The limiting behavior of the value-function for variational problems arising in continuum mechanics

Alexander J. Zaslavski
Department of Mathematics, The Technion-Israel Institute of Technology, 32000 Haifa, Israel

Received 17 May 2009; received in revised form 16 July 2009; accepted 16 July 2009
Available online 5 August 2009

Abstract

In this paper we study the limiting behavior of the value-function for one-dimensional second order variational problems arising in continuum mechanics. The study of this behavior is based on the relation between variational problems on bounded large intervals and a limiting problem on $[0, \infty)$.

© 2009 Elsevier Masson SAS. All rights reserved.
MSC: 49J99
Keywords: Good function; Infinite horizon; Minimal long-run average cost growth rate; Variational problem

1. Introduction

The study of properties of solutions of optimal control problems and variational problems defined on infinite domains and on sufficiently large domains has recently been a rapidly growing area of research. See, for example, [3,5,6,15-19,21-24] and the references mentioned therein. These problems arise in engineering [8], in models of economic growth [10,25], in infinite discrete models of solid-state physics related to dislocations in one-dimensional crystals $[2,20]$ and in the theory of thermodynamical equilibrium for materials $[7,9,11-14]$. In this paper we study the limiting behavior of the value-function for variational problems arising in continuum mechanics which were considered in [7,9,11-14,21-24]. The study of this behavior is based on the relation between variational problems on bounded large intervals and a limiting problem on $[0, \infty)$.

In this paper we consider the variational problems

$$
\begin{align*}
& \int_{0}^{T} f\left(w(t), w^{\prime}(t), w^{\prime \prime}(t)\right) d t \rightarrow \min , \quad w \in W^{2,1}([0, T]), \\
& \left(w(0), w^{\prime}(0)\right)=x \quad \text { and } \quad\left(w(T), w^{\prime}(T)\right)=y \tag{P}
\end{align*}
$$

[^0]where $T>0, x, y \in R^{2}, W^{2,1}([0, T]) \subset C^{1}([0, T])$ is the Sobolev space of functions possessing an integrable second derivative [1] and f belongs to a space of functions to be described below. The interest in variational problems of the form (P) and the related problem on the half line:
$$
\liminf _{T \rightarrow \infty} T^{-1} \int_{0}^{T} f\left(w(t), w^{\prime}(t), w^{\prime \prime}(t)\right) d t \rightarrow \min , \quad w \in W_{l o c}^{2,1}([0, \infty))
$$
stems from the theory of thermodynamical equilibrium for second-order materials developed in [7,9,11-14]. Here $W_{l o c}^{2,1}([0, \infty)) \subset C^{1}([0, \infty))$ denotes the Sobolev space of functions possessing a locally integrable second derivative [1] and f belongs to a space of functions to be described below.

We are interested in properties of the valued-function for the problem (P) which are independent of the length of the interval, for all sufficiently large intervals.

Let $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in R^{4}, a_{i}>0, i=1,2,3,4$ and let α, β, γ be positive numbers such that $1 \leqslant \beta<\alpha, \beta \leqslant \gamma$, $\gamma>1$. Denote by $\mathfrak{M}(\alpha, \beta, \gamma, a)$ the set of all functions $f: R^{3} \rightarrow R^{1}$ such that:

$$
\begin{align*}
& f(w, p, r) \geqslant a_{1}|w|^{\alpha}-a_{2}|p|^{\beta}+a_{3}|r|^{\gamma}-a_{4} \quad \text { for all }(w, p, r) \in R^{3} ; \tag{1.1}\\
& f, \partial f / \partial p \in C^{2}, \quad \partial f / \partial r \in C^{3}, \quad \partial^{2} f / \partial r^{2}(w, p, r)>0 \quad \text { for all }(w, p, r) \in R^{3} ; \tag{1.2}
\end{align*}
$$

there is a monotone increasing function $M_{f}:[0, \infty) \rightarrow[0, \infty)$ such that for every $(w, p, r) \in R^{3}$

$$
\begin{align*}
& \max \{f(w, p, r),|\partial f / \partial w(w, p, r)|,|\partial f / \partial p(w, p, r)|,|\partial f / \partial r(w, p, r)|\} \\
& \quad \leqslant M_{f}(|w|+|p|)\left(1+|r|^{\gamma}\right) . \tag{1.3}
\end{align*}
$$

Let $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$. Of special interest is the minimal long-run average cost growth rate

$$
\begin{equation*}
\mu(f)=\inf \left\{\liminf _{T \rightarrow \infty} T^{-1} \int_{0}^{T} f\left(w(t), w^{\prime}(t), w^{\prime \prime}(t)\right) d t: w \in A_{x}\right\}, \tag{1.4}
\end{equation*}
$$

where

$$
A_{x}=\left\{v \in W_{l o c}^{2,1}([0, \infty)):\left(v(0), v^{\prime}(0)\right)=x\right\} .
$$

It was shown in [9] that $\mu(f) \in R^{1}$ is well defined and is independent of the initial vector x. A function $w \in$ $W_{l o c}^{2,1}([0, \infty))$ is called an (f)-good function if the function

$$
\phi_{w}^{f}: T \rightarrow \int_{0}^{T}\left[f\left(w(t), w^{\prime}(t), w^{\prime \prime}(t)\right)-\mu(f)\right] d t, \quad T \in(0, \infty)
$$

is bounded. For every $w \in W_{l o c}^{2,1}([0, \infty))$ the function ϕ_{w}^{f} is either bounded or diverges to ∞ as $T \rightarrow \infty$ and moreover, if ϕ_{w}^{f} is a bounded function, then

$$
\sup \left\{\left|\left(w(t), w^{\prime}(t)\right)\right|: t \in[0, \infty)\right\}<\infty
$$

[22, Proposition 3.5]. Leizarowitz and Mizel [9] established that for every $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$ satisfying $\mu(f)<$ $\inf \left\{f(w, 0, s):(w, s) \in R^{2}\right\}$ there exists a periodic (f)-good function. In [21] it was shown that a periodic (f)-good function exists for every $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$.

Let $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$. For each $T>0$ define a function $U_{T}^{f}: R^{2} \times R^{2} \rightarrow R^{1}$ by

$$
\begin{align*}
U_{T}^{f}(x, y)=\inf \{ & \int_{0}^{T} f\left(w(t), w^{\prime}(t), w^{\prime \prime}(t)\right) d t: w \in W^{2,1}([0, T]), \\
& \left.\left(w(0), w^{\prime}(0)\right)=x \text { and }\left(w(T), w^{\prime}(T)\right)=y\right\} \tag{1.5}
\end{align*}
$$

In [9], analyzing problem $\left(P_{\infty}\right)$ Leizarowitz and Mizel studied the function $U_{T}^{f}: R^{2} \times R^{2} \rightarrow R^{1}, T>0$ and established the following representation formula

$$
\begin{equation*}
U_{T}^{f}(x, y)=T \mu(f)+\pi^{f}(x)-\pi^{f}(y)+\theta_{T}^{f}(x, y), \quad x, y \in R^{2}, T>0, \tag{1.6}
\end{equation*}
$$

where $\pi^{f}: R^{2} \rightarrow R^{1}$ and $(T, x, y) \rightarrow \theta_{T}^{f}(x, y)$ and $(T, x, y) \rightarrow U_{T}^{f}(x, y), x, y \in R^{2}, T>0$ are continuous functions,

$$
\begin{align*}
& \pi^{f}(x)=\inf \left\{\liminf _{T \rightarrow \infty} \int_{0}^{T}\left[f\left(w(t), w^{\prime}(t), w^{\prime \prime}(t)\right)-\mu(f)\right] d t:\right. \\
&\left.w \in W_{l o c}^{2,1}([0, \infty)) \text { and }\left(w(0), w^{\prime}(0)\right)=x\right\}, \quad x \in R^{2}, \tag{1.7}
\end{align*}
$$

$\theta_{T}^{f}(x, y) \geqslant 0$ for each $T>0$, and each $x, y \in R^{2}$, and for every $T>0$, and every $x \in R^{2}$ there is $y \in R^{2}$ satisfying $\theta_{T}^{f}(x, y)=0$.

Denote by $|\cdot|$ the Euclidean norm in R^{n}. For every $x \in R^{n}$ and every nonempty set $\Omega \subset R^{n}$ set

$$
d(x, \Omega)=\inf \{|x-y|: y \in \Omega\} .
$$

For each function $g: X \rightarrow R^{1} \cup\{\infty\}$, where the set X is nonempty, put

$$
\inf (g)=\inf \{g(z): z \in X\} .
$$

Let $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$. It is easy to see that

$$
\mu(f) \leqslant \inf \left\{f(t, 0,0): t \in R^{1}\right\} .
$$

If $\mu(f)=\inf \left\{f(t, 0,0): t \in R^{1}\right\}$, then there is an (f)-good function which is a constant function. If $\mu(f)<$ $\inf \left\{f(t, 0,0): t \in R^{1}\right\}$, then there exists a periodic (f) -good function which is not a constant function. It was shown in [14] that in this case the extremals of $\left(P_{\infty}\right)$ have interesting asymptotic properties. In [26] we equipped the space $\mathfrak{M}(\alpha, \beta, \gamma, a)$ with a natural topology and showed that there exists an open everywhere dense subset \mathcal{F} of this topological space such that for every $f \in \mathcal{F}$,

$$
\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\} .
$$

In other words, the inequality above holds for a typical integrand $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$.
In the present paper for an integrand $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$ satisfying

$$
\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\}
$$

we study the limiting behavior of the value-function U_{T}^{f} as $T \rightarrow \infty$ and establish the following two results.
Theorem 1.1. Let $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$ satisfy $\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\}$. Then for each $x, y \in R^{2}$ there exists

$$
U_{\infty}^{f}(x, y):=\lim _{T \rightarrow \infty}\left(U_{T}^{f}(x, y)-T \mu(f)\right)
$$

Moreover, $U_{T}^{f}(x, y)-T \mu(f) \rightarrow U_{\infty}^{f}(x, y)$ as $T \rightarrow \infty$ uniformly on bounded subsets of $R^{2} \times R^{2}$.
Theorem 1.2. Let $f \in \mathfrak{M}(\alpha, \beta, \gamma, a)$ satisfy $\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\}$. Then there exists a nonempty compact set $E_{\infty} \subset R^{2} \times R^{2}$ such that

$$
E_{\infty}=\left\{(x, y) \in R^{2} \times R^{2}: U_{\infty}^{f}(x, y)=\inf \left(U_{\infty}^{f}\right)\right\}
$$

Moreover, for any $\epsilon>0$ there exist $\delta>0$ and $\bar{T}>0$ such that if $T \geqslant \bar{T}$ and if $x, y \in R^{2}$ satisfy $U_{T}^{f}(x, y) \leqslant$ $\inf \left(U_{T}^{f}\right)+\delta$, then $d\left((x, y), E_{\infty}\right) \leqslant \epsilon$.

The paper is organized as follows. Section 2 contains preliminaries. In Section 3 we prove several auxiliary results. Theorems 1.1 and 1.2 are proved in Sections 4 and 5 respectively.

2. Preliminaries

For $\tau>0$ and $v \in W^{2,1}([0, \tau])$ we define $X_{v}:[0, \tau] \rightarrow R^{2}$ as follows:

$$
X_{v}(t)=\left(v(t), v^{\prime}(t)\right), \quad t \in[0, \tau]
$$

We also use this definition for $v \in W_{l o c}^{2,1}([0, \infty))$ and $v \in W_{l o c}^{2,1}\left(R^{1}\right)$.
Put

$$
\mathfrak{M}=\mathfrak{M}(\alpha, \beta, \gamma, a) .
$$

We consider functionals of the form

$$
\begin{align*}
& I^{f}\left(T_{1}, T_{2}, v\right)=\int_{T_{1}}^{T_{2}} f\left(v(t), v^{\prime}(t), v^{\prime \prime}(t)\right) d t \tag{2.1}\\
& \Gamma^{f}\left(T_{1}, T_{2}, v\right)=I^{f}\left(T_{1}, T_{2}, v\right)-\left(T_{2}-T_{1}\right) \mu(f)-\pi^{f}\left(X_{v}\left(T_{1}\right)\right)+\pi^{f}\left(X_{v}\left(T_{2}\right)\right), \tag{2.2}
\end{align*}
$$

where $-\infty<T_{1}<T_{2}<+\infty, v \in W^{2,1}\left(\left[T_{1}, T_{2}\right]\right)$ and $f \in \mathfrak{M}$.
If $v \in W_{l o c}^{2,1}([0, \infty))$ satisfies

$$
\sup \left\{\left|X_{v}(t)\right|: t \in[0, \infty)\right\}<\infty
$$

then the set of limiting points of $X_{v}(t)$ as $t \rightarrow \infty$ is denoted by $\Omega(v)$.
For each $f \in \mathfrak{M}$ denote by $\mathcal{A}(f)$ the set of all $w \in W_{\text {loc }}^{2,1}([0, \infty))$ which have the following property:
There is $T_{w}>0$ such that

$$
w\left(t+T_{w}\right)=w(t) \quad \text { for all } t \in[0, \infty) \quad \text { and } \quad I^{f}\left(0, T_{w}, w\right)=\mu(f) T_{w} .
$$

In other words $\mathcal{A}(f)$ is the set of all periodic (f)-good functions. By a result of [21], $\mathcal{A}(f) \neq \emptyset$ for all $f \in \mathfrak{M}$.
The following result established in [13, Lemma 3.1] describes the structure of periodic (f)-good functions.
Proposition 2.1. Let $f \in \mathfrak{M}$. Assume that $w \in \mathcal{A}(f)$,

$$
w(0)=\inf \{w(t): t \in[0, \infty)\}
$$

and $w^{\prime}(t) \neq 0$ for some $t \in[0, \infty)$. Then there exist $\tau_{1}(w)>0$ and $\tau(w)>\tau_{1}(w)$ such that the function w is strictly increasing on $\left[0, \tau_{1}(w)\right], w$ is strictly decreasing on $\left[\tau_{1}(w), \tau(w)\right]$,

$$
w\left(\tau_{1}(w)\right)=\sup \{w(t): t \in[0, \infty)\} \quad \text { and } \quad w(t+\tau(w))=w(t) \quad \text { for all } t \in[0, \infty)
$$

In [24, Theorem 3.15] we established the following result.
Proposition 2.2. Let $f \in \mathfrak{M}$. Assume that $w \in \mathcal{A}(f)$ and $w^{\prime}(t) \neq 0$ for some $t \in[0, \infty)$. Then there exists $\tau>0$ such that

$$
w(t+\tau)=w(t), \quad t \in[0, \infty) \quad \text { and } \quad X_{w}\left(T_{1}\right) \neq X_{w}\left(T_{2}\right)
$$

for each $T_{1} \in[0, \infty)$ and each $T_{2} \in\left(T_{1}, T_{1}+\tau\right)$.
In the sequel we use the following result of [23, Proposition 5.1].
Proposition 2.3. Let $f \in \mathfrak{M}$. Then there exists a number $S>0$ such that for every (f)-good function v,

$$
\left|X_{v}(t)\right| \leqslant S \quad \text { for all large enough } t
$$

The following result was proved in [13, Lemma 3.2].

Proposition 2.4. Let $f \in \mathfrak{M}$ satisfy

$$
\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\} .
$$

Then no element of $\mathcal{A}(f)$ is a constant and $\sup \{\tau(w): w \in \mathcal{A}(f)\}<\infty$.
Proposition 2.5. Let $f \in \mathfrak{M}$ and let M_{1}, M_{2}, c be positive numbers. Then there exists $S>0$ such that the following assertion holds:

If $T_{1} \geqslant 0, T_{2} \geqslant T_{1}+c$ and if $v \in W^{2,1}\left(\left[T_{1}, T_{2}\right]\right)$ satisfies

$$
\left|X_{v}\left(T_{1}\right)\right|,\left|X_{v}\left(T_{2}\right)\right| \leqslant M_{1} \quad \text { and } \quad I^{f}\left(T_{1}, T_{2}, v\right) \leqslant U_{T_{2}-T_{1}}^{f}\left(X_{v}\left(T_{1}\right), X_{v}\left(T_{2}\right)\right)+M_{2}
$$

then

$$
\left|X_{v}(t)\right| \leqslant S \quad \text { for all } t \in\left[T_{1}, T_{2}\right] .
$$

For this result we refer the reader to [9] (see the proof of Proposition 4.4).
The following result was established in [14, Theorem 1.2].
Proposition 2.6. Let $f \in \mathfrak{M}$ satisfy

$$
\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\}
$$

and let $v \in W_{l o c}^{2,1}([0, \infty))$ be such that

$$
\sup \left\{\left|X_{v}(t)\right|: t \in[0, \infty)\right\}<\infty, \quad I^{f}(0, T, v)=U_{T}^{f}\left(X_{v}(0), X_{v}(T)\right) \quad \text { for all } T>0
$$

Then there exists a periodic (f)-good function w such that $\Omega(v)=\Omega(w)$ and the following assertion holds:
Let $T>0$ be a period of w. Then for every $\epsilon>0$ there exists $\tau(\epsilon)>0$ such that for every $\tau \geqslant \tau(\epsilon)$ there exists $s \in[0, T)$ such that

$$
\left|\left(v(t+\tau), v^{\prime}(t+\tau)\right)-\left(w(s+t), w^{\prime}(s+t)\right)\right| \leqslant \epsilon, \quad t \in[0, T]
$$

The next useful result was proved in [13, Lemma 2.6].
Proposition 2.7. Let $f \in \mathfrak{M}$. Then for every compact set $E \subset R^{2}$ there exists a constant $M>0$ such that for every $T \geqslant 1$

$$
U_{T}^{f}(x, y) \leqslant T \mu(f)+M \quad \text { for all } x, y \in E
$$

The next important ingredient of our proofs is established in [13, Lemma B5] which is an extension of [23, Lemma 3.7].

Proposition 2.8. Let $f \in \mathfrak{M}, w \in \mathcal{A}(f)$ and $\epsilon>0$. Then there exist $\delta, q>0$ such that for each $T \geqslant q$ and each $x, y \in R^{2}$ satisfying $d(x, \Omega(w)) \leqslant \delta, d(y, \Omega(w)) \leqslant \delta$, there exists $v \in W^{2,1}([0, \tau])$ which satisfies

$$
X_{v}(0)=x, \quad X_{v}(\tau)=y, \quad \Gamma^{f}(0, \tau, v) \leqslant \epsilon .
$$

We also need the following auxiliary result of [21, Proposition 2.3].
Proposition 2.9. Let $f \in \mathfrak{M}$. Then for every $T>0$

$$
U_{T}^{f}(x, y) \rightarrow \infty \quad \text { as }|x|+|y| \rightarrow \infty
$$

Proposition 2.10. (See [12, Lemma 3.1].) Let $f \in \mathfrak{M}$ and δ, τ are positive numbers. Then there exists $M>0$ such that for every $T \geqslant \tau$ and every $v \in W^{2,1}([0, T])$ satisfying

$$
I^{f}(0, T, v) \leqslant \inf \left\{U_{T}^{f}(x, y): x, y \in R^{2}\right\}+\delta
$$

the following inequality holds:

$$
\left|X_{v}(t)\right| \leqslant M \quad \text { for all } t \in[0, T] .
$$

3. Auxiliary results

Let $f \in \mathfrak{M}$. By Proposition 2.2 for each $w \in \mathcal{A}(f)$ which is not a constant there exists $\tau(w)>0$ such that

$$
\begin{align*}
& w(t+\tau(w))=w(t), \quad t \in[0, \infty), \quad X_{w}\left(T_{1}\right) \neq X_{w}\left(T_{2}\right) \quad \text { for each } T_{1} \in[0, \infty) \\
& \quad \text { and each } T_{2} \in\left(T_{1}, T_{1}+\tau(w)\right) . \tag{3.1}
\end{align*}
$$

By Proposition 2.3 there exists a number $\bar{M}>0$ such that

$$
\begin{equation*}
\sup \left\{\left|X_{v}(t)\right|: t \in[0, \infty)\right\}<\bar{M} \quad \text { for all } v \in \mathcal{A}(f) . \tag{3.2}
\end{equation*}
$$

Proposition 3.1. Suppose that $\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\}$. Then

$$
\inf \{\tau(w): w \in \mathcal{A}(f)\}>0 .
$$

Proof. Let us assume the contrary. Then there exists a sequence $\left\{w_{n}\right\}_{n=1}^{\infty} \subset \mathcal{A}(f)$ such that $\lim _{n \rightarrow \infty} \tau\left(w_{n}\right)=0$. It follows from (3.2), the definition of $\tau(w), w \in \mathcal{A}(f)$ and the equality above that for $n=1,2, \ldots$,

$$
\begin{equation*}
\sup \left\{\left|w_{n}(t)-w_{n}(s)\right|: t, s \in[0, \infty)\right\} \leqslant \bar{M} \tau\left(w_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{3.3}
\end{equation*}
$$

Since $\left\{w_{n}\right\}_{n=1}^{\infty} \subset \mathcal{A}(f)$ it follows from (3.2) and the continuity of the functions $U_{T}^{f}, T>0$ that for any natural number k the sequence $\left\{I^{f}\left(0, k, w_{n}\right)\right\}_{n=1}^{\infty}$ is bounded. Combined with (3.2) and the growth condition (1.1) this implies that for any integer $k \geqslant 1$ the sequence $\left\{\int_{0}^{k}\left|w_{n}^{\prime \prime}(t)\right|^{\gamma} d t\right\}_{k=1}^{\infty}$ is bounded. Since this fact holds for any natural number k it follows from (3.2) that the sequence $\left\{w_{n}\right\}_{n=1}^{\infty}$ is bounded in $W^{2, \gamma}([0, k])$ for any natural number k and it possesses a weakly convergent subsequence in this space. By using a diagonal process we obtain that there exist a subsequence $\left\{w_{n_{i}}\right\}_{i=1}^{\infty}$ of $\left\{w_{n}\right\}_{n=1}^{\infty}$ and $w_{*} \in W_{\text {loc }}^{2,1}([0, \infty))$ such that for each natural number k

$$
\begin{align*}
& \left(w_{n_{i}}, w_{n_{i}}^{\prime}\right) \rightarrow\left(w_{*}, w_{*}^{\prime}\right) \quad \text { as } i \rightarrow \infty \text { uniformly on }[0, k], \tag{3.4}\\
& w_{n_{i}}^{\prime \prime} \rightarrow w_{*}^{\prime \prime} \text { as } i \rightarrow \infty \text { weakly in } L^{\gamma}[0, k] . \tag{3.5}
\end{align*}
$$

By (3.4), (3.5) and the lower semicontinuity of integral functionals [4] for each natural number k,

$$
I^{f}\left(0, k, w_{*}\right) \leqslant \liminf _{i \rightarrow \infty} I^{f}\left(0, k, w_{n_{i}}\right) .
$$

Combined with (3.4) and (2.2), the continuity of π^{f} and the inclusion $w_{n} \in \mathcal{A}(f), n=1,2, \ldots$, this inequality implies that for any natural number k

$$
\Gamma^{f}\left(0, k, w_{*}\right) \leqslant \liminf _{i \rightarrow \infty} \Gamma^{f}\left(0, k, w_{n_{i}}\right)=0 .
$$

In view of (3.3) and (3.4), w_{*} is a constant function. Together with the relation above and (2.2) this implies that

$$
\mu(f)=f\left(u_{*}(0), 0,0\right)=\inf \left\{f(t, 0,0): t \in R^{1}\right\} .
$$

The contradiction we have reached proves Proposition 3.1.
Proposition 3.2. Suppose that

$$
\begin{equation*}
\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\} . \tag{3.6}
\end{equation*}
$$

Let $M, l, \epsilon>0$. Then there exist $\delta>0$ and $L>l$ such that for each $T \geqslant L$ and each $v \in W^{2,1}([0, T])$ satisfying

$$
\begin{equation*}
\left|X_{v}(0)\right|,\left|X_{v}(T)\right| \leqslant M, \quad \Gamma^{f}(0, T, v) \leqslant \delta, \tag{3.7}
\end{equation*}
$$

there exist $s \in[0, T-l]$ and $w \in \mathcal{A}(f)$ such that

$$
\left|X_{v}(s+t)-X_{w}(t)\right| \leqslant \epsilon, \quad t \in[0, l] .
$$

Proof. Assume the contrary. Then there exists a sequence $v_{i} \in W^{2,1}\left(\left[0, T_{i}\right]\right), i=1,2, \ldots$, such that

$$
\begin{align*}
& T_{i} \geqslant l, \quad i=1,2, \ldots, \\
& T_{i} \rightarrow \infty \quad \text { as } i \rightarrow \infty, \quad \Gamma^{f}\left(0, T_{i}, v_{i}\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty, \tag{3.8}\\
& \left|X_{v_{i}}(0)\right|,\left|X_{v_{i}}\left(T_{i}\right)\right| \leqslant M, \quad i=1,2, \ldots, \tag{3.9}
\end{align*}
$$

and that for each natural number i the following property holds:

$$
\begin{equation*}
\sup \left\{\left|X_{v_{i}}(s+t)-X_{w}(t)\right|: t \in[0, l]\right\}>\epsilon \quad \text { for each } s \in[0, T-l] \text { and each } w \in \mathcal{A}(f) . \tag{3.10}
\end{equation*}
$$

We may assume without loss of generality that

$$
\begin{equation*}
\Gamma^{f}\left(0, T_{i}, v_{i}\right) \leqslant 1, \quad i=1,2, \ldots \tag{3.11}
\end{equation*}
$$

It follows from (2.2), (3.11), (1.6) and (1.5) that for each integer $i \geqslant 1$

$$
\begin{align*}
I^{f}\left(0, T_{i}, v_{i}\right) & =\pi^{f}\left(X_{v_{i}}(0)\right)-\pi^{f}\left(X_{v_{i}}\left(T_{i}\right)\right)+T_{i} \mu(f)+\Gamma^{f}\left(0, T_{i}, v_{i}\right) \\
& \leqslant 1+\pi^{f}\left(X_{v_{i}}(0)\right)-\pi^{f}\left(X_{v_{i}}\left(T_{i}\right)\right)+T_{i} \mu(f) \\
& \leqslant 1+U_{T_{i}}^{f}\left(X_{v_{i}}(0), X_{v_{i}}\left(T_{i}\right)\right) . \tag{3.12}
\end{align*}
$$

By (3.12), (3.9), (3.8) and Proposition 2.5 there exists a constant $M_{1}>0$ such that

$$
\begin{equation*}
\left|X_{v_{i}}(t)\right| \leqslant M_{1}, \quad t \in\left[0, T_{i}\right], i=1,2, \ldots \tag{3.13}
\end{equation*}
$$

By (3.13), (3.12) and the continuity of $U_{T}^{f}, T>0$, for each natural number n, the sequence $\left\{I^{f}\left(0, n, v_{i}\right)\right\}_{i=i(n)}^{\infty}$ is bounded, where $i(n)$ is a natural number such that $T_{i}>n$ for all integers $i \geqslant i(n)$ (see (3.8)). Together with (3.13) and (1.1) this implies that for any natural number n the sequence $\left\{\int_{0}^{n}\left|v_{i}^{\prime \prime}(t)\right|^{\gamma} d t\right\}_{i=i(n)}^{\infty}$ is bounded. Since this fact holds for any natural number n it follows from (3.13) that the sequence $\left\{v_{i}\right\}_{i=i(n)}^{\infty}$ is bounded in $W^{2, \gamma}([0, n])$ for any natural number n and it possesses a weakly convergent subsequence in this space. By using a diagonal process we obtain that there exist a subsequence $\left\{v_{i_{k}}\right\}_{k=1}^{\infty}$ of $\left\{v_{i}\right\}_{i=1}^{\infty}$ and $u \in W_{\text {loc }}^{2,1}([0, \infty))$ such that for each natural number n

$$
\begin{align*}
& \left(v_{i_{k}}, v_{i_{k}}^{\prime}\right) \rightarrow\left(u, u^{\prime}\right) \text { as } k \rightarrow \infty \text { uniformly on }[0, n], \tag{3.14}\\
& v_{i_{k}}^{\prime \prime} \rightarrow u^{\prime \prime} \text { as } k \rightarrow \infty \text { weakly in } L^{\gamma}[0, k] . \tag{3.15}
\end{align*}
$$

In view of (3.14) and (3.13),

$$
\begin{equation*}
\left|X_{u}(t)\right| \leqslant M_{1} \quad \text { for all } t \geqslant 0 \tag{3.16}
\end{equation*}
$$

It follows from (3.14), (3.15), (3.13) and the lower semicontinuity of integral functionals [4] for each natural number n

$$
I^{f}(0, n, u) \leqslant \liminf _{k \rightarrow \infty} I^{f}\left(0, n, v_{i_{k}}\right)
$$

Combined with (3.14), (3.13), (2.2), (1.6), the continuity of π^{f} and (3.8) the inequality above implies that for any natural number n

$$
\Gamma^{f}(0, n, u) \leqslant \liminf _{k \rightarrow \infty} \Gamma^{f}\left(0, n, v_{i_{k}}\right)=0 .
$$

Thus

$$
\begin{equation*}
\Gamma^{f}(0, T, u)=0 \quad \text { for all } T>0 . \tag{3.17}
\end{equation*}
$$

By (3.16), (3.17) and Proposition 2.6 there exists $w \in \mathcal{A}(f)$ such that $\Omega(w)=\Omega(u)$ and the following assertion holds:
(A1) Let T_{w} be a period of w (not necessarily minimal). Then for each $\gamma>0$ there exists $\tau(\gamma)>0$ such that for each $\tau \geqslant \tau(\gamma)$ there is $s \in\left[0, T_{w}\right)$ such that

$$
\left|X_{u}(t+\tau)-X_{w}(s+t)\right| \leqslant \gamma, \quad t \in\left[0, T_{w}\right] .
$$

We may assume without loss of generality that a period T_{w} of w satisfies $T_{w}>l$. Assumption (A1) implies that there exist $\tau>0$ and $\tilde{w} \in \mathcal{A}(f)$ such that

$$
\left|X_{u}(\tau+t)-X_{\tilde{w}}(t)\right| \leqslant \epsilon / 4, \quad t \in[0, l] .
$$

Combined with (3.14) this implies that for all sufficiently large natural numbers k

$$
\left|X_{v_{i_{k}}}(\tau+t)-X_{\tilde{w}}(t)\right| \leqslant \epsilon / 2, \quad t \in[0, l] .
$$

This contradicts (3.10). The contradiction we have reached proves Proposition 3.2.
Proposition 3.3. Let $M>0$ and $\delta>0$. Then there exists a natural number n such that for each number $T \geqslant 1$ and each $v \in W^{2,1}([0, T])$ satisfying

$$
\begin{equation*}
\left|X_{v}(0)\right|,\left|X_{v}(T)\right| \leqslant M, \quad I^{f}(0, T, v) \leqslant U_{T}^{f}\left(X_{v}(0), X_{v}(T)\right)+1 \tag{3.18}
\end{equation*}
$$

the following property holds:
There exists a sequence $\left\{t_{i}\right\}_{i=0}^{m}$ with $m \leqslant n$ such that

$$
\begin{align*}
& 0=t_{0}<t_{1}<\cdots<t_{i}<t_{i+1}<\cdots<t_{m}=T \\
& \Gamma^{f}\left(t_{i}, t_{i+1}, v\right)=\delta \quad \text { for any integer } i \text { satisfying } 0 \leqslant i<m-1, \quad \Gamma^{f}\left(t_{m-1}, t_{m}, v\right) \leqslant \delta . \tag{3.19}
\end{align*}
$$

Proof. By Proposition 2.7 there exists a constant $M_{1}>0$ such that

$$
\begin{equation*}
U_{T}^{f}(x, y) \leqslant T \mu(f)+M_{1} \quad \text { for each } T \geqslant 1 \quad \text { and each } \quad x, y \in R^{2} \quad \text { satisfying }|x|,|y| \leqslant M . \tag{3.20}
\end{equation*}
$$

Together with (2.2) and (3.20) this implies that if $T \geqslant 1$ and if $v \in W^{2,1}([0, T])$ satisfies (3.18), then

$$
\begin{equation*}
\Gamma^{f}(0, T, v) \leqslant U_{T}^{f}\left(X_{v}(0), X_{v}(T)\right)+1-T \mu(f), \quad-\pi^{f}\left(X_{v}(0)\right)+\pi^{f}\left(X_{v}(T)\right) \leqslant M_{1}+1+2 M_{2}, \tag{3.21}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{2}=\sup \left\{\left|\pi^{f}(z)\right|: z \in R^{2} \text { and }|z| \leqslant M\right\} . \tag{3.22}
\end{equation*}
$$

Choose a natural number $n>4$ such that

$$
\begin{equation*}
(n-2) \delta>2\left(M_{2}+M_{1}+1\right) \tag{3.23}
\end{equation*}
$$

Assume now that $T \geqslant 1$ and that $v \in W^{2,1}([0, T])$ satisfies (3.18). Then by (3.21) and (3.22),

$$
\begin{equation*}
\Gamma^{f}(0, T, v) \leqslant M_{1}+1+2 M_{2} . \tag{3.24}
\end{equation*}
$$

Clearly for each $\tau \in[0, T), \lim _{s \rightarrow \tau^{+}} \Gamma^{f}(\tau, s, v)=0$ and one of the following cases holds:
$\Gamma^{f}(\tau, T, v) \leqslant \delta$; there exists $\bar{\tau} \in(\tau, T)$ such that $\Gamma^{f}(\tau, \bar{\tau}, v)=\delta$.
This implies that there exist a natural number m and a sequence $\left\{t_{i}\right\}_{i=0}^{m}$ such that (3.19) is true. In order to complete the proof of the proposition it is sufficient to show that $m \leqslant n$. By (3.24), (3.19) and (3.23),

$$
2 M_{2}+1+M_{1} \geqslant \Gamma^{f}(0, T, v) \geqslant(m-1) \delta
$$

and

$$
m \leqslant 1+\delta^{-1}\left(2 M_{2}+1+M_{1}\right)<n .
$$

Proposition 3.3 is proved.
The following proposition is a result on the uniform equicontinuity of the family $\left(U_{T}^{f}\right)_{T \geqslant \tau}$ on bounded sets.
Proposition 3.4. Let $M>0$ and $\tau>0$. Then for each $\epsilon>0$ there exists $\delta>0$ such that for each $T \geqslant \tau$ and each $x, y, \bar{x}, \bar{y} \in R^{2}$ satisfying

$$
\begin{equation*}
|x|,|y|,|\bar{x}|,|\bar{y}| \leqslant M, \quad|x-\bar{x}|,|y-\bar{y}| \leqslant \delta \tag{3.25}
\end{equation*}
$$

the following inequality holds:

$$
\begin{equation*}
\left|U_{T}^{f}(x, y)-U_{T}^{f}(\bar{x}, \bar{y})\right| \leqslant \epsilon . \tag{3.26}
\end{equation*}
$$

Proof. Let $\epsilon>0$. By Proposition 2.5 there exists a constant $M_{1}>M$ such that for each $T \geqslant \tau$ and each $v \in$ $W^{2,1}([0, T])$ satisfying

$$
\begin{equation*}
\left|X_{v}(0)\right|,\left|X_{v}(T)\right| \leqslant M, \quad I^{f}(0, T, v) \leqslant U_{T}^{f}\left(X_{v}(0), X_{v}(T)\right)+1 \tag{3.27}
\end{equation*}
$$

the following inequality holds:

$$
\begin{equation*}
\left|X_{v}(t)\right| \leqslant M_{1}, \quad t \in[0, T] \tag{3.28}
\end{equation*}
$$

Since the function $U_{\tau / 4}^{f} \mathrm{~s}$ continuous, it is uniformly continuous on compact subsets of $R^{2} \times R^{2}$ and there exists $\delta>0$ such that

$$
\begin{equation*}
\left|U_{\tau / 4}^{f}(x, y)-U_{\tau / 4}^{f}(\bar{x}, \bar{y})\right| \leqslant \epsilon / 4 \tag{3.29}
\end{equation*}
$$

for each $x, y, \bar{x}, \bar{y} \in R^{2}$ satisfying

$$
\begin{equation*}
|x|,|y|,|\bar{x}|, \bar{y}\left|\leqslant M_{1}, \quad\right| x-\bar{x}|,|y-\bar{y}| \leqslant \delta \tag{3.30}
\end{equation*}
$$

Assume that $x, y, \bar{x}, \bar{y} \in R^{2}$ satisfy (3.25) and that $T \geqslant \tau$. In order to prove the proposition it is sufficient to show that

$$
U_{T}^{f}(\bar{x}, \bar{y}) \leqslant U_{T}^{f}(x, y)+\epsilon
$$

There exists $v \in W^{2,1}([0, T])$ such that

$$
\begin{equation*}
X_{v}(0)=x, \quad X_{v}(T)=y, \quad I^{f}(0, T, v)=U_{T}^{f}(x, y) \tag{3.31}
\end{equation*}
$$

By (3.31), (3.25) and the choice of $M_{1},(3.28)$ is valid. There exists $u \in W^{2,1}([0, T])$ such that

$$
\begin{align*}
& X_{u}(0)=\bar{x}, \quad X_{u}(\tau / 4)=X_{v}(\tau / 4), \quad I^{f}(0, \tau / 4, u)=U_{\tau / 4}^{f}\left(\bar{x}, X_{v}(\tau / 4)\right), \\
& u(t)=v(t), \quad t \in[\tau / 4, T-\tau / 4], \\
& X_{u}(T-\tau / 4)=X_{v}(T-\tau / 4), \quad X_{u}(T)=\bar{y} \\
& I^{f}(T-\tau / 4, T, u)=U_{\tau / 4}^{f}\left(X_{v}(T-\tau / 4), \bar{y}\right) \tag{3.32}
\end{align*}
$$

It follows from (3.25) and (3.28) and the choice of δ (see (3.29) and (3.30)) that

$$
\begin{aligned}
& \left|U_{\tau / 4}^{f}\left(\bar{x}, X_{v}(\tau / 4)\right)-U_{\tau / 4}^{f}\left(x, X_{v}(\tau / 4)\right)\right| \leqslant \epsilon / 4 \\
& \left|U_{\tau / 4}^{f}\left(X_{v}(T-\tau / 4), \bar{y}\right)-U_{\tau / 4}^{f}\left(X_{v}(T-\tau / 4), y\right)\right| \leqslant \epsilon / 4
\end{aligned}
$$

It follows from the inequalities above, (3.32) and (3.31) that

$$
\begin{aligned}
U_{T}^{f}(\bar{x}, \bar{y}) & \leqslant I^{f}(0, T, u)=I^{f}(0, \tau / 4, u)+I^{f}(\tau / 4, T-\tau / 4, u)+I^{f}(T-\tau / 4, T, u) \\
& =U_{\tau / 4}^{f}\left(\bar{x}, X_{v}(\tau / 4)\right)+I^{f}(\tau / 4, T-\tau / 4, u)+U_{\tau / 4}^{f}\left(X_{v}(T-\tau / 4), \bar{y}\right) \\
& \leqslant U_{\tau / 4}^{f}\left(x, X_{v}(\tau / 4)\right)+\epsilon / 4+I^{f}(\tau / 4, T-\tau / 4, u)+U_{\tau / 4}^{f}\left(X_{v}(T-\tau / 4), y\right)+\epsilon / 4 \\
& =I^{f}(0, T, v)+\epsilon / 2=U_{T}^{f}(x, y)+\epsilon / 2
\end{aligned}
$$

Proposition 3.4 is proved.

Proposition 3.5. Suppose that

$$
\mu(f)<\inf \left\{f(t, 0,0): t \in R^{1}\right\}
$$

Let $\epsilon>0$. Then there exist $q>0$ and $\delta>0$ such that the following assertion holds:
Let $T \geqslant q, w \in \mathcal{A}(f)$,

$$
\begin{equation*}
x, y \in R^{2}, \quad d(x, \Omega(w)), d(y, \Omega(w)) \leqslant \delta \tag{3.33}
\end{equation*}
$$

Then there exists $v \in W^{2,1}([0, T])$ which satisfies

$$
\begin{equation*}
X_{v}(0)=x, \quad X_{v}(\tau)=y, \quad \Gamma^{f}(0, \tau, v) \leqslant \epsilon \tag{3.34}
\end{equation*}
$$

Proof. By Proposition 2.8 for each $w \in \mathcal{A}(f)$ there exist $\delta(w), q(w)>0$ such that the following property holds:
(P1) If $T \geqslant q(w)$ and if $x, y \in R^{2}$ satisfy $d(x, \Omega(w)), d(y, \Omega(w)) \leqslant \delta(w)$, then there exists $v \in W^{2,1}([0, T])$ which satisfies (3.34).

By Propositions 2.4 and 3.1,

$$
\begin{align*}
& \bar{T}:=\sup \{\tau(w): w \in \mathcal{A}(f)\}<\infty \tag{3.35}\\
& \inf \{\tau(w): w \in \mathcal{A}(f)\}>0 \tag{3.36}
\end{align*}
$$

Define

$$
\begin{equation*}
E=\bigcup\{\Omega(w) \times \Omega(w): w \in \mathcal{A}(f)\} \tag{3.37}
\end{equation*}
$$

We will show that E is compact. In view of (3.2) it is sufficient to show that E is closed.
Let

$$
\begin{equation*}
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{\infty} \subset E, \quad \lim _{i \rightarrow \infty}\left(x_{i}, y_{i}\right)=(x, y) \tag{3.38}
\end{equation*}
$$

We show that $(x, y) \in E$. For each natural number i there exist $w_{i} \in \mathcal{A}(f), s_{i}, t_{i} \in[0, \infty)$ such that

$$
\begin{equation*}
x_{i}=\left(w_{i}\left(t_{i}\right), w_{i}^{\prime}\left(t_{i}\right)\right), \quad y_{i}=\left(w_{i}\left(s_{i}\right), w_{i}^{\prime}\left(s_{i}\right)\right) \tag{3.39}
\end{equation*}
$$

In view of (3.35) we may assume that

$$
\begin{equation*}
t_{i}, s_{i} \in[0, \bar{T}], \quad i=1,2, \ldots \tag{3.40}
\end{equation*}
$$

By (3.2) and the continuity of $U_{\bar{T}}^{f}$, the sequence $\left\{I^{f}\left(0, \bar{T}, w_{i}\right)\right\}_{i=1}^{\infty}$ is bounded. Combined with (3.2) and (1.1) this implies that the sequence $\left\{\int_{0}^{\bar{T}}\left|w_{i}^{\prime \prime}(t)\right|^{\gamma} d t\right\}_{i=1}^{\infty}$ is bounded. Extracting a subsequence and re-indexing if necessary we may assume without loss of generality that there exist

$$
\begin{equation*}
t_{*}=\lim _{i \rightarrow \infty} t_{i}, \quad s_{*}=\lim _{i \rightarrow \infty} s_{i}, \quad \tau_{*}=\lim _{i \rightarrow \infty} \tau\left(w_{i}\right) \tag{3.41}
\end{equation*}
$$

and there exists $u \in W^{2, \gamma}([0, \bar{T}])$ such that

$$
\begin{align*}
& w_{i} \rightarrow u \quad \text { as } i \rightarrow \infty \text { weakly in } W^{2, \gamma}([0, \bar{T}]) \\
& \left(w_{i}, w_{i}^{\prime}\right) \rightarrow\left(u, u^{\prime}\right) \text { as } i \rightarrow \infty \text { uniformly on }[0, \bar{T}] . \tag{3.42}
\end{align*}
$$

By (3.42), (3.2), the continuity of π^{f}, and the lower semicontinuity of integral functionals [4],

$$
\Gamma^{f}(0, \bar{T}, u) \leqslant \liminf _{i \rightarrow \infty} \Gamma^{f}\left(0, \bar{T}, w_{i}\right)=0
$$

and $\Gamma^{f}(0, \bar{T}, u)=0$.
It follows from (3.38), (3.39), (3.40), (3.42) and (3.41) that

$$
\begin{align*}
& x=\lim _{i \rightarrow \infty} x_{i}=\lim _{i \rightarrow \infty}\left(w_{i}\left(t_{i}\right), w_{i}^{\prime}\left(t_{i}\right)\right)=\lim _{i \rightarrow \infty}\left(u\left(t_{i}\right), u^{\prime}\left(t_{i}\right)\right)=\left(u\left(t_{*}\right), u^{\prime}\left(t_{*}\right)\right), \tag{3.43}\\
& y=\lim _{i \rightarrow \infty} y_{i}=\lim _{i \rightarrow \infty}\left(w_{i}\left(s_{i}\right), w_{i}^{\prime}\left(s_{i}\right)\right)=\lim _{i \rightarrow \infty}\left(u\left(s_{i}\right), u^{\prime}\left(s_{i}\right)\right)=\left(u\left(s_{*}\right), u^{\prime}\left(s_{*}\right)\right) . \tag{3.44}
\end{align*}
$$

By (3.42), the inclusion $w_{i} \in \mathcal{A}(f), i=1,2, \ldots$, (3.35) and (3.41),

$$
X_{u}(0)=\lim _{i \rightarrow \infty} X_{w_{i}}(0)=\lim _{i \rightarrow \infty} X_{w_{i}}\left(\tau\left(w_{i}\right)\right)=\lim _{i \rightarrow \infty} X_{u}\left(\tau\left(w_{i}\right)\right)=X_{u}\left(\tau_{*}\right)
$$

In view of (3.41), (3.40) and (3.36),

$$
0<\tau_{*} \leqslant \bar{T}
$$

We have shown that

$$
X_{u}(0)=X_{u}\left(\tau_{*}\right), \quad 0 \leqslant \Gamma^{f}\left(0, \tau_{*}, u\right) \leqslant \Gamma^{f}(0, \bar{T}, u)=0 .
$$

This implies that u can be extended on the infinite interval $[0, \infty)$ as a periodic (f)-good function with the period τ_{*}. Thus we have that $u \in \mathcal{A}(f)$ and in view of (3.43), (3.44) and (3.37)

$$
(x, y) \in \Omega(u) \times \Omega(u) \subset E .
$$

Therefore E is compact. For each $w \in \mathcal{A}(f)$ define an open set $\mathcal{U}(w) \subset R^{4}$ by

$$
\begin{equation*}
\mathcal{U}(w)=\left\{(x, y) \in R^{4}: d(x, \Omega(w))<\delta(w) / 4, d(y, \Omega(w))<\delta(w) / 4\right\} . \tag{3.45}
\end{equation*}
$$

Then $\mathcal{U}(w), w \in \mathcal{A}(f)$ is an open covering of the compact E and there exists a finite set $\left\{w_{1}, \ldots, w_{n}\right\} \in \mathcal{A}(f)$ such that

$$
\begin{equation*}
E \subset \bigcup_{i=1}^{n} \mathcal{U}\left(w_{i}\right) \tag{3.46}
\end{equation*}
$$

Set

$$
\begin{equation*}
q=\max \left\{q\left(w_{i}\right): i=1, \ldots, n\right\}, \quad \delta=\min \left\{\delta\left(w_{i}\right) / 4: i=1, \ldots, n\right\} . \tag{3.47}
\end{equation*}
$$

Let $T \geqslant q, w \in \mathcal{A}(f)$ and let $x, y \in R^{2}$ satisfy (3.33). There exist

$$
\begin{equation*}
\tilde{x}, \tilde{y} \in \Omega(w) \tag{3.48}
\end{equation*}
$$

such that

$$
\begin{equation*}
|x-\tilde{x}|,|y-\tilde{y}| \leqslant \delta . \tag{3.49}
\end{equation*}
$$

In view of (3.37), (3.46) and (3.48), ($\tilde{x}, \tilde{y}) \in E$ and there is $j \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
(\tilde{x}, \tilde{y}) \in \mathcal{U}\left(w_{j}\right) . \tag{3.50}
\end{equation*}
$$

Relations (3.50) and (3.45) imply that there exist

$$
\begin{equation*}
\bar{x}, \bar{y} \in \Omega\left(w_{j}\right) \tag{3.51}
\end{equation*}
$$

such that

$$
\begin{equation*}
|\tilde{x}-\bar{x}|,|\tilde{y}-\bar{y}|<\delta\left(w_{j}\right) / 4 \tag{3.52}
\end{equation*}
$$

By (3.49), (3.52) and (3.47)

$$
|x-\bar{x}|,|y-\bar{y}|<\delta+\delta\left(w_{j}\right) / 4 \leqslant \delta\left(w_{j}\right) / 2
$$

It follows from this inequalities, (3.51), property (P1) with $w=w_{j}$, (3.47) and the inequality $T \geqslant q$ that there exists $v \in W^{2,1}([0, T])$ satisfying (3.34). Proposition 3.5 is proved.

4. Proof of Theorem 1.1

By Proposition 3.4 in order to prove the theorem it is sufficient to show that for each $x, y \in R^{2}$ there exists

$$
\lim _{T \rightarrow \infty}\left[U_{T}^{f}(x, y)-T \mu(f)\right] .
$$

Let $x, y \in R^{2}$ and fix $\epsilon>0$. We will show that there exist $\bar{T}>0$ and $q>0$ such that

$$
\begin{equation*}
U_{S}^{f}(x, y)-S \mu(f) \leqslant U_{T}^{f}(x, y)-T \mu(f)+\epsilon \tag{4.1}
\end{equation*}
$$

for each $T \geqslant \bar{T}$ and each $S \geqslant T+q$.
By Proposition 3.5 there exist $q>0, \delta_{0}>0$ such that for the following property holds:
(P2) For each $T \geqslant q$, each $w \in \mathcal{A}(f)$ and each $x, y \in R^{2}$ satisfying

$$
\begin{equation*}
d(x, \Omega(w)), d(y, \Omega(w)) \leqslant \delta_{0} \tag{4.2}
\end{equation*}
$$

there exists $v \in W^{2,1}([0, T])$ such that

$$
\begin{equation*}
X_{v}(0)=x, \quad X_{v}(T)=y, \quad \Gamma^{f}(0, T, v) \leqslant \epsilon . \tag{4.3}
\end{equation*}
$$

In view of Proposition 2.4 there exists a real number

$$
\begin{equation*}
l>\sup \{\tau(w): w \in \mathcal{A}(f)\} . \tag{4.4}
\end{equation*}
$$

Choose

$$
\begin{equation*}
M_{0}>|x|+|y|+2 . \tag{4.5}
\end{equation*}
$$

By Proposition 2.5 there exists $M_{1}>M_{0}$ such that for each $T \geqslant 1$ and each $v \in W^{2,1}([0, T])$ satisfying

$$
\begin{equation*}
\left|X_{v}(0)\right|,\left|X_{v}(T)\right| \leqslant M_{0}, \quad I^{f}(0, T, v) \leqslant U_{T}^{f}\left(X_{v}(0), X_{v}(T)\right)+1 \tag{4.6}
\end{equation*}
$$

the following inequality holds:

$$
\begin{equation*}
\left|X_{v}(T)\right| \leqslant M_{1}, \quad t \in[0, T] \tag{4.7}
\end{equation*}
$$

By Proposition 3.2 there exist $\delta_{1}>0, L_{1}>l$ such that for each $T \geqslant L_{1}$ and each $v \in W^{2,1}$ ([0, T]) satisfying

$$
\begin{equation*}
\left|X_{v}(0)\right|,\left|X_{v}(T)\right| \leqslant M_{1}, \quad \Gamma^{f}(0, T, v) \leqslant \delta_{1} \tag{4.8}
\end{equation*}
$$

there exist $\sigma \in[0, T-l]$ and $w \in \mathcal{A}(f)$ such that

$$
\begin{equation*}
\left|X_{v}(\sigma+t)-X_{w}(t)\right| \leqslant \delta_{0}, \quad t \in[0, l] \tag{4.9}
\end{equation*}
$$

By Proposition 3.3 there exists a natural number n such that for each $T \geqslant 1$ and each $v \in W^{2,1}([0, T])$ satisfying

$$
\begin{equation*}
\left|X_{v}(0)\right|,\left|X_{v}(T)\right| \leqslant M_{1}, \quad I^{f}(0, T, v) \leqslant U_{T}^{f}\left(X_{v}(0), X_{v}(T)\right)+1 \tag{4.10}
\end{equation*}
$$

there exists a sequence $\left\{t_{i}\right\}_{i=0}^{m} \subset[0, T]$ with $m \leqslant n$ such that

$$
\begin{align*}
& 0=t_{0}<\cdots<t_{i}<t_{i+1}<\cdots<t_{m}=T \tag{4.11}\\
& \Gamma^{f}\left(t_{i}, t_{i+1}, v\right)=\delta_{1} \quad \text { for all integers } i \text { satisfying } 0 \leqslant i<m-1 \\
& \Gamma^{f}\left(t_{m-1}, t_{m}, v\right) \leqslant \delta_{1} . \tag{4.12}
\end{align*}
$$

Choose a number

$$
\begin{equation*}
\bar{T}>1+n L_{1} . \tag{4.13}
\end{equation*}
$$

Let

$$
\begin{equation*}
T \geqslant \bar{T}, \quad S \geqslant T+q . \tag{4.14}
\end{equation*}
$$

There exists $v \in W^{2,1}([0, T])$ such that

$$
\begin{equation*}
X_{v}(0)=x, \quad X_{v}(T)=y, \quad I^{f}(0, T, v)=U_{T}^{f}(x, y) . \tag{4.15}
\end{equation*}
$$

By (4.5), (4.13), (4.14), the choice of M_{1} and (4.15), the inequality (4.7) holds. In view of (4.15), the choice of n (see (4.10)-(4.12)), (4.14), (4.13) and (4.5) there exists a sequence $\left\{t_{i}\right\}_{i=0}^{m} \subset[0, T]$ with $m \leqslant n$ such that (4.11) and (4.12) hold. It follows from (4.14), (4.13) and (4.11) that

$$
\max \left\{t_{i+1}-t_{i}: i=0, \ldots, m-1\right\} \geqslant T / m \geqslant \bar{T} / n>L_{1}
$$

Thus there exists $j \in\{0, \ldots, m-1\}$ such that

$$
\begin{equation*}
t_{j+1}-t_{j}>L_{1} \tag{4.16}
\end{equation*}
$$

By (4.16), (4.7), (4.12) and the choice of δ_{1}, L_{1} (see (4.8), (4.9)) there exist

$$
\begin{equation*}
\sigma \in\left[t_{j}, t_{j+1}-l\right], \quad w \in \mathcal{A}(f) \tag{4.17}
\end{equation*}
$$

such that (4.9) holds.
In particular

$$
\begin{equation*}
d\left(X_{v}(\sigma), \Omega(w)\right) \leqslant \delta_{0} \tag{4.18}
\end{equation*}
$$

It follows from (4.14), (4.17), the property (P2) and (4.18) that there exists

$$
h \in W^{2,1}([\sigma, \sigma+S-T])
$$

such that

$$
\begin{align*}
& X_{h}(\sigma)=X_{v}(\sigma), \quad X_{h}(\sigma+S-T)=X_{v}(\sigma), \\
& \Gamma^{f}(\sigma, \sigma+S-T, h) \leqslant \epsilon . \tag{4.19}
\end{align*}
$$

It is easy to see that there exist $u \in W^{2,1}([0, S])$ such that

$$
\begin{align*}
& u(t)=v(t), \quad t \in[0, \sigma], \quad u(t)=h(t), \quad t \in[\sigma, \sigma+S-T], \\
& u(\sigma+S-T+t)=v(\sigma+t), \quad t \in[0, T-\sigma] . \tag{4.20}
\end{align*}
$$

By (4.20) and (4.15),

$$
\begin{equation*}
X_{u}(0)=x, \quad X_{u}(S)=y . \tag{4.21}
\end{equation*}
$$

By (4.21), (2.2), (4.15), (4.20) and (4.19),

$$
\begin{aligned}
U_{S}^{f}(x, y)-S \mu(f) & \leqslant I^{f}(0, S, u)-S \mu(f) \\
& =\pi^{f}\left(X_{u}(0)\right)-\pi^{f}\left(X_{u}(S)\right)+\Gamma^{f}(0, S, u) \\
& =\pi^{f}\left(X_{u}(0)\right)-\pi^{f}\left(X_{u}(S)\right)+\Gamma^{f}(0, \sigma, u)+\Gamma^{f}(\sigma, \sigma+S-T, u)+\Gamma^{f}(\sigma+S-T, S, u) \\
& =\pi^{f}\left(X_{v}(0)\right)-\pi^{f}\left(X_{v}(T)\right)+\Gamma^{f}(0, \sigma, v)+\epsilon+\Gamma^{f}(\sigma, T, v) \\
& =\epsilon+I^{f}(0, T, v)-T \mu(f)=U_{T}^{f}(x, y)-T \mu(f)+\epsilon .
\end{aligned}
$$

Thus we have shown that (4.1) holds for each $T \geqslant \bar{T}$ and each $S \geqslant T+q$. By Proposition 2.7

$$
\sup \left\{U_{T}^{f}(x, y)-T \mu(f): T \in[1, \infty)\right\}<\infty .
$$

On the other hand by (1.6) for each $T \geqslant 1$

$$
U_{T}^{f}(x, y)-T \mu(f) \geqslant \pi^{f}(x)-\pi^{f}(y) .
$$

Hence the set $\left\{U_{T}^{f}(x, y): T \in[1, \infty)\right\}$ is bounded. Put

$$
\begin{equation*}
d_{*}=\lim _{T \rightarrow \infty} \inf \left\{U_{S}^{f}(x, y)-S \mu(f): S \in[T, \infty)\right\} . \tag{4.22}
\end{equation*}
$$

We show that

$$
d_{*}=\lim _{T \rightarrow \infty}\left[U_{T}^{f}(x, y)-T \mu(f)\right] .
$$

Let $\epsilon>0$. We have shown that there exist $\bar{T}>0, q>0$ such that (4.1) holds for each $T \geqslant \bar{T}$ and each $S \geqslant T+q$. By (4.22) there exists $T_{0} \geqslant \bar{T}$ such that

$$
\begin{equation*}
d_{*} \geqslant \inf \left\{U_{S}^{f}(x, y)-S \mu(f): S \in\left[T_{0}, \infty\right)\right\} \geqslant d_{*}-\epsilon . \tag{4.23}
\end{equation*}
$$

There exists $T_{1} \geqslant T_{0}$ such that

$$
\begin{equation*}
\left|U_{T_{1}}^{f}(x, y)-T_{1} \mu(f)-\inf \left\{U_{S}^{f}(x, y)-S \mu(f): S \in\left[T_{0}, \infty\right)\right\}\right| \leqslant \epsilon \tag{4.24}
\end{equation*}
$$

Let $T \geqslant T_{1}+q$. Then in view of (4.23)

$$
U_{T}^{f}(x, y)-T \mu(f) \geqslant \inf \left\{U_{S}^{f}(x, y)-S \mu(f): S \in\left[T_{0}, \infty\right)\right\} \geqslant d_{*}-\epsilon .
$$

On the other hand by the relation $T \geqslant T_{1}+q \geqslant T_{0}+q \geqslant \bar{T}+q$, (4.1) (which holds with $T=T_{1}, S=T$), (4.24) and (4.23)

$$
\begin{aligned}
U_{T}^{f}(x, y)-T \mu(f) & \leqslant U_{T_{1}}^{f}(x, y)-T_{1} \mu(f)+\epsilon \\
& \leqslant \inf \left\{U_{S}^{f}(x, y)-S \mu(f): S \in\left[T_{0}, \infty\right)\right\}+2 \epsilon \leqslant d_{*}+2 \epsilon .
\end{aligned}
$$

Therefore

$$
\left|U_{T}^{f}(x, y)-T \mu(f)-d_{*}\right| \leqslant 2 \epsilon \quad \text { for all } T \geqslant T_{1}+q .
$$

Since ϵ is an arbitrary positive number we conclude that

$$
d_{*}=\lim _{T \rightarrow \infty}\left[U_{T}^{f}(x, y)-T \mu(f)\right] .
$$

Theorem 1.1 is proved.

5. Proof of Theorem 1.2

Consider the function $U_{\infty}^{f}: R^{2} \times R^{2} \rightarrow R^{1}$ defined in Theorem 1.1:

$$
\begin{equation*}
U_{\infty}^{f}(x, y)=\lim _{T \rightarrow \infty}\left[U_{T}^{f}(x, y)-T \mu(f)\right], \quad x, y \in R^{2} \tag{5.1}
\end{equation*}
$$

By Proposition 2.10 there exists $M>0$ such that for each $T \geqslant 1$ and each $v \in W^{2,1}([0, T])$ satisfying

$$
\begin{equation*}
I^{f}(0, T, v) \leqslant \inf \left\{U_{T}^{f}(x, y): x, y \in R^{2}\right\}+1 \tag{5.2}
\end{equation*}
$$

the following inequality holds:

$$
\begin{equation*}
\left|X_{v}(t)\right| \leqslant M, \quad t \in[0, T] \tag{5.3}
\end{equation*}
$$

Let $x, y \in R^{2}$ satisfy $\max \{|x|,|y|\}>T \geqslant 1$. Then by the choice of M,

$$
U_{T}^{f}(x, y)>\inf \left\{U_{T}^{f}\left(z_{1}, z_{2}\right): z_{1}, z_{2} \in R^{2}\right\}+1
$$

This implies that for each $T \geqslant 1$

$$
\begin{equation*}
\inf \left\{U_{T}^{f}(x, y): x, y \in R^{2} \text { and } \max \{|x|,|y|\}>M\right\} \geqslant \inf \left\{U_{T}^{f}(x, y): x, y \in R^{2}\right\}+1 \tag{5.4}
\end{equation*}
$$

Put

$$
\begin{equation*}
E_{1}=\left\{(x, y) \in R^{2} \times R^{2}: \max \{|x|,|y|\}>M\right\}, \quad E_{2}=\left(R^{2} \times R^{2}\right) \backslash E_{1} . \tag{5.5}
\end{equation*}
$$

In view of (5.5) and (5.4) for any $T \geqslant 1$

$$
\begin{equation*}
\inf \left\{U_{T}^{f}(x, y)-T \mu(f):(x, y) \in E_{1}\right\} \geqslant \inf \left\{U_{T}^{f}(x, y)-T \mu(f):(x, y) \in E_{2}\right\}+1 \tag{5.6}
\end{equation*}
$$

By Theorem 1.1

$$
\begin{equation*}
U_{T}^{f}(x, y)-T \mu(f) \rightarrow U_{\infty}^{f}(x, y) \quad \text { as } T \rightarrow \infty \tag{5.7}
\end{equation*}
$$

uniformly on E_{2}. This implies that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \inf \left\{U_{T}^{f}(x, y)-T \mu(f): x, y \in E_{2}\right\}=\inf \left\{U_{\infty}^{f}(x, y):(x, y) \in E_{2}\right\} \tag{5.8}
\end{equation*}
$$

Let $(z, \bar{z}) \in E_{1}$. Then by (5.1), (5.6) and (5.8)

$$
\begin{align*}
U_{\infty}^{f}(z, \bar{z}) & =\lim _{T \rightarrow \infty}\left[U_{T}^{f}\left(z_{1}, \bar{z}\right)-T \mu(f)\right] \\
& \geqslant \lim _{T \rightarrow \infty}\left[\inf \left\{U_{T}^{f}(x, y)-T \mu(f):(x, y) \in E_{2}\right\}+1\right] \\
& =\inf \left\{U_{\infty}^{f}(x, y):(x, y) \in E_{2}\right\}+1 . \tag{5.9}
\end{align*}
$$

Since the function U_{∞}^{f} is continuous the set

$$
\begin{equation*}
E_{\infty}:=\left\{(x, y) \in E_{2}: U_{\infty}^{f}(x, y)=\inf \left\{U_{\infty}^{f}(z): z \in E_{2}\right\}\right\} \tag{5.10}
\end{equation*}
$$

is nonempty and compact. In view of (5.9) and (5.10)

$$
\begin{equation*}
U_{\infty}^{f}(z) \geqslant U_{\infty}^{f}(y)+1 \quad \text { for each } z \in E_{1} \text { and each } y \in E_{\infty} \tag{5.11}
\end{equation*}
$$

Let $\epsilon>0$. Using standard arguments and compactness of E_{2} we can show that there exists $\delta \in\left(0,8^{-1}\right)$ such that

$$
\begin{equation*}
\text { if } z \in R^{4} \quad \text { satisfies } U_{\infty}^{f}(z) \leqslant \inf \left\{U_{\infty}^{f}(y): y \in R^{4}\right\}+4 \delta, \quad \text { then } d\left(z, E_{\infty}\right) \leqslant \epsilon \tag{5.12}
\end{equation*}
$$

By Theorem 1.1 there exists $\bar{T}>1$ such that

$$
\begin{equation*}
\left|U_{T}^{f}(x, y)-T \mu(f)-U_{\infty}^{f}(x, y)\right| \leqslant \delta \quad \text { for any } T \geqslant \bar{T} \text { and any }(x, y) \in E_{2} \tag{5.13}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
T \geqslant \bar{T}, \quad(x, y) \in R^{2} \times R^{2}, \quad U_{T}^{f}(x, y) \leqslant \inf \left\{U_{T}^{f}(z): z \in R^{4}\right\}+\delta \tag{5.14}
\end{equation*}
$$

In view of (5.14), (5.5) and (5.6),

$$
\begin{equation*}
(x, y) \in E_{2} \tag{5.15}
\end{equation*}
$$

By (5.15), (5.14) and (5.13),

$$
\begin{equation*}
\left|U_{T}^{f}(x, y)-\mu(f) T-U_{\infty}^{f}(x, y)\right| \leqslant \delta \tag{5.16}
\end{equation*}
$$

By (5.14), (5.6), (5.9) and (5.13),

$$
\begin{aligned}
& \left|\inf \left\{U_{T}^{f}(z)-T \mu(f): z \in R^{4}\right\}-\inf \left\{U_{\infty}^{f}(z): z \in R^{4}\right\}\right| \\
& \quad=\left|\inf \left\{U_{T}^{f}(z)-T \mu(f): z \in E_{2}\right\}-\inf \left\{U_{\infty}^{f}(z): z \in E_{2}\right\}\right| \leqslant \delta
\end{aligned}
$$

Combined with (5.16) and (5.14) this implies that

$$
\begin{aligned}
U_{\infty}^{f}(x, y) & \leqslant U_{T}^{f}(x, y)-\mu(f) T+\delta \leqslant \inf \left\{U_{T}^{f}(z)-T \mu(f): z \in R^{4}\right\}+2 \delta \\
& \leqslant \inf \left\{U_{\infty}^{f}(z): z \in R^{4}\right\}+3 \delta
\end{aligned}
$$

By the relation above and (5.12), $d\left((x, y), E_{\infty}\right) \leqslant \epsilon$. Theorem 1.2 is proved.

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] S. Aubry, P.Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I, Phys. D 8 (1983) 381-422.
[3] J. Baumeister, A. Leitao, G.N. Silva, On the value function for nonautonomous optimal control problem with infinite horizon, Systems Control Lett. 56 (2007) 188-196.
[4] L.D. Berkovitz, Lower semicontinuity of integral functionals, Trans. Amer. Math. Soc. 192 (1974) 51-57.
[5] J. Blot, P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions, J. Optim. Theory Appl. 106 (2000) $411-419$.
[6] J. Blot, P. Michel, The value-function of an infinite-horizon linear quadratic problem, Appl. Math. Lett. 16 (2003) 71-78.
[7] B.D. Coleman, M. Marcus, V.J. Mizel, On the thermodynamics of periodic phases, Arch. Ration. Mech. Anal. 117 (1992) 321-347.
[8] A. Leizarowitz, Tracking nonperiodic trajectories with the overtaking criterion, Appl. Math. Optim. 14 (1986) 155-171.
[9] A. Leizarowitz, V.J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Ration. Mech. Anal. 106 (1989) 161-194.
[10] V.L. Makarov, A.M. Rubinov, Mathematical Theory of Economic Dynamics and Equilibria, Springer-Verlag, New York, 1977.
[11] M. Marcus, Universal properties of stable states of a free energy model with small parameters, Calc. Var. Partial Differential Equations 6 (1998) 123-142.
[12] M. Marcus, A.J. Zaslavski, On a class of second order variational problems with constraints, Israel J. Math. 111 (1999) 1-28.
[13] M. Marcus, A.J. Zaslavski, The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré Anal. Non Linéare 16 (1999) 593-629.
[14] M. Marcus, A.J. Zaslavski, The structure and limiting behavior of locally optimal minimizers, Ann. Inst. H. Poincaré Anal. Non Linéare 19 (2002) 343-370.
[15] B. Mordukhovich, Minimax design for a class of distributed parameter systems, Autom. Remote Control 50 (1990) 1333-1340.
[16] B. Mordukhovich, I. Shvartsman, Optimization and feedback control of constrained parabolic systems under uncertain perturbations, in: Optimal Control, Stabilization and Nonsmooth Analysis, in: Lecture Notes Control Inform. Sci., Springer, 2004, pp. 121-132.
[17] J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéare 3 (1986) $229-272$.
[18] P.H. Rabinowitz, E. Stredulinsky, On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéare 21 (2004) 673-688.
[19] P.H. Rabinowitz, E. Stredulinsky, On some results of Moser and of Bangert. II, Adv. Nonlinear Stud. 4 (2004) 377-396.
[20] A.J. Zaslavski, Ground states in Frenkel-Kontorova model, Math. USSR Izv. 29 (1987) 323-354.
[21] A.J. Zaslavski, The existence of periodic minimal energy configurations for one-dimensional infinite horizon variational problems arising in continuum mechanics, J. Math. Anal. Appl. 194 (1995) 459-476.
[22] A.J. Zaslavski, The existence and structure of extremals for a class of second order infinite horizon variational problems, J. Math. Anal. Appl. 194 (1995) 660-696.
[23] A.J. Zaslavski, Structure of extremals for one-dimensional variational problems arising in continuum mechanics, J. Math. Anal. Appl. 198 (1996) 893-921.
[24] A.J. Zaslavski, Existence and structure of optimal solutions of variational problems, in: Proceedings of the Special Session on Optimization and Nonlinear Analysis, Joint AMS-IMU Conference, Jerusalem, May 1995, in: Contemp. Math., vol. 204, 1997, pp. $247-278$.
[25] A.J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006.
[26] A.J. Zaslavski, On a class of infinite horizon variational problems, Comm. Appl. Nonlinear Anal. 13 (2006) 51-57.

[^0]: E-mail address: ajzas1@tx.technion.ac.i1.

