥∥

Lq � C exp

( t∫
0

∥∥∇u(s)
∥∥

L∞ ds

)(
‖∇ρ0‖Lq +

t∫
0

∥∥∇2u(s)
∥∥

Lq ds

)

� C(
√

T )ε−1 + ε
∥∥∇2u

∥∥
L2(0,t;Lq)

, (2.46)

by Gronwall’s inequality. Using the regularity theory of elliptic equations again, we have∥∥u(t)
∥∥

W 2,q � C
(‖ut‖Lq + ‖u · ∇u‖Lq + ‖∇ρ‖Lq + ‖∇θ‖Lq

)
� C

(‖∇ut‖L2 + ‖u‖L∞‖∇u‖Lq + ‖∇ρ‖Lq + ‖θ‖H 2

)
� C

(‖∇ut‖L2 + ‖u‖2
H 2 + ‖∇ρ‖Lq + ‖θ‖H 2

)
.

If we integrate the above inequality over (0, T ) and make use of (2.24), (2.25) and (2.46), we obtain

T∫
0

∥∥u(t)
∥∥2

W 2,q dt � C, (2.47)

and thus, from (2.46) one gets

sup
0�t�T

∥∥ρ(t)
∥∥

W 1,q � C.

Since ρt = −u∇ρ − ρ divu, we also have∥∥ρt (t)
∥∥

Lq � ‖u‖L∞‖∇ρ‖Lq + ‖ρ‖L∞‖divu‖Lq � C.

Then the boundedness of θ in L2(0, T ;W 2,q) follows from (1.3), (2.47) and the above inequality. The proof is fin-
ished. �



350 J. Fan et al. / Ann. I. H. Poincaré – AN 27 (2010) 337–350
By virtue of Lemmas 2.1–2.7, we obtain the bounds of the norms of (ρ,u, θ) in [0, T ] × Ω in the sense of (1.12)
for any T < T ∗. These bounds depend only on Ω , the initial data, and continuously on T ∗ (in fact, the bounds
depend on T ∗ either polynomially or exponentially!). Thus, we can take (ρ,u, θ, ρt ,

√
ρut ,

√
ρθt )|t=T , redefined if

necessary, as the initial data at t = T and apply Proposition 1.1 to extend the solution to t = T + T1. Note that the
bound for

∫
Ω

ρ|log θ |dx|t=T is already available, thus infx∈Ω θ(T , x), which is only used in estimating the former, is
not necessary to be estimated in terms of infx∈Ω θ0(x).

If T + T1 > T ∗, then it contradicts the maximality of T ∗. Otherwise, we can continue to extend the solution by
taking the values of the solution at t = T + T1 as initial data again. Since the a priori estimates are independent of any
t < T ∗, the solution can be extended to t = T +2T1. Here we remark that by applying Proposition 1.1, the solution can
be extended from t = T + T1 to t = T + 2T1, since the local existence interval depends only on the initial data which,
in our case, are bounded in any time interval [0, T ] with a bound depending on T only. Utilizing Proposition 1.1
repeatedly, there must exist a positive integer m, such that T + mT1 > T ∗. This also leads to the contradiction to the
maximality of T ∗. Therefore, the assumption (2.1) does not hold. This completes the proof of Theorem 1.1.
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